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Abstract

Many systems take the form of networks, including the Internet, distribution and transport networks, neural

networks, food webs, and social networks. The characterization and modelling of these systems has proved amenable

to treatment using techniques drawn from statistical and computational physics, and has as a result attracted

considerable attention in the physics literature in recent years. In this paper the author reviews some of the

interesting issues in this area and recounts some recent work on these issues by his group and by others.

1. Introduction

Many definitions of “complex systems” have
been proposed over the years, and at present there
is none which is universally accepted. Most people
however would agree that a fundamental property
of complex systems is that they are composed of
a large number of components or “agents”, in-
teracting in some way such that their collective
behaviour is not a simple combination of their
individual behaviours. Classic examples of such
systems include social organization in human or
animal communities, financial and other markets,
the Internet, and ecosystems of interacting species.

Over the years, a large body of research has been
directed at understanding both the behaviour of
individual agents within complex systems and the
nature of the interactions between them. As we are
just beginning to realize however, there is a third
aspect to these systems which may be even more
important and which has so far received little at-
tention, and that is the pattern of interaction be-
tween agents, i.e., which agents interact with which
others. This pattern forms a network or graph of

connections between agents [1,2], and it is on such
networks that we focus in this paper.

Recent interest in the structure of networks
has been spurred partly by the Internet, which
has some interesting features when viewed as
a graph [3]. A related but distinct network is
the World-Wide Web, a network of “pages” of
information which can be accessed over the In-
ternet and which are joined to one another by
“hyperlinks”—directed edges leading from one
page to another [4,5]. There are also many net-
worked systems that occur in biology, such as
neural networks [6], food webs [7,8], and metabolic
networks [9,10]. In addition, studies have been
made of distribution networks such as airline
timetables [11] or blood vessels [12,13], river net-
works [14], and even networks of semantic linkage
between words [15]. There is however one area in
which networks have been studied longer than any
of these; social networks—networks of connections
between people—have been studied in the sociol-
ogy literature at least since the 1940s, and possi-
bly earlier, and it is social networks which are the
primary topic of this paper, although many of the
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network source size separation clustering

company directors Fortune 1000 7 673 4.60 0.588

movie actors IMDB 449 913 3.48 0.199

physics authors arxiv.org 52 909 5.92 0.452

biomedical authors Medline 1 520 253 4.42 0.088

Table 1
Size, mean vertex–vertex separation, and clustering coefficient for four real-world networks of connections between people,
as described in the text. After Ref. [25].

ideas described here may have wider applicability.
In one of the most famous early studies of so-

cial networks Stanley Milgram performed an ex-
periment in which letters were passed from one ac-
quaintance to another to reach a distant target in-
dividual [16]. Milgram found that the typical num-
ber of people his letters passed through to reach a
specified target was only about six, and he tenta-
tively concluded that if one were to construct the
complete network of acquaintances, there would be
only a short distance through this network from
any person to any other, of typical length around
six. Although the exact number six is certainly de-
batable this result is now widely accepted as being
correct. It is often referred to as the “small-world
effect”, or the “six degrees of separation”, the lat-
ter phase being taken from a 1990 play of the same
name by John Guare in which Milgram’s work is
mentioned [17].

Acquaintance networks are the archetype of a
social network, but there are many other kinds
of social networks as well. Studies have addressed
networks of people connected by common atten-
dance at social events [18], common membership of
clubs [19], networks of business relations between
companies [20], and many others. Two types of
networks which the present author has examined
extensively are networks of collaborations between
scientists [21,22] and networks of boards of direc-
tors of companies [23–25]. On a lighter-hearted
note, there has also been a moderate amount of
work on the network of collaborations of actors in
films [11,26].

This paper is a personal review of recent research
on social and other networks within the physics
community, using a number of examples drawn
from the author’s own work. The outline of the
paper is as follows. In Section 2 we describe three

distinctive properties of real-world networks which
distinguish these networks from the standard net-
work models, such as the regular lattice, that are
common in physics. In Section 3 we discuss some
recent simulation and modelling work we and oth-
ers have performed in an attempt to understand
these properties. In Section 4 we give our conclu-
sions.

2. Statistical properties of networks

In this paper, we focus on three distinctive prop-
erties of real-world networks including social net-
works. These properties are as follows:

1. The small-world effect: As discussed in the
previous section, the small-world effect is the find-
ing that there exist short paths through a net-
work between most pairs of vertices. In Table 1 we
show the measured average distances between ver-
tex pairs in four networks. The networks are: the
network of directors of Fortune 1000 companies for
1999 (the 1000 US companies with the highest rev-
enues), in which two directors are considered con-
nected if they sit on the board of the same com-
pany; the network of collaborations between movie
actors in the Internet Movie Database (as of 1 May
2000), in which actors are connected if they have
appeared in a movie together; and two networks of
scientific collaborations, for physics (from papers
in the Los Alamos E-print Archive) and biomedical
research (from papers in the Medline bibliographi-
cal database), in which two scientists are connected
if they have coauthored a paper together. In each
case the average vertex–vertex distance is small (in
the range 3 to 6), certainly much smaller than the
number n of vertices in the complete network.
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Fig. 1. Histograms of the degree distributions of the four networks of Table 1. (a) Distribution of number of directors
with whom each director of a Fortune 1000 company sits on boards; (b) distribution of number of other actors whom each
film actor in the Internet Movie Database as appeared in films with; (c) distributions of the total number of coauthors of
authors in the Medline (top) and Los Alamos Archive (bottom) publication databases during the interval 1 January 1995
to 31 December 1999.

In recent years, following various empirical and
theoretical results, the term “small-world effect”
has taken on a more technical meaning, that typical
distances in the network scale as log n with network
size, and we will adopt this definition in this paper.
In Section 3.1 we show for the particular case of the
scientific collaboration networks that logarithmic
scaling of this type does indeed occur in real life.

2. Skewed degree distributions: The degree
of a vertex in a network is the number of other
vertices to which it is connected. If one makes a
histogram of the degrees of vertices in a real-world
network, one typically finds that their distribution
is highly skewed. In Fig. 1 we show such histograms
for the four example networks from Table 1. As the
figure shows, the network of company directors has
a degree distribution which is roughly exponential
after an initial rise, while the other networks have a
distribution which approximately follows a power
law. Networks with power-law degree distributions
are sometimes called scale-free networks, although
of course they may have scales of various kinds
governing properties other than their degree dis-
tribution; strictly it is only the degree distribution
which is scale-free. The Internet and the World-
Wide Web appear to be examples of networks that
are scale-free [3,4].

3. Clustering: A further characteristic feature
of real-world networks has been highlighted by
Watts and Strogatz [26], who pointed out that
most networks are highly “clustered”. In the con-
text of social networks, this means that there is
a heightened probability that two people will be
acquainted if they have a third acquaintance in
common. Put another way, there is a heightened
density of “triangles” of acquaintance in the net-
work in which three people all know one another.
One can define a clustering coefficient C which
measures this effect thus [25,26]:

C =
3× number of triangles on the graph

number of connected triples of vertices
. (1)

Here “triangles” are trios of vertices each of which
is connected to both of the others, and “connected
triples” are ordered trios in which at least one is
connected to both the others. The factor of 3 in the
numerator accounts for the fact that each triangle
contributes to three connected triples of vertices,
one for each of its three vertices. With this factor
of 3, the value of C lies strictly in the range from
zero to one, and is equal to the average probability
that two of one’s friends are also friends of one an-
other. In Table 1 we show the values of this coeffi-
cient for the same four networks as before. In each
case the number is reasonably high: the probabil-
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regular lattice random graphfully-connected graph

Fig. 2. Three standard network configurations which have been studied in detail in the past: the regular lattice (the square
lattice, in this case, with nearest-neighbour interactions), the fully-connected graph, and the random graph.

ity of one’s friends knowing each other is usually
on the order of a few tens of percent.

3. Models of networks

Interactions between the components of a sys-
tem are of course nothing new in physics, and a
number of standard patterns of such interactions
have been studied in detail in the physics litera-
ture. The three most common such prototypical
networks are shown in Fig. 2. They are:

The regular lattice: This is certainly the most
widely studied network in physics, but it is a very
poor representation indeed of most real-world net-
works, particularly social networks. It does not
show the small-world effect, having typical vertex–
vertex distances which scale with system volume n
as n1/d, where d is the dimensionality of the lat-
tice. Nor does it have a skewed degree distribution,
although some regular lattices (e.g., the triangular
lattice) do have high clustering coefficients.

The fully-connected graph: This graph, in
which every vertex is connected directly to every
other, is used in physics as the basis for mean-
field theory, as well as for some simplified mod-
els of physical systems such as the Sherrington–
Kirkpatrick spin-glass model. It shows the small-
world effect after a fashion—every vertex is ex-
actly distance 1 from every other—but not the log-
arithmic scaling of distance with system volume

that has become the accepted definition of a small
world. It also does not have a skewed degree dis-
tribution. It has clustering coefficient C = 1.

The random graph: Less studied in physics
than in mathematics, the random graph proba-
bly comes closest to mimicking a real network. It
does show the small world effect, with the typi-
cal vertex–vertex distance being ℓ = log n/ log z,
where z is the average degree of a vertex. How-
ever, it has a Poissonian (not skewed) degree dis-
tribution, and its clustering coefficient is C = z/n,
which is small compared to the value of C for most
real-world networks.

So if none of these standard networks does a
good job of representing real-world situations,
what does? In the remainder of this paper we de-
scribe a number of models, introduced by various
authors, which aim to capture at least some of
the characteristic network features that we have
discussed. All of these models in fact capture the
small-world effect, and all of them also mimic ei-
ther skewed degree distributions or the clustering
effect as well.

3.1. Random graphs with skewed degree

distributions

The random graph of Erdős and Rényi [27] men-
tioned above, in which a certain number of edges
are placed randomly between the vertices of an ini-
tially empty network, captures the small-world ef-
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fect nicely but has a degree distribution which is
Poissonian rather than exponential or power-law
in form. As pointed out by Molloy and Reed [28],
however, the model can be modified to correct this
problem as follows. Suppose we wish to construct a
network with a given degree distribution in which
the probability of a randomly-chosen vertex hav-
ing degree k is pk. We can do this by taking n ver-
tices and giving each of them a degree k drawn at
random from pk. We can think of the degrees as be-
ing represented by the “stumps” of edges emerging
from the vertices. Then we choose pairs of these
stumps at random and join them together. This
procedure produces a network which has the de-
sired degree distribution, but which is otherwise
random. It turns out that many average properties
of networks of this kind can be calculated exactly,
using combinatoric methods [25,28]. For example,
it can be shown that the typical vertex–vertex dis-
tance in such a network is given by

ℓ =
log n/z1

log z2/z1

+ 1, (2)

where z1 is the average degree of a vertex (pre-
viously called z) and z2 is the average number of
second-nearest neighbours of a vertex. These num-
bers can easily be measured for any given network,
and in Fig. 3 we show a comparison of the vertex–
vertex distance on a number of networks of scien-
tific collaborations, plotted against the predicted
value of the same quantity from Eq. (2). As the
figure shows, the agreement between theory and
empirical results is good, giving us some hope that
models of this kind might be a useful representa-
tion of real-world networks.

3.2. Growth models for skewed degree distributions

While the generalized random graph model
above can represent a network with any degree
distribution we desire, it offers no explanation for
where degree distributions come from. Another
model which does this for the case of a power-law
degree distribution has been proposed by Barabási
and Albert [29]. In their model, they propose that
power-law degree distributions arise as a result of
“preferential attachment”, a process whereby ver-
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Fig. 3. Measured vertex–vertex distances for 13 scien-
tific collaboration networks drawn from bibliographical
databases in biology (Medline), physics (Los Alamos
E-print Archive), and high-energy physics (SPIRES), plot-
ted against theoretical predictions for the same distances
from Eq. (2). After Ref. [21].

tices and edges are continually added to a network
and edges attach with greater likelihood to exist-
ing vertices which already have high degree. Herb
Simon showed in 1955 [30] that a process of this
type can give rise to a power-law distribution of
the wealth of individuals in an economy. Employ-
ing similar mathematical techniques, Barabási
and Albert showed that the same is true for de-
gree distributions of networks. In particular, if the
probability of an edge attaching to a vertex of
given degree is simply proportional to that degree,
then the resulting degree distribution follows a
power law with exponent −3. In real-world net-
works such as the Internet and the World-Wide
Web, the exponent of the degree distribution is
usually between 2 and 3, which agrees reasonably
with the theory. Growth models such as these
have some other interesting properties as well.
For example, some of them seem to exhibit an
infinite-order phase transition at the point where
a giant component of connected vertices first ap-
pears [31,32]. They do not, however, appear to
give high clustering coefficients [2].

If preferential attachment provides a possible ex-
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Fig. 4. The probability that a new edge in a collaboration
network will attach to a vertex of given degree as a func-
tion of that degree, measured relative to the probability
of the same occurrence on a network with the same topol-
ogy but on which preferential attachment does not occur.
The roughly linear increase in the relative probability in-
dicates that linear preferential attachment occurs in these
networks, at least for low degree. Main figure: data from
the Medline biomedical database. Inset: data from the Los
Alamos physics e-print archive. After Ref. [33].

planation for the skewed degree distributions we
see in real-world networks, the next step is to try
to confirm if preferential attachment does actu-
ally take place in those networks. In order to do
this, we need network data with good time reso-
lution; we need to know the order in which edges
are added to a network, so that we can observe
whether preferential attachment is indeed taking
place. One class of networks for which this is pos-
sible is the scientific collaboration networks dis-
cussed earlier. In these networks, two scientists are
considered connected if they have coauthored one
or more papers, and the time of addition of each
link in the network is the time at which the cor-
responding paper was submitted or published. Us-
ing this idea, Newman [33] has calculated the rela-
tive probability of edges attaching to different ver-
tices in various collaboration networks as a func-
tion of the current degree of those vertices. Figure 4
shows this relative probability for collaborations
in biology and in physics, and it appears from the
figure that indeed linear preferential attachment
does take place in these networks. There is an up-
per limit in the degree above which preferential at-

Fig. 5. The Watts-Strogatz “small-world” model in one
dimension with near-neighbour links out to distance k = 3
and shortcut density φ = 0.05.

tachment no longer takes place, but interestingly
this upper limit corresponds roughly to the point
at which power-law behaviour in the degree distri-
bution ceases for these networks, which only lends
further support to the preferential attachment hy-
pothesis. Jeong et al. [34] have performed similar
measurements of preferential attachment for cita-
tion networks, the Internet, and the network of col-
laborations of film actors, with similarly encourag-
ing results.

3.3. The Watts–Strogatz model for clustering

Turning now to the question of clustering in net-
works, we introduce a number of models which may
explain clustering in some situations.

One of the first models to offer an explanation
for the simultaneous appearance of the small-world
effect and clustering in the same network was the
“small-world model” of Watts and Strogatz [26].
This model proposes that networks are constructed
from a regular lattice, representing local connec-
tions between individual people, plus a low den-
sity of “shortcut links” which join randomly chosen
pairs of individuals at arbitrarily great distances.
These shortcut links might represent the acquain-
tances one has in other countries or in other walks
of life. The most widely studied case of the model is
built on a one-dimensional regular lattice with pe-
riodic boundary conditions and links between near
neighbours out to some maximum range k, as illus-
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Fig. 6. Average distance between vertices (solid line) and
clustering coefficient (dotted line) for the one-dimensional
Watts–Strogatz model with k = 1 as a function of the
density φ of shortcuts. The cluster coefficient is measured
relative to its value Cmax on a fully connected graph, and
ℓ relative to its value ℓmax on a random graph. The value
of ℓ is taken from the mean-field treatment of Ref. [35] and
the value of C from Eq. (3).

trated in Fig. 5. The number of shortcut bonds is
usually expressed as a fraction φ of the number of
bonds on the underlying one-dimensional lattice.

One of the nice things about this model is that
many of its properties can be calculated analyti-
cally [35–37]. In the limit of large system size, for
example, the clustering coefficient is given by

C =
3k(k − 1)

2k(2k − 1) + 8φk2 + 4φ2k2
. (3)

In Fig. 6 we show results for the typical vertex–
vertex distance ℓ in the model and the clustering
coefficient C as a function of φ. The crucial point
to notice about the figure is that there is a sub-
stantial regime of intermediate values of φ in which
ℓ is small and C is simultaneously large, so that
the network shows both the small-world effect and
clustering.

The model of Watts and Strogatz however is
clearly not a realistic model for most networks (a
possible exception is the use of the two-dimensional
version of the model to represent the propaga-
tion of plant diseases [38]), and so researchers
have turned to the development of more realistic
models.
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Fig. 7. Top: A bipartite graph of, for example, scientists
(A to K) and scientific papers (1 to 4) with lines linking
each scientist to the paper on which their name appeared
as a coauthor. Bottom: the projection of the same network
onto just the scientists.

3.4. Bipartite graph models and clustering

A better and very simple explanation for clus-
tering arises in bipartite graphs, or “affiliation net-
works”. These are networks in which vertices are
joined together via common membership in groups.
All of the example networks from Table 1 and
Fig. 1 have this form: the scientific collaboration
networks, the film actor collaborationnetwork, and
the network of company directors. Each can be
represented as a bipartite graph, as in Fig. 7, in
which there are two types of vertices represent-
ing scientists (actors, directors) and papers (films,
boards), with edges running between each scientist
and the papers on which their name appeared as
a coauthor. Typically one does not represent such
networks in their full bipartite form however, but
rather one projects the network down onto just the
authors, so that there is an edge running between
any two authors who have coauthored a paper (see
Fig. 7 again). This projection produces a network
which contains a high density of triangles; any pa-
per with three or more authors contributes at least
one such triangle. These triangles can then produce
a finite value for the clustering coefficient, follow-
ing Eq. (1).

In fact, it turns out to be fairly straightforward
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Fig. 8. An example of a simulated social network generated
using one of the algorithms proposed by Jin et al. [39],
in which links are preferentially formed between pairs of
individuals who have one or more mutual acquaintances.

to calculate the clustering coefficient for these net-
works analytically, given the degree distributions
of the two types of vertices in the original bipartite
network [25]. The resulting values are often quite
high and in some cases compare favourably with
the real-world values. For example, in the network
of the boards of directors of the Fortune 1000 com-
panies, theory predicts a clustering coefficient of
0.590, where the measured value is 0.588. In other
cases, however, the agreement is much poorer. For
the collaboration networks of scientists and film
actors for example, the theory underestimates the
true value by about a factor of two.

3.5. Growth models for clustering

In social networks the standard explanation for
clustering is that people tend to introduce pairs of
their friends to one another, thus completing tri-
angles in the network and increasing the clustering
coefficient. A mechanism of this sort could explain
why the simple theory of the previous section of-
ten underestimates clustering coefficients. One can
construct a growth model of a social network in
which one preferentially makes links between pairs
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Fig. 9. The relative probability of two scientists collabo-
rating as a function of their number of previous mutual
collaborators. After Ref. [33].

of individuals who have one or more common ac-
quaintances. Models of this kind have been pro-
posed by Watts [36], Jin et al. [39], and David-
sen et al. [40]. In Fig. 8 we show an example of a
network grown with the model of Jin et al. The
resulting network shows high clustering (C = 0.45
in this case), but it also has another interesting
feature. It shows clear groups or “communities” of
vertices which have many connections to one an-
other and fewer to vertices outside the group. This
unanticipated feature of the model may reflect a
genuine mechanism for community formation in
real social networks: the local mechanism of peo-
ple introducing pairs of their friends to one another
can produce the global phenomenon of cliquishness
and social groupings.

In the same way as we did for preferential at-
tachment models in Section 3.2, we can test the
assumptions of growth models for clustering by
looking at time-dependent network data. Taking
the example of the scientific collaboration networks
again, we show in Fig. 9 the relative probability
of two authors in the Los Alamos physics archive,
that have not previously appeared as coauthors on
the same paper, coauthoring a paper as a function
of their number m of previous mutual collabora-
tors. As the figure shows, this probability goes up
extremely fast with number of mutual collobora-
tors. Initially the increase appears roughly linear,
although it levels off as m becomes large. The dot-
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ted line in the figure is a least squares fit to the form
A−B e−m/m0 , although this form should be taken
with a pinch of salt: the data above about m = 10
in the figure have large statistical errors, since the
number of pairs of people in the database who have
10 or more mutual past collaborators but have not
themselves collaborated is small. Nonetheless, the
overall message of the figure is clear, that having
previous mutual collaborators does indeed strongly
dispose a pair of scientists to work together.

4. Conclusions

In this paper the author has given a brief per-
sonal overview of some recent work within the
physics community on networks of various kinds.
The discussion centres on the development of mod-
els to explain three crucial features which seem
to be common to most real-world networks: short
vertex–vertex path lengths (the “small-world” ef-
fect), skewed degree distributions, and clustering.
A number of models have been put forward which
explain one or more of these features well, includ-
ing generalized random graph models, preferential
attachment models, and the Watts–Strogatz social
network model.

So far, however, no models have been proposed
which simply and convincing explain how all three
of these features come to be present in a network
simultaneously. This is one of the interesting open
questions in the field.
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