
M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 371Appears in: IEEE Conference on Computer Vision & Pattern Recognition, San Francisco, CA, June 1996.Bayesian Face Recognition usingDeformable Intensity SurfacesBaback Moghaddam, Chahab Nastar and Alex PentlandPerceptual Computing Section, The Media Laboratory,Massachusetts Institute of Technology20 Ames Street, Cambridge MA 02139, U.S.A.AbstractWe describe a novel technique for face recog-nition based on deformable intensity surfaceswhich incorporates both the shape and texturecomponents of the 2D image. The intensitysurface of the facial image is modeled as a de-formable 3D mesh in (x;y; I(x;y)) space. Usingan e�cient technique for matching two surfaces(in terms of the analytic modes of vibration),we obtain a dense correspondence �eld (or 3Dwarp) between two images. The probability dis-tributions of two classes of warps are then esti-mated from training data: interpersonal and ex-trapersonal variations. These densities are thenused in a Bayesian framework for image match-ing and recognition. Experimental results withfacial data from the US Army FERET databasedemonstrate an increased recognition rate overthe previous best methods.1 IntroductionCurrent work in the area of image-based object modelingand visual recognition treats the shape and texture com-ponents of an object in a separate and often independentmanner. The technique of extracting shape and forming ashape-normalized or \shape-free" grayscale component wassuggested by Craw & Cameron [3], which used an eigenfacetechnique on shape-free faces for matching and recognition.Recently Craw et al. [4] have done a study which combinesthese two independently derived components (a manually-extracted shape component plus a shape-free texture) forenhanced recognition performance. Similarly, Lanitis etal. [7] have developed an automatic face-processing sys-tem which is capable of combining the shape and texturecomponents for recognition, albeit independently. Theirsystem detects canonical points on the face and uses theselandmarks to warp faces to a shape-free representationprior to implementing an eigenface technique for charac-terizing grayscale variations (face texture).Similarly, the face vectorizer system of Beymer & Poggio[2] uses optical ow to obtain a shape representation decou-pled from that of texture (in the form of a 2D correspon-dence �eld between a given face and a canonical model).However, one of the di�culties with using optical ow forcorrespondance between two di�erent individuals is thatthe technique is inherently failure-prone when there arelarge grayscale variations between the images (e.g., pres-ence/absence of facial hair). A pixel correspondence tech-nique must be able to deal with intensity variations as well

as spatial deformations, preferably in a uni�ed framework.In this paper, we propose a novel representation whichcombines both the spatial (XY) and grayscale (I) compo-nents of the image into a 3D surface (or manifold) and thene�ciently solves for a dense correspondence �eld in the XYIspace. These image manifolds are modeled as physically-based deformable surfaces which undergo deformations inaccordance with a speci�ed force �eld. The physical dy-namics of the system are e�ciently solved for using a for-mulation in terms of the analytic modes of vibration [10].This manifold matching technique can be viewed as a moregeneral formulation for image correspondence which, un-like optical ow, does not require a constant brightness as-sumption. In fact, by simply disabling the I component ofour deformations we can obtain a standard 2D deformablemesh which yields correspondences similar to an opticalow technique with thin-plate regularizers.This novel image correspondence method is used tomatch two facial images by deforming the XYI surface ofone image into the another (under \physical forces" exertedby nearby mesh nodes). The resulting vector of displace-ments yields a pixel-dense set of correspondences whichcan be used for image warping. In addition the vector ofmodal amplitudes is then used to classify the deformationinto one of two categories: interpersonal vs. extrapersonal.This �nal classi�cation is performed using the a posterioriprobabilities computed from the two class-conditional like-lihoods which are themselves estimated from training datausing an e�cient subspace method for density estimationof high-dimensional Gaussian data [9].2 Deformable Intensity SurfacesIn previous work [13, 12], we formulated a novel imagematching technique based on a 3D surface representationof an image I(x; y) | i.e., as the surface (x; y; I(x;y)) asshown, for example, in Figure 1 | and developed an ef-�cient method to warp one image onto another using aphysically-based deformation model. In this section webriey review the mathematics of this approach (for furtherdetails the reader is referred to [11, 13, 12]).The intensity surface is modeled as a deformable meshand is governed by Lagrangian dynamics [1] :M�U+C _U+KU = F(t) (1)where U = [: : : ;�xi;�yi;�zi; : : :]T is a vector storingnodal displacements, M, C and K are respectively themass, damping and sti�ness matrices of the system, and Fis the external force. In warping one image onto a second(reference) image, the external force at each node Mi of1



Figure 1: An image and its XYI surface representation
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Figure 2: A cross-section of the intensity surface S being pulledtowards S0 by image forcesthe mesh points to the closest 3D point Pi in the referencesurface: F(t) = [: : : ;���!MiPi(t); : : :]T (2)The �nal correspondence (and consequently the resultantXYI-warp) between two images is obtained by solving thegoverning equation above. Figure 2 shows a schematic rep-resentation of the deformation process. Note that the ex-ternal forces (dashed arrows) do not necessarily correspondto the �nal displacement �eld of the surface. The elasticityof the surface provides an intrinsic smoothness constraintfor computing the �nal displacement �eld.We note that this formulation provides an interestingalternative to optical ow methods for obtaining corre-spondence, without the classical brightness constraint [5].Indeed, the brightness constraint corresponds to a speci�ccase of our formulation where the closest point Pi has tohave the same intensity as Mi | i.e., ���!MiPi is parallel tothe XY plane. We do not make that assumption here.Solutions of the governing equation are typicallyobtained using an eigenvector-based modal decomposi-tion [14, 11, 10]. In particular, the vibration modes �(i) ofthe previous deformable surface are the vector solutions ofthe eigenproblem : K� = !2M� (3)where !(i) is the i-th eigenfrequency of the system. Solvingthe governing equations in the modal basis leads to scalarequations where the unknown ~u(i) is the amplitude of modei [1]�~u(i) + ~ci _~u(i) + !(i)2~u(i) = ~fi(t) i = 1; : : : ; 3N: (4)

The closed-form expression of the displacement �eld is thengiven by U � PXi=1 ~u(i)�(i) (5)with P � 3N , which means that only P scalar equations ofthe type of (4) need to be solved. The modal superpositionequation (5) can be seen as a Fourier expansion with high-frequencies neglected [10]. In our formulation, however, wemake use of the analytic modes [10, 13], which are knownsine and cosine functions for speci�c surface topologies�(p; p0) = [: : : ; cos p�(2i� 1)2n cos p0�(2j � 1)2n0 ; : : :]T (6)These analytic expressions avoid costly eigenvector decom-positions and furthermore allow the total number of modesto be easily adjusted for the application.The above modal analysis technique represents a coor-dinate transform from the nodal displacement space to themodal amplitude subspace:~U = �TU (7)where � is the matrix of analytic modes �(p; p0) and ~Uis the resultant vector of modal amplitudes which encodesthe type of deformations which characterize the di�erencebetween the two images. In addition, once we have solvedfor the resultant 3D displacement �eld we can then warpthe original image onto the second in the XYI space andthen render a resultant 2D image using simple computergraphics techniques. Figure 3 shows an example illustrat-ing this warping process. We note that the warped imageI1!2 is only an incidental by-product of our correspon-dence method. Since our main goal is image matchingand recognition we are primarily interested in the modalamplitude spectrum represented by ~U.3 Recognition: Bayesian Analysis ofDeformationsWe now consider the problem of characterizing the typeof deformations which occur when matching two imagesin a face recognition task. We de�ne two distinct andmutually exclusive classes: 
I representing intrapersonalvariations between multiple images of the same individual(e.g., with di�erent expressions and lighting conditions),and 
E representing extrapersonal variations which resultwhen matching two di�erent individuals. We will assumethat both classes are Gaussian-distributed and seek to ob-tain estimates of the likelihood functions P (~Uj
I) andP (~Uj
E) for a given deformation's modal amplitude vector~U.Given these likelihoods we can de�ne the \similarityscore" between a pair of images directly in terms of theintrapersonal a posteriori probability as given by Bayesrule:P (
Ij~U) = P (~Uj
I)P (
I)P (~Uj
I)P (
I) + P (~Uj
E)P (
E) (8)where the priors P (
) can be set to reect speci�c oper-ating conditions (e.g., number of test images vs. the sizeof the database) or other sources of a priori knowledgeregarding the two images being matched.2
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Figure 3: Example of XYI warping two images.Additionally, this Bayesian formulation casts a facerecognition task into a classical binary pattern classi�ca-tion problem which can then be solved using the max-imum a posteriori (MAP) rule | i.e., two facial im-ages are determined to belong to the same individual ifP (
Ij~U) > P (
E j~U).3.1 Statistical Modeling of ModalAmplitudesOne di�culty with this approach is that the modal am-plitude vectors are very high-dimensional, with ~U 2 RNwith N = O(103). Therefore we typically lack su�cient in-dependent training observations to compute reliable 2nd-order statistics for the likelihood densities (i.e., singularcovariance matrices will result). Even if we were able toestimate these statistics, the computational cost of eval-uating the likelihoods is formidable. Furthermore, thiscomputation would be highly ine�cient since the intrinsicdimensionality or major degrees-of-freedom of ~U for eachclass is likely to be signi�cantly smaller than N .Recently, an e�cient density estimation method wasproposed by Moghaddam & Pentland [9] which divides thevector space RN into two complementary subspaces us-ing an eigenspace decomposition. This method relies on aPrincipal Components Analysis (PCA) [6] to form a low-dimensional estimate of the complete likelihood which canbe evaluated using only the �rst M principal components,where M << N . This decomposition is illustrated inFigure 4 which shows an orthogonal decomposition of thevector space RN into two mutually exclusive subspaces:the principal subspace F containing the �rst M principalcomponents and its orthogonal complement �F , which con-tains the residual of the expansion. The component inthe orthogonal subspace �F is the so-called \distance-from-feature-space" (DFFS), a Euclidean distance equivalent to

the PCA residual error. The component of ~U which liesin the feature space F is referred to as the \distance-in-feature-space" (DIFS) and is a Mahalanobis distance forGaussian densities.As derived in [9], the complete likelihood estimate can bewritten as the product of two independent marginal Gaus-sian densities (or equivalently as an appropriately weightedsum of the DIFS and DFFS)P̂ (~Uj
) = 266664exp � 12 MXi=1 y2i�i!(2�)M=2 MYi=1�1=2i 377775 �2664 exp�� �2(~U)2� �(2��)(N�M)=2 3775= PF (~Uj
) P̂ �F (~Uj
) (9)where PF (~Uj
) is the true marginal density in F , P̂ �F (~Uj
)is the estimated marginal density in the orthogonal comple-ment �F , yi are the principal components and �2(~U) is theresidual (or DFFS). The optimal value for the weightingparameter � is simply the average of the �F eigenvalues� = 1N �M NXi=M+1 �i (10)We note that in actual practice, the majority of the �Feigenvalues are unknown but can be estimated, for exam-ple, by �tting a nonlinear function to the available portionof the eigenvalue spectrum and estimating the average ofthe eigenvalues beyond the principal subspace.3
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(b)Figure 4: (a) Decomposition of RN into the principal subspace Fand its orthogonal complement �F for a Gaussian density, (b) a typ-ical eigenvalue spectrum and its division into the two orthogonalsubspaces.4 ExperimentsTo test our recognition strategy we used a collection ofimages from the US Army's FERET face database. Thiscollection of images consists of hard recognition cases thathave proven di�cult for all face recognition algorithms pre-viously tested on the FERET database. The di�cultyposed by this dataset appears to stem from the fact that theimages were taken at di�erent times, at di�erent locations,and under di�erent imaging conditions.The set of images consists of pairs of frontal-views andare divided into two subsets: the \gallery" (training set)and the \probes" (testing set). The gallery images con-sisted of 74 pairs of images (2 per individual) and the probeset consisted of 38 pairs of images, corresponding to a sub-set of the gallery members. These images are shown inFigure 5.These images were subsequently aligned with an auto-matic face-processing system which extracts faces from theinput image and normalizes for translation, scale as well asslight rotations (both in-plane and out-of-plane). This sys-tem is described in detail in Moghaddam & Pentland [9]and uses the same PCA-based density estimation techniquedescribed earlier to obtain maximum-likelihood (ML) esti-mates of object location (in this case the position and scale

(a) (b)Figure 5: Examples of FERET frontal-view image pairs used for (a)the Gallery set (training) and (b) the Probe set (testing).
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Head SearchFigure 6: The face alignment systemof a face and the location of individual facial features).The block diagram of this system is shown in Figure 6.The �rst step in this process is obtaining the ML estimateof the position and scale of the face (indicated by the cross-hairs and bounding box in the �gure). Once these regionshave been identi�ed, the estimated scale and position areused to normalize for translation and scale, yielding a stan-dard \head-in-the-box" image. Next a second feature de-tection stage operates at this �xed scale to estimate theposition of four facial features: the left and right eyes, thetip of the nose and the center of the mouth. Once thesefacial features have been detected, the face image is trans-formed to align these features with those of a canonicalmodel. Then the facial region is extracted (by applying a�xed mask) and subsequently normalized for contrast. Thegeometrically aligned and normalized image is then readyfor comparison with other (similarly processed) faces.4.1 Method 1: EigenfacesAs a baseline comparison we �rst used a standard eigenfacetechnique for recognition. The normalized images fromthe gallery and the probe sets were projected onto a 100-dimensional eigenspace and a nearest-neighbor rule basedon a Euclidean distance metric was used to match eachprobe image to a gallery image. A few of the lower-ordereigenfaces used for this projection are shown in Figure 7.We note that these eigenfaces represent the principal com-ponents of an entirely di�erent set of images | i.e., noneof the individuals in the gallery or probe sets were used inobtaining these eigenvectors. In other words, neither thegallery nor the probe sets were part of the \training set."The rank-1 recognition rate obtained with this methodwas found to be 84% (64 correct matches out of 76), andthe correct match was always in the top 10 nearest neigh-bors. Note that this performance is better than or similarto recognition rates obtained by any algorithm tested onthis database, and that it is lower (by about 10%) than4
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(a) (b)Figure 8: Examples of (a) intrapersonal and (b) extrapersonal facial warps.Figure 7: The �rst 8 eigenfaces.the typical rates that we have obtained with the FERETdatabase [8]. We attribute this lower performance to thefact that these images were selected to be particularly chal-lenging. In fact, using an eigenface method to match the�rst views of the 76 individuals in the gallery to their sec-ond views, we obtain a higher recognition rate of 89% (68out of 76), suggesting that the gallery images represent aless challenging data set since these images were taken atthe same time and under identical lighting conditions.4.2 Method 2: XYI WarpsFor our Bayesian method, we �rst gathered training databy computing the modal amplitude spectra for a train-ing subset of 74 intrapersonal warps (by matching the twoviews of every individual in the gallery) and a randomsubset of 296 extrapersonal warps (by matching images ofdi�erent individuals in the gallery), corresponding to theclasses 
I and 
E , respectively. An example of each ofthese two types of warps is shown in Figure 8.It is interesting to consider how these two classes aredistributed; for example, are they linearly separable or em-bedded distributions? One simple method of visualizingthis is to plot their mutual principal components | i.e.,perform PCA on the combined dataset and project eachvector onto the principal eigenvectors. Such a visualization

is shown in Figure 9(a) which is a 3D scatter plot of the�rst 3 principal components. This plot shows what appearsto be two completely enmeshed distributions, both havingnear-zero means and di�ering primarily in the amount ofscatter, with 
I displaying smaller modal amplitudes asexpected. It therefore appears that one can not reliablydistinguish low-amplitude extrapersonal warps (of whichthere are many) from intrapersonal ones.However, direct visual interpretation of Figure 9(a) isvery misleading since we are essentially dealing with low-dimensional (or \attened") hyper-ellipsoids which are in-tersecting near the origin of a very high-dimensional space.The key distinguishing factor between the two distributionsis their relative orientation. Fortunately, we can easily de-termine this relative orientation by performing a separatePCA on each class and computing the dot product of theirrespective �rst eigenvectors. This analysis yields the co-sine of the angle between the major axes of the two hyper-ellipsoids, which was found to be 68�, implying that theprincipal orientations of the two hyper-ellipsoids are in-deed quite di�erent. Figure 9(b) is a schematic illustrationof the geometry of this con�guration, where the hyper-ellipsoids have been drawn to approximate scale using thecorresponding eigenvalues.We note that since these classes are not linearly sepa-rable, simple linear discriminant techniques (e.g., hyper-planes) can not be used with any degree of reliability. Theproper decision surface is inherently nonlinear (quadratic,in fact, under the Gaussian assumption) and is best de�nedin terms of the a posteriori probabilities | i.e., by theequality P (
Ij~U) = P (
Ej~U). Fortunately, the optimaldiscriminant surface is automatically implemented wheninvoking a MAP classi�cation rule.5
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1(b)Figure 9: (a) distribution of the two classes in the �rst 3 principalcomponents (circles for 
I , dots for 
E) and (b) schematic rep-resentation of the two distributions showing orientation di�erencebetween the corresponding principal eigenvectors.Having analyzed the geometry of the two distributions,we then computed the likelihood estimates P (~Uj
I) andP (~Uj
E) using the PCA-based method outlined in Sec-tion 3.1. We selected principal subspace dimensions ofMI = 10 and ME = 30 for 
I and 
E, respectively. Thesedensity estimates were then used with a default setting ofequal priors, P (
I) = P (
E), to evaluate the a posteri-ori intrapersonal probability P (
Ij~U) for matching probeimages to those in the gallery.In order to avoid an unnecessarily large number of XYIwarps, we only matched a probe image to the top 10 galleryimages retrieved by the eigenface method. This signi�-cantly reduces the computational cost of our system, sincecomputing eigenface similarity scores is negligible com-pared to computing XYI warps (the former requires severalmilliseconds whereas the latter takes approximately 20 sec-onds on an HP 735 workstation).Therefore, for each probe image we computed a set of10 probe-to-gallery warps and re-sorted the matching or-der, this time using the a posteriori probability P (
Ij~U)as the similarity metric. This probabilistic ranking yieldedan improved rank-1 recognition rate of 92% (70 out of 76).Furthermore, out of the 608 extrapersonal warps performedin this recognition experiment, only 2% (11) were mis-

0

10

20

30

40

0

10

20

30

40

0

20

40

60

80

100

120

MI
MEFigure 10: Total number of misclassi�ed extrapersonal matches(with P (
I j~U) > 0:5) as a function of the principal subspace di-mensionalities MI and ME .classi�ed as being intrapersonal | i.e., with P (
Ij~U) >P (
Ej~U).We also analyzed the sensitivity of our Bayesian match-ing technique with respect to the principal subspace di-mensionalities MI and ME , which are used in estimat-ing the likelihoods P (~Uj
I) and P (~Uj
E). The higherwe set these parameters the more accurate an estimate ofthe likelihoods we obtain, while also requiring more prin-cipal projections. These parameters therefore representan accuracy vs. complexity tradeo� in our Bayesian ap-proach. To quantify this tradeo�, we repeated the probeset recognition experiment while varying both parametersand noted that the recognition rate never dropped be-low 79%, even when the two subspaces used in estimatingthe likelihoods were as low as one-dimensional. However,we noted that the total number of extrapersonal matcheswhich were misclassi�ed as being intrapersonal | i.e.,P (
Ij~U) > P (
Ej~U) | varied in a systematic way withthe subspace dimensionalities. This variation is shown inFigure 10 and is clearly the type of behavior one would ex-pect: the total number of misclassi�ed matches decreaseswith increasing subspace dimensionalities. From the �g-ure, it is apparent that these errors are more sensitivelydependent on MI , the dimensionality of the intrapersonalsubspace (possibly because this class has a much lower in-trinsic dimensionality and its distribution can be modeledusing fewer principal eigenvectors).Finally, we note that the set of training warps used informing an estimate of the intrapersonal density P (~Uj
)consisted entirely of gallery images. In retrospect, this isprobably an insu�cient training set, since as argued in theprevious section, a gallery-only set of intrapersonal train-ing samples can not present adequate examples for learn-ing temporal and/or lighting variations in appearance. Weplan to further investigate this phenomenon by estimatingP (~Uj
) from a suitably heterogeneous FERET trainingset which includes multiple images of the same individualseparated in time by days, weeks and months.6



5 ConclusionsTemplate-based approaches to face recognition have beenshown to be the most successful techniques to date, how-ever they require multiple templates to span the space oftypical variations in expression and pose. One of the dis-tinct advantages of our approach is that by learning thestatistics of interpersonal variations we do not require mul-tiple templates for every individual: a single-view proto-type supplemented with a probabilistic model of intrap-ersonal shape/texture deformations seems to be adequateto capture variations due to expression, some pose change,and lighting. This has resulted in higher recognition accu-racies.The disadvantage of our approach is that it is more com-putationally expensive. To reduce this expense, we haveused our standard eigenface approach to quickly retrieve asmall number of potential matches from the gallery; in ourexperiments the correct match is almost always within sucha list of top candidate matches. These candidates are thenXYI warped to determine the �nal ranking based on theintrapersonal a posteriori probability. By using this hybridapproach we were able to keep the total processing timeunder three minutes per query on a HP 735 workstation.Finally, we should point out that this general warpingmethod is applicable to data of higher dimensionality. Forinstance, the Cyberware scanner produces XYZI data. Thetechniques described here are directly generalizable to thistype of data, and we are now pursuing this avenue of re-search.References[1] K. J. Bathe. Finite Element Procedures in EngineeringAnalysis. Prentice-Hall, 1982.[2] David Beymer. Vectorizing face images by interleavingshape and texture computations. A.I. Memo No. 1537,Arti�cial Intelligence Laboratory, Massachusetts In-stitute of Technology, 1995.[3] I. Craw and P. Cameron. Face recognition by com-puter. In D. Hogg and R. Boyle, editors, Proc. BritishMachine Vision Conference, pages 498{507. Springer-Verlag, 1992.[4] I. Craw and et al. Automatic face recognition: Com-bining con�guration and texture. In Martin Bichsel,editor, Proc. Int'l Workshop on Automatic Face andGesture Recognition, Zurich, 1995.[5] B.K.P. Horn and G. Schunck. Determining opticalow. Arti�cial Intelligence, 17:185{203, 1981.[6] I.T. Jolli�e. Principal Component Analysis. Springer-Verlag, New York, 1986.[7] A. Lanitis, C. J. Taylor, and T. F. Cootes. A uni-�ed approach to coding and interpreting face images.In IEEE Proceedings of the Fifth International Con-ference on Computer Vision (ICCV'95), Cambridge,MA, June 1995.[8] B. Moghaddam and A. Pentland. Face recognition us-ing view-based and modular eigenspaces. AutomaticSystems for the Identi�cation and Inspection of Hu-mans, 2277, 1994.

[9] B. Moghaddam and A. Pentland. Probabilistic visuallearning for object detection. In IEEE Proceedings ofthe Fifth International Conference on Computer Vi-sion (ICCV'95), Cambridge, USA, June 1995.[10] C. Nastar. Vibration modes for nonrigid motion anal-ysis in 3D images. In Proceedings of the Third Eu-ropean Conference on Computer Vision (ECCV '94),Stockholm, May 1994.[11] C. Nastar and N. Ayache. Fast segmentation, track-ing, and analysis of deformable objects. In IEEEProceedings of the Third International Conference onComputer Vision (ICCV'93), Berlin, May 1993.[12] C. Nastar, B. Moghaddam, and A. Pentland. Gen-eralized image matching: Statistical learning ofphysically-based deformations. In Proceedings of theFourth European Conference on Computer Vision(ECCV'96), Cambridge, UK, April 1996.[13] C. Nastar and A. Pentland. Matching and recognitionusing deformable intensity surfaces. In IEEE Interna-tional Symposium on Computer Vision, Coral Gables,USA, November 1995.[14] A. Pentland and S. Sclaro�. Closed-form solutionsfor physically based shape modelling and recognition.IEEE Transactions on Pattern Analysis and MachineIntelligence, PAMI-13(7):715{729, July 1991.

7


