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Abstract
Several credibility models found in published literature have largely been

single dimensional in the sense that the observable claims are derived from
a single individual risk or a single group of homogeneous risks over a period
of time. In the case where the additional dimension of observing different
individual risks or different groups of risks are allowed for, the assumption
of independence across the observable claims is often made. This is a mat-
ter of convenience and mathematical tractability, though in general, everyone
agrees this may seem unrealistic. As such, dependence must be taken into ac-
count when modelling risks for assessing credibility premiums. In this paper,
we introduce the notion of modelling claim dependence across individuals and
simultaneously across time within individuals using common effects. The re-
sulting model is then used to predict expected claims given the history of all
observable claims. It is well known that this conditional expectation actually
gives the best predictor of the next period claim for a single individual in the
mean-squared error sense. We express this conditional expectation in the form
of a credibility premium. We further give illustrative examples to demonstrate
the ideas.
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1 Introduction
Consider the problem of pricing an insurance contract. The premium is determined by
assessing the observable claims from a portfolio of such homogeneous contracts. Here,
we shall denote the observable claims by a random variable Xi,t where i = 1, 2, ..., I
denotes the individual risk and t = 1, 2, ..., T denotes the time period. Clearly, we
are assuming I contracts in the portfolio for a total of T time periods. The same
time period applies to all individuals although the modelling aspects can easily be
adjusted to accommodate differing time periods for different individuals.
In insurance premium determination, it is a common practice to group individual

risks so that the risks within each group are as homogeneous as possible in terms
of certain observable risk characteristics. A collective premium, also known as the
manual premium, is then calculated and charged for this group. The grouping is made
primarily to reach a fair and equitable premium across all individuals. It also helps to
accomplish isolating a large group of independent and identical risks so that the law
of large numbers can be invoked in the claims prediction and therefore, minimizing
variability in the claims experience. However, there will always be imprecision in the
grouping of the individual risks making the risks within each group not completely
homogeneous. A limited number of unobservable traits will always contribute to the
possible presence of heterogeneity among the individuals.
Past claims experience provides an invaluable insight into the unobservable charac-

teristics of the individual risks. Certainly in pricing for general (or casualty) insurance
products, there is the practice of accounting for the past experience of the insured
individual in claims prediction and in premium calculation. Experience rating is the
term used in this exercise and is generally viewed to reach a fair and equitable insur-
ance price. For example, in motor insurance, a driver may have had a number of years
of experience available to the insurer. Some drivers with little or no claims experience
will simply be assessed an additional risk premium, and prediction of its own future
claims may largely be based on the claims experience of the group it belongs to.
These considerations naturally point to some sort of a compromise between the

two sets of experience in claims prediction: the group’s claims experience and the
individual’s claims experience, if any. This has led actuaries to use a pricing formula
of the form

Premium = Z ·Own Experience+ (1− Z) ·Group Experience, (1)

where Z, a value between 0 and 1 (inclusive), is well-known to be the “credibility
factor”. The credibility factor in (1) is a weight assigned to the individual’s own
claims experience, and most credibility models developed for almost a century now
in turn leads to the calculation of this weight. It is to be noted that on one hand, the
group’s collective experience is extensive enough so that the law of large numbers is
applicable and therefore, ignores the presence of heterogeneity. On the other hand,
the individual’s own experience contains valuable information about the risk charac-
teristics of the individual but may not be complete due to lack of volume. Credibility
models must therefore be able to reach an intuitively appealing formula allowing for
larger credibility for larger number of years of individual experience, for example.
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Such a credibility factor should be close to unity in the case of abundant individual
risk experience or where there is a high degree of heterogeneity in the overall experi-
ence. It should be close to nil if individual risk experience is lacking or unreliable, or
where there is a high degree of homogeneity in overall experience.
The development of credibility models is believed to be first studied by Mowbray

(1914) and a few years later, by Whitney (1918) where he suggested using a weighted
average between the individual and the collective experience. Bailey (1950) later
examined the several ways to develop a credibility formula using the ideas of classical
statistics. The study of the numerous ways of deriving or estimating the credibility
factor subsequently became known as credibility theory. Today, several textbooks
cover this material and many of which provide introduction to students who wish to
learn the material for actuarial examinations. Excellent sources include Klugman, et
al. (1998), Kaas , et al. (2001) and Mahler and Dean (2001).
Because of tractability, it has been the traditional practice to assume indepen-

dence of claims in several of these credibility models. Using our notation introduced
earlier, claims X1,t, X2,t, ...,XI,t are assumed to be independent across the individu-
als for a fixed time t, stating that claims of one insured individual do not directly
impact those of other insured individuals. In some situations, this may be unrealistic
as for example, in house insurance, geographic proximity of insureds may result in
exposure to a common catastrophe, and in motor insurance, accidents may involve
several insureds at once in a collision. For a fixed individual i = 1, 2, ..., I, claims
Xi,1, Xi,2, ...,Xi,T are also often assumed independent across different time periods.
Again, this may seem unrealistic because for example, in a motor insurance, accident
proneness may be present for an individual. Modelling the time dependence is a more
common practice when developing credibility models, but not dependence across in-
dividuals. The early paper by Gerber and Jones (1975) and the more recent ones
by Frees, et al. (1999) are examples of credibility models with time dependence of
claims.
In this paper, we address a simultaneous dependence of claims across individuals

for a fixed time period and across time periods for a fixed individual. We accomplish
this by introducing the notion of a common effect affecting all individuals and another
common effect affecting a fixed individual over time. As used in this paper, a random
variable Λ has been used to describe the common dependence across the insured indi-
viduals, and for a fixed individual i, the random variable Θi has been used to describe
the common dependence across the time periods. In statistics, such dependence has
sometimes been called “common effects”, “latent or unobservable variables”, and the
term “frailty” variables is more often used in the biostatistics and survival models
literature. See, for example, Vaupel, et al. (1979) and Oakes (1989).
In the actuarial and insurance literature, the notion of claims dependence is in-

creasingly becoming an important part of the modelling process. In Wang (1998), a
set of statistical tools for modelling dependencies of risks in an insurance portfolio
has been suggested. Using copula framework, Valdez and Mo (2002) and Albrecher
and Kantor (2002) have both examined the impact of claim dependencies on the
probability of ruin. The works of Heilmann (1986) and Hürlimann (1993) have in-
vestigated the effect of dependencies of risks on stop-loss premiums. Several general-
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izations and alternative models of dependence have since followed including, Dhaene
and Goovaerts (1996, 1997) and Müller (1997), addressing their impact on stop-loss
premiums. Other models have included the works of Genest, et al. (1999) and Cos-
sette, et al. (2002) where claim dependence have been addressed in the framework
of individual risk models. Furthermore, using the notion of a stochastic order, the
recent papers by Purcaru and Denuit (2002, 2003) provide excellent discussion of
dependencies in claim frequency for credibility models.
Our paper offers additional insight into the modelling of claim dependencies, and

within the framework of developing credibility premiums. We address modelling the
possible dependence present across the insured individuals and simultaneously across
the time periods by introducing common effects. Nothing similar has been addressed
in the actuarial and insurance literature, and we believe this provides a valuable
contribution to the already increasing literature on the issue of claim dependence. The
motivation for this paper is in contrast to the papers by Purcaru and Denuit (2002,
2003) where they address dependencies only for the frequency of claims. In addition,
this paper allows for developing a credibility premium which has the advantage of
being expressed as in (1). We compare numerical results of our model with that of
the ordinary Bayesian framework commonly used in developing credibility premiums.
The structure for the rest of the paper has been made as follows. First in Section

2, we discuss the construction of the two-level common effects model. We call this
two-level because one common effect is to describe, as already alluded in the early
paragraphs, the dependency across insured individuals and another common effect
to describe the time dependence. In subsequent sections, we discuss the results of a
specific model based on the Normal distribution assumptions. In particular, section
3 explores the resulting model when the risks, Xi,t, i = 1, 2, ..., I and t = 1, 2, ..., T ,
and risk parameters, Λ and Θi, i = 1, 2, ..., I, are all Normally distributed. The
credibility premium formula is derived and some asymptotic properties of the formula
are explored providing us intuitive insights into the formulas developed. Section 4
demonstrates the application and usefulness of the model using a set of simulated
claim observations. We then compare the results of this application to that of the
case of the more well-known Normal credibility model that allows for a single common
effect only. We conclude in section 5. The appendix provides some of the detailed
proofs and calculations for the credibility premium formula derived in section 3.

2 The Two-Level Common Effects Model of De-
pendence

Consider a portfolio of insurance contracts consisting of I insured individuals and
suppose that each individual has available a history of a total of T time periods.
Denote by Xi,t the claim amount for individual i during period t. For convenience,
we shall sometimes use the random vector

Xi = (Xi,1, Xi,2, ...,Xi,T )
0
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to denote the vector of claims for a particular individual i = 1, 2, ..., I. Our primary
interest is to predict the next period claim for each individual based on all the observed
claims X1,X2, ...,XI . This will be denoted by the random variable Xi,T+1. It is well-
known in statistics that the best predictor of Xi,T+1, based on all the observed claims
X1,X2, ...,XI , in the sense of the “mean squared prediction error” is the conditional
expectation

E (Xi,T+1|X1,X2, ...,XI) . (2)

In other words, the predictor in (2) is the required functional g (X1,X2, ...,XI) that
minimizes the following mean squared prediction error:

E [Xi,T+1 − g (X1,X2, ...,XI)]
2 .

See, for example, Shao (2003) for a nice proof on page 40. Thus, our objective is to
evaluate this claims prediction based on the model of dependence described in the
ensuing paragraphs. In effect, we end up evaluating the distribution of the random
variable Xi,T+1|X1,X2, ...,XI .
As already mentioned in the introduction section, the model of dependence being

proposed in this paper will allow for both the dependence among the individual risks
as well as the dependence of experience for a particular individual risk over time.
The dependence among individual risks will be described by a common effect random
variable Λ whose probability function will be assumed to be known and denoted
by fΛ (λ). Realizations of this common effect is denoted by λ. Conditionally on
this common effect, the random vectors Xi are independent. As Λ is a common effect
among all risks, it will define the dependence structure between risks, and it can either
be a discrete, continuous, or a mixture of discrete and continuous random variables.
Thus, we have the following two assumptions, labelled A1 and A2, respectively.

A1. The random variable Λ has known probability function fΛ (λ).

A2. The random vectors Xi|Λ, i = 1, ..., I, where Xi = (Xi,1, ..., Xi,T )
0, are condi-

tionally independent.

Now, for a fixed individual say i, the dependence of claims across time will be
described by another common effect random variable denoted by Θi whose probability
function is assumed known and denoted by fΘi (θi), with θi unambiguously denoting
its realizations. This assumption we list as A3 below. This random variable could
either be a discrete, continuous, or a mixed random variable. Additional assumptions
regarding this common effect are listed below.

A3. For a fixed i = 1, ..., I, the random variable Θi has known probability function
fΘi (θi).

A4. The random variables Θ1,Θ2, ...,ΘI are pairwise independent, that is, Θi is
independent of Θj, ∀i 6= j, i, j = 1, ..., I.

A5. For a fixed i = 1, ..., I, the random variable Θi is independent of Λ.
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A6. For a fixed i = 1, ..., I and a fixed t = 1, ..., T , the conditional random variable
Xi,t|Θi,Λ has known probability function denoted by fXi,t|Θi,Λ (xi,t|θi, λ).

As is usual with common effects models, the assumptions of conditional indepen-
dence are imposed. Assumption A7 below merely asserts that given the overall risk
parameter, all individuals are independent. Finally, assumption A8 is merely stating
that given the overall risk parameter and the individual’s risk parameter, the indi-
vidual risk’s experience at a particular time period is independent of that of all other
individuals as well as the individual risk’s experience of other time periods.

A7. The random vectors Xi,Θi|Λ, i = 1, ..., I, are conditionally independent.

A8. The random variables Xi,t|Θi,Λ, i = 1, ..., I and t = 1, ..., T, are conditionally
independent.

For convenience, we shall sometimes write the random vector Θ = (Θ1,Θ2, ...,ΘI)
0

with realizations denoted by the vector θ = (θ1, θ2, ..., θI)
0. As in the Bayesian pre-

mium setting, it should be noted that in the strictest sense, the distributions of Θ
and Λ are not prior distributions but are probability distributions describing some
unknown processes. These processes model the level of risk for each individual, Xi,t,
with λ and θi as the realizations. Thus, assumption A8 states that given the knowl-
edge of λ and θi, each individual risk’s experience at any time period is independent
of all other experience, including those of the same individual but at a different time
period. This is reasonable as knowledge of both λ and θi removes the sources of de-
pendence between risks and across time. One can think of Λ as the variable inducing
the dependence of claims among the individuals, such as in the case of an epidemic
in life insurance, a catastrophe in general insurance, or simply, a bad weather con-
dition in a day where accident collisions become common. On the other hand, one
can think of Θi as the variable inducing claims for an individual across different time
periods, such as in the case of accident proneness of individuals, risk characteristics
like lifestyles often unobservable by the insurer or risk characteristics which may not
be legally used for pricing discrimination by the insurer.
Assumption A5 states that the overall risk parameter is independent of all individ-

ual risk parameters. This appears to be a reasonable assumption and is best explained
by a simple example in the case of a motor insurance. A typical driver has certain
individual driving characteristics unobservable to the insurer such as propensity to
exceed speed limits. As already alluded in the previous paragraph, these factors will
be described by Θi. This same driver may live in a neighborhood with certain levels
of crime rates and traffic congestion contributing to increasing probability of a claim.
These factors will in turn be included in Λ as they are experienced by other drivers
living in the same region. These two sets of factors logically does not affect each other
and hence, it is reasonable to assume independence between Λ and Θi.
Assumption A4 states that individual risk parameters are independent of one

another. Again, this is reasonable because of the existence of Λ. The random variable
Λ already takes into account all the common characteristics across individual risks so
that Θi are truly peculiar individual characteristics.
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It is important to compare these assumptions with that of the ordinary Bayesian
model. In the Bayesian model, there is no overall risk parameter Λ and thus, its
impact has been implicitly included in each individual risk parameter Θi. Yet, it is
still assumed that each Θi is independent of one another. This apparent contradiction
deems the ordinary Bayesian model unsuitable and incomplete for our purposes. It
is for this reason that Λ is introduced into the model set-up described in this section.
Proceeding now, the conditional density, fXj,T+1|X1,...,XI

(xj,T+1|x1, ...,xI) is desired
as the conditional expectation in (2) gives our best estimate of next period’s claims
and also gives our desired premium. For convenience, denote the random vector

X = (X0
1, ...,X

0
I)
0

which gives all the observable claims from all individuals and across all available time
periods. The conditional expectation can then be conveniently expressed as

E (Xj,T+1|X1,X2, ...,XI) = E (Xj,T+1|X) =
Z

xj,T+1·fXj,T+1|X (xj,T+1|x) dxj,T+1, (3)

where the integral is the Riemann-Stieltjes integral. Consider first the joint density
of the individual risks X, the individual risk parameters Θ, and the overall risk
parameter Λ. We give the following result as a lemma.

Lemma 1 Consider the two-level common effects model satisfying assumptions A1 to
A8 described in this section. The joint density of the individual risks X, the individual
risk parameters Θ, and the overall risk parameter Λ can be expressed as

fX,Θ,Λ (x,θ, λ) = fΛ (λ)×
IY

i=1

fΘi (θi)×
IY

i=1

fXi|Θi,Λ (xi|θi, λ) . (4)

Proof. First we observe that the conditional density of X1, ...,XI |Θ,Λ can be
written as

fX|Θ,Λ (x|θ, λ) =
fX,Θ,Λ (x,θ, λ)

fΘ,Λ (θ, λ)

and applying assumptions A4 and A5, we indeed have

fX|Θ,Λ (x|θ, λ) =
fX,Θ,Λ (x, θ, λ)

fΛ (λ)
hQI

i=1 fΘi (θi)
i = fX,Θ|Λ (x, θ|λ)QI

i=1 fΘi (θi)
.

Assumption A7 further leads us to

fX|Θ,Λ (x|θ, λ) =

QI
i=1 fXi,Θi|Λ (xi, θi|λ)QI

i=1 fΘi (θi)
=

QI
i=1

£
fXi,Θi|Λ (xi, θi|λ) fΛ (λ)

¤
[fΛ (λ)]

IQI
i=1 fΘi (θi)

=
IY

i=1

fXi,Θi,Λ (xi, θi, λ)

fΘi,Λ (θi, λ)
=

IY
i=1

fXi|Θi,Λ (xi|θi, λ) .
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Next, we observe that the desired joint density can be expressed as

fX,Θ,Λ (x,θ, λ) = fΘ,Λ (θ, λ) · fX|Θ,Λ (x|θ, λ)
= fΛ (λ) · fΘ (θ) · fX|Θ,Λ (x|θ, λ)

= fΛ (λ)×
IY

i=1

fΘi (θi)× fX|Θ,Λ (x|θ, λ)

= fΛ (λ)×
IY

i=1

fΘi (θi)×
IY

i=1

fXi|Θi,Λ (xi|θi, λ) ,

where the second equality follows from assumption A5 and the third equality follows
from assumption A4. The last step follows from the result of the previous intermediate
result.
Using definition of conditional density, we have

fΘ,Λ|X (θ, λ|x) =
fX,Θ,Λ (x,θ, λ)

fX (x)
,

and applying the result in the previous lemma, we have

fΘ,Λ|X (θ, λ|x) = c× fΛ (λ)×
IY

i=1

fΘi (θi)×
IY

i=1

fXi|Θi,Λ (xi|θi, λ) ,

where c is a normalizing constant and can be expressed as

c = [fX (x)]
−1 =

"Z Z
· · ·
Z

fX,Θ,Λ (x, θ, λ)

Ã
IY

i=1

dθi

!
dλ

#−1
,

where
QI

i=1 dθi = dθ1dθ2 · · · dθI . We now state the result for the desired conditional
density of Xj,T+1|X.

Theorem 1 Consider the two-level common effects model satisfying assumptions A1
to A8 described in this section. For a fixed individual j = 1, 2, ..., I, the conditional
density of Xj,T+1|X can be written as

fXj,T+1|X (xj,T+1|x)

=

Z Z
· · ·
Z

fXj,T+1|Θj ,Λ (xj,T+1|θj, λ) fΘ,Λ|X (θ, λ|x)
Ã

IY
i=1

dθi

!
dλ. (5)

Proof. Consider a fixed individual j, 1 ≤ j ≤ I. It is clear that by definition of
conditional density, we have

fXj,T+1|X (xj,T+1|x) =
fXj,T+1,X (xj,T+1,x)

fX (x)
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and notice that the numerator above can be written as

fXj,T+1,X (xj,T+1,x)

=

Z Z
· · ·
Z

fXj,T+1,X|Θ,Λ (xj,T+1,x|θ, λ) fΘ,Λ (θ, λ) dθ1 · · · dθIdλ

=

Z Z
· · ·
Z

fXj,T+1|Θj ,Λ (xj,T+1|θj , λ) fX|Θ,Λ (x|θ, λ) fΘ,Λ (θ, λ) dθ1 · · · dθIdλ.

To see the last step, observe that, from assumption A6 and the previous results, we
have

fXj,T+1,X|Θ,Λ (xj,T+1,x|θ, λ) = fXj,T+1,Xj |Θj ,Λ (xj,T+1,xj|θj , λ)
IY

i=1
i6=j

fXi|Θ,Λ (xi|θ, λ)

= fXj,T+1|Θj ,Λ (xj,T+1|θj , λ)
IY

i=1

fXi|Θ,Λ (xi|θ, λ)

= fXj,T+1|Θj ,Λ (xj,T+1|θj , λ) fX|Θ,Λ (x|θ, λ) .

Thus,

fXj,T+1|X (xj,T+1|x)

=
1

fX (x)

Z Z
· · ·
Z

fXj,T+1|Θj ,Λ (xj,T+1|θj, λ) fX|Θ,Λ (x|θ, λ) fΘ,Λ (θ, λ) dθ1 · · · dθIdλ

=

Z Z
· · ·
Z

fXj,T+1|Θj ,Λ (xj,T+1|θj , λ)
fX|Θ,Λ (x|θ, λ) fΘ,Λ (θ, λ)

fX (x)
dθ1 · · · dθIdλ,

and the desired result in (5) immediately follows.

The purpose of the theorem above is to derive an explicit expression for the
conditional density in terms of all the available or given information. First, notice
from this theorem that this conditional density involves the multiple integration (or
summation in the case of discrete) of the product of the conditional density

fXj,T+1|Θj ,Λ (xj,T+1|θj, λ)

which according to assumption A6 is known and given, and that of

fΘ,Λ|X (θ, λ|x) =
fX|Θ,Λ (x|θ, λ) fΘ,Λ (θ, λ)

fX (x)

for which the numerator can be evaluated using lemma 1 together with the indepen-
dence of all the common effects. Although the setting of the proposed model renders
it non-Bayesian superficially, the nature of it is still very much Bayesian. As such, it
will inherit all the benefits from a Bayesian solution, most notably, the smallest mean
squared prediction error. See Klugman (1992) for a discussion of this.
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3 Normal Common Effects
In this and subsequent sub-sections, we derive the credibility premium as expressed
in (3) for the case where the common effects follow Normal distributions. As we will
notice in the results, we are able to derive interesting, explicit expressions for the
predicted claim amount, or for the credibility premium.

3.1 Credibility Premium Formula

Before we consider special cases of the Normal common effects assumption, let us
consider the more general case where we have I insured individuals and where the
common effects have variances which are not necessarily unit. To carry out the
derivation, we make the following assumptions:

N1. The random variablesXi,t|θi, λ are Normally distributed with mean (θi + λ) and
common variance σ2x , that is Xi,t|θi, λ ∼ Normal(θi + λ, σ2x), for i = 1, 2, ..., I;

N2. The ’individual’ common effects θi are Normally distributed with common mean
µθ and common variance σ

2
θ; and

N3. The ’overall’ common effects λ are also Normally distributed with mean µλ and
variance σ2λ.

It follows therefore that we have

fXi,t|Θi,Λ (xi,t|θi, λ) =
1√
2πσx

e
− 1
2

∙
xi,t−(θi+λ)

σx

¸2
,

fΘi (θi) =
1√
2πσθ

e
− 1
2

³
θi−µθ
σθ

´2
and

fΛ (λ) =
1√
2πσλ

e
− 1
2

³
λ−µλ
σλ

´2
.

First we derive the density of Xj,T+1|X1,X2 using Theorem 1. To do so, we fix the
individual j, so that without loss of generality, we can assume j = 1. Similar forms
of expressions will follow for all the other individuals. In the appendix, we show
that X1,T+1|X1,X2, ...,XI is Normally distributed where for convention, we write the
mean as µ1,T+1 and the variance as σ

2
1,T+1. In short, we have that

X1,T+1|X1,X2, ...,XI ∼ Normal
¡
µ1,T+1, σ

2
1,T+1

¢
.

The appendix also shows the explicit expressions for the mean and the variance. In
particular, we have

E (X1,T+1|X1,X2, ...,XI) = µ1,T+1 = w1X1 + wi6=1X i6=1 + wθ,λ (µθ + µλ) , (6)
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where X1 =
1
T

P
tX1,t is the observed sample mean of the individual concerned

(which is j = 1 for ease of exposition) and X i6=1 =
1

(I−1)T
P

i6=1
P

tXi,t is the observed
sample mean of the rest of the individuals. Thus, we see from (6) that the credibility
premium is a weighted average of these observed sample means together with the
aggregated means of the common effects. As demonstrated in the appendix, the
weights turned out to have the following expressions:

W1. the weight attached to individual’s own experience:

w1 =
T [(σ2λI + σ2θ) σ

2
θT + σ2x (σ

2
λ + σ2θ)]

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

;

W2. the weight attached to the rest of the group’s experience:

wi6=1 =
T (I − 1)σ2λσ2x

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

; and

W3. the weight attached to prior beliefs:

wθ,λ =
σ2x (σ

2
θT + σ2x)

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

.

It is straightforward to show that the credibility premium in (6) is actually a
weighted average in the sense that the weights above sum to one:

w1 + wi6=1 + wθ,λ = 1.

Although it has very little value for our purpose, for completeness purposes, we also
give the variance of X1,T+1|X1,X2, ...,XI . We have, as shown in the appendix, that

V ar (X1,T+1|X1,X2, ...,XI) = σ21,T+1

=

σ2x

⎧⎨⎩ (σ2λI + σ2θ)σ
2
θT

2

+ [σ2λI (σ
2
θ + σ2x) + σ2θ (σ

2
θ + 2σ

2
x)]T

+σ2x (σ
2
λ + σ2θ + σ2x)

⎫⎬⎭
[(σ2λI + σ2θ)T + σ2x] (σ

2
θT + σ2x)

.

Furthermore, it is also interesting to notice that the credibility premium is in fact an
unbiased predictor for next period claim. It is straightforward process to demonstrate
that

E
¡
µ1,T+1

¢
= E

h
w1X1 + wi6=1X i6=1 + wθ,λ (µθ + µλ)

i
= w1E

¡
X1

¢
+ wi6=1E

³
X i6=1

´
+ wθ,λ (µθ + µλ)

= µθ + µλ.
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Some additional interesting asymptotic properties of the credibility formula are de-
ferred to the next sub-section.
It should be noted also that the credibility premium may be alternatively repre-

sented in the form:

µ1,T+1 = w∗1X1 + wΣX + wθ,λ (µθ + µλ) , (7)

where X1, as before, is the observed sample mean of the individual concerned and
X = 1

IT

P
i

P
tXi,t is now the observed sample mean of all the individuals in the

group, including this one individual j = 1. This is the rather conventional form of
writing the credibility premium in (7) as a weighted average of the observed sample
means for the individuals and the groups, together with the prior means. In this
re-expression, the weights turned out to have the following forms:

W1*. the weight attached to individual’s own experience:

w∗1 =
T [(σ2λI + σ2θ) σ

2
θT + σ2xσ

2
θ]

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

;

W2*. the weight attached to the group’s experience, including the individual of inter-
est:

wΣ =
ITσ2λσ

2
x

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

; and

W3*. the weight attached to prior beliefs:

wθ,λ =
σ2x (σ

2
θT + σ2x)

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

.

In this alternative representation, the credibility premium is also decomposed
into three components. These are the individual’s own experience, the overall average
experience which includes the experience of the individual of interest, and prior beliefs
respectively. The difference between the two forms of representation of the credibility
premium lies in the second term. In the latter representation, it is the mean of
all individuals’ experience, X, whereas in the first representation, the individual of
interest’s experience is excluded when computing this mean, thereby giving only the
term X i6=1.

3.2 Asymptotic Properties

There are some interesting asymptotic properties that can be derived from the cred-
ibility premium formulas developed in the previous sub-section. For purposes of
developing these asymptotic properties, we focus on the credibility premium formula
in (6) where this premium is the weighted sum of the observed sample means of the
individual and the rest of the individuals. Similar interesting observations can be
made if one focus on the credibility premium formula in (7).
These asymptotic properties are summarized below:
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P1. Lack of past claims experience. If we let T −→ 0, that is, past experience is
lacking for all individuals, then w1 −→ 0, wi6=1 −→ 0 and wθ,λ −→ 1. The fewer
experience available for the insurer to assess future claims experience, the more
weight it will attach to what it believes (that is, the prior) it should be.

P2. Abundant past individual experience. This is the complete opposite of the
previous property. Here, if we let T −→∞, that is, there is abundance of past
experience for all individuals, then we can show that

w1 =
(σ2λI + σ2θ)σ

2
θT

2 + (σ2λ + σ2θ)σ
2
xT

(σ2λI + σ2θ) σ
2
θT

2 + (σ2λI + 2σ
2
θ) σ

2
xT + σ4x

=
(σ2λI + σ2θ) σ

2
θ + (σ

2
λ + σ2θ) σ

2
x
1
T

(σ2λI + σ2θ) σ
2
θ + (σ

2
λI + 2σ

2
θ)σ

2
x
1
T
+ σ4x

1
T 2

−→ (σ2λI + σ2θ) σ
2
θ

(σ2λI + σ2θ) σ
2
θ

= 1,

and that

wi6=1 =
σ2λσ

2
x (I − 1) 1T

(σ2λI + σ2θ) σ
2
θ + (σ

2
λI + 2σ

2
θ)σ

2
x
1
T
+ σ4x

1
T 2

−→ 0

(σ2λI + σ2θ) σ
2
θ

= 0

and also that

wθ,λ =
σ2xσ

2
θ
1
T
+ σ4x

1
T 2

(σ2λI + σ2θ)σ
2
θ + (σ

2
λI + 2σ

2
θ) σ

2
x
1
T
+ σ4x

1
T 2

−→ 0

(σ2λI + σ2θ)σ
2
θ

= 0.

This is intuitively appealing as one would expect to attach more weight to
individual’s own experience as there are more experience available about that
individual’s claims experience.

P3. Abundant group experience. If we now let I −→∞, that is, there is abundance
of group experience, then we find that

w1 =
σ2λσ

2
θT

2I + σ4θT
2 + (σ2λ + σ2θ) σ

2
xT

σ2λTI (σ
2
θT + σ2x) + (σ

2
θT + σ2x)

2

=
σ2λσ

2
θT

2 + [σ4θT
2 + (σ2λ + σ2θ) σ

2
xT ]

1
I

σ2λT (σ
2
θT + σ2x) + (σ

2
θT + σ2x)

2 1
I

−→ σ2θT

σ2θT + σ2x
,
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and that

wi6=1 =
σ2λσ

2
xT − σ2λσ

2
xT

1
I

σ2λT (σ
2
θT + σ2x) + (σ

2
θT + σ2x)

2 1
I

−→ σ2x
σ2θT + σ2x

and also that

wθ,λ =
σ2x (σ

2
θT + σ2x)

1
I

σ2λT (σ
2
θT + σ2x) + (σ

2
θT + σ2x)

2 1
I

−→ 0.

First observe that there is lesser weight attached to the prior belief or experience.
We can then re-write the credibility premium as

σ2θT

σ2θT + σ2x
·X1 +

σ2x
σ2θT + σ2x

·X i6=1.

Here we observe that the credibility factor has the usual conventional form

z =
σ2θT

σ2θT + σ2x
=

T

T + (σ2x/σ
2
θ)

and no longer depends on the variability of the ’overall’ common effects. This
overall common effects have been removed because of the abundance of group
experience. In addition, if on one hand, we have that σ2θ −→ ∞, that is,
’individual’ common effects become large in variation, then we would simply
attach full credibility to the individual. That is, w1 −→ 1 whenever σ2θ −→ ∞
and I −→∞. If on the other hand, we have σ2x −→∞ together with I −→∞,
that is, the variability of the individual’s claims are too large to be able to draw
any meaningful prediction, then we would simply attach all the weights to the
experience of the rest of the individuals in the group.

P4. Large variation of individual claims. We find that as the variability of individual
claims increases, that is, σ2x −→∞, we have

w1 =
(σ2λ + σ2θ)Tσ

2
x + (σ

2
λI + σ2θ) σ

2
θT

2

σ4x + (σ
2
λI + 2σ

2
θ)Tσ

2
x + (σ

2
λI + σ2θ) σ

2
θT

=
(σ2λ + σ2θ)T

1
σ2x
+ (σ2λI + σ2θ)σ

2
θT

2 1
σ4x

1 + (σ2λI + 2σ
2
θ)T

1
σ2x
+ (σ2λI + σ2θ)σ

2
θT

1
σ4x

−→ 0,

and that

wi6=1 =
σ2λ (I − 1)T 1

σ2x

1 + (σ2λI + 2σ
2
θ)T

1
σ2x
+ (σ2λI + σ2θ) σ

2
θT

1
σ4x

−→ 0,
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and also that

wθ,λ =
1 + σ2θT

1
σ2x

1 + (σ2λI + 2σ
2
θ)T

1
σ2x
+ (σ2λI + σ2θ)σ

2
θT

1
σ4x

−→ 1.

Thus, when variability in recent experience is high and therefore comparatively
unreliable for risk assessment, we would attach all the weights to our prior
beliefs.

P5. Large variation of individual’s risk parameters. As σ2θ −→ ∞, that is, a larger
variability in individual risk parameters, then we have

w1 =
T 2σ4θ + (σ

2
λIT

2 + σ2xT ) σ
2
θ + σ2xσ

2
λT

T 2σ4θ + (σ
2
λIT

2 + 2σ2xT ) σ
2
θ + σ2λσ

2
xIT + σ4x

=
T 2 + (σ2λIT

2 + σ2xT )
1
σ2θ
+ σ2xσ

2
λT

1
σ4θ

T 2 + (σ2λIT
2 + 2σ2xT )

1
σ2θ
+ [σ2λσ

2
xIT + σ4x]

1
σ4θ

−→ T 2

T 2
= 1,

wi6=1 =
σ2λσ

2
x (I − 1)T 1

σ4θ

T 2 + (σ2λIT
2 + 2σ2xT )

1
σ2θ
+ [σ2λσ

2
xIT + σ4x]

1
σ4θ

−→ 0

T 2
= 0,

and

wθ,λ =
σ2xT

1
σ2θ
+ σ4x

1
σ4θ

T 2 + (σ2λIT
2 + 2σ2xT )

1
σ2θ
+ [σ2λσ

2
xIT + σ4x]

1
σ4θ

−→ 0

T 2
= 0.

All the weights are assigned to the individual’s own experience. This appeals
intuitively as a highly variable θ diminishes the reliability of both Xi6=1 and µθ
as a measure of the extent of the risk due to individual 1.

P6. Large variation in overall risk parameter. As σ2λ −→ ∞, that is,.a larger vari-
ability in overall risk parameter, then we have

w1 =
(σ2θIT

2 + σ2xT ) σ
2
λ + σ4θT

2 + σ2xσ
2
θ

(σ2θT + σ2x) ITσ
2
λ + (σ

2
θT + σ2x)

2

=
σ2θIT

2 + σ2xT + (σ
4
θT

2 + σ2xσ
2
θ)

1
σ2λ

(σ2θT + σ2x) IT + (σ
2
θT + σ2x)

2 1
σ2λ

−→ σ2θIT + σ2x
σ2θIT + σ2xI

,

and

wi6=1 =
σ2x (I − 1)T

(σ2θT + σ2x) IT + (σ
2
θT + σ2x)

2 1
σ2λ

−→ (I − 1)σ2x
σ2θIT + σ2xI

and

wθ,λ =
σ2x (σ

2
θT + σ2x)

1
σ2λ

(σ2θT + σ2x) IT + (σ
2
θT + σ2x)

2 1
σ2λ

−→ 0

σ2θIT + σ2xI
= 0.

15



P6a. If additionally, T −→∞ or σ2θ −→∞, then w1 −→ 1 and wi6=1 −→ 0; or

P6b. If additionally, I −→ ∞, then w1 −→
σ2θT

σ2θT + σ2x
and wi6=1 −→

σ2x
σ2θT + σ2x

;

or

P6c. If additionally, σ2x −→ ∞, then w1 −→
1

I
and wi6=1 −→

I − 1
I
. For this

last scenario, observe that

µ1,T+1 = w1X1 + wi6=1X i6=1 + wθ,λ (µθ + µλ)

−→ 1

I
X1 +

I − 1
I

X i6=1

=
1

I

Ã
1

T

TX
t=1

X1,t

!
+

I − 1
I

Ã
1

(I − 1)T

IX
i=2

TX
t=1

Xi,t

!

=
1

IT

Ã
TX
t=1

X1,t +
IX

i=2

TX
t=1

Xi,t

!
=
1

IT

IX
i=1

TX
t=1

Xi,t = X,

which is the overall aggregated mean.

Once again, all these additional observations are properties expected of a realistic
credibility factor.

3.3 Two Individual Risks with Unit Variance

If in the previous sub-sections we let I = 2 and σ2θ = σ2λ = σ2x = 1, then we could
further simplify and derive some interesting results. So essentially, we are nowworking
with just two individual risks where the common effects, both individual and overall,
have unit variances. It is easy to show that the credibility premium, in this case,
simplifies to

E (X1,T+1|X1,X2, ...,XI) = µ1,T+1 = w1X1 + w2X2 + wθ,λ (µθ + µλ) , (8)

where X1 and X2 are respectively, the observed sample means from the first and
second individuals. The credibility weights are therefore

w1 =
T (3T + 2)

(3T + 1) (T + 1)
= 1− 1

2 (T + 1)
− 1

2 (3T + 1)
,

w2 =
T

(3T + 1) (T + 1)
=

1

2(T + 1)
− 1

2 (3T + 1)
,

and

wθ,λ =
T + 1

(3T + 1) (T + 1)
=

1

3T + 1
.

In addition, the variance can be expressed as

V ar (X1,T+1|X1,X2, ...,XI) = σ21,T+1 =
3T 2 + 7T + 3

(3T + 1) (T + 1)

= 1 +
3

2 (3T + 1)
+

1

2 (T + 1)
.
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Some intuitive and useful observations can be gleaned from these results. Firstly,
observe that the credibility premium is linear in X1, X2 and (µθ + µλ). The weights,
namely w1, w2 and wθ,λ, also sum up to unity. It is also noted that when individual
experience is abundant, i.e. as T →∞, we have w1 → 1, w2 → 0 and wθ,λ → 0, which
implies increasing reliance on individual experience at the expense of ignoring both
the past knowledge of claims experience and experience of the other individual. On
the other hand, when individual experience is lacking, i.e. as T → 0, we have w1 → 0,
w2 → 0 and wθ,λ → 1, which implies increasing reliance on past knowledge of claims
experience and individual experiences are ignored. The latter two observations are
properties expected of a realistic credibility factor.

3.4 I Individual Risks with Unit Variance

In the special case where we have I > 2 individuals, but still with unit variances, we
can show that the credibility premium can be expressed as

E (X1,T+1|X1,X2, ...,XI) = µ1,T+1 = w1X1 + wi6=1X i6=1 + wθ,λ (µθ + µλ) ,

where X1 and X i6=1 =
1

(I−1)T
PI

i=1
i6=1

PT
t=1Xi,t are the usual observed sample means.

Interestingly, the weights are

w1 =
T [(I + 1)T + 2]

[(I + 1)T + 1] (T + 1)
= 1− I − 1

I (T + 1)
− 1

I [(I + 1)T + 1]
,

wi6=1 =
T (I − 1)

[(I + 1)T + 1] (T + 1)
=

I − 1
I(T + 1)

− I − 1
I [(I + 1)T + 1]

,

and

wθ,λ =
T + 1

[(I + 1)T + 1] (T + 1)
=

1

[(I + 1)T + 1]
,

In addition, the variance can be expressed as

V ar (X1,T+1|X1,X2, ...,XI) = σ21,T+1 =
(I + 1)T 2 + (2I + 3)T + 3

[(I + 1)T + 1] (T + 1)

= 1 +
I + 1

I [(I + 1)T + 1]
+

I − 1
I (T + 1)

.

Firstly, as before, observe that the credibility premium is linear in X1, X i6=1
and (µθ + µλ). The weights, namely w1, wi6=1 and wθ,λ, also sum up to unity. In
the presence of abundant individual experience, i.e. as T → ∞, we have w1 → 1,
wi6=1 → 0 and wθ,λ → 0, which implies increasing reliance to individual experience at
the expense of both the past knowledge of claims experience and experience of the
other individuals.
On the other hand, when individual experience is lacking, i.e. as T → 0, we have

w1 → 0, w2 → 0 and wθ,λ → 1, which implies increasing reliance on past knowledge
of claims experience and individual experience is ignored.
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As the number of individual risks increases, i.e. as I → ∞, we have w1 →
T

T+1
, wi6=1 → 1

T+1
and wθ,λ → 0, which implies increasing reliance will be placed on

individual experience, especially that of the own individual’s, and prior knowledge of
claims is ignored.

4 Numerical Example
The two-level common effects model of claim dependence described in the previous
sections can be applied in many forms of insurance. Consider, for example, private
household or motor insurance. In a household insurance, coverage is provided for a
private home structure against fire and theft, as well as other possible catastrophic
events such as typhoons or floods. One can view the two levels of common effects as
those affected by the ordinary, non-catastrophic events that is usually individualistic
in nature, and those affected by presumably the less common, but catastrophic events
usually affecting an aggregated portion of the insureds in the portfolio.
As with other types of developing statistical models for other purposes, one prime

concern always is the parameter estimates to use for the model. The convention is to
examine historical claims experience, to the extent reliable, as a source of knowledge
for parameter estimates. In implementing the model suggested in this paper, better
parameter estimates can be obtained if the historical claims data can be separated into
categories of “catastrophe” and “non-catastrophe”. This categorization information
should be readily available for most insurance companies that keeps track of claims,
especially the cause of claims, as they come in reported.
For purposes of numerical illustration, we produce some simulated claims data

to examine what the effect there might be from assuming some level of dependence
between individuals as well as across time, using the two-level common effects frame-
work suggested in this paper, and compare it with the case of the ordinary Bayesian
Normal model. The assumption of dependence only across individuals in the Bayesian
Normal model, for simplicity and mathematical tractability, is always made without
regard as to whether it is violated or not. But here we find that dependence across
time can have an effect on the level of credibility premium that may be charged for
insurance.

4.1 Assumptions and Simulated Data

This sub-section briefly describes the nature of the assumptions used to draw numer-
ical results. First, we simulated observations assuming the two-level common effects
model assumptions hold in reality and then compare the results based on two different
models: the two-level common effects model described in this paper, using the Nor-
mal distribution assumptions of the common effects, and the conventional Bayesian
Normal model which allows for only one level of common effect. We are interested
in a numerical comparison of the resulting credibility premiums predicted under each
model.
A summary of the specification, description, as well as the parameter values used

in the simulation is found in Table 1. In order to allow for a meaningful comparison
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between these two models, we have chosen the parameters in the two respective
models to be consistent with that of the other. More precisely, for example, we have
that µ = µθ + µλ and σ2 = σ2θ + σ2λ. The variances are additive in the Bayesian
Normal model because it has been assumed that θi and λ are independent of each
other.
We generated n = 1, 000 different 10-year paths of claims for 10 different individ-

uals assuming the two-level common effects model is the true model. Hence, we are
saying that in reality, there are two common effects as described in this paper that are
inducing the claims. Here we can view these common effects as either catastrophic
or non-catastrophic events. These simulations are performed in an Excel spreadsheet
where we also stored the observations. Recall that it is assumed that for each indi-
vidual, the claims amount for each time period conditional on θi and λ, i.e. Xi,t|θi, λ,
is Normally distributed with mean θi + λ and variance σ2x. θi and λ are in turn also
Normally distributed, with means µθ and µλ and variances σ

2
θ and σ2λ respectively.

Thus, these mechanics give the values of θi and λ which are simulated first and
later stored. From these stored values, the claim amounts, conditional on the common
effects, Xi,t|θi, λ for each i and t, are later simulated and also stored. These simulated
paths of claims which are then stored are used to predict the claims that are expected,
for each individual i and for the next time period T + 1. Figure 1 shows a sample
path for each of the ten insured individuals.

Table 1: Summary of Model Assumptions and Parameters used in Simulation

Specification Description

Model I: Two-Level Normal Common Effects Model
Conditional density Xi,t|θi, λ ∼ N(θi + λ, σ2x), for i = 1, 2, ..., I

and t = 1, ..., T
’Individual’ common effects θi ∼ N(µθ, σ2θ), for i = 1, 2, ..., I
’Overall’ common effect λ ∼ N(µλ, σ2λ)

Assumptions I = 10 individuals, T = 10 years
Parameter values σ2x = 6, 084

µθ = 100, σ
2
θ = 1, 024

µλ = 200, σ
2
λ = 4, 096

Model II: Bayesian Normal Model
Conditional density Xi,t|θ ∼ N(θ, σ2x), for i = 1, 2, ..., I

and t = 1, ..., T
Single common effect θ ∼ N(µ, σ2)

Assumptions I = 10 individuals, T = 10 years
Parameter values σ2x = 6, 084, µ = 300, σ

2 = 5, 120
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Figure 1: Sample Paths of Claims from 10 Individuals.

4.2 Results and Discussion

We shall call the two-level Normal common effects model our Model I and the
Bayesian Normal Model our Model II. For each one of sample paths of claims from
the 10 individuals, we computed the credibility premium for year 11 (the next period)
for individual 1.
For Model I, we use the formula derived in Section (3) which again we summarize

below:

E (X1,11|X1,X2, ...,X10) = w1X1 + wi6=1X i6=1 + wθ,λ (µθ + µλ) , (9)

where the weight values used can be computed using the parameter values assumed
in the model. Specifically, we have for the credibility weights the following values for
Model I:

w1 =
T [(σ2λI + σ2θ) σ

2
θT + σ2x (σ

2
λ + σ2θ)]

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

= 0.663139

for the weight attached to individual 1’s own experience,

wi6=1 =
T (I − 1) σ2λσ2x

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

= 0.322577
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for the weight attached to the rest of the group’s experience and

wθ,λ =
σ2x (σ

2
θT + σ2x)

[(σ2λI + σ2θ)T + σ2x] (σ
2
θT + σ2x)

= 0.14284

for the weight attached to prior beliefs. Table 2 demonstrates a detailed calculation
of the credibility premium for individual 1 under Model I for one set of simulations.
This table gives the values of the parameter generated for the common effects for each
individual. Notice the common value for all insured individuals for the parameter that
describes the ’overall’ common effects.

Table 2: Detailed Computation of the Credibility Premium for Model I

Individual Observed Observed
j θj λ Xj,1 Xj,2 ... Xj,10

1 120.2717 158.1960 262.1506 131.1447 ... 110.6222
2 95.2689 158.1960 262.1677 388.9029 ... 149.1350
3 73.5339 158.1960 268.4374 273.5788 ... 234.8364
4 117.9636 158.1960 369.7292 249.6484 ... 329.5931
5 125.3547 158.1960 325.7415 138.3715 ... 253.5196
6 114.6384 158.1960 255.1586 249.5788 ... 277.0331
7 101.3216 158.1960 256.3065 250.8617 ... 236.5538
8 113.8054 158.1960 101.9994 146.6685 ... 128.1672
9 80.5072 158.1960 302.3823 353.8572 ... 245.7404
10 118.0959 158.1960 318.2558 203.8160 ... 274.6407

The credibility premium for Model II is well-known and the formula, using the
notations introduced for this model (see Table 1), is given by

E (X1,11|X1,X2, ...,X10) = Z ·X + (1− Z) · µ, (10)

where the credibility factor can be expressed as

Z =
T

T + (σ2x/σ
2)
.

See, for example, Kaas, et al. (2001) and Klugman, et al. (1998) for discussion of
these credibility formulas.
As a convention, we shall use µModel Ij,T+1 to denote the credibility premium in Model

I as given in (9) and use µModel IIj,T+1 to denote that of Model II as given in (10). Now
for comparison purposes, we then computed the percentage difference in credibility
premiums for individual j between these two models using:

∆j =
Model I Premium−Model II Premium

Model II Premium

=
µModel Ij,T+1 − µModel IIj,T+1

µModel IIj,T+1

, (11)
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For each simulation, we can compute this percentage premium difference ∆j and
examine the resulting distribution of these premium differences for the entire 1,000
simulations. In order not to overwhelm the reader with lots of statistics, we chose
to present the results only in terms of Individual 1 and the aggregate of all the ten
individuals. The aggregate percentage difference has been computed using:

∆ =

P10
j=1 µ

Model I
j,T+1 −

P10
j=1 µ

Model II
j,T+1P10

j=1 µ
Model II
j,T+1

. (12)

Some summary of the resulting percentage differences are given in Table 3 below,
together with Figures 2a and 2b that provide histograms of the distribution of the
percentage differences. Figure 2a provides the histogram of the percentage difference
for the case of individual 1 only, and Figure 2b for the aggregate portfolio (that
is, sum of all the individuals). For convenience, the dotted lines in the histograms
show the zero reference point. We also show in Figures 3a and 3b the Normal Q-Q
plots of these respective distributions to show the skewness, or the non-symmetry,
observed from these resulting differences. According to these figures and statistics,
the ordinary Bayesian Normal model tends to overstate the credibility premium from
its true value, supposedly that of the premium calculated based on the two-level
common effects model.

Table 3: Some Descriptive Statistics of the Percentage Difference
between the Credibility Premiums in Models I and II

Statistic Individual 1 Aggregate

Mean -0.0076298 -0.0048645
Median -0.0025542 -0.0021824
Variance 0.0081391 0.0061402
Standard Deviation 0.0902168 0.0247795
Minimum -0.5921914 -0.1584046
Maximum 0.2585304 0.0348486
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Figure 2a: Histogram of the Percentage Premium DIfferences for Individual 1
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Figure 3b: A Normal Q-Q Plot of these Differences for the Aggregate Portfolio
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5 Conclusion
It is a common practice to group individual risks in an insurance portfolio to achieve
homogeneity in reaching a fair and equitable premium across the individuals. How-
ever, a limited number of observable traits will always contribute to the possible
presence of heterogeneity among the individuals. One way to correct for this is to
introduce claim dependencies, and it is the purpose of this paper to introduce and
offer additional insights into the modelling of claim dependencies. We developed a
so-called two-level common effects model within the framework of calculating cred-
ibility premiums. These common effects are introduced to account for the possible
dependence that may be present across the insured individuals and simultaneously
across the time periods. Using this framework, we demonstrate how to compute the
required premium for the next period, following a series of observed claims from the
individuals in the portfolio for a period of years. We are able to show, as a spe-
cific example, that when these common effects follow Normal distributions, that this
required premium can be expressed in the form of a credibility-type formula. This
formula contain a credibility factor attached to an individual’s own experience. We
find that the formula also gives weight to the claims experience of the rest of the
individuals together with a prior-type claims that account for the common effects.
We also find that when asymptotics are considered, we are able to derive explicitly
and intuitively appealing results.
A more general framework of modelling claim dependencies could be to use the

concept of copulas. Copulas offer the flexibility of modelling dependent random
variables, but offer very limited mathematical tractability. This paper provides a
framework that can allow, besides the intuitive appeal, mathematical tractability in
modelling claim dependencies. However, copula models are still appropriate tools
and these can be explored in future work.

25



Appendix A
From Section 3.1,

fXi,t|Θi,Λ (xi,t|θi, λ) =
1√
2πσx

e
− 1
2

∙
xi,t−(θi+λ)

σx

¸2
,

fΘi (θi) =
1√
2πσθ

e
− 1
2

³
θi−µθ
σθ

´2
and

fΛ (λ) =
1√
2πσλ

e
− 1
2

³
λ−µλ
σλ

´2
.

The objective is to derive the density of Xj,T+1|X1,X2, ...,XI where without loss of
generality, we fix j = 1. Thus,

fX1,T+1|X1,X2,...,XI
(x1,T+1|x1,x2, ...,xI)

=

R R
···
R
fX1,T+1|Θ1,Λ (x1,T+1|θ1, λ) fX1,X2,...,XI,Θ,Λ (x1,x2, ...,xI ,θ, λ) dθdλ

fX1,X2,...,XI
(x1,x2, ...,xI)

= C1

Z Z
· · ·
Z

fX1,T+1|Θ1,Λ (x1,T+1|θ1, λ) fX1,X2,...,XI,Θ,Λ (x1,x2, ...,xI ,θ, λ) dθdλ,

(13)

where C1 = 1
fX1,X2,...,XI (x1,x2,...,xI)

is just a normalizing constant and do not have to
be solved for explicitly. Here, and in the subsequent development, the limits of the
integrals are the entire real line. The conditional density fX1,T+1|Θ1,Λ (x1,T+1|θ1, λ) is
already known to be

fX1,T+1|Θ1,Λ (x1,T+1|θ1, λ) =
1√
2πσx

e
− 1
2

∙
x1,T+1−(θ1+λ)

σx

¸2
. (14)

The joint density fX1,X2,...,XI,Θ,Λ (x1,x2, ...,xI ,θ, λ) can be derived by utilizing (4),
giving

fX1,X2,...,XI,Θ,Λ (x1,x2, ...,xI , θ, λ)

=
1√
2πσλ

e
− 1
2

³
λ−µλ
σλ

´2 IY
i=1

Ã
1√
2πσθ

e
− 1
2

³
θi−µθ
σθ

´2 ( TY
t=1

1√
2πσx

e
− 1
2

∙
xi,t−(θi+λ)

σx

¸2)!
.

(15)

Substituting (14) and (15) into (13), we have

fX1,T+1|X1,X2,...,XI
(x1,T+1|x1,x2, ...,xI)

=

Z Z
· · ·
Z

C1

(2π)
I(T+1)+2

2 σIT+1x σIθσλ

e
−1
2

(PT+1
t=1

∙
x1,t−(θ1+λ)

σx

¸2
+
PI

i=2

PT
t=1

∙
xi,t−(θi+λ)

σx

¸2)

e
− 1
2

∙PI
i=1

³
θi−µθ
σθ

´2
+
³
λ−µλ
σλ

´2¸
dθdλ. (16)
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Considering only the terms containing θ1 of (16) and after simplifying, we haveZ
1

2π
e
− 1
2

(PT+1
t=1

∙
x1,t−(θ1+λ)

σx

¸2
+
³
θ1−µθ
σθ

´2)
dθ1

=

Z
1

2π
e
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2σ2x

∙
θ1−
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t=1 x1,t−λ(T+1)
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¸2
e
− 1
2

³
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e
− 1

2σ2x
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PT+1
t=1 x1,t−λ(T+1)]

2

T+1
+
PT+1

t=1 x21,t+(T+1)λ
2−2λ

PT+1
t=1 x1,t

⎫⎬⎭
dθ1. (17)

Notice that part of (17) can be simplified as follows:

1

2π
e
−T+1

2σ2x

∙
θ1−

PT+1
t=1 x1,t−λ(T+1)
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2
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T + 1
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(√
T + 1

σx

"
θ1 −
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ϕ

µ
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¶
,

where ϕ(z) is the standard normal density.
At this point, a useful result from Valdez (2004) will be used to further simplify

(17). This result states that for ϕ(z) and any constants a and b, the following is true:Z ∞

−∞
ϕ (z)ϕ (a− bz) dz =

1√
b2 + 1

ϕ

Ãr
a2

b2 + 1

!
. (18)

Thus, by letting z = θ1−µθ
σθ

so that dz = 1
σθ
dθ1, then applying (18) to (17) and

simplifying, we haveZ
1
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e
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#)
. (19)

Considering only the terms containing θi, i = 2, 3, ..., I, of (16), applying (18) and
simplifying in the same manner as above, we haveZ
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Continuing from (16) by substituting (19) and (20) and then collecting the terms
containing λ , we have
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Now consider only the terms containing λ of (21). Notice that these terms can be
simplified as follows:
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Thus, by letting z = λ−µλ
σλ

so that dz = 1
σλ
dλ, then applying (18) to (22) and

simplifying, we have

28



Z
1

2π
e
− 1
2

³
λ−µλ
σλ

´2

e
− 1
2

∙
−2λ

PT+1
t=1 x1,t

σ2
θ
(T+1)+σ2x

+ (T+1)λ2

σ2
θ
(T+1)+σ2x

+
2µθ(T+1)λ

σ2
θ
(T+1)+σ2x

− 2λ
PI
i=2

PT
t=1 xi,t

σ2
θ
T+σ2x

+ (I−1)Tλ2

σ2
θ
T+σ2x

+
2µθ(I−1)Tλ
σ2
θ
T+σ2x

¸
dλ

=
σλq

(I−1)T
σ2θT+σ

2
x
+ T+1

σ2θ(T+1)+σ
2
x

e

− 1
2

⎛⎜⎝ −1
(I−1)T
σ2
θ
T+σ2x

+ T+1

σ2
θ
(T+1)+σ2x

½ PT+1
t=1 x1,t

σ2
θ
(T+1)+σ2x

+

PI
i=2

PT
t=1 xi,t

σ2
θ
T+σ2x

−
∙

T+1

σ2
θ
(T+1)+σ2x

+
(I−1)T
σ2
θ
T+σ2x

¸
µθ

¾2⎞⎟⎠
1r

σ2λ

h
(I−1)T
σ2θT+σ

2
x
+ T+1

σ2θ(T+1)+σ
2
x

i
+ 1

ϕ

⎡⎢⎢⎢⎢⎢⎢⎣

vuut (I−1)T
σ2
θ
T+σ2x

+ T+1

σ2
θ
(T+1)+σ2x

σ2λ

µ
(I−1)T
σ2
θ
T+σ2x

+ T+1

σ2
θ
(T+1)+σ2x

¶
+1⎛⎝ 1

(I−1)T
σ2
θ
T+σ2x

+ T+1

σ2
θ
(T+1)+σ2x

⎧⎨⎩
PT+1

t=1 x1,t
σ2θ(T+1)+σ

2
x
+

PI
i=2

PT
t=1 xi,t

σ2θT+σ
2
x

−
h
(I−1)T
σ2θT+σ

2
x
+ T+1

σ2θ(T+1)+σ
2
x

i
µθ

⎫⎬⎭− µλ

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ .
(23)

Continuing from (21) and substituting (23), we obtain
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Extracting the terms containing x1,T+1 in (24) and further simplification yields
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Finally, from (25), we group the terms containing x21,T+1 and x1,T+1, giving
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(26)

From (26), we can simplify the coefficients of x21,T+1 and x1,T+1 and write them as
A and B respectively where
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By performing a completing the squares operation, and the density ofX1,T+1|X1,X2, ...,XI

can therefore be simplified to
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Observe that e
− 1
2
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2

1
A

⎤⎦
is the kernel of a normal distribution. Therefore, it can

be concluded that X1,T+1|X1,X2, ...,XI ∼ Normal
¡
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¢
, where µ1,T+1 =
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A
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. Further simplification gives
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