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Adaptive Partial Differential
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This paper develops an adaptive partial differential equation (PDE) observer for battery
state-of-charge (SOC) and state-of-health (SOH) estimation. Real-time state and parame-
ter information enables operation near physical limits without compromising durability,
thereby unlocking the full potential of battery energy storage. SOC/SOH estimation is
technically challenging because battery dynamics are governed by electrochemical prin-
ciples, mathematically modeled by PDEs. We cast this problem as a simultaneous state
(SOC) and parameter (SOH) estimation design for a linear PDE with a nonlinear output
mapping. Several new theoretical ideas are developed, integrated together, and tested.
These include a backstepping PDE state estimator, a Pad�e-based parameter identifier,
nonlinear parameter sensitivity analysis, and adaptive inversion of nonlinear output
functions. The key novelty of this design is a combined SOC/SOH battery estimation algo-
rithm that identifies physical system variables, from measurements of voltage and current
only. [DOI: 10.1115/1.4024801]

1 Introduction

This paper develops an adaptive PDE observer for combined
SOC and SOH estimation in batteries, using an electrochemical
model.

Accurate battery SOC estimation algorithms are currently of
extreme importance due to their applications in electrified trans-
portation and energy storage systems for renewable sources. The
relevancy of this topic is further underscored by the 27.2 billion
USD federal government investment in energy efficiency and
renewable energy research, including advanced batteries, under
the American Recovery and Reinvestment Act of 2009. To guar-
antee safety, durability, and performance, battery management
systems within these advanced transportation and energy infra-
structures must have accurate knowledge of internal battery
energy levels [1]. Such knowledge enables them to efficiently
route energy while satisfying power demands and device-level
operating constraints [2].

Monitoring battery SOC and SOH is particularly challenging
for several technical reasons. First, directly measuring Li concen-
tration or physical examination of cell components is impractical
outside specialized laboratory environments [3,4]. Second, the
dynamics are governed by partial differential algebraic equations
derived from electrochemical principles [5]. The only measurable
quantities (voltage and current) are related to the states through
boundary values. Finally, the model’s parameters vary widely
with electrode chemistry, electrolyte, packaging, and time. In this
paper, we directly address these technical challenges. Namely, we
design an adaptive observer using a reduced-form PDE model
based upon electrochemical principles. As such, the algorithm
estimates physical variables directly related to SOC and SOH, a
first to the authors’ knowledge.

Over the past decade research on battery SOC/SOH estimation
has experienced considerable growth. One may divide this
research by the battery models each algorithm employs.

The first category considers estimators based upon equivalent
circuit models (ECMs). These models use circuit elements to
mimic the phenomenological behavior of batteries. For example,
the work by Plett [6] applies an extended Kalman filter to simulta-
neously identify the states and parameters of an ECM. Verbrugge
and his co-workers used ECMs with combined coulomb-counting
and voltage inversion techniques in Ref. [7] and adaptive parame-
ter identification algorithms in Ref. [8]. More recently, a linear
parameter varying approach was designed in Ref. [9]. The key
advantage of ECMs is their simplicity. However, they often
require extensive parameterization for accurate predictions. This
often produces models with nonphysical parameters, whose com-
plexity becomes comparable to electrochemical models.

The second category considers electrochemical models, which
account for the diffusion, intercalation, and electrochemical
kinetics. Although these models can accurately predict internal
state variables, their mathematical structure is generally too com-
plex for controller/observer design. Therefore, these approaches
combine model reduction and estimation techniques. Some of the
first studies within this category use a “single particle model”
(SPM) of electrochemical battery dynamics in combination with
an extended Kalman filter [10,11]. Another approach is to employ
residue grouping for model reduction and linear Kalman filters for
observers [12]. The authors of Ref. [13] apply simplifications to
the electrolyte and solid phase concentration dynamics to perform
SOC estimation. To date, however, simultaneous SOC and SOH
estimation using electrochemical models remains an open
question.

In this paper, we extend the aforementioned research by
designing an electrochemical model based adaptive observer for
simultaneous SOC/SOH estimation. Several novel theoretical
ideas are developed, integrated, and tested. These include a
PDE backstepping state estimator, Pad�e-based PDE parameter
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identifier, nonlinear identifiability analysis of the output equation,
and adaptive output function inversion. This paper extends our
previous work [14–16] by including estimator validation results
against a high-fidelity battery simulator. The final result is an
adaptive observer for simultaneous SOC/SOH estimation which
identifies physical battery system variables, from current and volt-
age measurements only.

The paper is organized as follows: Sec. 2 describes the single
particle model. Sections 3–6 describe the subsystems of the
adaptive observer, including the state estimator, PDE parameter
identifier, output function parameter identifier, and adaptive out-
put function inversion. Section 7 presents simulation results to
demonstrate the observer’s performance. Section 8 provides
guidelines for selecting gains. Finally, Sec. 9 summarizes the key
contributions.

2 Electrochemical Cell Model and Analysis

The SPM was first applied to lithium battery systems in
Ref. [17] and is the model we utilize in this paper. The key idea is
that the solid phase of each electrode can be idealized as a single
spherical particle. This model results if one assumes the electro-
lyte Li concentration is constant in space and time [1]. This
assumption works well for small currents or electrolytes with
large electronic conductivities. However, it induces errors at large
C-rates [1]. Moreover, we assume constant temperature. Figure 1
provides a schematic of the SPM concept. Mathematically, the
model consists of two diffusion PDEs governing each electrode’s
concentration dynamics, where input current enters as a Neumann
boundary condition. Output voltage is given by a nonlinear func-
tion of the state values at the boundary and the input current.

Although this model captures less dynamic behavior than other
electrochemical-based estimation models [17], its mathematical
structure is amenable to adaptive observer design.

2.1 Single Particle Model. Diffusion in each electrode is
governed by Fick’s law in spherical coordinates
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with Neumann boundary conditions
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The Neumann boundary conditions at r ¼ Rþs and r ¼ R�s signify
that the flux entering the electrode is proportional to the input cur-
rent I(t). The Neumann boundary conditions at r¼ 0 are required
for well-posedness. Note that the states for the two PDEs are
dynamically uncoupled, although they have proportional bound-
ary inputs.

The measured terminal voltage output is governed by a combi-
nation of electric overpotential, electrode thermodynamics, and
Butler-Volmer kinetics. The end result is

VðtÞ ¼ RT
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where the exchange current density ij0 and solid-electrolyte sur-
face concentration cj

ss are, respectively
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The functions Uþð�Þ and U�ð�Þ in Eq. (5) are the equilibrium
potentials of each electrode material, given the surface concentra-
tion. Mathematically, these are strictly monotonically decreasing
functions of their input. This fact implies that the inverse of its
derivative is always finite, a property which we require in Sec. 6.
Further details on the electrochemical principles used to derive
these equations can be found in Refs. [1,5].

This model contains the property that the total number of lith-
ium ions is conserved [13]. Mathematically, ðd=dtÞðnLiÞ ¼ 0,
where

nLi ¼
eþs LþA
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This property will become important, as it relates the total concen-
tration of lithium in the cathode and anode. We leverage this fact
to perform model reduction in the state estimation problem.

2.2 Model Comparison. The SPM approximation increases
in accuracy as C-rate decreases and/or as electrolyte conductivity
increases. Here, we demonstrate how the SPM’s accuracy
degrades as C-rate increases, compared to a full order electro-
chemical model.

A simulator has been created for the so-called Doyle-Fuller-
Newman (DFN) model described in Ref. [1]. This model retains
the electrolyte dynamics and spatial dynamics across the width of
the electrode. Figure 2 presents a freeze-frame of the solid and
electrolyte Li concentrations after 50 s of 5 C discharge. This high
discharge rate induces notable concentration gradients in the elec-
trolyte, which the SPM will not predict. The parameters are

Fig. 1 Each electrode is idealized as a single porous spherical
particle. This model results from assuming the electrolyte con-
centration is constant in space and time.
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identical to those used in the publicly available DUALFOIL
model, developed by Newman and his collaborators [18]. This
DFN model also serves as the generator of experimental data to
evaluate the adaptive observer’s performance.

The voltage response to several constant discharge rates is
presented in Fig. 3. For complete discharge cycles, the maximum
sustainable C-rate for this model parameterization is 1.25 C.
Higher C-rates will completely deplete the electrolyte lithium in
the cathode. All simulations are initialized at 4.06 V and termi-
nated when terminal voltage reaches 2.0 V. The voltage error
increases as C-rate increases. At higher C-rates, the electrolyte
concentration gradients become significant with respect to their
impact on terminal voltage. At low C-rates, the concentration gra-
dients are negligible and therefore a uniform approximation is a
reasonable assumption. It is important to note the predicted charge
capacity is identical between both models. This property is critical
for applications where charge capacity is important, e.g., electric
vehicles. In spite of the SPM’s errors at high C-rates, adaptive

observer design for this model is significantly easier than the DFN
model, although highly nontrivial.

In the following sections, we describe each subsystem of the
adaptive observer. A block diagram of the composed system is
provided in Fig. 4.

3 State Estimation

3.1 Observability and Model Reduction. For the purpose
of observer design we reduce the SPM by approximating the
cathode diffusion dynamics (2) by its equilibrium. This step is
mathematically motivated by the fact that the SPM states are
weakly observable from voltage measurements, as has been previ-
ously noted in the literature [11]. It turns out that approximating
the cathode dynamics as instantaneous produces a reduced system
whose states are locally observable in the linear sense. Moreover,
physical motivation exists for this reduction when diffusion
dynamics are significantly faster in the cathode than the anode, a
common characteristic of certain anode/cathode combinations.
We discuss these points in succession.

Lack of observability can be shown using a number of techni-
ques. For example, one may (i) approximate the PDEs by ODEs
using the finite difference method, producing a tri-diagonal matrix
A, (ii) linearize the output equation about the states, producing a
matrix C, (iii) and compute the rank of the observability matrix
for the pair (A,C) [19].

The reduced SPM has a PDE given by Eq. (1), boundary condi-
tions given by Eq. (3), and output equation

VðtÞ ¼ RT

aþF
sinh�1 IðtÞ

2aþALþiþ0 ðac�ssðtÞ þ bÞ

� �
� RT

a�F
sinh�1 IðtÞ

2a�AL�i�0 ðc�ssðtÞÞ

� �
þ Uþðac�ssðtÞ þ bÞ � U�ðc�ssðtÞÞ � Rf IðtÞ (9)

Note that cþssðtÞ has been replaced by ac�ssðtÞ þ b. This is the criti-
cal detail of the reduced SPM. The equilibrium of the cathode

Fig. 2 DFN predictions of the solid and electrolyte concentrations as functions of
space. The DFN model retains electrolyte and spatial dynamics. State values are
depicted after 50 s of 5 C discharge. Symbol cavg is the solid concentration
averaged over a spherical particle and css is the surface concentration. Note the
non-negligible concentration gradients in the electrolyte.

Fig. 3 Voltage response for several discharge rates, for the
SPM and DFN model. The SPM exhibits increasing error as
C-rate increases, but identical discharge capacities.
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states (i.e., cþs ðr; tÞ ¼ cþssðtÞ) can be computed from the conserva-
tion of Li property in Eq. (8) to produce the relationship1

cþssðtÞ ¼
1

eþs LþA
nLi � e�s L�Ac�ssðtÞ
� �

(10)

where a ¼ �ðe�s L�=eþs LþÞ and b ¼ ðnLi=eþs LþAÞ.
One can show this system is locally observable (i.e., in the lin-

ear sense) by using the same finite difference and linearization
approach described above. Ultimately, we guarantee observability
for this reduced SPM by designing the observer gains such that
the estimation error dynamics mimic an exponentially stable tar-
get system. This is the core concept behind backstepping observer
design [20].

Physical motivation sometimes exists for approximating the
cathode diffusion dynamics as instantaneous. Significant research
efforts on manufacturing and material science techniques for cath-
ode materials have enabled researchers to attain nanoscale particle
sizes and faster diffusion rates [21]. The result is characteristic
diffusion times (mathematically R2

s=Ds) which are often orders of
magnitude less in the cathode than the anode. Parallel studies
have been performed on the anode side (see e.g., Ref. [22]), how-
ever they are less prevalent. Hence, approximating cathode diffu-
sion by its equilibrium is a reasonable approximation for certain
cathode/anode combinations. This insight was also observed
through a previous parameter identification study on commer-
cially available LiFePO4 cells with doped nanoscale cathode
materials [23]. For other cells, the required diffusive time scale
separation property may not exist.

3.2 Normalization and State Transformation. Next, we
perform normalization and state transformation to simplify the
mathematical structure of the observer. First scale the radial r and
time t coordinates as follows:

�r ¼ r

R�s
; �t ¼ D�s

ðR�s Þ
2

t (11)

Henceforth, we will drop the bars over the space and time coordi-
nates to simplify notation. Next, we perform a state transformation

to eliminate the first spatial derivative in the spherical diffusion
Eq. (1). Namely, let

cðr; tÞ ¼ rc�s ðr; tÞ (12)

This normalization and state transformation produces the follow-
ing PDE with Dirichlet and Robin boundary conditions

@c

@t
ðr; tÞ ¼ e

@2c

@r2
ðr; tÞ (13)

cð0; tÞ ¼ 0 (14)

@c

@r
ð1; tÞ � cð1; tÞ ¼ �qqIðtÞ (15)

and nonlinear output map given by Eq. (9), where cþss
¼ acð1; tÞ þ b (see Eq. (10)), and c�ss ¼ cð1; tÞ. The parameter
q ¼ R�s =ðD�s Fa�AL�Þ groups together known parameters. The
parameters e and q are nominally equal to one. Respectively, they
represent uncertainty in the diffusion and boundary input coeffi-
cients, which we identify in Sec. 4.

3.3 Backstepping PDE State Estimator. The SPM com-
prises linear dynamics and a nonlinear output function. In general
an output injection-based estimator would be nonlinear for this
class of systems. However, we design a linear estimator in this
paper by injecting the boundary state error. This idea requires us
to calculate the boundary state from the measured voltage, demon-
strated visually by the block diagram in Fig. 4. In Ref. [14], we
show the output function (9) is invertible with respect to the
boundary state c�ss, uniformly in the input current I(t).

The state estimator structure consists of a copy of the plant
(13)–(15) plus boundary state error injection, as follows:

@ĉ

@t
ðr; tÞ ¼ e

@2ĉ

@r2
ðr; tÞ þ p1ðrÞ~cð1; tÞ (16)

ĉð0; tÞ ¼ 0 (17)

@ĉ

@r
ð1; tÞ � ĉð1; tÞ ¼ �qqIðtÞ þ p10~cð1; tÞ (18)

where the boundary state error is given by

~cð1; tÞ ¼ uðVðtÞ; IðtÞÞ � ĉð1; tÞ (19)

The backstepping approach [20] is applied to design the output
injection gains p1ðrÞ and p10. First, denote the observer error

Fig. 4 Block diagram of the adaptive observer. It is composed of the backstepping
state estimator (blue), PDE parameter identifier (green), output function parameter
identifier (red), and adaptive output function inversion (orange). The observer
furnishes estimates of SOC (i.e., ĉ�s ðr ; tÞ) and SOH (i.e., ê; q̂; ĥh) given measure-
ments of I(t) and V(t), only.

1To be technically correct, the cathode concentration should depend on the
anode concentration summed over the spherical volume: cþssðtÞ ¼ ð1=eþs LþAÞ
½nLi � ð3e�s L�A=4pR�3

s Þ
Ð R�s

0
4pr2c�s ðr; tÞdr�. However, this results in a nonlinear

output equation which depends on the in-domain states, as well as the boundary
state. This would create additional complexity to the backstepping approach we
employ in this paper.
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as ~cðr; tÞ ¼ cðr; tÞ � ĉðr; tÞ. Subtracting Eqs. (16)–(18) from
Eqs. (13) to (15) produces the estimation error dynamics

@~c

@t
ðr; tÞ ¼ e

@2~c

@r2
ðr; tÞ � p1ðrÞ~cð1; tÞ (20)

~cð0; tÞ ¼ 0 (21)

@~c

@r
ð1; tÞ � ~cð1; tÞ ¼ �p10~cð1; tÞ (22)

The backstepping approach seeks to find the upper-triangular
transformation

~cðr; tÞ ¼ ~wðr; tÞ �
ð1

r

pðr; sÞ~wðsÞds (23)

which satisfies the exponentially stable target system

@ ~w
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@r2
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~wð0; tÞ ¼ 0 (25)
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@r
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2
~wð1; tÞ (26)

where k < e=4. The symbol k is a design parameter that enables
us to adjust the pole placement of the observer. The coefficient
�1/2 in Eq. (26) ensures the target system is exponentially stable,
as can be seen by the derivation below.

One can show that Eqs. (24)–(26) is exponentially stable in the
spatial L2 norm by considering the Lyapunov function
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Taking the total time derivative and applying integration by parts
yields
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Recalling the Poincar�e inequality
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2
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which by the comparison principle [24] implies WðtÞ � Wð0Þ
exp½�ðe=2� 2kÞt� or ~wðtÞk k � ~wð0Þk k exp½�ðe=4� kÞt�. Hence,
the target system is exponentially stable for k < e=4.

Remark 1. Using separation of variables, one may show the
eigenvalues for the target system, (and hence the error system) are
k� ey2, where y is given by the solutions of yþ 1

2
tanðyÞ ¼ 0.

Consequently, the eigenvalues have zero imaginary parts. As
k! �1, the eigenvalue spectrum translates toward �1.

Following the procedure outlined in Ref. [20], we find that the
kernel p(r, s) in Eq. (23) must satisfy the following conditions:

prrðr; sÞ � pssðr; sÞ ¼
k
e

pðr; sÞ (31)

pð0; sÞ ¼ 0 (32)

pðr; rÞ ¼ k
2e

r (33)

defined on the domain D ¼ fðr; sÞj0 � r � s � 1g. The output
injection gains are

p1ðrÞ ¼ �psðr; 1Þ �
1

2
pðr; 1Þ (34)

p10 ¼
3� k=e

2
(35)

These conditions compose a Klein-Gordon PDE, which coinci-
dentally has an analytic solution given by

pðr; sÞ ¼ k
e

r
I1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=eðr2 � s2Þ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=eðr2 � s2Þ
p (36)

Solution Eq. (36) can be derived by converting the PDE into an
equivalent integral equation and applying the method of succes-
sive approximations [20]. Ultimately, this closed form solution
provides the following output injection gains:

p1ðrÞ ¼
�kr

2ez
I1ðzÞ �

2k
ez

I2ðzÞ
� �

(37)

where z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
e
ðr2 � 1Þ

r
(38)

p10 ¼
1

2
3� k

e

� �
(39)

and I1ðzÞ and I2ðzÞ are, respectively, the first and second order
modified Bessel functions of the first kind.

To complete the design, we need to establish that stability of
the target system Eqs. (24)–(26) implies stability of the error sys-
tem (20)–(22). That is, we must show the transformation (23) is
invertible. Toward this end, write the inverse transformation as

~wðr; tÞ ¼ ~cðr; tÞ þ
ð1

r

lðr; sÞ~cðsÞds (40)

Following the same approach used to derive the direct transforma-
tion kernel (36), we find that the inverse transformation kernel has
the analytic solution

lðr; sÞ ¼ k
e

r
J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=eðr2 � s2Þ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=eðr2 � s2Þ
p (41)

where J1 is the first order Bessel function of the first kind. We
now state the main result for the backstepping state estimator.

THEOREM 1. Consider the plant model (13)–(15) with observer
(16)–(19) and estimation gains (37)–(39). Then 9k < e=4 such
that the origin of the error system ~c ¼ 0 is exponentially stable in
the L2ð0; 1Þ norm.

Remark 2. Note that the estimator is linear in the state because
we use the boundary state for error injection. The plant boundary
state is computed by inverting the nonlinear output mapping with
respect to the boundary state, given a current input (i.e.,
uðVðtÞ; IðtÞÞ). The output function inversion is discussed in detail
in Sec. 6.

Remark 3. Note the parameters e in Eqs. (16), (37)–(39) and q
in Eq. (18). In the subsequent section, we design an identifier for
these parameters. We form an adaptive observer by replacing
these parameters with their estimates, via the certainty equiva-
lence principle [25].

4 PDE Parameter Identification

Next, we design an identification algorithm for the diffusion
and boundary input coefficients in Eqs. (13) and (15), respec-
tively. Identification of the diffusion coefficient e from boundary
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measurements is a significant fundamental challenge [26], for the
following reason. In finite-dimensional state-space systems, we
typically write the system in observable canonical form. This
structure enables one to uniquely identify state-space parameters
from input–output data. In our problem, we require a parametric
model where the diffusion coefficient multiplies measured data
only. Otherwise, we have a nonlinear problem, since unknown
states are multiplied by unknown parameters. There is no clear
way to do this for PDEs. This motivates our new contribution: uti-
lizing a reduced-order model (Pad�e approximation) for the param-
eter identification.

4.1 Pad�e Approximates. The PDE model Eqs. (13)–(15) can
be written in the frequency domain as a transcendental transfer
function

GðsÞ ¼ cssðsÞ
IðsÞ ¼

�qq sinh
ffiffiffiffiffiffiffi
s=e

p	 

ffiffiffiffiffiffiffi
s=e

p	 

cosh

ffiffiffiffiffiffiffi
s=e

p	 

� sinh

ffiffiffiffiffiffiffi
s=e

p	 
 (42)

We now apply Pad�e approximations of the transcendental trans-
fer function (42). Pad�e approximants represent a function by a
ratio of two power series. The defining characteristic of a Pad�e ap-
proximate is that its Taylor series matches the Taylor series of the
function it is approximating. Another useful property of Pad�e
approximates is that they naturally contain poles and zeros. The
Pad�e expansion takes the following form:

GðsÞ ¼ lim
N!1

XN

k¼0

bksk

1þ
XN

k¼1

aksk

(43)

Figure 5 provides bode plots of G(s) and several Pad�e approxi-
mates. Their analytical expressions are supplied in Table 1. The
Pad�e approximates capture low frequency dynamics well. Accu-
racy at high frequency increases as the Pad�e order increases. We
low-pass filter the input–output signals such that data are retained
where the Pad�e approximation is sufficiently accurate.

Our immediate goal is to design a parameter identification
scheme for the Pad�e approximation of the original PDE model.

4.2 Least Squares Identification. We utilize the first order
Pad�e approximant as the nominal model. Namely

CssðsÞ
IðsÞ � P1ðsÞ ¼

�3qqe� 2
7

qqs

sþ 1

35e
s2

(44)

Assuming zero initial conditions and applying the inverse Laplace
transform produces the following linearly parameterized model:

1

35
€cssðtÞ ¼ �e _cssðtÞ � 3qqe2IðtÞ � 2

7
qqe _IðtÞ (45)

Since the parametric model contains time derivatives of measured
signals, we employ filters [25] to avoid differentiation as follows:

_r1 ¼ r2 (46)

_r2 ¼ �k0r1 � k1r2 þ css (47)

_f1 ¼ f2 (48)

_f2 ¼ �k0f1 � k1f2 þ I (49)

where the polynomial KðsÞ ¼ s2 þ k1sþ k0 is chosen Hurwitz.
One can analytically show that selecting the roots of KðsÞ results
in a trade-off between convergence rate (via level of persistence
of excitation) and parameter bias (error induced by Pad�e approxi-
mation). Consequently, the parametric model is given by

1

35
�k0r1 � k1r2 þ cssð Þ ¼ �3qqe2f1 �

2

7
qqef2 � er2 (50)

Let us denote the vector of unknown parameters by

hpde ¼ qe2 qe e
� �T

(51)

Then, the parametric model can be expressed in matrix form as
zpde ¼ hT

pde/, where

zpde ¼
1

35
�k0r1 � k1r2 þ cssð Þ (52)

/ ¼ �3qf1 � 2

7
qf2 � r2

� �T

(53)

Given this linearly parameterized model, we choose a least-
squares update law of the form [25]

_̂hpde ¼ Ppde

zpde � ĥT
pde/

m2
pde

/ (54)

Table 1 Pad�e approximates of the PDE model (13)–(15)

Order, k PkðsÞ

1 �qq
2

7
sþ 3e

� �
s

1

35e
sþ 1

� �
2 �qq

1

165e
s2 þ 4

11
sþ 3e

� �
s

1

3465e2
s2 þ 3

55e
sþ 1

� �
3 �qq

4

75075e2
s3 þ 2

195e
s2 þ 2

5
sþ 3e

� �
s

1

675675e3
s3 þ 2

2275e2
s2 þ 1

15e
sþ 1

� �

Fig. 5 Bode plots of the transcendental transfer function (42)
and Pad�e approximates in Table 1

011015-6 / Vol. 136, JANUARY 2014 Transactions of the ASME

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



_Ppde ¼ �Ppde
//T

m2
pde

Ppde; Ppdeð0Þ ¼ Ppde0 ¼ PT
pde0 > 0 (55)

m2
pde ¼ 1þ cpde/

T/; cpde > 0 (56)

4.2.1 Managing Overparameterization With the Moore-
Penrose Pseudoinverse. An important implementation issue with
the proposed Pad�e approximation approach is overparameteriza-
tion. That is, the physical parameters must be uniquely determined
from the parameter vector ĥpde

ĥpde ¼
cqe2bqe
ê

24 35! ê
q̂

� �
¼ ĥeq (57)

Coincidently, the particular nonlinear form (products and powers)
of the elements in vector ĥpde allows us to write a set of linear
equations using a logarithmic nonlinear transformation and prop-
erties of the logarithm function

2 1

1 1

1 0

24 35 log ê
log q̂

� �
¼

log cqe2
	 


log bqeð Þ
log êð Þ

264
375 (58)

which we re-write into compact notation as

AeqlogðĥeqÞ ¼ logðĥpdeÞ (59)

where logðhÞ ¼ ½logðh1Þ; logðh2Þ; :::�T is an element-wise opera-
tor. The parameter vector ĥeq can be uniquely solved from
Eq. (58) via the Moore-Penrose pseudoinverse. Thus

logðĥeqÞ ¼ ðAT
eqAeqÞ�1AT

eqlogðĥpdeÞ (60)

This method works well in practice with respect to feeding param-
eter estimates into the adaptive observer (lower-left-hand block in
Fig. 4), since the pseudoinverse ultimately involves computation-
ally efficient matrix algebra.

5 Output Function Parameter Identification

The greatest difficulty in battery estimation arguably stems
from the nonlinear relationship between SOC and voltage [9]. We
directly address this difficulty by developing an identification
algorithm for the uncertain parameters in the nonlinearly parame-
terized output function (9). First, we analyze parameter identifi-
ability to assess which subset of parameters is uniquely
identifiable. Second, we apply nonlinear least squares to this
subset.

5.1 Identifiability. A necessary first step in nonlinear param-
eter identification is a parameter sensitivity analysis. We specifi-
cally apply the ranking procedure outlined in Ref. [27] to assess
linear dependence. Consider the output function (9) written in
parametric form:

hðt; hÞ ¼ VðtÞ ¼ RT

aF
sinh�1 h2IðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþssðt; h1Þðcþs;max � cþssðt; h1ÞÞ

q
264

375
� RT

aF
sinh�1 h3IðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ssðtÞðc�s;max � c�ssðtÞÞ

q
264

375
þ Uþðcþssðt; h1ÞÞ � U�ðc�ssðtÞÞ þ h4IðtÞ

(61)

where cþssðt; h1Þ and the parameter vector h are

cþssðt; h1Þ ¼ �
e�s L�

eþs Lþ
c�ssðtÞ þ

h1

eþs LþA
;

h ¼ nLi;
1

aþALþkþ
ffiffiffiffiffi
c0

e

p ;
1

a�AL�k�
ffiffiffiffiffi
c0

e

p ;Rf

" #T

(62)

We have selected the elements of h because diminishing nLi

physically models capacity fade and increasing values for the
other parameters capture various forms of internal resistance.

The following sensitivity analysis is performed in discrete time,
since the required data is supplied in discrete time. Let k
index time such that t ¼ kDT; k 2 1; 2; :::; nT . The sensitivity of
the output with respect to variations in the parameter hi at time
index k is defined as Si;k ¼ @hðkDT; hÞ=@hi. For each parameter
hi, stack the sensitivities at time indices k ¼ 1; 2;…; nT , i.e.,

Si ¼ ½Si;1; Si;2;…; Si;nT
�T . Denote S ¼ ½S1; S2; S3; S4�, such that

S 2 RnT�4. A particular decomposition of STS reveals useful
information about linear dependence between parameters. Let

STS ¼ DTCD where

D ¼

S1k k 0 0 0

0 S2k k 0 0

0 0 S3k k 0

0 0 0 S4k k

26664
37775;

C ¼

1
hS1; S2i
S1k k S2k k

hS1; S3i
S1k k S3k k

hS1; S4i
S1k k S4k k

hS2; S1i
S2k k S1k k

1
hS2; S3i
S2k k S3k k

hS2; S4i
S2k k S4k k

hS3; S1i
S3k k S1k k

hS3; S2i
S3k k S2k k

1
hS3; S4i
S3k k S4k k

hS4; S1i
S4k k S1k k

hS4; S2i
S4k k S2k k

hS4; S3i
S4k k S3k k

1

26666666666664

37777777777775

(63)

where �k k denotes the Euclidian norm and h�; �i is the inner prod-
uct. By the Cauchy Schwarz inequality �1 � ðhSi; Sji=

Sik k Sj

�� ��Þ � 1. This has the interpretation that values of
ðhSi; Sji= Sik k Sj

�� ��Þ near �1 or 1 imply strong linear dependence
between parameters hi and hj, whereas values near zero imply
orthogonality.

An example for the matrix C is provided in Eq. (64). This
example analyzes parameter sensitivity for a UDDS drive cycle
data set applied to the SPM battery model.

C ¼

1 �0:3000 0:2908 0:2956

�0:3000 1 �0:9801 �0:9805

0:2908 �0:9801 1 0:9322

0:2956 �0:9805 0:9322 1

2664
3775 (64)

Note that strong linear dependence exists between h2; h3; h4. This
property is uniformly true across various drive cycles (e.g., US06,
SC04, LA92, and naturalistic microtrips). This means it is difficult
to determine how each individual parameter value changes,
amongst these three parameters. As a result, we identify only two
parameters, nLi and Rf.

Remark 4. Coincidently, the parameters nLi and Rf represent
capacity and power fade, respectively. Identification of nLi and Rf

provides a direct system-level measurement of SOH—a particu-
larly beneficial feature of this design.

Remark 5. Indeed, the matrix STS has an important interpreta-
tion in statistical mathematics—the inverse of the Fisher informa-
tion matrix. From this interpretation, one may use the Cramer Rao
lower bound to compute the individual variance contribution of
each parameter [27].
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5.2 Nonlinear Least Squares. Now our immediate goal is to
identify the parameter vector hh ¼ nLi Rf

� �T
via a nonlinear

least squares identification algorithm. Define ~hh ¼ hh � ĥh and
write Eq. (61) in terms of ~hh

Vðt; hhÞ ¼
RT

aF
sinh�1 IðtÞ

2aþALþiþ0 ðcþssðt; ~hh1 þ ĥh1ÞÞ

" #

� RT

aF
sinh�1 IðtÞ

2a�AL�i�0 ðc�ssðtÞÞ

� �
þ Uþðcþssðt; ~hh1 þ ĥh1ÞÞ � U�ðc�ssðtÞÞ þ ð~hh2 þ ĥh2ÞIðtÞ

(65)

Next, we take the Maclaurin series expansion with respect to ~hh

Vðt; hhÞ ¼
RT

aF
sinh�1 IðtÞ

2aþALþiþ0 ðcþssðt; ĥh1ÞÞ

" #

� RT

aF
sinh�1 IðtÞ

2a�AL�i�0 ðc�ssðtÞÞ

� �
þ Uþðcþssðt; ĥh1ÞÞ � U�ðc�ssðtÞÞ þ ĥh2IðtÞ

þ @h

@hh1

ðt; ĥhÞ~hh1 þ IðtÞ~hh2 þ Oð~hT
h

~hhÞ (66)

Truncate the higher order terms and re-arrange the previous
expression into the matrix form

enl ¼ ~hT
h U (67)

where the nonlinear error term enl depends on the parameter esti-
mates ĥh as

enl ¼ VðtÞ � RT

aF
sinh�1 IðtÞ

2aþALþiþ0 ðcþssðt; ĥh1ÞÞ

" #

þ RT

aF
sinh�1 IðtÞ

2a�AL�i�0 ðc�ssðtÞÞ

� �
� Uþðcþssðt; ĥh1ÞÞ þ U�ðc�ssðtÞÞ � ĥh2IðtÞ (68)

and the regressor vector U is defined as

U ¼ @h

@hh1

ðt; ĥhÞ; IðtÞ
� �T

(69)

The vector U in Eq. (69) depends upon measured signals and pa-
rameter estimates.

We now choose a least-squares parameter update law

_̂hh ¼ PhenlU (70)

_Ph ¼ �Ph
UUT

m2
h

Ph; Phð0Þ ¼ Ph0 ¼ PT
h0 > 0 (71)

m2
h ¼ 1þ chU

TU; ch > 0 (72)

6 Adaptive Output Function Inversion

In Sec. 3, we designed a linear state observer using boundary
values of the PDE. These boundary values must be processed
from measurements by inverting the nonlinear output function. In
this section, we design an adaptive output function inversion
scheme which utilizes the parameter estimate hh generated from
Sec. 5.

Our goal is to solve gðc�ss; tÞ ¼ 0 for c�ss, where

gðc�ss; tÞ ¼
RT

aF
sinh�1 IðtÞ

2aþALþiþ0 ðcþssðt; ĥh1ÞÞ

" #

� RT

aF
sinh�1 IðtÞ

2a�AL�i�0 ðc�ssðtÞÞ

� �
þ Uþðcþssðt; ĥh1ÞÞ � U�ðc�ssðtÞÞ þ ĥh2IðtÞ � VðtÞ (73)

The main idea is to construct an ODE whose equilibrium satisfies
gðc�ss; tÞ ¼ 0 and is locally exponentially stable. This can be
viewed as a continuous-time version of Newton’s method for
solving nonlinear equations [25]. Consider the ODE

d

dt
gð�c�ss; tÞ
� �

¼ �cgð�c�ss; tÞ� (74)

whose equilibrium satisfies gðc�ss; tÞ ¼ 0. We expand and re-
arrange this equation into the familiar Newton’s update law

d

dt
�c�ss ¼ �

@g

@c�ss

ð�c�ss; tÞ
� ��1

cgð�c�ss; tÞ þ
@g

@t
ð�c�ss; tÞ

� �
(75)

One can prove Lyapunov stability of this ODE, given appropriate
bounds @g=@c�ss and @g=@t. The bounds on @g=@c�ss use the strictly
decreasing property of Uþð�Þ and U�ð�Þ in Eq. (73). The state �c�s
of ODE (75) provides a recursive estimate of the surface concen-
tration cssðtÞ from measured current and voltage data, adapted
according to the parameter estimate ĥh. The processed surface
concentration �c�ss supplies the “measured output” for the state
estimator in Sec. 3.

In practice, it is undesirable to compute derivatives of measured
data I(t) and V(t) to calculate @g=@t in Eq. (75). Therefore, we use
the same filtering concept employed in the PDE parameter identi-
fier in Sec. 4.2 to avoid differentiation.

7 Simulations

In this section, we present numerical experimental results,
which demonstrate the adaptive PDE observer’s performance.
Specifically, we apply the observer to the full order DFN model.
The model parameters used in this study originate from the pub-
licly available DUALFOIL simulation package [18].

For all simulations, the state and parameter estimates are initial-
ized at incorrect values: ĉ�s ðr; 0Þ ¼ 1

2
c�s ðr; 0Þ; êð0Þ ¼ 2, q̂ ¼ 0:5;

n̂Lið0Þ ¼ 1:25nLi; R̂f ð0Þ ¼ 3Rf . Moreover, zero mean normally
distributed noise with a standard deviation of 10 mV is added to
the voltage measurement.

7.1 Electric Vehicle Charge/Discharge Cycle. First, we
apply an electric vehicle-like charge/discharge cycle. This input
signal is generated from two concatenated UDDS drive cycles
simulated on the models developed in Ref. [28]. This signal is a
highly transient input with large magnitude C-rates, thereby pro-
ducing a sufficiently rich signal for parameter estimation. Figure 6
portrays the evolution of the state and parameter estimates. The
state estimates are represented by the bulk SOC, defined in
Eq. (76), and surface concentrations.

dSOCðtÞ ¼ 3

c�s;max

ð1

0

r2ĉ�s ðr; tÞdr (76)

The PDE parameter estimates ê; q̂ and output function parameter
estimates n̂Li; R̂f , which are normalized to one in Fig. 6, also con-
verge near their true values. Indeed, one expects some estimation
bias for such a nonlinear and complex model. An expected estima-
tion bias exists in ê and q̂ due to the overparameterization of the
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Pad�e approximation. The nonlinear least squares method for n̂Li

and R̂f will also generally produce bias. To mitigate bias, one
needs to carefully select the adaptation gains, as discussed in Sec.
8. Similar results are achievable for various other initial condi-
tions and drive cycle inputs, including US06, SC04, LA92, and
naturalistic microtrip data.

7.2 Constant 1 C Discharge Cycle. Next, we apply a con-
stant 1 C discharge for 20 min, followed by a 10 min relaxation pe-
riod. Figure 7 portrays the evolution of the state and parameter
estimates. Since the SPM does not predict polarization effects due
to the electrolyte, the state estimates are biased during discharge,
as a consequence of driving the voltage error to zero. During
relaxation, however, the state estimate recovers since the SPM
and DFN model become identical at equilibrium. This result is a
direct consequence of using the SPM. In spite of an input that
lacks sufficient richness, the PDE parameters converge near the
true values. However, one may numerically check that the persis-
tency of excitation level for the output parameters is not suffi-
ciently high enough to produce convergent estimates. This
demonstrates that an ideal input signal does not contain sustained
high C-rates and is sufficiently rich.

7.3 No Parameter Adaptation. Next, we examine the impact
of setting the parameter adaptation gains to zero. This scenario
examines the utilization of a state estimator with uncertain param-
eters. Figure 8 presents the evolution of the state estimates for an
EV-like charge/discharge cycle. Note the bulk SOC and surface
concentrations exhibit large bias, even during relaxation. This
bias is mainly attributed to the 15% error in the parameter nLi.
Consequently, we conclude that accurate knowledge of the model
parameters and/or online adaptation is crucial for accurate state
estimates.

Remark 6. Experimental validation of the state and parame-
ter estimates is difficult. An open challenge in battery systems

and control is in situ measurements of lithium concentration,
diffusion coefficients, cyclable lithium, SEI resistive layers,
etc. Some recent progressions include neutron imaging [3],
electrochemical strain microscopy [29], and three electrode
cells [30].

8 Gain Selection

Due to the bi-directionally coupled relationship between the
state and parameter estimates, gain selection is a highly nontrivial
task. However, we have developed a systematic procedure for tun-
ing these gains.

The most important gains are summarized in Table 2, along
with their design criteria. The parameter k translates the spectrum
of the target system (24)–(26) along the real-axis. The matrix
Ppde0 supplies the initial condition for the covariance matrix in the
PDE parameter least squares estimator. We select Ppde0 ¼ qpdeI,
where qpde is the tuning gain. The matrix Ph0 supplies the initial
condition for the covariance matrix in the output function parame-
ter least squares estimator. We select Ph0 ¼ diagðPh011;Ph022Þ,
where Ph011;Ph022 are the tuning gains. To begin, set all gains to
zero. The tuning procedure is as follows:

Step 1: Fix k—This provides the desired convergence rate for
the state c(r, t).

Step 2: Design Ph011—The parameter nLi and state c(r, t) are
intimately related, due to the relation in Eq. (8). In particular,
these two estimates must converge at similar rates. If they con-
verge at dissimilar rates, the estimates produce bias in each other.
Examples are provided in Fig. 9.

Step 3: Design Ph022—Progressively increase Ph022 until the
desired convergence rate is obtained, without significantly impact-
ing the convergence of c(r, t) and nLi.

Step 4: Design qpde—Progressively increase qpde until the
desired convergence rate is obtained, without significantly impact-
ing the other estimates.

Fig. 6 Evolution of state and parameter estimates for UDDSx2 charge/discharge cycle. Zero mean Gaussian noise with a 10 mV
variance was added to the voltage measurement. The DFN model provides the “measured” plant data. State and parameter esti-
mates were initialized with incorrect values.
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9 Conclusion

This paper reports on the first combined SOC/SOH estimator
for electrochemical battery models. The adaptive observer utilizes
concepts from PDE estimation and adaptive control theory to gen-
erate various new concepts for battery systems and control. These
are summarized by four key ideas: First, a backstepping PDE state
estimator is designed in previous work [14]. Second, a Pad�e
approximation of the transfer function for lithium diffusion is
used to identify the diffusion coefficient. Third, parameter

Fig. 9 Relationship between ĉðr ; tÞ (i.e., dSOC) and n̂Li, for vary-
ing Ph011 and k 5 � 1. An improper selection between these two
gains results in biased estimates.

Fig. 8 Evolution of state estimates for UDDSx2 charge/
discharge cycle with no parameter adaptation. Accurate param-
eter values and/or online adaptation are critical for unbiased
estimates.

Table 2 Important adaptive observer gains

Gain State/Parameter Eqs. Design criteria

k ĉðr; tÞ (37)–(39) k < e=4 < 0
Ppde0 ê; q̂ (55) Ppde0 ¼ PT

pde0 > 0
Ph0 n̂Li; R̂f (71) Ph0 ¼ PT

h0 > 0

Fig. 7 Evolution of state and parameter estimates for a 20 min 1 C discharge and 10 min relaxation
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sensitivity analysis is applied to elucidate the linear dependence
between physically meaningful parameters related to capacity and
power fade. Fourth, an adaptive output function inversion tech-
nique enables linear state estimation designs. Finally, we present
simulations which demonstrate how the adaptive observer per-
forms against a high-fidelity battery simulator—the Doyle-Fuller-
Newman model. The composition of these unique ideas provides
a combined SOC/SOH estimation algorithm for battery systems
using electrochemical models.

A useful extension of the observer presented here is a state/
parameter estimator for the DFN model. In particular, this would
enable improved estimation accuracy at high C-rates. Moreover,
the DFN model predicts additional SOH-critical variables, such as
side reaction overpotentials. On-going work is also centered
around output-feedback control schemes that utilize the presented
observer to maximize energy/power while satisfying safe operat-
ing constraints.

Nomenclature

A ¼ cell cross sectional area, m2

aj ¼ specific interfacial surface area, m2/m3

c0
e ¼ Li concentration in electrolyte phase, mol/m3

cj
s ¼ Li concentration in solid phase, mol/m3

cj
ss ¼ Li concentration at particle surface, mol/m3

cj
s;max ¼ max Li concentration in solid phase, mol/m3

Dj
s ¼ diffusion coefficient in solid phase, m2/s3

F ¼ Faraday’s constant, C/mol
I ¼ input current, A

ij
0 ¼ exchange current density, V
j ¼ positive (þ) or negative (�) electrode

kj ¼ reaction rate, A �mol1:5=m5:5

Lj ¼ electrode thickness, m
nLi ¼ total number of Li ions, mol

q ¼ boundary input coefficient parameter
R ¼ universal gas constant, J/mol-K
Rf ¼ lumped current collector resistance, X
Rj

s ¼ particle radius, m
r ¼ radial coordinate, m, or m/m
T ¼ cell temperature, K
t ¼ time, s

Uj ¼ equilibrium potential, V
V ¼ output voltage, V
aj ¼ anodic/cathodic transfer coefficient
e ¼ diffusion parameter
ej

s ¼ volume fraction of solid phase
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