
Hello: A Generic Flexible Protocol
for Neighbor Discovery

Wei Sun∗, Zheng Yang†, Keyu Wang∗ and Yunhao Liu†
∗CSE, Hong Kong University of Science and Technology
†School of Software and TNList, Tsinghua University

Email: {wsunaa, kwangad}@cse.ust.hk, {yang, yunhao}@greenorbs.com

Abstract—Neighbor discovery is crucial for both wireless
sensor networks and mobile computing applications. The crux
of the problem is to achieve energy efficiency, which has been
demonstrated to be difficult by prior work. In this paper we
propose Hello, a generic flexible protocol for neighbor discovery.
With an unrestricted parameter, it serves as a generic framework
that incorporates existing deterministic protocols. Under the
framework, we expose optimal parameters for either symmetric
or asymmetric duty cycles, which is the first to our knowledge.
As a result, it exhibits great flexibility by adjusting itself to
any configuration that best meets application demands. Besides,
several techniques are applied to removing redundant discoveries
without sacrificing the worst-case latency. We evaluate Hello
through extensive simulation and real-world sensor experiments.
The results show that Hello is highly energy-efficient under
symmetric and asymmetric duty cycles. In particular, it is two
times better than the state of the art in terms of the worst-case
latency under asymmetric duty cycles.

I. INTRODUCTION

Ever-developing fabrication technology has given birth to a
wide variety of miniaturized low-cost multi-functional devices.
This trend of evolvement nurtures two classes of far-ranging
applications: Wireless Sensor Networks (WSNs) and Personal
Mobile Computing (PMC). WSNs are composed of low-power
wireless sensors with data collection, processing, and transmis-
sion capacities. They are typically applied to environmental
monitoring [1], smart housing [2], object tracking [3], and
the like. More computationally powerful devices, such as
smartphones and tablets, satisfy the increasing needs of PMC.
Notably popular PMC communities include mobile gaming
(e.g., PlayStation Vita [4] and MOGA [5]) and mobile social
networking (e.g., Nextdoor [6] and Highlight [7]).

Both classes of applications regard neighbor discovery as
a fundamental function. Sensors in WSNs need to discover
their neighbors for network connectivity maintenance [8],
while many proximity-based PMC applications are built upon
direct interconnection between devices. Inability to discover
neighbors promptly may result in unawareness of neighbors
or loss of transient encounters, which may severely degrade
network or application performance. In practice, nodes (e.g.,
sensors or smartphones) cannot afford to turn radios on all
the time. Hence they have to make a compromise by turning
radios on/off from time to time, with the portion of time in
the ON state characterized by duty cycle. Typically, duty cycle

and discovery latency are two key metrics by which energy
efficiency is evaluated. However, there is a natural trade-off
between them: a lower duty cycle usually leads to a higher
discovery latency, and vice versa.

As a result, energy-efficient neighbor discovery is nontrivial.
Though clock synchronization via GPS [9] or NTP (Network
Time Protocol) [10] greatly simplifies the problem, it requires
either power-hungry operations or Internet access, not scalable
for a wide range of applications. The problem gets more
complicated as nodes can work under the same (symmetric)
or different (asymmetric) duty cycles. A favorable mechanism
should provide good performance under both scenarios.

There has been several proposals for asynchronous neighbor
discovery that can work under both symmetric and asymmetric
duty cycles. For example, a family of Birthday protocols
[11] are representative of probabilistic designs. Disco [12]
and U-Connect [13], which are both deterministic protocols,
provide a latency bound by virtue of the Chinese Remainder
Theorem. Another state-of-the-art deterministic protocol called
Searchlight [14] achieves higher efficiency by leveraging con-
stant offset between periodic active slots. Since the Birthday
protocols fail to guarantee a worst-case latency, we limit our
discussion to deterministic protocols in the following.

Despite their success in achieving efficiency to some extent,
existing protocols may suffer from the following drawbacks.
First, their parameters are highly restricted. Both Disco and
U-Connect are built upon primes, limiting duty cycles to
specific forms. Worse still, Searchlight requires duty cycles
to be power-multiples of the smallest one, resulting in only a
handful of options available (e.g., at most four for a targeted
span of duty cycles ranging from 1% to 10%). Second, there
are redundant discovery opportunities within a latency bound.
Such redundancy might help accelerate discovery in general,
but rarely decreases the worst-case latency. Third, they cannot
adjust well to application demands. Various applications may
manifest different preferences towards low discovery latency
under symmetric or asymmetric duty cycles. Even for a
particular application, its preference may vary over time (e.g.,
hiking logging [15] with APs or companions). Those protocols
except Disco, however, cannot respond to such dynamics.

To mitigate these drawbacks, we propose Hello1, a generic

1It is so named since “Hello” is a globally recognized (generic) word for
greeting neighbors.978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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flexible protocol for neighbor discovery. Compared with the
aforementioned protocols, it manifests the highest degree of
freedom in parameter selection as one of its two parameters
remains unrestricted. Given such freedom, we show that it can
serve as a generic framework incorporating all the determin-
istic protocols mentioned above. By exploring its parameter
space under the framework, we expose optimal parameters for
symmetric or asymmetric duty cycles. By switching between
these optimums, Hello exhibits great flexibility to respond
to dynamic application demands. Moreover, discovery redun-
dancy is removed by getting rid of superfluous active slots
without compromising on the worst-case latency.

We evaluate the performance of Hello through extensive
simulation and real-world sensor experiments, and the re-
sults are promising. Under symmetric duty cycles, Hello is
highly comparable to the state-of-the-art Searchlight. Under
asymmetric duty cycles, on the other hand, Hello significantly
outperforms existing protocols. In particular, it is two times
better than Searchlight in terms of the worst-case latency.

In summary, we outline the contributions of this work as
follows:
• A neighbor discovery protocol that exhibits the highest

degree of freedom. The least restriction is imposed on
Hello, giving it a great many choices for the parameters.

• An optimality analysis under a generic framework. To
our best knowledge, we are the first to design a generic
framework incorporating existing deterministic protocols,
and to expose optimal parameters for symmetric and
asymmetric duty cycles.

• A flexible solution to applications dynamics. Hello
can be fine-tuned to any configuration that best meets
application demands.

• Extensive evaluation through simulation and real-
world experiments. The results show that Hello is highly
competitive under both symmetric and asymmetric duty
cycles.

The rest of this paper is organized as follows. Section II
briefly describes existing protocols for neighbor discovery. The
design of Hello is detailed in Section III. We present the simu-
lation studies and experimental results from its implementation
in Section IV and V, respectively. Finally, we conclude the
work in Section VI.

II. RELATED WORK

Neighbor discovery without time synchronization is of ma-
jor concern in research communities. Several communication
protocols, such as BMAC [16] and SMAC [17], can serve
this purpose. They employ lower-power listening with a fixed
listening period, and assume a global agreement on duty cycle
throughout the network. In practice, however, duty cycle is
often locally determined by workloads or energy budgets, lead-
ing to various duty cycles among nodes. Therefore, neighbor
discovery mechanisms that support both asynchronous and
asymmetric duty cycles are in high demand.

In response, several neighbor discovery protocols have been
proposed. They typically fall into two categories: probabilistic

and deterministic. The best representative among probabilistic
approaches is a family of Birthday protocols [11], where a
node decides to transmit, listen, or sleep with probabilities.
By virtue of their probabilistic nature, they support asymmetric
duty cycles, but suffer from aperiodic and unpredictable dis-
covery, leading to unbounded worst-case latency.

Deterministic protocols, on the other hand, guarantee a
definite bound on discovery latency. One class of deterministic
protocols is termed as Quorum-based protocols [18], [19].
They divide time into groups of m2 continuous intervals.
Within each group, the m2 intervals are organized as a 2-
dimensional m × m array in a row-major manner. Then a
node can arbitrarily pick one column and one row of entries
as active intervals. Clearly for any two nodes, this paradigm
ensures two overlaps of active intervals within m2 intervals.
The initial quorum design [18] requires that m be a global
parameter, and a later improvement [19] slightly relaxes this
constraint to support two different schedules, of which both
underperform in dealing with duty-cycle asymmetry.

Theoretically, Zheng et al. [20] formulated the symmetric
neighbor discovery as the symmetric block design problem
in combinatorics, and suggested the use of the Multiplier
Theorem [21] to derive an optimal block design. With respect
to duty-cycle asymmetry, they showed that this approach
reduces to the minimum vertex-cover problem, which is NP-
complete. Likewise, it is fundamentally limited to symmetric
duty cycles.

Prime-based protocols [12], [13] overcome this limitation
by leveraging the Chinese Remainder Theorem [22]. In Disco
[12], each node selects a pair of different primes p and q such
that the sum of their reciprocals is close to a desired duty
cycle. It then wakes up at multiples of the individual prime
p or q. Clearly for any two nodes, there exists at least one
pair of different primes each from the individual node. Thus
neighbor discovery is guaranteed within the least product of
such prime pairs. For ease of design, U-Connect [13] uses a
single prime p and requires nodes to wake up in the first p+1

2
slots every p2 slots. This ensures discovery within the product
of the two primes for any two nodes. One drawback of both
protocols is that their parameters are fundamentally limited by
prime selections.

The state-of-the-art Searchlight [14] explores another op-
portunity for neighbor discovery by leveraging constant offset
between periodic active slots. There are two active slots in
a cycle of t slots. The first (indexed from 0) is always an
active slot called the anchor slot. The other active slot, called
the probe slot, traverses from position 1 to b t2c across b t2c
cycles (i.e., a period). This design ensures a discovery within
a period under symmetric scenarios. To maintain the constant
offset under asymmetric scenarios, Searchlight restricts duty
cycles to power-multiples of the smallest one. However, this
restriction significantly limits its parameter t. For example, in
a span of duty cycles ranging from 1% to 10%, at most four
different duty cycles (say 1%, 2%, 4%, and 8%) are available
for Searchlight.



3

III. DESIGN

In this section we develop the design of Hello. We first
present the schedule of active slots and derive its worst-case
latency under symmetric duty cycles. A study on addressing
duty-cycle asymmetry is then expounded. In what follows,
we demonstrate that under symmetric scenarios, Hello serve
as a generic framework incorporating existing deterministic
protocols such as Quorum, Disco, U-Connect, and Searchlight.
Under this framework, we explore for optimal parameters for
symmetric or asymmetric scenarios. Finally, we show ways to
reduce or utilize discovery redundancy. Note that we focus on
initial discovery at this stage, and leave neighbor maintenance
[23] as future work.

A. Schedule Design

Consider a question asking how to ensure the mutual
discovery of two nodes within a period of c slots. Among
many possible solutions, the most straightforward one may
be to stay active in the first (bc/2c + 1) slots, slightly larger
than half the period. By this means, at least one discovery
is guaranteed within a period, regardless of the phase offset
due to their asynchronous clocks. However, it suffers severely
from a high duty cycle, which has to be over 50%.

An amendment can be made to this solution by com-
promising on the latency bound for a low duty cycle. We
expand the period to cn slots, where n is a positive integer
larger than 1. Starting from the c-th slot, the first slot every
c slots is selected as a new active slot. In such a manner, the
duty cycle can be reduced to a significant extent, depending on
the value of n. Meanwhile, we can show that with a reduced
duty cycle, a discovery is still guaranteed (proof given in the
following section). In essence, this is where Hello originated.

Systematically, Hello is customized by two parameters:
cycle length c and the number n of cycles in a period. During
each period, a node wakes up at the first slot of each cycle,
and at the consecutive slots indexed from 1 to bc/2c in the
first cycle. For ease of reference, we refer to the former set of
active slots as guardians and the latter as patrols. The worst-
case discovery latency Ls for Hello under symmetric duty
cycles is the period T = cn, as stated in Lemma 1 in the next
section. We denote by Hello(c, n) an instance of Hello with
parameters c and n. Fig. 1 illustrates a schedule of Hello(9, 3),
where slots containing G or P indicate guardians or patrols,
respectively.

We now take a quick look at Hello’s duty cycle. There
are n guardians and bc/2c patrols in each period of cn slots.
Therefore, the duty cycle of Hello is given as

d =
bc/2c+ n

cn
. (1)

Note that c and n are free to choose and independent from each
other. This provides Hello with the highest degree of freedom
in parameter selection compared with existing deterministic
protocols, which require either parameter(s) to be prime (e.g.,
Disco [12] and U-Connect [13]) or duty cycles to be power-
multiples of the smallest one (e.g., Searchlight [14]). Although
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Fig. 2. Discovery for two cases under symmetric duty cycles.

we will impose a restriction on c in Section III-C to address
duty-cycle asymmetry, Hello still remains highly autonomous
since n is always kept unrestricted.

B. Symmetric Discovery Latency

In this section, we give a proof of the worst-case discovery
latency for Hello under symmetric duty cycles.

Lemma 1. The worst-case discovery latency Ls for Hello
under symmetric duty cycles with parameter pair (c, n) is cn
slots.

Proof: Consider any two nodes i and j adopting Hello
for discovery with the same parameters c and n. Since both
nodes wake up at multiples of c, the relative phase offset
between their guardians, denoted by φij (φij ∈ [0, c)), must
be constant. When φij = 0, their guardians are in-sync with
one another, and hence the worst-case latency is c slots. Next,
we decompose other possibilities into two cases.

Case 1: 0 < φij ≤ bc/2c. Within a period of cn slots, node
i’s patrols must meet a guardian of node j (highlighted in Fig.
2), as they traverse from position 1 to bc/2c in one cycle of the
period. The worst-case latency of cn slots is encountered when
they come within communication range right after a patrol of
node i should have met a guardian of node j.

Case 2: bc/2c < φij < c. The same reasoning as in Case
1 applies to this case, except that the roles of nodes i and j
exchange (see Fig. 2).

With all scenarios considered, a discovery will take place
within cn slots.

C. Duty-Cycle Asymmetry

In practice, duty cycles are often determined locally by
workloads or energy budgets. As it is common that these de-
terminants vary throughout the network and during the course
of usage, neighbor discovery under asymmetric duty cycles
becomes common and necessary. To address this practical
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Fig. 3. Discovery guaranteed for c1 ≥ 2c2.

concern, we discuss two possible scenarios that lead to duty-
cycle asymmetry, and analyze several approaches to providing
a reasonable latency bound.

1) Same c, Different n: One possibility of the duty-
cycle asymmetry is that nodes select the same cycle length
but different numbers of cycles. Consider two nodes A and
B with discovery schedule Hello(c, n1) and Hello(c, n2),
respectively. Without loss of generality, we assume n1 > n2.
Here one natural question arises: is a discovery between nodes
A and B guaranteed within a worst-case bound? Fortunately
the answer is yes. Through similar arguments as in the proof of
Lemma 1, we can show that the worst-case discovery latency
is cn1 slots (proof omitted due to the page limit). Put another
way, two nodes operating asymmetrically with the same cycle
length but different numbers of cycles can discover each other
within the longer period of the two. Nothing needs to be done
for discovery guarantee under this scenario.

2) Different c: Different selections of cycle lengths give
the other possibility of the duty-cycle asymmetry. Consider
two nodes A and B with discovery schedule Hello(c1, n1) and
Hello(c2, n2), respectively, where we assume c1 > c2. Like-
wise, we are interested in whether a discovery is guaranteed
within a worst-case bound. To study this question, we further
decompose it into two cases.

Case 1: c1 ≥ 2c2. Since nodes wake up at multiples of
corresponding c, this condition implies that there is at least
one of node B’s guardians in the first half of each cycle of
node A. Hence in each period of node A containing c1n1 slots,
at least a guardian or a patrol of node A meets a guardian
of node B, leading to a mutual discovery. Fig. 3 exemplifies
the case of (c1, n1) = (9, 2) and (c2, n2) = (3, 6), where
the gray and blue slots are the guardians and patrols of node
B, respectively. In this condition, a discovery is guaranteed
within a fixed bound without further adjustments. In order
to make this condition hold for any two asymmetric nodes,
however, it requires that c be the power of 2 multiples of a base
value, similar to Searchlight. This requirement is prohibitively
restrictive in terms of freedom in parameter selection, resulting
in sparse options available. Worse still, such sparsity disables
the optimal parameter selections presented in Section III-E.
Therefore, we have to deal with the case when this condition
does not hold.

Case 2: c2 < c1 < 2c2. Neighbor discovery may not
be guaranteed in this case, as illustrated in Fig. 4 where
(c1, n1) = (9, 2) and (c2, n2) = (6, 3). A possible solution
is to require c1 and c2 to be prime. As they are also distinct,
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Fig. 4. Discovery not guaranteed for c2 < c1 < 2c2.

they are coprime by themselves. It follows from the Chinese
Remainder Theorem [22] that the guardians of the nodes
overlap once every c1c2 slots. Though this requirement also
restricts the selection of c to some extent, it provides much
more room than Searchlight. For example, there are 21 primes
for Hello ranging from 100 to 200, the targeted range of c at
a single duty cycle of 1% (see Section III-E), but only at most
4 options available for Searchlight in a range of duty cycles
from 1% to 10%.

In short, Hello ensures asymmetric discovery latency within
a fixed bound by requiring the cycle length c to be prime. We
summarize the whole analysis in Lemma 2.

Lemma 2. The worst-case discovery latency Las for Hello
under asymmetric duty cycles with parameter pairs (c1, n1)
and (c2, n2) is given as

Las =

{
max{c1n1, c2n2} if c1 = c2
c1c2 if c1 6= c2

. (2)

Proof: It can be easily proved by the preceding analysis.

D. A Generic Framework

From the design of Hello, we find some interesting sim-
ilarities with existing deterministic protocols. For example,
some of their active slots, say guardians in Hello and anchor
slots in Searchlight, exhibit a repetitive pattern. In this section
we study the interconnection between these protocols. To
our surprise, it turns out that under symmetric duty cycles,
Hello can serve as a generic framework incorporating well-
known protocols such as Quorum, Disco, U-Connect, and
Searchlight. In what follows, we show in turn how each is
either a redundant variant or specific derivant of Hello.

1) Quorum: In Quorum, a node picks one column and
one row of entries as active slots in an m × m array of
consecutive slots. We observe that it makes no difference in
terms of worst-case latency if each node picks the first column
and the first row. Consequently, if the selected row/column
are shifted to the first row/column (see Fig. 5(a)), Quorum
becomes a redundant variant of Hello with additional patrols
in the second half of the first cycle. That is, Quorum is derived
from Hello(m,m).

2) Disco: A node using Disco for neighbor discovery
wakes up at multiples of individual prime p or q (p 6= q).
Consider a period of pq slots that are organized into a q × p
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(a) Quorum ~ Hello(7,7) (b) Disco ~ Hello(7,5) (c) U-Connect ~ Hello(7,7) (d) Searchlight ~ Hello(7,3)

Fig. 5. Hello as a generic framework.

matrix. Clearly, the first column are all active slots. Since p
and q are coprime, it is known that no two of the integers
q, 2q, . . . , (p − 1)q are congruent modulo p [24]. Therefore,
there is exactly one active slot in each remaining column.
Likewise, if those active slots are shifted to the first row, the
worst-case latency remains unchanged and Disco amounts to
a redundant variant of Hello (see Fig. 5(b)). Its archetype in
Hello is Hello(p, q), where p and q are primes.

3) U-Connect: It is a direct derivant from Hello in the form
of Hello(p, p) where p is a prime (see Fig. 5(c)).

4) Searchlight: In Searchlight, a nodes wakes up at anchor
slots that come every t slots, and at probe slots that traverse
from position 1 to bt/2c across bt/2c cycles. It is easy to find
the correspondences between anchor slots and guardians, and
between probe slots and patrols using a similar technique as
before. Essentially, Searchlight is a particular derivant of Hello
represented as Hello(t, bt/2c) (see Fig. 5(d)).

Overall, the above analysis shows that under symmetric duty
cycles, Hello can be reduced to each of these protocols by
tuning parameters. Such generality enables Hello to explore
the whole parameter space and search for optimal parameters
to achieve the minimum duty cycle or minimum discovery
latency. The next section specifies how to tune the parameters
for symmetric or asymmetric duty cycles.

E. Optimality Analysis

Up to now, one critical question has not been answered:
since there are multiple combinations of the parameters for a
duty cycle, how to select among them? Or, is there an optimal
selection that leads to minimum discovery latency? Especially
given Hello as a generic framework, an optimality analysis
would shed light on how existing protocols and other derivants
of Hello perform from a theoretic perspective. In this section,
we derive optimal parameters separately for symmetric and
asymmetric duty cycles, discuss a compromise between the
two scenarios, and finally highlight Hello’s flexibility in ad-
justing to application demands.

1) Optimum for symmetric duty cycles: Our objectives are
to minimize the worst-case latency given a duty cycle, and to
minimize the duty cycle given a latency requirement. These
two objectives are both practical for real-world applications —
nodes tend to work at a duty cycle according to workloads and

energy budgets, while a latency requirement may be specified
for the sake of application performance.

First consider two nodes that operate at the same duty cycle
d and select the same parameters c and n for Hello. As proved
in Section III-B, their worst-case discovery latency Ls is equal
to cn slots. With Eqn. (1) and ignoring the round-down error,
it follows that

Ls =
c2

2(cd− 1)
. (3)

Taking the first-order derivative of Ls and setting it to zero,
we obtain a solution of

c =
2

d
. (4)

It is easy to verify that this solution gives the minimum of Ls.
Considering the compatibility with duty-cycle asymmetry, c is
supposed to select a prime close to 2/d, and n be determined
by c and Eqn. (1), which is close to 1/d.

Through similar reasoning as above, the cycle length that
achieves the minimum duty cycle given a latency requirement
L is optimized at

c =
√
2L. (5)

Likewise, c is supposed to select a prime close to
√
2L, and

n be determined accordingly, which is close to
√
2L/2.

It is interesting to note that there is a relatively constant
relationship between parameters c and n for both optimums:
c ≈ 2n. Moreover, we find that Searchlight happens to be
the optimum for symmetric duty cycles as it is in the form of
Hello(c, bc/2c).

2) Optimum for asymmetric duty cycles: Our objective
is to minimize the worst-case latency given different duty
cycles. Since latency requirements under asymmetric duty
cycles cannot be met in a local fashion, we leave them short
of discussion.

Consider two nodes that operate at different duty cycles d1
and d2. They select different sets of parameters (c1, n1) and
(c2, n2), respectively, where c1 and c2 are primes. We assume
d1 < d2. As shown in Section III-C, the worst-case discovery
latency is given by Eqn. (2). Therefore, their optimal worst-
case discovery latency L∗as is equal to

L∗as = min

{
min
c1 6=c2

c1c2, min
c1=c2

max{c1n1, c2n2}
}
, (6)
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subject to

di =
bci/2c+ ni

cini
i = 1, 2. (7)

To minimize c1c2 when c1 6= c2, we can minimize individual
ci. Note that Eqn. (7) implies that ci > 1/di. By selecting
a prime slightly larger than 1/di, c1c2 is minimized and it
approaches 1/(d1d2). On the other hand, when c1 = c2, it can
be found from Eqn. (7) that n1 > n2 as d1 < d2. Thus the
second component in Eqn. (6) is equal to min{c1n1}, or 2/d21
given by Eqn. (4). Since 1/(d1d2) is at least two times smaller
than 2/d21, the optimal worst-case discovery latency is close
to 1/(d1d2). Overall, the nodes achieve the minimum worst-
case latency if they select their cycle length c to be a prime
slightly larger than the reciprocal of the duty cycle. This result
well explains why Disco performs best under asymmetric duty
cycles when it selects unbalanced primes, of which one prime
is very close to the reciprocal of the duty cycle.

3) A compromise: From the above analysis, we find that
the two optimums for symmetric and asymmetric duty cycles
cannot be achieved simultaneously as they require different
values of c. Typically with a duty cycle d, the symmetric worst-
case latency decreases as c goes from 1/d to 2/d, but at the
cost of increasing the asymmetric worst-case latency, and vice
versa. We wonder if there is a balanced compromise between
the two optimums.

Suppose that multiple nodes work at the duty cycle d and
select c1 or c2 as the cycle length. We assume c1 ≈ c2 ≈ c for
a unified solution. A compromise can be made by balancing
the symmetric and asymmetric worst-case latency:

c2

2(cd− 1)
= c2. (8)

Clearly, c = 3
2/d is the solution. Coincidentally, this solution

corresponds to U-Connect, where

d =
3c+ 1

2c2
≈ 3

2
/c.

4) Optimal flexibility: Fig. 6 shows the parameter space of
cycle length c, and indicates the locations to which existing
deterministic protocols correspond. It can be seen that those
protocols have already held a particular position within the
space in question. However, they all suffer from limited in-
flexibility in adjusting to application demands. In particular,
we observe that different applications may manifest different
preferences towards latency under symmetric or asymmetric

duty cycles. Even for a specific application, its preference
may vary over time. One typical example is hiking logging
[15], which benefits more from low symmetric latency when
together with a group of companions, and more from low
asymmetric latency when registering with anchor APs.

For U-Connect and Searchlight, their parameters are uni-
quely determined by duty cycles. Therefore, they cannot adjust
themselves to dynamic application demands and are thus
suitable for only a small class of applications. Though Disco
exhibits flexibility to some extent via balanced or unbalanced
primes, it is restricted since it requires two primes at the same
time. Different from them, Hello is highly flexible to select any
configuration within the parameter space. The cycle length c
can be fine-tuned to approach the symmetric optimum or the
asymmetric optimum according to application demands.

F. Slot Non-Alignment

In the previous discussion, we implicitly assume that the
slots are aligned. In practice, this assumption rarely holds
as nodes work independently and they lack any global time
reference. To maximize the likelihood that overlaps of active
slots will lead to discoveries, Hello employs the same beacon-
ing strategy as Disco and Searchlight — a node transmits a
beacon at both the beginning and end of an active slot. Yet this
strategy also introduces a new source of discovery redundancy
due to the two opportunities for active slots to overlap when
slots are not aligned. We focus on the redundancy issue in the
next section.

G. Redundancy

Though Hello gets rid of the redundant patrols as in Disco,
there are still multiple opportunities for discovery within a
worst-case bound. In this section we decompose them into
two cases and study how to reduce or take advantage of them.

1) Redundancy from slot non-alignment: It was first noted
by Searchlight [14] that beaconing at both the beginning and
the end of an active slot leads to two discovery opportunities
when slot boundaries are not aligned. Such redundancy was
eliminated by striped probing — every even slot is probed and
each active slot overflows by δ, a small amount sufficient to
receive a leading beacon of another node. In the context of
Hello, it translates into retaining patrols at only even slots.
Besides reduced patrols, the overflowing guardians contribute
to more opportunities for discovery. Specifically, under asym-
metric duty cycles with Hello(c1, n1) and Hello(c2, n2), it
yields two overlaps of guardians within c1c2 slots by the
Chinese Remainder Theorem. Since these two overlaps are
usually spaced away from each other, the worst-case bound
can be further contracted.

With striped probing, the duty cycle of Hello turns into

dsp =
d bc/2c2 e+ n

cn
(9)

Through similar reasoning as in the previous section, the
optimal selections of the cycle length remain the same for
both symmetric and asymmetric scenarios (proof omitted).
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2) Redundancy from repetitive patrols: Even with striped
probing, discovery redundancy still remains under symmetric
duty cycles. For example, when the phase offset between two
nodes is two slots, one guardian-patrol overlap and multiple
patrol-patrol overlaps lead to multiple discoveries. Since re-
moving any guardian or patrol results in discovery miss for
some phase offset, we consider how to utilize such redundancy
for lowering the average-case latency. Note that the stair-like
placement of patrols similar to Searchlight may not be optimal
either — it only reduces the discovery latency for the phase
offset in the form of m(c+ 2), where m = 1, · · · , n− 1. At
present we have not found a good formulation of this problem.
Alternatively, we adopt randomization in placing patrols —
each patrol is put at a randomly selected cycle (row) but at
the same relative position (column) within the cycle. After
randomization, the worst-case latency under symmetric duty
cycles remains the same since the relative offset between
guardians of the nodes remains unchanged. Under asymmetric
duty cycles, on the other hand, such randomization does not
increase the worst-case bound, different from Searchlight. This
is because no adjustment is made to guardians that provide a
guarantee for asymmetric discovery.

IV. EVALUATION

In this section, we evaluate the performance of Hello relative
to earlier work through simulation studies. Due to the trade-
off between duty cycle and discovery latency, we consider
and compare only discovery latency of different protocols at
given duty cycles. In particular, we are interested in the CDF
(Cumulative Distribution Function) of discovery latency under
symmetric and asymmetric duty cycles. In order for the results
to become independent from a specific hardware platform, we
use the number of slots of equal size to measure latency.

To make a comprehensive comparison, we included almost
all well-known protocols such as Birthday protocol, Disco, U-
Connect, and Searchlight. Note that Searchlight with random-
ized probing increases the worst-case bound under asymmetric
duty cycles, while the variant with restricted randomized prob-
ing is rarely practical since it only works with two different
duty cycles. Therefore we considered Searchlight with striped

probing. For a given duty cycle d, the Birthday protocol sets its
wake-up probability to d. U-Connect determines its selection
of the prime p close to 3

2/d. Although a duty cycle of d may
not be compatible with Searchlight, we ignore such limitation
for comparison purposes, and select 2/d as its cycle length. As
for Disco, we use its best configuration: balanced primes (close
to 2/d) under symmetric duty cycles and unbalanced primes
(one close to 1/d and another much larger) under asymmetric
duty cycles.

We simulated three versions of Hello: the original design
as introduced in Section III-A, the Hello with striped probing,
and the Hello with striped probing and randomization. These
are denoted by Hello, Hello-S, and Hello-SR, respectively.
Under symmetric duty cycles, the cycle length c is set to 2/d
according to Eqn. (4), and the number of cycles n is calculated
according to Eqn. (1) for Hello and Eqn. (9) for Hello-S and
Hello-SR. Under asymmetric duty cycles, c is selected as a
prime slightly larger than 1/d, and n is calculated by the same
rule as in symmetric scenarios.

We evaluated these protocols through a state-based simu-
lation. Specifically, we used the worst-case alignment strat-
egy for each protocol — slots were aligned for Birthday
protocol, Disco and U-Connect, while they were not aligned
for Searchlight and Hello. To reflect the overall distribution
of discovery latency, we ran Birthday protocol, Disco, U-
Connect, Searchlight, Hello and Hello-S 10000 times, and
collected discovery latency with random initial clock readings.
Due to the probabilistic placement of patrols in Hello-SR, we
created 100 random placement strategies for all nodes, and ran
it 1000 times for each strategy.

A. Symmetric Discovery

We compare first the performance of different protocols
under symmetric duty cycles. We selected two typical duty
cycles, namely 5% and 1%, and ran individual protocols at
each of the duty cycles separately. According to the parameter
selection rules described above, Disco selected (37, 43) and
(191, 211) (balanced primes), U-Connect 31 and 151, Search-
light 40 and 200, Hello (41, 19) and (199, 100), Hello-S and
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Fig. 9. CDF of discovery latency at the duty cycle of 10% and 1%.
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Fig. 10. CDF of discovery latency at the duty cycle of 5% and 1%.

Hello-SR (41, 9) and (199, 50), for the individual duty cycle
respectively.

Fig. 7 and Fig. 8 show the CDF of the discovery latency at
the two duty cycles, respectively. It can be observed that under
both scenarios, Hello-S and Hello-SR are comparable with
the state-of-the-art Searchlight under symmetric duty cycles,
while Hello-SR performs slightly better in terms of average-
case latency. Without striped probing, the original Hello still
dominates U-Connect for selecting the optimal parameters.
Disco exhibits large worst-case bound because of its large
period length caused by redundancy in patrols. Similar to the
results from earlier work, the Birthday protocol suffers from
a long tail in discovery latency due to its probabilistic nature.

B. Asymmetric Discovery

Next we evaluate the performance of different protocols
under asymmetric duty cycles. As reported by Searchlight, its
performance varied under asymmetric duty cycles (5%, 1%)
and (10%, 1%). We therefore include both scenarios for study.
With a duty cycle of 10%, 5%, and 1%, Disco selected
(11, 101), (23, 157) and (101, 9973) (unbalanced primes), U-
Connect 17, 31 and 151, Searchlight 20, 40 and 200, Hello
(11, 50), (23, 73) and (101, 5000), Hello-S and Hello-SR
(11, 30), (23, 40) and (101, 2500), respectively.

Fig. 9 depicts the CDF of discovery latency at the duty
cycles of 10% and 1%. Hello-S and Hello-SR perform the
best all along, dominating Searchlight and all other protocols.
Their distribution curves coincide with each other because
a discovery is usually achieved by an overlap of guardians.
The original Hello is comparable with Disco using unbalanced
primes. Searchlight excels the original Hello and Disco most
of the time, but its worst-case latency is significantly larger2.
All protocols, except the Birthday protocol, strictly dominate
U-Connect at all times.

A similar conclusion can be drawn at the duty cycles of
5% and 1%, as illustrated in Fig. 10. The only exception is
that U-Connect outperforms Searchlight in terms of worst-case
discovery latency, the same observation as in [14].

2Searchlight reported the lowest latency in the absence of Disco with
unbalanced primes.
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Fig. 11. Average discovery latency under asymmetric duty cycles of
(5%, 1%) and (10%, 1%).

To characterize the extent to which Hello-S and Hello-SR
improve over others, we plot the average latency for both
scenarios in Fig. 11. On average, Hello-S and Hello-R decrease
the average latency by 47% compared with Searchlight in both
scenarios, and by 36% and 51% compared with Disco at the
two duty cycles, respectively. They are also significantly (over
60%) better than U-Connect and Birthday protocol under both
scenarios.

V. IMPLEMENTATION

To validate its feasibility and performance in the real world,
we have implemented Hello on the TinyOS [25] platform3

and Telos wireless sensor nodes [26]. In total eight sensor
nodes are employed, with one particular node marked as the
target node. The target node logged the discovery latency
with the remaining nodes whenever the neighbor discovery
process started. To accurately characterize the distribution of
the latency regarding various phase offset, we deactivated the
target node and restarted it with a random initial clock reading
after all neighboring nodes were discovered.

According to the simulation results, we selected Disco and
Searchlight for comparison with Hello-S under symmetric

3The implementation on the Android platform is still in progress.
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Fig. 12. Implementation: CDF of discovery latency at the duty cycle of 5%.
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Fig. 13. Implementation: CDF of discovery latency at the duty cycle of 10%
and 1%.

and asymmetric duty cycles. For symmetric duty cycles, we
used a duty cycle of 5%, while for asymmetric duty cycles,
we used that of 10% and 1% (the better combination for
Searchlight). The parameters of each protocol at these duty
cycles were determined as introduced in Section IV. From the
sensor nodes, we observed that the transmission of a beacon
containing node ID took around 1ms. To mitigate the impact
of overflowing slots, we empirically set the slot length to 50ms
(i.e., δ = 2%). Each protocol was evaluated for an hour.

Fig. 12 and Fig. 13 depict the CDF of discovery latency
under symmetric and asymmetric duty cycles, respectively.
In general, Hello-S demonstrates low latency under both
scenarios, while Disco and Searchlight excel in one scenario
only. The worst-case latency under the duty cycle of 5% is
bounded within 20s, and that under the asymmetric duty cycles
of 10% and 1% is bounded within 30s. Moreover, Hello-S is
two times better than Searchlight in terms of latency under the
asymmetric duty cycle.

VI. CONCLUSION

We have presented Hello, a generic flexible protocol for
neighbor discovery. It has been shown to be of high degree
of freedom in parameter selection, high flexibility in adjusting
itself to application demands, and high energy efficiency. As
a generic framework, It incorporates existing deterministic
protocols such as Quorum, Disco, U-Connect, and Searchlight.
By exploring its parameter space, we have found optimal
parameters for symmetric and asymmetric duty cycles. The
results from the simulation and experiments show that Hello
is highly competitive under both symmetric and asymmetric
duty cycles. As future work, we will investigate its adoption
in PMC applications and efficient neighbor maintenance after
initial discovery.
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