
The space efficiency of XML

Ramon Lawrence*,1

IDEA Lab, Department of Computer Science, University of Iowa, 201L MacLean Hall, Iowa City, IA 52242, USA

Received 8 February 2003; accepted 11 February 2004

Available online 12 March 2004

Abstract

XML is the future language for data exchange, and support for XML has been extensive. Although XML has numerous benefits including

self-describing data, improved readability, and standardization, there are always tradeoffs in the introduction of new technologies that replace

existing systems. The tradeoff of XML versus other data exchange languages is improved readability and descriptiveness versus space

efficiency. There has been limited work on examining the space efficiency of XML. This paper compares XML to other data exchange

formats. Experiments are performed to measure the overhead in XML files and determine the amount of space used for data, schema, and

overhead in a typical XML document.

q 2004 Elsevier B.V. All rights reserved.

Keywords: XML; Relational database; Character-separated files; Data exchange; Space efficiency

1. Introduction

XML is rapidly replacing existing technologies as a

medium for data exchange between systems. XML is a

standardized, portable, human readable, flexible, and self-

describing data format language. For many applications, it is

a clear improvement over proprietary binary formats and

non-standardized text files. XML is replacing these older

technologies. However, like any new technology, XML has

benefits and shortcomings with respect to the technologies

that it is replacing. There has been very little attention paid

to some of the tradeoffs associated with XML. This paper

will focus on one tradeoff as it relates to the exchange of

information between relational databases. The tradeoff of

XML versus other technologies such as character-separated

files is that the verbosity introduced by the descriptive tags

of data elements improves readability and semantic

exchange at the sacrifice of increased file size.

This paper reports on experiments comparing character-

separated files and XML files for encoding information in

relational databases, and experiments testing how space is

utilized in XML documents. In Section 2, we motivate why

the descriptiveness versus efficiency tradeoff is important

for XML, and Section 3 provides some background

information on XML encoding of relational databases.

The major contribution of the work is in Section 4, where

XML is compared with other file formats with respect to

theoretical space efficiency of database encoding. To

understand the efficiency of real-world XML documents,

two separate statistics gathering programs are created. The

first program, DBstats, uses JDBC to gather statistics on

relational databases. The second program, XMLstats, uses

a SAX-compliant parser to determine XML document

statistics including tag name sizes and percentage of the

document size devoted to XML overhead, schema infor-

mation, and data. The experiment results provide interest-

ing, and previously undocumented, statistics on XML

usage. These results are then used to discuss the benefits

and shortcomings of migrating to XML.

2. Motivation

Despite all its benefits, XML is not always the perfect

data encoding language for all applications. The major

limitation of XML is that it is very space inefficient,

especially for regular data sets. There has been limited work

on evaluating the efficiency of XML, even though there still

remains applications and environments (such as wireless

communications and scientific data sets) where space

efficiency is still an important concern. To understand

0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.02.003

Information and Software Technology 46 (2004) 753–759

www.elsevier.com/locate/infsof

1 http://www.cs.uiowa.edu/~rlawrenc

* Tel.: þ1-319-335-0561.

E-mail address: ramon-lawrence@uiowa.edu (R. Lawrence).

http://www.elsevier.com/locate/infsof
http://www.cs.uiowa.edu/~rlawrenc

the efficiency of XML, one must determine the properties of

element and attribute names used as tags. Investigating

several real-world XML documents and analyzing their

space efficiency provides information to potential XML

users about the tradeoffs they may encounter when using

XML for their application.

3. Background

One of the common uses of XML is to transmit data

originally stored in relational databases. There has been

previous work on publishing data as XML documents [8]

where the focus is on how to efficiently perform the actual

transformation by exploiting the relational database engine.

Other work [5] involves making the translation between

relational databases and XML more space efficient.

Although a trivial transformation is always possible by

mapping each tuple into an XML element and each tuple

attribute into subelements, this is not always the most

intuitive or space efficient choice. Nesting-based Trans-

lation (NeT) [5] improves on a flat translation by nesting

some attributes of a single relation in the hierarchical XML

structure. Nesting reduces data duplication if multivalued

dependencies are present within a relation. An extension

called CoT [5] allows nesting across relations by exploiting

inclusion dependencies. Nesting results in smaller docu-

ments by reducing redundancy in the XML encoding and

has the combined benefits of improving readability and

space efficiency.

None of the current work is specifically focused on the

space efficiency of the entire XML document. The missing

piece is that space efficiency is directly impacted not only by

the XML tag encoding and nesting, but also by the names

chosen for tags. Thus, space efficiency dramatically

decreases if tag names are long strings. Shortening the tag

name length increases space efficiency, at the price of

human readability. Understanding this tradeoff is critical as

XML is designed to be both human and machine

processable. Authors of XML documents should be aware

of the impact of their naming decisions based on the amount

of human interaction with the XML document. This

research aims to provide such insights.

4. Space efficiency analysis of XML

In this section, we provide formulas for estimating the

space efficiency of XML, character-separated (tab or

comma) (CSV) files, and fixed-sized (FSV) files for

encoding a single database relation. Estimating the encod-

ing size of an entire database can be performed by applying

the formulas repeatedly to each relation. We will assume

that only attribute types that can be readily text encoded

(string, int, float, double, date) will be translated, and others

such as binary large objects (BLOBs) are transmitted using

other means.

4.1. Analysis

Overhead per attribute a; denoted as OVðaÞ; is defined as

the extra space required to delimit the attribute from others

in the record (and file). Define the size in bytes of the data

value stored in a as DðaÞ or just D when a is understood. Let

SðaÞ or simply S denote the maximum schema size of a in

bytes. Let NðaÞ (or N) denote the size of the name for

attribute a: Finally, let EðaÞ or E denote the fraction of data

instances of attribute a that are NULL. Given these

definitions, it is possible to define formulas calculating the

overhead per attribute in the various file formats (see Fig. 1).

Interestingly, only a CSV file has a constant overhead per

attribute. This overhead is typically one character as a single

comma or tab separates data values. Optionally, quotation

marks can be used to denote strings which would increase

the overhead to three characters. For FSV files, overhead is

proportional to the amount of space required to store the

data with respect to the maximum allocated size. Encoding a

relational attribute in XML using an element has overhead

based on the size of the attribute name.2 We have displayed

two possible formulas for XML files as some overhead

savings can be achieved by not creating an element if the

attribute value is NULL. The analysis assumes relational

attributes are coded as XML elements instead of using XML

attributes. The size of encoding a relation R in each of the

formats is the sum of the formula values for each attribute

a [R (assumes no nesting).

From these formulas, it is obvious that when encoding

individual attributes, XML will always have more overhead

than CSV files. However, it is less clear the efficiency of

XML with respect to FSV files. For XML to be more

efficient than FSV files, N # ðS 2 D 2 5Þ=2: We perform

some experiments to determine the values of N; S;D;E in

practice.

4.2. Experimental results

Two separate experiments are performed. The first

experiment uses a Java program called DBstats that

Fig. 1. Overhead per attribute for file formats.

2 The constant 5 represents the five occurrences of the three tag characters

(‘ . ’, ‘ , ’, ‘/’) required for the open and close tags.

R. Lawrence / Information and Software Technology 46 (2004) 753–759754

connects to sample databases with JDBC and extracts

summary statistics. The statistics include average name size

ðNÞ; schema field size ðSÞ; data size ðDÞ; and fraction of

NULL fields ðEÞ: The sample databases include the North-

wind database of Microsoft Access, some databases from

the UCI KDD [4] and ML [1] repositories, and other

databases publicly available on the WWW.

The results from this experiment are summarized in

Fig. 2. Statistics are gathered at the schema (extensional)

and data (intentional) levels. The usage column is the

percentage of space used by the data with respect to the

maximum size allocated in the schema definition. Although

not shown due to space constraints, the usage percentage is

relatively constant across all data types (int, varchar, etc.).

The final column is the percentage of fields in the database

that are NULL.

Interesting findings include that the average field name

size ðNÞ is about eight characters long (see Fig. 3), and that

fields are typically only about 30–40% full. These statistics

allow comparisons between the file formats in terms of

overhead per attribute (see Fig. 4).

The experiment studies encoding a highly structured

database into XML. It is not surprising that XML exhibits

significant overhead as it was designed for more semi-

structured data and less concerned with space efficiency.

Further, the overhead calculations were biased to CSV and

FSV because the data sets contained limited redundancy and

no XML nesting was used. XML may outperform these

formats when the data is less structured, contains longer text

fields, and contains redundancy.

The second experiment examines the space character-

istics of typical XML documents. The sample documents

Fig. 2. Database statistics for sample databases.

Fig. 3. Average name, field, and data sizes.

R. Lawrence / Information and Software Technology 46 (2004) 753–759 755

come from a wide-variety of sources with a sampling of

both document-centric and data-centric documents. A

complete list of the XML documents and their sources are

shown in Appendix A. The experiment uses a Java program

called XMLstats and the Xerces parser to extract XML

document properties using SAX. XMLstats determines

statistics on average tag name length ðNÞ; and a breakdown

of the document size into the categories of data, schema,

overhead, and whitespace. Data is defined as attribute and

element values. Schema is the tag and attribute names.

Overhead includes the characters used to denote tags such as

‘ . ’, ‘ , ’, ‘/’, and quotes to denote attribute values.

Whitespace is the portion of the document flagged by the

parser as ignorable whitespace, end-of-line characters, and

strings consisting of all spaces.3 XML header information

and processing instructions are not classified in any of the

categories.

The experimental data is in Fig. 5. The first three

columns denote the average size of tag names, the entire

tag (including ‘ . ’, ‘ , ’, ‘/’), and attribute names (if

present). The next four columns contain the document

percent breakdown in terms of overhead (OH), data

(DT), schema (SC), and whitespace (WS). An overhead

ratio, defined as the overhead plus the schema size

divided by the data size, is a useful metric. The program

has good performance on a AMD 1.4 GHz machine as

the maximum execution time was 35 s. In Fig. 6, the

percentage of the file used for data, schema, overhead,

and whitespace is displayed.

Note the distinction between document-centric and data-

centric documents. Document-centric documents such as

the Shakespeare plays consist of approximately 60%

data, and the XML overhead is reasonable. For highly

Fig. 4. Overhead per file type.

Fig. 5. XML file usage breakdown.

3 Not all whitespace is flagged by the Xerces parser (some end-of-line

characters are often missed), so whitespace is slightly more than reported.

R. Lawrence / Information and Software Technology 46 (2004) 753–759756

data-centric documents, like the simple XML encoding of

the Northwind database, the data percentage is very low

(from about 20 to 30%), and the overhead ratio is above 1.

Structured documents such as auction.xml (from the XMark

benchmark [7]), dblp.xml, and sigmodrecord.xml vary from

30 to 70% data content. Although the data itself is mostly

structured, the amount of data content varies widely due to

the presence of very large text fields. For example, the two

publication-related XML documents contain large fields for

keywords, abstract, and title. The data content of auc-

tion.xml is surprising, and results from large strings of

random keywords and descriptions in the data set. Since this

data is artificially generated, it is less representative of

actual XML use than the other samples.

5. Discussion

Migration to XML has several benefits including

standardization, validation, and commercial support. How-

ever, the space inefficiency and overhead cannot be

overlooked for some applications. Below we summarize

some key points uncovered.

XML is always less efficient than character-separated

files for transferring single database tables, and is often

less inefficient that even fixed-sized files. Schema

repetition becomes a considerable overhead. Highly

data-centric documents may have two to four times

overhead with respect to data. This is especially

important for large, regular data sets, such as scientific

data. Conversions of such data sets to XML may not be

practical or beneficial. Even by exploiting compression

[9], the larger file size makes all operations on the XML

document less efficient including the compression,

querying, and display.

Due to the large amount of schema redundancy and

overhead in XML documents, very high compression ratios

are possible. For instance, compression of some of the

sample documents in the experiments using the gzip utility

resulted in compressions of: nwind.xml (90%), flare.xml

(98%), allPlays.xml (72%), sprotall.xml (88%), and

dblp.xml (81%). However, the compressed version of

flare.xml was still 93% larger than the compressed version

of the raw data file in CSV format. The uncompressed

version was over 13 times larger. Although the effectiveness

of compression mitigates some of the issues in the verbosity

of XML encoding, compressed XML files are still larger

than the compressed form of more space efficient formats.

Further, the compression/decompression and translation to

and from XML consume valuable processing resources.

Conversion of the census data from database form (606 MB)

into XML form, census.xml (3878 MB), took about an hour,

and compressing the file took 195 s. The compressed file

size was 146 MB. In comparison, converting the same data

to CSV format took 18 min and the file was 362 MB

(uncompressed) and 65 MB (compressed in 45 s). Com-

pression by itself cannot eliminate all the negatives of the

overhead in XML encoding because ultimately applications

must process the XML in uncompressed form, which

consumes valuable CPU/memory resources.

The overhead in constructing XML documents and their

compression may be an issue with web servers that must

compress dynamically generated content for transmission

using HTTP 1.1. Studies [6] have confirmed the benefits of

compressing HTML pages, and the benefits of XML

compression are even larger due to the high, repetitive

Fig. 6. XML file usage breakdown.

R. Lawrence / Information and Software Technology 46 (2004) 753–759 757

overhead when transmitting structured data using XML.

XML encodings transferring large amounts of data should

always be compressed because of the huge savings in space

and transmission time. However, the point is that some data

should never be converted into XML in the first place

because of its inefficiencies.

XML becomes more efficient and practical if data is

hierarchical in nature and can be nested. In some respects,

these experiments validate the work on finding optimal

DTDs that exploit nesting [5] for mapping relational

databases to XML documents. Nesting has the potential to

reduce overhead by eliminating tags. Optimal nesting of the

data in the Northwind database results in the elimination of

43% of foreign key values and 12% of all data values. Thus,

nesting does save space over flat translation, but not enough

to compensate for the high overhead of XML. Determining

the optimal nesting by data extraction is a very costly

operation. Further, nesting amounts to producing a view on

the data source. A view may make it easier to visualize the

data hierarchically, but may also complicate the parsing and

loading of the data if the purpose of the XML document is

simply a transmission format between two relational

databases. The major benefit of nesting is to reduce

redundancy produced when encoding a query result in

XML that spanned multiple tables. CSV and FSV files will

contain significant redundancy as the query result is no

longer normalized. Future work involves determining when

the transition from CSV to XML is more space efficient

based on the ability to nest data in XML to control

redundancy.

There is an interesting tradeoff between overhead and the

size of tag names. Between 20 and 60% of the document

consists of tag names. This overhead can be reduced by

shortening tag names, at the price of less readability.

Currently, most XML tag names are approximately six

characters long (not including namespaces) which is even

shorter than average database field names (eight characters).

Such name condensing makes the tag less understandable

and partially defeats their purpose (so users can understand

the data).

XML is human readable as a plain text file, but the

growing use of DOM and SAX is making this less of a

possibility. The XML encoding of Northwind eliminated

almost all whitespace at the price of not being able to view it

in any useful way in a regular text editor. Even though XML

viewers resolve this issue by parsing the document into a

navigation tree, not being able to read the file using a regular

text editor is a negative. Further, it can be argued that it is

easier to read CSV and FSV files because of their regular

organizations instead of navigating a tree to find the

appropriate data.

Alternate XML formats [3] such as JavaScript Object

Notation (JSON) [2] have been proposed to make XML

easier to read and edit with standard text editors. A

drawback with these formats is that they are not standard

XML, which mitigates the major benefit of XML. Further,

Table A2

XML source list

Source name Description Source location

auction.xml XMark benchmark http://monetdb.cwi.nl/xml/index.html

allPlays.xml All Shakespeare plays Jon Bosak (http://www.ibiblio.org/bosak/)

hamlet.xml Hamlet Jon Bosak (http://www.ibiblio.org/bosak/)

profiles.xml Company profiles UW Niagara data sets (http://www.cs.wisc.edu/niagara/data/)

dblp.xml DBLP bibliography Michael Ley (http://dblp.uni-trier.de/xml/)

sprotall.xml Swiss protein DB UW Niagara data sets (http://www.cs.wisc.edu/niagara/data/)

sigmodrecord.xml SIGMOD record bibliography UW Niagara data sets (http://www.cs.wisc.edu/niagara/data/)

personal.xml Employee/supervisor Unknown

dept.xml University department UW Niagara data sets (http://www.cs.wisc.edu/niagara/data/)

quotes.xml Yahoo quotes in XML UW Niagara Data Sets (http://www.cs.wisc.edu/niagara/data/)

nwind.xml Northwind Translated without nesting

Table A1

Data source list

Source name Description Author Source location

Northwind Microsoft Comes standard with Microsoft Access

Car M. Bohanec UCI ML (http://www.ics.uci.edu/~mlearn/)

Energy World energy EIA http://www.eia.doe.gov/emeu/world/main1.html

English English verbs R. Leeuwen http://www.auboutdumonde.com/conjugeng.htm

Flare Solar flares G. Bradshaw UCI ML (http://www.ics.uci.edu/~mlearn/)

Marriage Marriage records R. Neep http://freereg.rootsweb.com/howto/general/download.html

Medrefs Medical references M. McGoodwin http://www.mcgoodwin.net/pages/medrefs.html

Pioneer Pioneer Wells C. Asiala http://www.geo.mtu.edu/svl/download/pioneer/

Census 1990 US census C. Meek UCI KD (http://kdd.ics.uci.edu/)

R. Lawrence / Information and Software Technology 46 (2004) 753–759758

http://monetdb.cwi.nl/xml/index.html
http://www.ibiblio.org/bosak/
http://www.ibiblio.org/bosak/
http://www.cs.wisc.edu/niagara/data/
http://dblp.uni-trier.de/xml/
http://www.cs.wisc.edu/niagara/data/
http://www.cs.wisc.edu/niagara/data/
http://www.cs.wisc.edu/niagara/data/
http://www.cs.wisc.edu/niagara/data/
http://www.ics.uci.edu/~mlearn/
http://www.eia.doe.gov/emeu/world/main1.html
http://www.auboutdumonde.com/conjugeng.htm
http://www.ics.uci.edu/~mlearn/
http://freereg.rootsweb.com/howto/general/download.html
http://www.mcgoodwin.net/pages/medrefs.html
http://www.geo.mtu.edu/svl/download/pioneer/
http://kdd.ics.uci.edu/

although small space savings may be achieved, that benefit

is secondary to the design goal of making the documents

easier to read and edit. JSON is a lightweight data-

interchange format that is based on a subset of the

JavaScript programming language.

JSON is optimized for structured data transmission and

does provide some space savings as closing XML tags are

replaced with a single closing bracket.

For researchers and practitioners of XML, we thought it

useful to summarize some of the important results found.

† Database field names are on average eight characters

long.

† Database fields are on average 40% full with respect to

their maximum size.

† The percentage of NULL fields is typically small (around

5%), although much higher percentages are possible if

the database is not in fourth normal form.

† CSV files are almost always more efficient than XML for

single tables. FSV and XML are roughly overhead

equivalent, but differ widely depending on data set

properties.

† CSV and FSV files are much more efficient for large,

regular data sets, which probably should not be migrated

to XML.

† XML tag names are on average six characters long.

† Document-centric XML documents on average consist of

approximately 60% data, 25% schema, 10% overhead,

and 5% whitespace.

† Data-centric XML documents on average consist of

approximately 25% data, 50% schema, 20% overhead,

and 5% whitespace.

† For transmission of normalized data, nesting XML on

foreign keys reduces the overall document size by

eliminating the encoding of many of the foreign keys and

a small percentage of all data values.

† Compression of large XML documents should be

performed due to the very high compression ratios

resulting from the redundancy in XML encoding. Web

servers should be configured to compress XML content

for delivery using HTTP 1.1 as most browsers will

automatically decompress the content.

† Compression cannot fully compensate for the inefficien-

cies of encoding regular data sets in XML because

processing resources used for compression and decom-

pression and XML generation and parsing must also be

considered.

6. Conclusions

Although XML is the data exchange standard, there is an

implicit tradeoff in XML between space efficiency and

descriptiveness. Using tag names allows the data to be self-

documenting, but the repetition of tag names can become a

significant overhead. Although most applications are not

affected by the additional overhead in XML documents,

certain applications involving large, regular, data sets will

incur a significant overhead and performance penalty by

encoding in XML. This research has shown how the space

efficiency of XML compares to character-separated and

fixed-sized files for database table encoding. Future work

involves determining the efficiency for general queries that

may contain redundancy. The major contribution of the

work is the first study of XML document properties

including tag name sizes, and document characteristics

with respect to data, schema, and overhead. These statistics

and the accompanying formulas can be used by XML

practitioners to determine the size of encoding their

particular data sets into XML.

Appendix A

Tables A1 and A2

References

[1] C.L. Blake, C.J. Merz, UCI repository of machine learning databases,

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[2] D. Crockford, JavaScript Object Notation (JSON), http://www.

crockford.com/JSON/index.html

[3] E. Dumbill, Exploring alternative syntaxes for XML, http://www-106.

ibm.com/developerworks/xml/library/x-syntax.html

[4] S. Hettich, S. Bay, The UCI KDD Archive, http://kdd.ics.uci.edu, 1999.

[5] D. Lee, M. Mani, F. Chiu, W. Chu, NeT & CoT: translating relational

schemas to XML schemas using semantic constraints, in: Proceedings

of the 11th CIKM, 2002, pp. 282–291.

[6] S. Radhakrishnan, Speed Web delivery with HTTP compression, http://

www-106.ibm.com/developerworks/web/library/wa-httpcomp/

[7] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, R. Busse,

XMark: a benchmark for XML data management, in: VLDB, 2002.

[8] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H.

Pirahesh, Efficiently publishing relational data as XML documents, in:

VLDB, 2000, pp. 65–76.

[9] P. Tolani, J. Haritsa, XGRIND: a query-friendly XML compressor, in:

ICDE, 2002.

R. Lawrence / Information and Software Technology 46 (2004) 753–759 759

http://www.ics.uci.edu/(mlearn/MLRepository.html
http://www.crockford.com/JSON/index.html
http://www.crockford.com/JSON/index.html
http://www-106.ibm.com/developerworks/xml/library/x-syntax.html
http://www-106.ibm.com/developerworks/xml/library/x-syntax.html
http://kdd.ics.uci.edu
http://www-106.ibm.com/developerworks/web/library/wa-httpcomp/
http://www-106.ibm.com/developerworks/web/library/wa-httpcomp/

	The space efficiency of XML
	Introduction
	Motivation
	Background
	Space efficiency analysis of XML
	Analysis
	Experimental results

	Discussion
	Conclusions
	References

