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Abstract—We present a framework and a set of algorithms for determining faults in networks when large scale outages occur. The
design principles of our algorithm, netCSI, are motivated by the fact that failures are geographically clustered in such cases. We address
the challenge of determining faults with incomplete symptom information due to a limited number of reporting nodes. netCSI consists
of two parts: a hypotheses generation algorithm, and a ranking algorithm. When constructing the hypothesis list of potential causes,
we make novel use of positive and negative symptoms to improve the precision of the results. In addition, we propose pruning and
thresholding along with a dynamic threshold value selector, to reduce the complexity of our algorithm. The ranking algorithm is based
on conditional failure probability models that account for the geographic correlation of the network objects in clustered failures. We
evaluate the performance of netCSI for networks with both random and realistic topologies. We compare the performance of netCSI
with an existing fault diagnosis algorithm, MAX-COVERAGE, and demonstrate an average gain of 128% in accuracy for realistic
topologies.
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1 INTRODUCTION

Efficiently detecting, diagnosing, and localizing faulty
network elements [1], [2], [3] (e.g., network nodes, links)
are critical steps in managing networks. The main focus
of conventional fault detection and diagnosis techniques
[1], [2] is to identify faults that are independent in nature,
i.e., caused by individual component failures (e.g., rout-
ing software malfunction, broken links, adapter failure,
etc.). In this paper, we concentrate on handling massive
failures (or “outages”) of many network elements caused
by, for example, weapons of mass destruction (WMD)
attacks [4], natural disasters [5], [6], electricity blackout,
cyber attack, etc.

The type of outages caused by massive failures differ
greatly from those caused by typical equipment faults
[1], [2], [7]. Massive outages tend to create faults at
multiple components that are geographically close to
each other. We call these failures clustered failures. Until
now, the prior work in the area of fault diagnosis has
focused on independent failures [1], [3], [7]. The per-
formance of these algorithms degrades when applied to
clustered failures. In this paper, we propose netCSI, a
new algorithm that is designed to effectively identify
faulty network components under clustered failures. To
show the benefits of our algorithm, we compare it with
an existing algorithm that is proposed for independent
failures.

netCSI determines possible causes of large-scale fail-
ures using a knowledge base and end-to-end symptom infor-
mation. The knowledge base contains information about
possible paths between different source-destination pairs

and the inferred topology of the network. The end-to-
end symptoms reflect end-to-end connectivity or dis-
connectivity in the network and are observed when a
failure occurs. These symptoms include both negative
information, such as which source-destination pairs are
disconnected, as well as positive information, such as
which source-destination pairs can still communicate.

Once a clustered failure occurs, netCSI uses the knowl-
edge base and symptoms to generate a list of possible
causes of the outage, called the hypothesis list. Then, a
ranking algorithm is applied to the hypothesis list to rate
the possible causes.

The main assumption in the existing fault diagnosis
algorithms [1], [2], [7] is that complete and accurate in-
formation is available at the network manager. However,
during large-scale failures, it is very unlikely that com-
plete end-to-end symptom information will be available,
because reporting nodes may not be able to reach the
network manager. Hence, we specifically address the
issue of incomplete end-to-end symptoms, because of
a limited number of reporting nodes, or the inability
of some of the reporting nodes to report all the symp-
toms. Note that netCSI considers the issue of incomplete
symptoms and the aspect of positive information at the
same time, unlike Steinder et al. [8], who consider these
aspects separately.

The following are our key contributions in this paper:
• Utilizing positive information: Unlike existing fault

diagnosis algorithms [1], [7], both connectivity and
disconnectivity information are considered in netCSI
instead of only disconnectivity information. This en-
ables netCSI to generate a more precise hypothesis
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list with fewer false positives. The average decrease
in the false positives due to the addition of positive
symptoms is 64% in our simulation study.

• Coping with lack of complete information: We
understand the impact of partial symptom infor-
mation on failure diagnosis. While generating the
hypothesis list of possible causes, netCSI performs
a type of exhaustive search, in which we introduce
several optimization techniques that significantly
decrease the run-time. Because of this, netCSI is
able to generate much more accurate results than
other well-known heuristic-based algorithms, such
as MAX-COVERAGE [1], when there are few re-
porting nodes. In addition, we also look at the case
when some of the reporting nodes do not have
complete information. In our simulation performed
on a realistic network topology, the average gain
in the accuracy of netCSI over MAX-COVERAGE
is 128% with limited reporting nodes.

• Conditional failure probability models: We develop
conditional probability models based on characteris-
tics of massive failures and the available topology of
the network. These models are used in our ranking
algorithm to enable accurate fault localization under
clustered failures.

First, we review related work in Section 2. We describe
our problem in Section 3, and explain netCSI and the
ranking algorithm in Sections 4 and 5 respectively. We
give an analysis of run-time in Section 6. We evaluate the
performance of netCSI in Section 7. Finally, we provide
conclusions in Section 8.

2 RELATED WORK

There is much prior work [1], [3], [7] that address the
localization of independent failures of individual com-
ponents in the network. To the best of our knowledge,
our algorithm is the first to focus on diagnosing massive
failures and challenges posed by them. However, there
is considerable interest on other aspects of large-scale
failures in the current literature [9], [10].

Network tomography [11], [12] is a research area that
has evolved over the past few years. The main focus
of network tomography is inferring link-level properties
from end-to-end measurements and network topology.
One type of network tomography technique called Bi-
nary network tomography [13] deals with links that are
only either good or bad, and is close to our problem.
Most solutions in this area [14], [15] rely on large linear
systems that represent the relation between path and link
properties, which is fundamentally underconstrained, i.e.,
there exist links in the system whose properties or status
cannot be determined uniquely. Some of the approaches
[16], [17] try to solve this issue by employing statistical
techniques that are based on maximum likelihood meth-
ods etc., but these still come short on accuracy when
determining link states. On the contrary, netCSI does not
solve a linear system of equations, but instead generates
possible causes considering all links in the network.

In addition, network tomography assumes that there
is a unique path between a source and destination pair
in the network. As explained in [18], this could be a huge
problem while diagnosing failures, when either rerout-
ing occurs or there is possibility of dynamic topology
in computer networks. Unlike tomography, netCSI con-
siders all known multiple paths between a source and
destination pair. Moreover, there is no work in network
tomography that deals with large-scale failures, where
a group of nodes fail together simultaneously, however
there is a recent work that focuses on correlation in links
while inferring the individual metrics [19].

MAX-COVERAGE [1], a fault diagnosis algorithm
based on SCORE (space correlation engine) [7], fo-
cuses on MPLS-over-IP backbone networks. Localization
agents use the end-to-end connectivity measurements
as alarms and employ spatial correlation techniques
to isolate failures. SCORE [7] is a greedy approach to
localize optical link failures using only IP-layer event
logs (IP link faults). The performance of these algo-
rithms degrade for large scale failures under incomplete
information. This problem of incomplete information
is precisely addressed by netCSI. Furthermore, netCSI
makes use of both negative and positive symptoms,
unlike MAX-COVERAGE and SCORE.

Sherlock [3], Shrink [2], and Steinder et al [8] pro-
pose fault diagnosis techniques that use combinatorial
algorithms with exponential computational complexity
like netCSI. Sherlock and Shrink try to minimize the
complexity by restricting the number of objects that are
assumed to have failed, which introduces false negatives.
However, they do not provide any mechanism to decide
the number of objects that have to be restricted. We
propose a dynamic threshold value selector (see Section
4.2.2), which uses a Bayesian approach to select the
threshold. netCSI also uses a novel pruning technique to
effectively reduce run-time without sacrificing accuracy.
Furthermore, both Sherlock and Shrink assume complete
symptoms, whereas netCSI performs well with incom-
plete symptom information.

3 PROBLEM AND MOTIVATION

Our goal is to determine the list of faulty objects in a
network as accurately as possible in the case of clustered
failures, given a knowledge base comprising of network
topology and end-to-end symptoms from a limited num-
ber of reporting nodes. We describe this system model
and explore this problem further via an example in the
following sub-sections.

3.1 System Model
We consider a network with n nodes, represented by the
set N , and l links, represented by the set L. We define
the term objects to represent either nodes or links. The
set of p = (n+ l) objects in the network is denoted by O.

Each node communicates with destination nodes over
different possible routes that are determined by routing
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algorithm 1. These routes are loop-free and may not be
equal to all possible routes in a given topology. Source
nodes are represented by S = {s1, s2, s3, ..., sm} ⊆ N .
Different routes from a source node si ∈ S to k dif-
ferent destinations, denoted by Di = {d1, d2, ..., dk}, are
available in the knowledge base. The routes from source
node si to a destination node dj ∈ Di are given by
Xi,j = {x1

i,j , x
2
i,j , ...}. These routes are finite, and this

number is different for each source-destination pair. The
q-th route, xq

i,j , is stored as the list of objects in O that
are present along the route. If any of the objects along a
route is faulty, then that route is disconnected; otherwise
it is considered a connected route.

netCSI uses the end-to-end symptom information of
the sources’ connectivity and dis-connectivity to their
respective destination sites. A destination site dj ∈ Di

is regarded as connected to si if there exists at least
one connected route in Xi,j , and disconnected if all
the routes in Xi,j have at least one fault. This symp-
tom information of a source si is given by the set
Ii = {Ii,1, Ii,2, Ii,3, .., Ii,k}, where the elements in the
set correspond to the k destination nodes given in Di.
Ii,j is defined only for dj ∈ Di, and is equal to either 1
or 0 as follows,

Ii,j =
{

1 , if destination dj is connected to si

0 , if destination dj is disconnected to si

The network manager collects these symptoms, Ii,
from a reporting node si ∈ S. We assume that the
collected symptoms are accurate, and have no errors. In
large-scale failures, getting symptom information from
every reporting node in the network is a major challenge.
In addition, the collection of symptom information in-
volves high overhead in terms of network management
traffic. Note that netCSI could diagnose both node and
link failures depending on the objects that have been
specified in routes by the network manager. In the next
section, we consider only nodes in the routes, however
in our simulations (Section 7.1), we consider links in the
network as the objects in routes.

3.2 Motivating example

(SRC,DEST) Routes
(s1, d1) r1

s1,d1
: (R1, R2)

r2
s1,d1

: (R1, R3)
(s1, d2) r1

s1,d2
: (R1, R3)

(s2, d1) r1
s2,d1

: (R4, R3)
(s2, d2) r1

s2,d2
: (R4, R3)

r2
s2,d2

: (R4, R5)

s1 
d1 

d2 

R1 

R3 

R4 R5 

R2 

s2 

L1 
L2 

L3 

L4 L5 

L7 

L7 L8 L9 
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Fig. 1: A network scenario to illustrate the algorithm
Consider the network in Figure 1, in which there are

two sources, s1 and s2, each connected to two destination
nodes, d1 and d2. The possible routes for all source-
destination pairs are given in a table in Figure 1. In
this example, we only consider the intermediate nodes

1. Our fault diagnosis algorithm is agnostic of the routing algorithm
which is chosen by the network manager

as objects in the network. Suppose we are given the
following symptoms: source node s1 is disconnected
from both the destination nodes d1 and d2, and source
node s2 is disconnected from destination node d1, but is
connected to destination node d2.

First consider the case in which we look only at the
set of negative symptoms, {I1,1 = 0, I1,2 = 0, I2,1 = 0}.
In this case, there are eight possible causes of symptoms
as shown in Table 1. Up to this point, we cannot say that
any particular router is down with complete confidence
because of the ambiguity in the possible causes deduced
from the given negative symptoms. However, if we
know that routers R1 and R3 are geographically close
to each other, for instance in the same building, we can
consider the double failure (R1, R3) as the most likely
possible cause of the observed symptoms.

No. of failed Negative Information Positive and Negative Information

objects from s1 from s1

1-object (R1) (R1)

2-objects (R1, R2), (R2, R3), (R1, R3) (R1, R2), (R2, R3), (R1, R3)

3-objects (R1, R2, R3) (R1, R2, R3)

No. of failed Negative Information Positive and Negative Information

objects from s2 from s2

1-object (R4), (R3) (R3)

2-objects (R4, R3) ()

No. of failed Negative Information Positive and Negative Information

objects from s1 and s2 from s1 and s2

1-object () ()

2-objects (R1, R3), (R1, R4), (R2, R3) (R1, R3), (R2, R3)

3-objects (R1, R2, R3), (R1, R2, R4) (R1, R2, R3)

(R1, R3, R4), (R2, R3, R4)

4-objects (R1, R2, R3, R4) ()

TABLE 1: Possible causes of given symptoms

If, in addition to negative information, we also have
the positive information from source nodes s1 and s2

(in this case I2,2 = 1), we can infer three possible
causes as shown in Table 1. From these causes, we
can deduce that router R3 must be down and router
R4 must be operating correctly. If we again know that
routers R1 and R3 are close to each other, then we can
prioritize the double failure (R1, R3) as the most likely
possible cause. As seen in this example, the addition of
positive information decreases the number of possible
causes. Moreover, with the knowledge of geographical
topology information, we can rank the possible causes
of symptoms to enable more accurate localization.

In addition, if we compare the cases where positive
and negative symptoms is acquired from only s1 (in-
complete symptoms) versus both the source nodes s1

and s2 (complete symptoms) in table 1, the latter case
results in fewer possible causes. In other words, having
symptoms from more reporting nodes generally results
in fewer false positives and higher accuracy. However,
the reduction in false positives comes with added over-
head in the form of extra network management traffic.
Therefore, this trade-off is important when there are
limited reporting nodes in the network and is discussed
in more detail in Sections 7.4.3.
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4 NETCSI:HYPOTHESES GENERATION AL-
GORITHM AND REFINEMENTS

Given the knowledge base and end-to-end symptoms of
the network as input, we propose a hypotheses gener-
ation algorithm that outputs possible combinations of
faulty objects that can cause the observed failures. We
then introduce several heuristics to decrease the run-time
of the hypotheses generation algorithm.

4.1 Hypotheses Generation Algorithm
Step I: A list of possible faulty objects is constructed in
this step. The list is comprised of all unique objects in
routes from different sources (reporting nodes) to the
corresponding disconnected nodes. We define a set with
all possible faulty objects, represented by P . Consider all
source-destination pairs with negative information, i.e.,
Isi,dj = 0 for a (si, dj) pair, with dj ∈ Di. The unique
objects in all possible routes between different source
and destination pairs are added to the faulty object list.
The sample faulty object list for the example shown in
Figure 1 and the symptoms mentioned in Section 3.2 is
(R1, R2, R3, R4). Step I is implemented in lines 2-11 of
the pseudo-code shown in Figure 2.

Step II: Every combination of possible faulty objects
in the formulated list is checked for the given symptoms
utilizing the knowledge base. We eliminate the combina-
tions of faulty objects which make observed symptoms
impossible and shortlist the rest of the combinations
of faulty objects as potential causes of symptoms. This
shortlist of possible combinations is called the hypothesis
list.

We consider two kinds of symptom information in
this algorithm: negative and positive. Note that this
step can be parallelized, i.e., different combinations can
be processed in parallel to check their feasibility for
the given end-to-end symptoms. Lines 24-45 show the
implementation of step II in the pseudo-code given in
Figure 2.

If there are N objects in the possible faulty object list,
then the search space is 2N − 1. Thus, the computational
complexity grows exponentially in N . To decrease the
run-time of the algorithm, we present refinements to
the base netCSI algorithm that utilize both positive and
negative symptoms below.

4.2 Decreasing Computational Complexity
4.2.1 Pruning
We can decrease the run-time of netCSI by reducing
the search space of combinations. The underlying idea
of pruning is to recognize the combinations that are
not possible because they disconnect all the routes in
Xi,j between source si ∈ S and destination dj ∈ Di,
which are actually connected according to the given
positive symptoms, i.e., Ii,j = 1. We include all such
combinations in the Impossible Set, represented by IS.

Since the combinations of faulty objects in IS are not
possible causes of failure, any other combination that

includes at least the same faulty objects as a combination
in IS cannot be a possible cause of failure. Therefore,
Step II of the hypotheses generation algorithm, can be
avoided in the case of any combination which is a
superset of a combination in IS.

Note that the advantage of this pruning can be real-
ized completely only when combinations are searched
in ascending order of cardinality, i.e., the combinations
with one faulty object are considered first, followed by
combinations with increasing numbers of faulty objects,
since combinations with the lowest cardinality have the
highest number of supersets. Pruning can be applied to
the base netCSI algorithm. We call this approach OPT1.
In our simulations, the average reduction in the search
space of OPT1 is 94% when compared to base netCSI.

4.2.2 Thresholding
The motivation for thresholding also comes from the ob-
jective to decrease the search space of the combinations
of possible faulty objects. In thresholding, we eliminate
some combinations of objects from the search space with
the help of certain pre-defined attributes, depending on
the circumstances and nature of the network [2] [3].

Attributes can be the number of faulty objects in the
combination [3], threshold values for the joint probability
of the combination, etc. For example, if the attribute
is the number of faulty objects, then the combinations
where the number of faulty objects is higher than the
threshold value are eliminated from the search space to
decrease the number of computations required.

Both pruning and thresholding can be simultaneously
applied to the base netCSI algorithm. We call this ap-
proach OPT2. In our experiments, we found that OPT2
with a proper threshold value that does not cause any
loss in accuracy can reduce the search space by 97.5%
when compared to base netCSI. Note that the netCSI has
exponential computational complexity as we explained
before, therefore an extra reduction of 3.5% with thresh-
olding is very significant. We will assess this trade-off in
our experimental results in Section 7.4.1.

Unlike pruning, thresholding reduces the search space
with a potential loss in accuracy of diagnosis: the hy-
pothesis list might lose some combinations, i.e., it might
be less accurate. However, with an appropriate threshold
value, thresholding does not change the accuracy.

To appropriately set this value, we devise a new
technique called dynamic threshold value selection. We
find that the appropriate value is close to the expected
number of faults that can occur due to a large scale
failure, i.e., we have to choose a different threshold value
in different failure scenarios. We estimate the number of
failures based on symptoms in the network to select an
appropriate threshold value.

Dynamic threshold value selection: This technique is
based on Bayesian decision approach. We make use of
both training data and the current observed negative
symptoms when a failure occurs, to estimate the ex-
pected number of failures. We then use this number as
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the threshold value.
We consider training data with different samples of

failures, and stores the resultant number of negative
symptoms for each sample along with its frequency of
occurrence, i.e., a histogram with number of negative
symptoms as an independent variable, which is repre-
sented by A. This histogram data is divided into different
bins that represent different ranges of failures, i.e., in
terms of number of failures. The total number of bins is
represented by b, and each bin is indexed by i.

We estimate the probability density function, CFi, for
each bin i using kernel density estimation [20]. Thus, the
training data will result in different probability density
functions corresponding to various bins. In addition, the
training data consists of both offline and online failure
data. The offline failure data is acquired by choosing ran-
dom samples of clusters in the network and then using
network measures as explained in the next paragraph.
The online failure data is recorded during the occurrence
of actual failures.

For offline failure data, we consider both independent
and clustered failures. We use the network measures
betweenness centrality (BC) and group betweenness
centrality (GBC), to determine the end-to-end negative
symptoms that will result from a failure instead of
enumerating the symptoms by simulating all possible
failures in the network. BC for an object is defined as
the fraction of paths that pass through the object, out
of all the paths between different nodes in the network.
Conventionally, BC is based on single shortest paths in
a given network; here the definition is with respect to
all pre-failure paths, Xij , i ∈ S, j ∈ Di that are available
to the network manager. GBC of a cluster is defined
as the fraction of paths that pass through that particular
cluster out of all the paths between different nodes in the
network. In the above definitions, the considered paths
between nodes are the ones which are available to the
network manager from reporting nodes. Note that the
paths are considered to be loop-free here.

Since we consider multiple paths between source and
destination nodes, in a single object failure case, the
number of negative symptoms is approximately equal to
BC of the failed object. Moreover for independent fail-
ures, when multiple objects fail simultaneously, the total
number of end-to-end negative symptoms is estimated
as the sum of the BC values of the failed objects.

For clustered failures, we choose samples that include
both random cluster and random space failures (Section
7.1) depending on the available cluster information at
the network manager. For both modes, the number of
end-to-end negative symptoms is equal to cluster’s GBC
value.

When a large-scale failure occurs in the network, we
observe the number of negative symptoms at a failure
instance, ns. Given ns, and the probability density func-
tions of various bins (the histogram discussed earlier in
this section), we use a Bayesian approach to identify the
size of the failure set. We then use this as the threshold

value. Our technique is described in Equations 1 and 2.
The prior probability, P (CFi), for a bin i is evaluated
using training data. In the absence of training data,
uniform priors are assumed.

P (CFi|A = ns) =
P (A = ns|CFi)P (CFi)

bP
i=1

P (A = ns|CFi)P (CFi)

(1)

Selected Bin Number = argmax
i

P (CFi|A = ns) (2)

We evaluate netCSI with dynamic threshold value
selection in Section 7.4.6.

5 NETCSI:RANKING

In this section, we present a ranking algorithm that utilizes
a conditional failure probability model to rank the hypoth-
esis list.

5.1 Ranking Algorithm

Once the hypothesis list is available, we employ a rank-
ing algorithm to rate the possible combinations based on
the maximum likelihood principle. The combinations in the
hypothesis list are ranked in the decreasing order of their
joint probabilities. Here, the joint probability of a com-
bination is the probability that the events corresponding
to both faulty and non-faulty objects will happen at the
same time.

To demonstrate the idea behind the computation of
joint probability, we look at a general combination with
both faulty and non-faulty objects, i.e., a combination of
N objects in P , a set of possible faulty objects (Step I in
Section 4.1) that has arbitrary sets of k faulty and N − k
non-faulty objects. We denote the set of faulty objects
as F = {o1, o2, ..., ok} and the set of non-faulty objects
as S = {ok+1, ok+2, ..., oN}. Therefore by construction:
F ,S ⊂ P , F ∪S = P , and F ∩S = ∅. The failure event of
an object oi ∈ P is modeled using a random variable, Fi.
The value of Fi is either 1 if oi is faulty, or 0 if oi is not
faulty. The expression for the joint probability of objects
(o1, o2, .., ok) being faulty and objects (ok+1, ok+2, .., oN )
being not faulty is,

P (F1 = 1, .., Fk = 1, Fk+1 = 0, .., FN = 0) =

P (F1 = 1) ∗ P (F2 = 1|F1 = 1)∗
.. ∗ P (Fk = 1|F1 = 1, F2 = 1, .., Fk−1 = 1)∗
P (Fk+1 = 0|F1 = 1, F2 = 1, .., Fk = 1) ∗ ..∗

P (FN = 0|F1 = 1, .., Fk = 1, .., FN−1 = 0) (3)

The individual conditional probabilities on the R.H.S.
of equation 3 are computed with the help of the condi-
tional failure probability model as explained in the next
section.
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1: {STEP-I}
2: for i = 1 to numReportingNodes do
3: for j = 1 to numDestinations(i) do
4: if Ii,j == 0 then
5: add all objects of x1

i,j , .., xi,j
m to

possibleFaultyObjectsList
6: add (i, j) to negativeSymptoms
7: else
8: add (i, j) to positiveSymptoms
9: end if

10: end for
11: end for
12: {Combs is combinations}
13: {numPossibleFaultyObjects is N}
14: th=N (with no opt-2)
15: {opt-2} & th=thresholdValue
16: for k = 1 to th do
17: numObjectCombs(k)=NCth

18: {opt-1}
19: if any ObjectCombs(k)⊇impossibleSetCombs(IS)

then
20: remove from ObjectCombs(k)
21: end if
22: numFaultyObjectCombs=numFaultyObjectCombs

+ numObjectCombs(k)
23: possibleComb(AllObjectCombs(k))=1
24: {STEP-II–PARALLELIZATION}
25: for i = 1 to numObjectCombs(k) do
26: {Positive Symptom Information}
27: for j = 1 to numPositiveSymptom (c) do
28: if positiveSymptom(j) does NOT hold for

faultyObjectComb(i) then
29: possibleComb(i)= 0
30: add faultyObjectComb(i) to

impossibleSetCombs(IS)
31: BREAK
32: end if
33: end for
34: {Negative Symptom Information}
35: for j = 1 to numNegativeSymptom (d) do
36: if negativeSymptom(j) does NOT hold for

faultyObjectComb(i) then
37: possibleComb(i)= 0
38: BREAK
39: end if
40: end for
41: if possibleComb(i)== 1 then
42: {Calculate Joint Probability for the Ranking

Algorithm}
43: add presentObjectCombs(i) to

possibleFaultyCombs (e)
44: end if
45: end for
46: end for

Fig. 2: Pseudo-code

5.2 Conditional Failure Probability Models

The main objective of Conditional Failure Probability
(CFP) models is to determine the values of conditional
probability that an object in an arbitrary set is faulty or
not given the faultiness of other objects in the same set.
These values are used to compute the joint probability
of a combination as shown in equation 3.

Here, we consider that the network may be divided
into different clusters based on various attributes of the
network. For example, objects in the same building may

be considered to be in one cluster or objects enclosed
in a specified geographical area may be labeled as one
cluster. Given clustered failures, it is most likely that all
objects in a cluster may be either faulty or not faulty
collectively.

Alternatively, we can also consider that objects within
a certain distance metric from each other, e.g., physical
distance or hop count, are most likely to fail together. In
this context, there can be three possible kinds of informa-
tion: cluster information (CI), object distance information
(OD), and no information (NI). We do not describe the
conditional failure probability model with no informa-
tion (CFPM-NI) here because it is straightforward, and
details can be found in [21].

5.2.1 Conditional failure probability model with cluster
information (CFPM-CI)
In CFPM-CI, we consider that there are c clusters in
total; the number of objects in each cluster can vary.
We represent the cluster of object oi as Ci. We consider
two arbitrary sets of faulty and non-faulty objects, repre-
sented by F ′ and S ′, respectively. As before, F ′,S ′ ⊂ P
and F ′ ∩ S ′ = ∅. The probability of an object oi being
faulty conditioned over other remaining faulty and non-
faulty objects is given in equation 4 and the conditional
probability that an object oi is not faulty given F ′ and
S ′, P (Fi = 0|F ′,S ′), is simply the complement of the
probability given in equation 4.

P (Fi = 1|F ′,S ′) =

{
pc, if ∃ oj ∈ F ′ : Ci = Cj ∧ j 6= i

1− pc, otherwise
(4)

The above equation signifies that if any of the objects
in the same cluster as object oi is faulty then the object
oi is faulty with a probability pc. Since we are dealing
with clustered failure scenarios, pc should be very close
to 1.

We consider homogeneity in clusters when it comes
vulnerability to clustered failures, and hence we propose
a constant value for pc. If we know information about
the vulnerability of all clusters for clustered failures, then
we can introduce variable values for pc and extend our
model to that setup.

5.2.2 Conditional failure probability model with object
distance information (CFPM-OD)
Here, we deal with a situation where no information
about clusters is known, but some metric of distance
between objects in the network is known. The distance
between objects can be measured through various pa-
rameters, for example euclidean distance, hop distance,
etc. We define the distance between two objects oi and
oj as a function d(i, j).

As explained above, we consider two arbitrary sets of
faulty and non-faulty objects, F ′ and S ′. The conditional
probability that an object oi is faulty given the remaining
faulty and non-faulty objects is defined in equation 5.
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Again, the conditional probability that an object oi is
not faulty, P (Fi = 0|F ′,S ′), is just the complement of
the probability given in equation 5. Here, the function
d(i,F ′) in equation 5 is defined as the minimum distance
between the object oi and any object of the set F ′ because
the event that an object is faulty or not faulty depends
on the closest failed object.

P (Fi = 1|F ′,S ′) = pd(i,F ′)
o (5)

where po ∈ [0, 1], and d(i,F ′) = min(d(i, j)) ∀oj ∈ F ′
and oj 6= oi. In this paper, hop distance between objects
is used as the distance measure in the simulations.

6 RUN-TIME ANALYSIS

For this analysis, we define the term Search Space to
represent the number of combinations for which the
hypotheses generation and ranking algorithms of netCSI
must be applied; SSPOS+NEG represents the search
space of base netCSI and SSOPT1 represents the search
space for the refinement OPT1. Also, let m be the mini-
mum cardinality of all the combinations in the Impossi-
ble Set (IS) for a given scenario. SSPOS+NEG is equal to
2N−1, where N is the number of possible faulty objects.
N depends on the number of objects (nodes or links) in
the network and number of routes considered by netCSI.
Therefore, this analysis offers an understanding on how
netCSI scales with larger networks.

With pruning, portions of the search space will be
eliminated for any scenario with a non-empty IS. Specif-
ically, we can define upper and lower bounds on SSOPT1

for any given m and non-empty IS. The upper bound
is achieved when IS has only one combination with m
objects, and the lower bound occurs when IS has all
possible combinations with m objects. These upper and
lower bounds of SSOPT1 are shown in equation 6,

m∑
i=0

(
N

i

)
− 1 ≤ SSOPT1 ≤ (2N − 1)− (2N−m − 1) (6)

In the case of thresholding, with an arbitrary threshold
value, th, the original search space of 2N − 1 is reduced
to Γ =(2N−1)−(

(
N

th+1

)
+
(

N
th+2

)
+......+

(
N
N

)
). Since OPT2

utilizes both pruning and thresholding, we can follow a
logic similar to that is used for OPT1 to evaluate the
bounds of SSOPT2, using Γ as the search space instead
of 2N − 1.

In order to see the benefit of pruning
more easily, we can look at the fractional
reduced search space, which lies in the interval

[
∑m

i=0

(
N
i

)
− 1

2N − 1
,

(2N − 1)− (2N−m − 1)
2N − 1

]. For example,
with m = 1 and N = 10, the search space is reduced
to as low as 0.98% and as high as 50% of its original
size. From our experiments in Section 7.4, we picked 10
cases with different numbers of possible faulty objects
(N ). In all cases, the minimum cardinality of all the
combinations in IS is 1, i.e., m = 1. From Figure 3, we

see that the experimental values are close to the upper
limits of the reduction in search space, resulting in a
search space of less than 1% of that which is processed by
the base netCSI algorithm.

Please note that the lower bound of SSOPT1 can be
reduced to a polynomial (Nm) for small values of m, and
it is a best-case scenario when all possible combinations
with m objects are present in IS. This can be a useful
insight when the scale of the network is increased, i.e.,
increasing the value of N. However, the determination
of value m for large networks is non-trivial and depends
on scale of failures primarily. In addition, the value m
depends on the number and the kind of positive and
negative symptoms that are available in the network.
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Fig. 3: Reduction in search space of OPT1 for different
N with m = 1

7 EVALUATION AND RESULTS

7.1 Experimental Setup

We evaluate the performance of netCSI on two different
types of topologies, random and realistic. The random
networks are generated by placing nodes at random
locations in a 2-dimensional space and the links are gen-
erated between the nodes like a waxman random graph
[22]. The realistic topology is taken from Rocketfuel trace
data provided by the University of Washington [23]. A
network with 315 backbone routers that are connected
by 972 links in an ISP (Sprint in US).

In both the networks, multiple paths are generated
among all nodes using Dijkstra’s algorithm. We consider
a maximum of 5 paths between each pair of nodes in
the network. These paths are generated after arbitrarily
failing certain links in the network, and are of varying
lengths. Without loss of generality, we only consider
links as objects in a path. In every experiment, a certain
number of reporting nodes is selected randomly out of
all nodes to report end-to-end symptoms.

For simulation purposes, clustering is done in differ-
ent ways for random networks and the network with
realistic topology. In random networks, the network is
divided into different disjoint clusters using the k-means
clustering algorithm [24]. With the number of clusters (k)
as the input, the k-means clustering algorithm generates
k clusters, each with variable number of nodes. For
the network with realistic topology, all the nodes in a
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particular city are regarded as one cluster; there are 24
clusters in total.

We simulate two types of failure modes: random cluster
failure and random space failure. In the random cluster fail-
ure mode, we choose a random cluster out of all clusters
in the network and fail all objects in that particular clus-
ter. This failure mode mimics a realistic scenario where
all objects in a building (considered as one cluster) may
fail due to various reasons. For random space failure
mode, a geometric circle with a prescribed radius r is
randomly chosen, and all objects within that circle are
failed. This scenario is similar to a case where objects that
are geographically adjacent in multiple clusters can fail
together, or a group of objects which are geographically
close in a large wireless network, can fail simultaneously.
Note that in Rocketfuel topologies, we simulate only
random cluster failures and not random space failures.

We parallelized the code of netCSI, and used an 8
core processor to improve the run-time. Since the fault
diagnosis is done at the network manager in our case, we
expect that netCSI can run on an advanced infrastructure
in practice.

7.2 Performance Metrics
7.2.1 Hypotheses Generation Algorithm
Several metrics can be used to measure the performance
of the hypotheses generation algorithm. The two metrics
are precision and accuracy. Precision of the hypothesis
list is defined as the size of the hypothesis list. A
smaller hypothesis list is said to be more precise, since
the network manager has to deal with fewer possible
causes of failure based on symptoms. Accuracy of the
hypothesis list is defined as the fraction of faulty objects
that are present in the ground truth. More details are
given in Section 7.2.3. In addition, we also consider the
size of the search space, which is directly related to the time
complexity of the hypotheses generation algorithm, and
thus determines the run-time of netCSI.

7.2.2 Ranking Algorithm
In the context of inputs given to netCSI, we define the
ground truth as the set of all objects that have failed
which are also present in at least one path from any
given reporting node. The set of faulty objects in the
ground truth is defined as Actual Faulty Objects (AFO).

We define cumulative rank (CR) to evaluate the per-
formance of the ranking algorithm. We consider only a
subset of objects as faulty objects instead of considering
all objects by using the ranks of different combinations
in the hypotheses list. In that context, CR is a particular
rank above which the objects in the union of combina-
tions at higher ranks (lower numeric values of rank)
are treated as faulty objects. Cumulative rank with ground
truth (CRGT ) is a special value of CR that is defined
as the lowest rank above which all faulty objects of the
ground truth are accumulated.

For example, consider a sample hypothesis list with 7
combinations that is ranked as shown in Table 2. Let the

ground truth be the combination (o1, o2, o4, o5). In this
example, the exact rank of the ground truth is 5, whereas
CRGT is 3. The faulty object set above CRGT is O1 ∪
O2 ∪O3 = (o1, o2, o3, o4, o5). This set is called Cumulative
Faulty Objects (CFOCRGT

), and can be defined for any
cumulative rank (CFOCR).

hypothesis list

Rank Combination of objects Rank Combination of objects

1. O1 = (o1, o2) 5. O5 = (o1, o2, o4, o5)

2. O2 = (o1, o3) 6. O6 = (o1, o2, o3, o6)

3. O3 = (o4, o5) 7. O7 = (o1, o2, o3, o4, o6)

4. O4 = (o1, o3, o5)

TABLE 2: A sample hypothesis list
7.2.3 False Positives and False Negatives
False Positives and False Negatives are possible with re-
spect to both the hypothesis list and CR. False Positives
with respect to CR (FPCR) are objects which are present
in CFOCR, but not in AFO. False Negatives with respect
to CR (FNCR) are objects which are part of AFO, but
not in CFOCR. The expressions for %FPCR and %FNCR

are given below. In addition, we also define accuracy
for fault diagnosis algorithms as the fraction of objects
in the ground truth that are diagnosed as faulty, i.e.,
accuracy is the complement of FNCR. Different CR values
give distinct CFOCR, and thus different false positives
and false negatives. The effect of CR over accuracy, false
positives, and false negatives will be seen in more detail
in Section 7.4.

%FPCR =
|CFOCR −AFO| ∗ 100

|CFOCR|

%FNCR =
|AFO − CFOCR| ∗ 100

|AFO|

7.3 Robustness of CFP Models
To understand the robustness of CFP models, we have
run simulations on a random network with 100 nodes,
k = 20 clusters and 10 randomly selected reporting
nodes. OPT1 is employed for fault diagnosis. All three
CFP models are compared under two failure modes, ran-
dom space and random cluster failures. We evaluate the
metric average exact match rank, which is defined as the
rank of the ground truth in the ordered hypothesis list.
The effect of parameters pc and po (equations 4 and 5)
on the ranking algorithm is examined by choosing values
from the set {0.5,0.9}. We consider constant values for
these parameters, but pc and po could be adaptively
learned from occurrences of clustered failures in the
network. This is considered as a future work.

Figure 4 shows that the performance of the ranking
algorithm using the CFPM-CI dominates both CFPM-OD
and model with no information. The CFPM-CI performs
better when pc = 0.9 in both the failure modes. However,
CFPM-OD performs better when po = 0.5 compared to
0.9 in the case of random space failure mode where r2 =
20. This is not true in the case where r2 = 40. The reason
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is that the case r2 = 20 represents a smaller clustered
failure scenario compared to the scenario where r2 = 40.
Here, r is the radius of the circle. A similar observation
can be made for random cluster failure scenarios, when
k = 30 (smaller cluster size) compared to the case when
k = 10 (bigger cluster size) as shown in Figure 4. Here
k is the number of clusters. Regardless of the failure
modes, CFPM-CI with pc = 0.9 is the most robust of all
the models. Thus, we use this model for all subsequent
simulations in Section 7.4. Nevertheless, having object
distance information is still better than not having any
information.
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Fig. 4: Robustness of CFP models

7.4 Evaluation Results
In this section, we present the results to gauge the
performance of netCSI, and also compare it with MAX-
COVERAGE. The experiments are run by assuming that
the network manager has complete knowledge of the
multiple paths that are consistent with the assumptions
given in Section 3.1, and the network topology. This
is a standard assumption in prior works such as [1],
[2], [3], [7] including MAX-COVERAGE and is a valid
assumption if the network manager owns the network.

7.4.1 Performance of different netCSI approaches
Here, we analyze the performance of netCSI with both
positive and negative information (POS + NEG), and
only negative information (NEG). For the former case,
we evaluate the improvements that can be achieved with
both OPT1 and OPT2. We consider a random network
with 100 nodes divided into 20 clusters (k = 20) and
three instances of random space failure scenarios with
varying radius (r). In all cases, the number of reporting
nodes is 10, and each case was run 10 times. The data
for various netCSI approaches is given in Table 3.

Both POS +NEG and NEG have a maximum search
space of ∼ 106 combinations in the case of r2 = 20. In
Figure 5(a), the average search space of OPT1 and OPT2
is 5.9% and 2.4% of the total combinations, respectively;
the corresponding numbers are shown in the Table 3.
Here, we considered 10 as the threshold for OPT2.
Since size of the search space is proportional to the
time complexity of netCSI, we expect OPT2 to have the
lowest run-time of all the netCSI approaches.

In Figure 5(a), we can see that the size of the hypoth-
esis list for POS + NEG is 0.0015% of total combina-
tions, whereas NEG lists 3.39% of total combinations

Algorithm r2 Avg.
links
failed

Avg
total
combs

Avg
combs
in SS

Avg
pos-
sible
combs

Avg
CRGT

Avg
exact
match
rank

Avg
FPCRGT

20 6.7 9.73x105 9.73x105 3.3x104 1 2.62x104 74.4%

NEG 30 7.1 1.34x106 1.34x106 3.3x104 1 2.63x104 73.5%

40 8.9 2.17x106 2.17x106 7.87x104 1 6.57x104 71.7%

20 6.7 9.73x105 5.75x104 29.1 1 24.2 26.6%

OPT1 30 7.1 1.34x106 7.91x104 29.1 1 25.2 25.7%

40 8.9 2.17x106 1.28x105 31.7 1 28.4 28.2%

20 6.7 9.73x105 2.70x104 21.3 1.4 16.4 25.5%

OPT2 30 7.1 1.34x106 3.56x104 17.4 1.6 13.5 24%

40 8.9 2.17x106 5.26x104 18.9 1.8 15.6 26.5%

TABLE 3: Data comparing various netCSI approaches

as possible combinations. The reason for fewer possible
combinations in the case of POS+NEG when compared
to NEG is because the positive information eliminates
false positives. In addition, we observe that the number
of possible combinations is the same for both OPT1
and POS + NEG (0.0015%). Thus, the precision of the
hypothesis list does not change, i.e., netCSI will not miss
any faulty link in the ground truth and hence there is
no change in accuracy with pruning. However, OPT2
outputs a hypothesis list with much fewer combina-
tions (0.0009%) when compared to POS + NEG, so it
is possible that we may not find all the faulty links
in the ground truth with thresholding. Therefore, the
accuracy of OPT2 might decrease when compared to
OPT1 depending on the threshold value.

Hence, in the case of OPT2, there is trade-off between
the accuracy and the size of the search space. In Figure
5(b), we plot the average size of the search space and ac-
curacy (with CRGT ) for different threshold values under
OPT2. The accuracy of OPT2 increases with increase in
the value of the threshold. For th=9, there is no loss of
accuracy in OPT2, however the size of the search space
for OPT2 with th=9 is much smaller than that of OPT1
as shown in Figure 5(b). Furthermore, in Figure 5(c), we
show that both OPT2 with th=10 and OPT1 have almost
the same %FPCR and %FNCR for different cumulative
ranks. Therefore, for a properly chosen threshold value,
OPT2 can be as effective as OPT1, along with the added
advantage of lower search space. Henceforth, in the
remainder of paper, OPT2 means netCSI that includes
the refinements: pruning, and thresholding with a proper
threshold value.

7.4.2 Performance of Ranking Algorithm
We use CFP-CI with pc = 0.9 for our ranking algorithm
to rate possible combinations in the hypothesis list. In
Table 3, we can see that the average CRGT = 1 for almost
all netCSI approaches, i.e., we find all the faulty objects
in the highest-ranked combination in the hypothesis list;
however, false positives differ from one approach to an-
other. Because of positive information, OPT1 (30%) and
OPT2 (25%) have lower %FPCRGT

compared to NEG
(70.3%). Due to the smaller hypothesis list, OPT2 gives
fewer false positives than OPT1. In Figure 5(c), we show
that %FPCR increases with increase in the cumulative



U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2014.2369051, IEEE Transactions on Dependable and Secure Computing

TATI et al.: NETCSI: A GENERIC FAULT DIAGNOSIS ALGORITHM FOR LARGE-SCALE FAILURES IN COMPUTER NETWORKS 10

0.00032	
  

0.0016	
  

0.008	
  

0.04	
  

0.2	
  

1	
  

5	
  

25	
  

125	
  

OPT-­‐2	
   OPT-­‐1	
   POS+NEG	
   NEG	
  

Av
er
ag
e	
  
Pe

rc
en

ta
ge
	
  

Possible	
  Combina>ons	
  
in	
  Hypotheses	
  list	
  

Combina>ons	
  in	
  Search	
  
Space	
  

(a) Precision of the hypothesis list for
r2 = 20

0	
  
0.1	
  
0.2	
  
0.3	
  
0.4	
  
0.5	
  
0.6	
  
0.7	
  
0.8	
  
0.9	
  
1	
  

0	
  

10000	
  

20000	
  

30000	
  

40000	
  

50000	
  

60000	
  

70000	
  

80000	
  

90000	
  

100000	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  

	
  A
ve
ra
ge
	
  A
cc
ur
ac
y	
  

	
  N
um

be
r	
  o

f	
  C
om

bi
na

3o
ns
	
  	
  

Threshold	
  for	
  OPT2	
  

Avg.	
  Search	
  Space-­‐OPT2	
  

Avg.	
  Accuracy-­‐OPT2	
  

Accuracy	
  -­‐OPT1	
  
	
  

Search	
  Space	
  -­‐OPT1	
  
	
  

(b) Comparison between OPT1 and
OPT2

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

CR=1	
   CR=2	
   CR=3	
   CR=4	
   CR=5	
  

Av
er
ag
e	
  
Pe

rc
en

ta
ge
	
  

Cumula0ve	
  Rank	
  

FP_CR-­‐OPT-­‐2	
   FN_CR-­‐OPT-­‐2	
  

FP_CR-­‐OPT-­‐1	
   FN_CR-­‐OPT-­‐1	
  

FP_CR-­‐NEG	
   FN_CR-­‐NEG	
  

(c) False Positives and False Negatives
with respect to cumulative ranks

Fig. 5: Evaluation of different netCSI approaches

rank for both OPT2 and OPT1, because the CFOCR

list becomes bigger as we increase the cumulative rank.
Please note that the average %FNCR for both OPT2
and OPT1 with respect to cumulative ranks saturates
at 42%.2

Incidentally, from Table 3 the average exact match rank
of both OPT2 and OPT1 is in the bottom 25th percentile
of the hypothesis list. This is due to the disparity in sim-
ulated failure mode (random space failure) and CFPM-
CI which is employed for the ranking algorithm. Hence,
most of the time the CRGT lies in the top 5th percentile
of the hypothesis list as given in Table 3. Therefore, the
ranking algorithm of netCSI performs much better even
though the models are distinct, which is common in
practice.

7.4.3 Effect of varying number of reporting nodes
We now evaluate netCSI and compare it with MAX-
COVERAGE for the situations when there is incomplete
end-to-end symptom information. Since the focus is
on large scale failures, acquiring end-to-end symptom
information from all the reporting nodes may not be
feasible. Furthermore, the major drawback in collecting
all the symptom information is redundancy, which may
lead to unnecessary wastage of critical resources in the
network. However, with more symptoms, netCSI pro-
duces a hypothesis list that results in better accuracy and
fewer false positives and false negatives.

Results are given for networks with both random
and realistic topologies while varying the number of
reporting nodes in Figure 6. Since the output of MAX-
COVERAGE is a set of objects that could be faulty, it
is straightforward to determine the accuracy. However,
the hypothesis list of netCSI contains different possible
combinations of objects (multiple sets), so we consider
CFOCR (a list of possible faulty objects) to evaluate the
accuracy of netCSI. For both the networks, we employ
OPT2 with different threshold values, and simulate a
random cluster failure scenario with 10 trials.

In Figure 6(b), for realistic topology, we consider
CFOCRGT

to compute the accuracy of netCSI with

2. Here the number of reporting nodes are 10. By increasing the
number of reporting nodes, i.e., more symptom information, we can
diagnose more links that are faulty.

OPT2 with different threshold values. netCSI outper-
forms MAX-COVERAGE when the reporting nodes are
varied between 10 and 100.3 The maximum and average
gain in accuracy of OPT2th=7 are 567% (10 reporting
nodes) and 128%, respectively, when compared to MAX-
COVERAGE as shown in Figure 6(b). Furthermore, in
Figure 6(d), we present the accuracy of OPT2th=7 for
different CR while varying the number of reporting
nodes. The average gain in the accuracy for OPT2th=15

with CR =1, 2 and 3 over MAX-COVERAGE are 107.2%,
115.8% and 119.4% respectively. Hence, the network
manager can pick a very small number as CR and
achieve as much accuracy as CRGT .

We now consider a random network of 100 nodes
with 20 clusters. In Figure 6(a), we give the accu-
racy of OPT2 considering CFOCRGT

. When there are
fewer reporting nodes, i.e., for a number lower than
75, both OPT2th=15 and OPT2th=10 are more accurate
than MAX-COVERAGE. Now, we specifically compare
the accuracies of OPT2th=15 and MAX-COVERAGE; the
maximum gain is 138% (10 reporting nodes), and the
average gain is 45%. However, OPT2th=5 has lower
accuracy than MAX-COVERAGE, and does not follow
any trend as shown in Figure 6(a). The reason is that
combinations in which the number of simultaneous fail-
ures is more than 5 are not considered. In Figure 6(c),
the average gain in the accuracy of OPT2th=15 over
MAX-COVERAGE is almost the same for both CR = 3
and CRGT (Figure 6(a)). Here also OPT2th=15 with just
CR = 1 can achieve an average gain of 41% over MAX-
COVERAGE.

From the results for both the networks, we conclude
that even when the network manager picks a very small
number as CR, we can achieve as much accuracy as
CRGT . In addition, with 10 reporting nodes, we observe
that OPT2 is more accurate for a network with a realistic
topology than random topology. This is because our
random topology is more dense than the considered
realistic topology, and with given (small) number of
symptoms netCSI outputs more possible combinations
in the hypothesis list for dense networks than sparse

3. We have considered only 100 as maximum number of reporting
nodes (limited no. of symptoms) and there are 315 nodes in the
network, so the accuracy for all considered netCSI approaches and
MAX-COVERAGE do not reach the value 1 in our results.
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Fig. 6: Evaluation of netCSI while varying number of reporting nodes
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Fig. 7: False Positives and False Negatives

In Figure 7, we plot FPCRGT
and FNCRGT

, with
OPT2th=15 for random network, and with OPT2th=7

for network with realistic topology, along with false
positives and false negatives of MAX-COVERAGE. In
both networks, FPCRGT

and FNCRGT
of OPT2 are lower

than those for MAX-COVERAGE in most of the cases. In
addition, both FPCRGT

and FNCRGT
of OPT2 decrease

with an increase in the number of reporting nodes for
both the networks. However, they become more or less
saturated for the cases with number of reporting nodes >
50, i.e., the extra information that we get from reporting
nodes 50 to 100 could be considered as redundant.
Therefore, the trade-off between accuracy and overhead
in collecting the information from reporting nodes, could
be exploited by selecting an optimum number of report-
ing nodes (minimum overhead) with exactly or close to
0% false negatives, i.e., almost all the faulty objects in
the ground truth are localized.

7.4.4 Run time of netCSI

In both the networks, with an increase in the value of
threshold, the accuracy of OPT2 increases as shown in
Figure 6, but at the same time, as shown in Figure 8,

the run-time also increases. Hence, the gain in accuracy
of OPT2 compared to MAX-COVERAGE comes with
additional overhead of run-time. As shown in Figures
8(a) and 8(b), the run-time of OPT2 with different
threshold values do not follow any trend when we vary
the number of reporting nodes.

In Section 6, we showed that the run-time of netCSI
depends on the number of possible faulty objects (N )
exponentially, and on the number of symptoms (c + d)
linearly. Even though the value of (c + d) increases with
the increase in the number of reporting nodes, there
could be an instance where N is very high in one of
the trials regardless of number of reporting nodes. These
type of instances can be seen in both the Figures 8(a) and
8(b) when the reporting nodes are in between 10 and 50.
Moreover, since the code of netCSI is parallelized, the
effect of proportionality on run-time due to number of
symptoms is reduced. In addition, with more paralleliza-
tion, the overall run-time of netCSI could be decreased
even further, unlike MAX-COVERAGE.
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Fig. 8: Run-time of netCSI

7.4.5 netCSI with dynamic threshold value selection
As explained in Section 4.2.2, netCSI with thresholding is
efficient when we select an appropriate threshold value.
Until now, we evaluated netCSI with a static threshold
value irrespective of the failure, i.e., we handpick a
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threshold value manually for all failures. We propose
a technique called dynamic threshold value selection in
Section 4.2.2 that selects a dynamic threshold value for
each failure instance.

As discussed in Section 4.2.2, when a failure occurs,
our technique uses both training data and the current
observed negative symptoms to estimate the threshold
value. Data is divided into different bins that represent
different ranges of failures, i.e., in terms of number of
failures. We consider the selected range as the size of
the bin. During a failure instance we select the threshold
value as the maximum number of failures in the range
of the selected bin, and we call it as dynamic threshold
value.

In Figure 9, we compared the performance of netCSI
for various cases of static and dynamic threshold values.
We considered static threshold values of 5, 10, 20, 30 and
40, and dynamic threshold values with bin sizes of 5, 10,
15 and 20. The number of reporting nodes is 10. We run
experiments for six failure cases and show the average
values of run time and accuracy in Figure 9. We consider
10,000 offline samples in the training data.

From Figure 9, we see that the accuracy of netCSI
increases with increasing static threshold value, as ex-
pected. In the case of the dynamic threshold with various
bin sizes, we achieve the same accuracy as the static
threshold but with lower run time. We also provide the
average threshold value (in parentheses in Figure 9) for
all cases where the dynamic threshold value selection is
used.

Even though the gap between the values of average
threshold for static and dynamic cases is high, the dif-
ference in run times is just little more than significant.
The main reason is our pruning technique (Section 4.2.1):
many combinations with a large number of objects get
pruned from the search space. Therefore, our technique
enables us with an automated mechanism to choose
a threshold value depending on the failure instance
instead of handpicking a static value. In addition, our
dynamic threshold selection can used in various other
inference techniques [3].
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Fig. 9: Static and dynamic threshold values

In our experiments, given 10 reporting nodes, we
simulated 2,000 failures that consist of both random

space and random cluster failures. For two cases of
training data with 10,000 and 20,000 samples, we observe
that the accuracy of picking the correct bin decreases
with decrease in the bin size. For 20,000 samples, we
observed that 60% of the time we pick correct bins for
bin sizes that are more than 15.

7.4.6 Effect of partial measurements at a reporting node

When we vary the number of reporting nodes in Section
7.4.3, we assume that complete information is available
at each reporting node. However, this assumption may
not be true in realistic scenarios. For example, a reporting
node may not know every reachable or unreachable
destination. When the reporting nodes report both neg-
ative and positive symptoms to the network manager,
i.e., if the connectivity status of any destination node
corresponding to a reporting node is unknown, then no
symptom is reported. Therefore, the network manager
receives incomplete positive and negative symptoms
from various reporting nodes.

In Figure 10, we show the effect on accuracy, when the
partial amount of symptoms at a selected reporting node
randomly falls in the range between 30% and 90% , i.e.,
(30%,90%) of total number of both positive and negative
symptoms. In this case, we consider 30 reporting nodes.
The performance of both netCSI and MAX-COVERAGE
degrade when there is partial information at reporting
nodes compared to the case with complete information,
as expected. However, with partial information at every
reporting node, netCSI performs much better than MAX-
COVERAGE.
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Fig. 10: Partial information at reporting nodes
We then evaluate the performance of fault diagnosis

algorithms under partial information at every reporting
node while varying number of reporting nodes. We also
consider cases in which the amount of partial informa-
tion is 90%, 60% and 30% of both positive and negative
symptoms at every chosen reporting node. These results
are given in Figure 11. We observe that for all cases;
with 30%, 60%, 90%, and (30%,90%) partial information,
the accuracy of both netCSI and MAX-COVERAGE de-
creases when compared to the scenario in which every
reporting node has complete information. In Figure 11,
please note that we do not show the results for the
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case of 60% partial information because of space con-
straint. With only 30% partial information, the accuracy
of netCSI decreases drastically. This indicates that it is
more important to choose reporting nodes with a greater
amount of symptom information than selecting a large
number of reporting nodes that have significantly lower
amount of symptom information.

In Figure 11, MAX-COVERAGE with various amounts
of partial information follows the same trend as netCSI,
but performs worse than netCSI. We also observe that the
accuracy of MAX-COVERAGE with complete informa-
tion at every reporting node is much lower than that of
netCSI under substantial partial symptom information
at reporting nodes (i.e., more than 30% of complete
symptom information) when there are a limited number
of reporting nodes (number of reporting nodes ≤ 40) in
a network of 100 nodes. This shows that netCSI is more
robust than MAX-COVERAGE under partial information
at a reporting node, when there are few reporting nodes.
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under partial information at reporting nodes

7.4.7 Performance of netCSI under independent failures
We perform simulations under independent failures and
observed that the hypothesis list of netCSI is highly
accurate with no false negatives, but contains many
false positives. For multiple runs of random independent
failures, netCSI returns 70-75% of false positives. This
number is very high compared to 20% of false posi-
tives returned by MAX-COVERAGE. The reason is the
assumption that the geographically adjacent objects fail
in clustered failures, and due to this correlation netCSI
overestimates the number of failed objects. Using this
insight, we propose an adaptive algorithm that works
for both independent and large-scale failures in our
subsequent work [25].

8 CONCLUSION

In this paper, we developed netCSI to accurately di-
agnose faults due to large scale failures in spite of
having incomplete symptom information. While varying
the number of reporting nodes, netCSI accomplishes
an average gain of 128% and 45% in accuracy over
MAX-COVERAGE for realistic and random topologies,

respectively. In our results we observed that reporting
nodes with many symptoms are more important than
reporting nodes with very few symptoms. netCSI utilizes
both positive and negative symptoms along with knowl-
edge of the pre-failure network topology to generate a
hypothesis list of possible combinations that cause the
symptoms. Due to inclusion of positive symptoms, the
size of the hypothesis list is reduced by almost 99.9%,
and the percentage of false positives is reduced by at
least 60% when compared to netCSI with only negative
symptoms. In addition, the reduction in the search space
of netCSI, due to pruning and thresholding, are 94%
and 98%, respectively. We also show the effectiveness of
dynamic threshold selector while employing thresholding.
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