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1. Introduction 

 

Linear feedback shift registers (LFSR) are used widely in data compression circuitry, 

encryption circuitry, Built-in self-test (BIST), communication circuitry and error 

correction circuitry [1,2,3,4,5,6,7,8]. In this paper we consider only Type I LFSRs 

(defined in [4]), which consist of a bank of D-flip-flops connected serially. The output of 

some of these is XORed together and fed back to the first flip-flop. The conventional 

serial architecture of an LFSR with characteristic polynomial, F(x) = 1+ x2 + x5, is shown 

in Fig. 1. Here the length of the LFSR (the number of flip-flops), which is denoted by N, 

is 5 and the number of taps or number of terms XORed, which is denoted by M, is 2. 

Power consumption in the serial architecture is high as all the flip-flops are clocked in 

every clock cycle and only one bit of information is generated per clock cycle. The output 

can be taken from the input or output of any flip-flop. When the output of i successive 

cycles are generated in one cycle then the LFSR is an i-output (or multiple output) LFSR. 
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Fig. 1.  Serial implementation of the LFSR with 1 + x2 + x5. 

 

The best-known low-power architecture of an LFSR is the one presented in [9]. In [9] 

only one flip-flop’s output changes every clock cycle thereby reducing power dissipation. 
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However, extra circuitry has to be added to enable this. The architecture in [9] can be 

described by Fig. 2. In Fig. 2 signal Ti (i = 1, 2,…, N) is obtained from an N-phase 

generator (a Johnson counter along with some AND gates). Ti is logic-1 in clock cycle i 

mod N and logic-0 in all other clock cycles. From Fig. 2 we see that the outputs of flip-

flops 2 and 5 are XORed together in cycle 1 and the result is stored in flip-flop 5 at the 

clock edge of cycle 2. This happens because the switches at the output of flip-flops 2 and 

5 are turned on by T1. In cycles 2, 3, 4, and 5 respectively, the outputs of flip-flops (1,4), 

(5,3), (4,2), and (3,1) are XORed together and stored in flip-flops 4, 3, 2, and 1 

respectively, at the clock edges of cycles 3, 4, 5, and 1 respectively. Note that the output 

of the XOR gate is the output of the LFSR. The operation of the LFSR can be described 

aptly by Table I.  
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Fig. 2.  Low-power implementation of the LFSR with 1 + x2 + x5. 
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TABLE I 
THE OPERATION OF THE LFSR WITH CHARACTERISTIC POLYNOMIAL 1+ X2 + X5 

 
Cycle number 1 2 3 4 5 

Flip-flop outputs that 
are XORed 2,5 1,4 5,3 4,2 3,1 

Flip-flop into which 
the XORed output is 

stored 
5 4 3 2 1 

 

 

 

 
Note that Table I shows that the result of XORing the outputs of flip-flops 2 and 5 in 

cycle 1 is stored in flip-flop 5. However, this result is stored in flip-flop 5 in the 

beginning of clock cycle 2 and not in cycle 1 as shown in the table. This applies to all the 

clock cycles. The switches that are turned on by more than one Ti are controlled by the 

ORing of these Ti. Thus a bank of OR gates may be necessary for controlling the 

switches. In Fig. 2, 4 switches are controlled by 2 Ti’s each and hence 4, 2-input OR gates 

are required. Thus the complete single output LFSR described in [9] consists of an N-

phase generator, a maximum of (N + M) switches, N flip-flops, (M – 1) 2-input XOR 

gates, and a maximum of (N + M), M-input OR gates.  

A 2-output LFSR with characteristic polynomial 1 + x2 + x5, is also described in [9]. 

This circuit consists of (N + M) + 2N more switches than the single output case and each 

flip-flop is clocked by 2 clocks. Obtaining more than 2 outputs makes the number of 

switches too high and also the number of clocks, clocking each flip-flop is equal to the 

number of outputs.  

Our new architecture for an LFSR with characteristic polynomial, 

1 2 11 Mk k k Nx x x −+ + + + + x , with Nkkk M <<<< −121 , can generate k1 outputs in 

each clock cycle. Therefore the number of M-input XOR gates needed is k1. The phase 
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generator needs to generate only 








1k
N

 phases instead of N. The number of switches 

needed is less than (N + M). Since k1 outputs are available at a time, the clock frequency 

and hence the power dissipated reduces by a factor of k1. Therefore our new architecture 

is better in terms of hardware and power dissipation than [9]. The multiple output LFSR 

can be easily converted to a single output LFSR using a multiplexer and latches, which 

operate at k1 times the frequency of the multiple output LFSR. However since the 

multiplexer and latches are the only components operating at the higher frequency and 

they dissipate very little power, converting to a single output LFSR is very easy.  

In the next section we describe our new LFSR architecture, followed by a comparison 

of hardware complexity and power dissipation of the new architecture with the 

architecture in [9]. The section that follows this describes an example of our new 

architecture and quantifies the gain obtained in terms of hardware and power for this 

example. In Section 4 we perform a comparison of power and the number of distinct 

patterns generated.  Finally the last section concludes the paper.  

 

 

2. The New LFSR Architecture 

 

We will first describe our architecture for the LFSR with characteristic polynomial  

1 + x2 + x5. We refer to the contents of the flip-flops at cycle i as the state in cycle i. From 

Table I we can see that in cycle 1 the outputs of flip-flops 2 and 5 are XORed together 

and stored in flip-flop 5 at the clock edge of cycle 2. This new state of flip-flop 5 is used 
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in cycle 3 when it is input to an XOR gate. Similarly in cycle 2 flip-flops 1 and 4 are 

XORed together and stored in flip-flop 4 at the clock edge of cycle 3. This new state of 

flip-flop 4 is used again in cycle 4. This implies that both cycles 1 and 2 can be 

performed simultaneously because in both these cycles only the initial state of the flip-

flops is used. Similarly cycles 3 and 4 can be performed simultaneously and cycle 5 has 

to be performed by itself. Cycles 1 and 2, change the state of flip-flops 5 and 4, which are 

then used in cycles 3 and 4. Cycles 3 and 4 change the state of flip-flops 3 and 2, which 

are then used in cycle 5. This new operation is summarized in Table II below. In the 

table, 2 clock cycles of Table I are shown as 1 clock cycle. 

 
TABLE II 

THE OPERATION OF THE MULTIPLE-OUTPUT LFSR WITH POLYNOMIAL 1+ X2 + X5 

New cycle number 1 2 3 
Flip-flops XORed →  
destination flip-flop 

(2,5)→5
(1,4)→4

(5,3)→3
(4,2)→2 (3,1)→1 

  

The output of this LFSR is the output of the XOR gates. Note that in cycle 1 and 2, 

two outputs are obtained and in cycle 3 only one output is obtained. Our new 

implementation is shown in Fig. 3.  
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Fig. 3.  New multiple-output implementation of the LFSR with 1 + x2 + x5. 

 

From the previous example we see that the number of outputs that can be obtained is 

2, which is the exponent of x2 in 1 + x2 + x5. The total number of phases the phase-

generator has to generate is 5/2 , where 5 is the degree of the characteristic polynomial 

and 2 is the lowest, non-zero exponent of a term in the characteristic polynomial. The 

number of switches required in our implementation is always less than (N + M) times the 

number of outputs. In the above example this is 14. The actual implementation has only 7 

switches. The implementation in [9] requires 22 switches, which is always less than (2N 

+ M) times the number of outputs.  

We now describe the general method for the design of an LFSR with characteristic 

polynomial 1 1 2 1Mk k k Nx x x −+ + + + + x , with Nkkk M <<<< −121 . 

1. Obtain a table similar to Table I for the operation of the LFSR. 
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2. Combine every k1 clock cycles into one clock cycle. Therefore each cycle 

produces k1 outputs. 

3. Form the switch network for each of the k1, M-input XOR gates. Note that the ith 

XOR gate produces the ith output, amongst the k1 outputs produced in each cycle.  

The hardware required by our new architecture is, 

1. 








1k
N

 phase generator. 

2. Approximately 








1k
N

  OR gates, with each OR gate having an average number of 

inputs equal to 








1k
N

D
M

av
. Here Di is the number of distinct inputs, that are input 

to XOR gate i in 








1k
N

 clock cycles. For example in Table II we see that one of 

the XOR gates receives inputs from flip-flops (2,5), (5,3), and (3,1) in cycles 1, 2, 

and 3 respectively. Therefore the number of distinct inputs it receives in these 

three cycles is, D1 = 4, and they are the outputs of flip-flops 2, 5, 3, and 1. Note 

that the ith entry in row 2 of all columns refer to inputs to XOR gate i. Therefore 

from Table II we see that the second entry in row 2 of all columns are (1,4) and 

(4,2) making D2 = 3. Dav is the average of all the D’s i.e. Dav = ∑
=

1

11

1 k

i
iD

k
. Each 

XOR gate has M inputs in every clock cycle. Every 








1k
N

 clock cycles these 

inputs repeat. Therefore 








1k
NM  inputs are applied to an XOR gate over 









1k
N
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clock cycles. However only Dav distinct inputs exist over 








1k
N

 cycles. This 

implies that over 








1k
N

 cycles each XOR gate input has a flip-flop output 

connected to it 








1k
N

D
M

av
times. Therefore the switch connected to this input must 

be turned on 








1k
N

D
M

av
times. Thus the OR gate controlling the switch must have 










1k
N

D
M

av
 phases (or Ti’s) as its input.  

3. Approximately k  switches. At XOR gate i’s inputs, D∑
=

=
1

1
1

k

i
iav DD i distinct flip-

flop outputs arrive over 








1k
N

cycles. For each distinct flip-flop output there must 

be a switch that connects it to the XOR gate input. Since there are k1 XOR gates 

the total number of switches is . ∑
=

=
1

1
1

k

i
iav DDk

4. N flip-flops. 

5. k1, M-input XOR gates. 

As opposed to this the implementation in [9] requires the following hardware. 

1. N phase generator. 

2. A maximum of k1(N + M), M-input OR gates. 

3. A maximum of k1(2N + M) switches. A maximum of (N + M) switches are needed 

for each XOR gates’ inputs and since there are k1 XOR gates the total number of 
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switches at the inputs of the XOR gates is k1(N + M). The output of each XOR 

gate is connected to the N flip-flops via N switches implying that k1N switches are 

connected to the outputs of all the XOR gates. Thus the total number of switches 

required is k1(2N + M). 

4. N flip-flops. 

5. k1, M-input XOR gates. 

By choosing the appropriate characteristic polynomial, our method leads to a major 

reduction in the number of OR gates and switches. Since an N phase generator has N/2 

flip-flops with N, 2-input NAND gates, our implementation of a 








1k
N

 phase generator 

requires only 








12
1

k
N  flip-flops and 









1k
N

, 2-input NAND gates. The number of LFSR 

flip-flops and XOR gates however still remains the same. The following lemma states 

that relationship between the number of switches in our architecture and the design in [9]. 

 

Lemma 1: The maximum number of switches in our architecture is less than the 

maximum number of switches in Lowy’s architecture [9]. 

Proof: The number of switches in our architecture is . D∑
=

=
1

1
1

k

i
iav DDk av is the average 

number of distinct flip-flop outputs connected to an XOR gate over 








1k
N

 cycles. Since 

there are only N flip-flops the maximum value of Dav is N. Therefore the maximum 

number of switches in our architecture is k1N. This is less than the maximum number of 

switches required by the architecture in [9] which is k1(2N + M).                                   � 

 10



We now develop the power dissipation equation for our architecture. 

 

Power Dissipation Comparison 

We will now compare the power dissipated by our architecture compared to the one 

in [9]. We will derive equations for the power dissipated for the phase generator, OR 

gates, flip-flops, and XOR gates. For dynamic power calculation, the same notations and 

assumptions presented by Hamid and Chen [10] are used to make the comparison simple. 

The worst-case dynamic power is given by 

21 (percentage activity)total dd
p

P C V
t

= × × × , 

where tp is the clock period, Ctotal is the total capacitance driven by the gate outputs, Vdd is 

the supply voltage, and the percentage activity is 50%.  

Other notations used in the calculations are 

PFF  =  power dissipation of the D flip-flop with 1 output capacitance. 

Pclock = the clock power dissipated by each flip-flop. 

PXOR  =  power dissipation of an XOR gate with 1 output capacitance. 

POR  =  power dissipation of an OR gate with 1 output capacitance. 

PAND =  power dissipation of an AND gate with 1 output capacitance. 

Pmin = power dissipation due to load of the source capacitance of a minimum size 

transistor. 

PINV  =  power dissipation of an inverter with 1 output capacitance. 

N =  Number of stages. 

M = Number of taps. 
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Phase Generator Power 

The power dissipation in the phase generator is (obtained along similar lines as in [9])  

1
1 1

12 2
2FF AND clo

av

M N N
ckP P P P

D k k
    

= + +         
. 

In the above expression the term 








1k
N

D
M

av
 is the load on the AND gates, which is the 

number of OR gates the output of an AND gate is connected to. In order to simplify 

calculations we choose to include the clock power dissipation in the flip-flop power 

dissipation just as in [10]. The phase generator power dissipation is now given by 

1
1

2 2FF AND
av

M NP P P
D k

  
= +      

. 

The power dissipated by the phase generator in [9] is,  

1 12 2 (L FF AND 1)P P P k M k= + + . 

The term (k1M + k1) is the load on an AND gate which is k1M OR gates and k1 switches 

providing inputs to the flip-flops.  

 

OR Gates Power 

In both our architecture and the one in [9], during each clock cycle k1M switches are 

activated. Therefore the power dissipated by the OR gates is P2 = k1MPOR.  

 

Flip-flops Power 

In our architecture each flip-flop is connected to an average of 
N
Dk av1 switches and 

only k1 of the flip-flops change state in a clock cycle. Therefore the power dissipated by 
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the flip-flops is 1
3 1

1 1
2 2

av
FF F

k D
FP k P P

N
= + . The “

1
2

” in the power in this and other 

expressions that follow, accounts for the fact that the flip-flop changes state only 50% of 

the time (percentage activity of the flip-flop). For the architecture in [9] each flip-flop is 

connected to approximately k1 switches (this assumes that (N + M)/N = 1 [9]) and k1 flip-

flops change state each cycle, therefore the power dissipated by the flip-flops is 

3 1 1
1 1
2 2L FF FFP k P k P= + . 

 

XOR Gates Power 

In our architecture k1 XOR gates are connected to k1 flip-flops, therefore the power 

dissipated by the XOR gates is, 
1

2
4

1
2 XORP k P= . If an inverter were to drive each of the N 

flip-flops, then the power dissipated by the XOR gates would be 4 1 1
1 1
2 2XOR INVP k P k P= + .    

The architecture of Lowy [9] also requires k1 XOR gates, but each one of these is 

connected to the drains of N minimum sized transistors (switches). Therefore the power 

dissipated by the architecture in [9] is, 4 1 1
1
2 2L XOR

N
minP k P k P= + . 

 

Total Power 

Since k1 outputs are available each clock cycle, the frequency of operation can be 

reduced by a factor of k1. Therefore the total power consumed by our architecture is, 

1 1 1 1
1 1

1 1 12 2 1
2 2 2

av
FF AND OR FF XOR INV

av

DM NP P P k MP k P k P k P
k D k N

     = + + + + + +            

1
. 

 13



The total power consumed by the architecture in [9] is, 

( )1 1 1 1 1 1 mi
1

1 12 2
2 2L FF AND OR FF XOR

NP P P k M k k MP k P k P k P
k
 = + + + + + +  

n . 

To simplify calculations we choose to ignore PINV and Pmin. Thus the final expressions 

become the following. 

1 1 1
1 1

1 12 2 1
2 2

av
ours FF AND OR FF XOR

av

DM NP P P k MP k P k P
k D k N

     = + + + + +            

1
, 

( )1 1 1 1 1
1

1 12 2
2Lowy FF AND OR FF XORP P P k M k k MP k P k P

k
 = + + + + +  

. 

The decrease in power dissipation is given by, 

1 1 1
1 1

1 12 1
2

av
Lowy ours AND FF

av

DM NP P P k M k k P
k D k

     − = + − + −            N . 

In the next section we describe the above design with an example. In the section that 

follows the next we consider built-in self-test (BIST) applications of our proposed LFSR 

as considered in [10]. Our results indicate that the proposed LFSR, while having reduced 

hardware complexity, generates more distinct patterns than the ones proposed in [10].   

 

 

3. Example 

 

In this section we will construct an LFSR with characteristic polynomial  1 + x3 + x4 + 

x7 + x12  that demonstrates our LFSR architecture. Comparisons are also made with [9,10] 

in terms of power dissipation and hardware complexity. We will construct a table similar 

to Table II to demonstrate the design. Table III shows the table that describes the LFSR 
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design. The XOR gates and their inputs in the LFSR circuit obtained from Table III are 

shown in Fig. 4. 

 
TABLE III 

THE OPERATION OF THE LFSR WITH POLYNOMIAL 1+ X3 + X4+ X7 + X12 

Cycle number 1 2 3 4 
Flop-flops XORed  

→ 
destination flip-flop 

(3,4,7,12)→12 
(2,3,6,11)→11 
(1,2,5,10)→10 

(12,1,4,9)→9 
(11,12,3,8)→8
(10,11,2,7)→7

(9,10,1,6)→6 
(8,9,12,5)→5 
(7,8,11,4)→4 

(6,7,10,3)→3
(5,6,9,2)→2 
(4,5,8,1)→1 

 

This LFSR produces 3 outputs every clock cycle. The LFSR needs a 4-phase 

generator, 4 2-input OR gates, 24 switches, 12 flip-flops, and 3 4-input XOR gates. Note 

that for this LFSR Dav = 8, because each row of the “flip-flops-XORed-row” in Table III 

has 8 distinct flip-flop outputs being XORed. For example there are 8 distinct terms in 

(3,4,7,12), (12,1,4,9), (9,10,1,6), and (6,7,10,3). Therefore the average number of inputs 

an OR gate must have is 
1

4 4 2
8av

M N
D k

  ×
= = 

 

8 3 24× =

, and the number of switches required by this 

LFSR is . Lowy’s architecture [9] on the other hand requires a 12-

phase generator, 24 2-input OR gates, 60 switches, 12 flip-flops, and 3 4-input XOR 

gates.  

1

1
1

k

av i
i

k D D
=

= =∑
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Fig. 4.  Implementation of the LFSR with 1 + x3 + x4 + x7 + x12. 

 

The power dissipated by our architecture is given by, 

1 52 4 12
3 2ours FF AND OR FF XORP P P P P P = + + + + 
 

3
2 . 
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The power dissipated by Lowy’s architecture [9] is given by, 

1 32 30 12 3
3 2Lowy FF AND OR FF XORP P P P P P = + + + + 
 

. 

Therefore our architecture consumes lesser power, which is given by, 

1 126
3 2Lowy ours AND FFP P P P − = + 
 

. 

 

 

4. Comparison of Power and Distinct Patterns Generated 

 

In this section we consider polynomials of the type 1 or 

 similar to the ones considered in [10]. It was shown in [10] that such 

polynomials result in a number of switches of order N instead of order (N + M) and that 

the number of distinct patterns generated is more than that of Lowy’s architecture. We 

show that we can obtain N/2 outputs simultaneously if N is odd with hardware 

requirement that is less than that in [10]. Since multiple outputs have been generated and 

the hardware required is less the power consumption of our architecture is considerably 

less than that in [10]. Our design also results in more distinct patterns than [10] and is 

therefore more suitable for applications like BIST. Note that for even N our design does 

not generate as many distinct patterns as in [10], however our design results in more 

distinct patterns if we use polynomials that are not of the form 1 or 

. For example if N is 10 one could use the polynomial 1 + x

  NN xx ++ 2/

  NN xx ++ 2/

  NN xx ++ 2/1

  NN xx ++ 2/1 3 + x10 

instead of 1 + x5 + x10. Using the data in Table IV we can obtain the hardware complexity 
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and power dissipation equations for polynomials of the kind 1 or 

 (N odd). 

  NN xx ++ 2/

  NN xx ++ 2/1

  NN xx ++ 2/

1
2 2
N N +  =  

 
TABLE IV 

THE CHARACTERISTICS OF LFSRS WITH POLYNOMIAL   NN xx ++ 2/1 OR 1  

 k1 = (N + 1)/2 k1 = (N – 1)/2 

Number of outputs per 

cycle = k1 
(N + 1)/2 (N – 1)/2 

Phases = 








1k
N  2 3 

Number of OR gates = 








1k
N  

1 (since there are only two 

phases) 
3 

Average number of inputs 

to each OR gate = 








1k
N

D
M

av
 

4/3 3/2 

Maximum D 3 4 

Number of switches = k1D 3(N + 1)/2 4(N – 1)/2 

Number of XOR gates = k1 (N + 1)/2 (N – 1)/2 

Number of flip-flops = N N N 

 

Using the general power equations derived by us and putting in the appropriate value 

of k1 and Dav we can obtain the power dissipation equations. When k1 is , 

the power dissipation is given by,  

3
2 2

XOR
ours FF INV

PNP P M
N
+

= + + P . 
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Note that the phase generator consists only of an inverter in this case because only 2 

phases have to be generated. When k1 is
1

2 2
N N −  =  

, the power dissipation is given by,  

2 4( ) 2
1 2

XOR
ours FF INV OR FF

PNP P P P P
N N

+
= + + + +

− 2 . 

In this case the phase generator consists of one flip-flop and an inverter. We now 

compare the above hardware complexity and power dissipation equations to the LFSRs in 

[10]. The architecture in [10], for a single output, requires an N-phase generator, (N + M), 

M-input OR gates, about N switches, N flip-flops and one XOR gate. For obtaining k1 

outputs the architecture in [10] requires k1 XOR gates, 2k1N switches and k1(N + 2) OR 

gates. The power dissipation equation for the architecture in [10] for a single output is 

3 4 2
2
XOR

FF AND OR
P

P P P + + +
 

  and for k1 outputs it is the same as for Lowy’s case [10] 

with M = 2 and is given by 1 1 1 1
1

1 12 6 2
2FF AND OR FF XORP k P k P k P k P

k
 + + + + 
 

. Thus our 

architecture is superior both in terms of hardware complexity and power dissipation. 

Table V compares power dissipation of our architecture with Lowy’s architecture [9] 

for different characteristic polynomials. The data used to obtain the table is for a CMOS 

0.18 µ process standard cell library, with capacitances, Cdff  = 0.0027 pf, CXOR = 0.0042 pf, 

COR = 0.0026 pf, CINV = 0.0027 pf, CAND = 00215 pf, and the power supply voltage is Vdd 

= 1.8 V. Frequency is set to 30 MHz. From the table we see that on the average our 

architecture results in more than 50% improvement in power dissipated if the number of 

outputs is more than 1. The first column of the table gives the characteristic polynomial 

of the LFSR, the second column gives the power dissipated by either the architecture in 
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[9] or [10] whichever is lower and the third column gives the power dissipated by our 

architecture. Table V also compares the percentage of the maximum of the number of 

distinct patterns that are generated by our architecture with that generated by single 

output architectures in [9] and [10] for various polynomials. Columns 5 and 6 give the 

following quantity: number of distinct outputs in 2N cycles divided by 2N – 1, which is the 

maximum number of distinct outputs possible. The entries in Column 5 are from [9] or 

[10] whichever is higher. Column 8 gives the best seeds of our architecture. A seed given 

in the table is an integer whose N-bit binary equivalent gives the initial values of the flip-

flops. Therefore if the seed is 1

1
2

N
i

i
i

S −

=

×∑ , then Si (1 ≤ i ≤ N) is the binary value that the ith 

flip-flop is initialized to. If several seeds result in the same maximum percentage then the 

smallest seed is given. We compare our multiple output polynomials with previous single 

output architectures because the hardware overhead for previous architectures with 

multiple outputs is too high thus making them unusable. For some of the polynomials in 

Table V our architecture results in a single output LFSR because k1 = 1. From Column 6 

of the table we see that the average percentage of the number of distinct patterns 

generated is close to 100%, thereby making our architecture suitable for BIST 

applications.  
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TABLE V 
POWER AND PERCENT DISTINCT OUTPUT COMPARISON 

Polynomial 

Power 
from 
[9,10] 
(µW) 

Power 
from 
ours 
(µW) 

% 
improved 

2N cycles 
(%) from 

[9,10] 

2N cycles 
(%) from 

ours 

% 
improved

Seed 
from 
ours 

1 + x + x3 2.75 2.28 17.1 71.4 100 28.6 1 
1 + x + x4 2.75 2.28 17.1 60.0 100 40.0 1 
1 + x2 + x5 2.33 1.208 48.15 25.8 100 74.2 1 
1 + x + x6 2.75 2.28 17.1 46.0 62.3 16.3 1 
1 + x4 + x7 2.33 0.915 60.73 26.8 100 73.2 1 

1 + x4 + x5 + x6 + x7 4.5 2.14 52.44 36.2 100 63.8 1 
1 + x + x5 + x6 + x8 4.5 4.08 9.33 38.8 100 61.2 1 

1 + x4 + x9 2.33 1.03 55.8 40.9 100 59.1 1 
1 + x3 + x10 2.4 1.33 44.6 45.9 100 54.1 1 

1 + x3 + x4 + x7 + x12 3.74 1.89 49.5 N/A 75.9 N/A 4 
 

 

5. Conclusion 

 

We have presented a new multiple-output LFSR architecture that results in lower 

hardware complexity and lower power dissipation than previously known architectures. 

This was proved by deriving expressions for the number of hardware components and for 

the power dissipated. We also showed that our architecture is very useful for BIST 

applications because of its ability to generate distinct patterns.  
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