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Abstract

In this paper, we propose a new design strategy based on the minimum mean-squared error (MMSE) in closed-

loop non-regenerative multiple-input multiple-output (MIMO) relaying systems. Instead of conventional singular

value decomposition based methods, we address the problem for joint MMSE design in a different approach using

the Wiener filter solution which leads to simple derivations of the optimal MMSE designs. First, allowing the

channel state information (CSI) at the source, we provide a closed form solution for a source-relay-destination

joint MMSE design by extending existing relay-destination joint MMSE designs. Second, for the limited feedback

scenario, we address a codebook design criteria for the multiple streams precoding design with respect to the

MMSE criterion. From our design strategy, we observe that compared to conventional non-regenerative relaying

systems, the source or the destination only needs to know the CSI corresponding to its own link such as the

source-to-relay or the relay-to-destination in view of the MMSE. Simulation results show that the proposed design

gives about 7.5dB gains at a bit error rate (BER) of 10−4 over existing relay-destination joint MMSE schemes

and we can get close to the optimal unquantized schemes with only a few feedback bits.

This work has been submitted to the IEEE Transactions on Wireless Communications for possible publication. Copyright may be

transferred without notice, after which this version may no longer be accessible.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems have been widely studied to increase commu-

nication reliability and spectral efficiency [1]–[4]. Recently, wireless relaying techniques also attracts great

attention since the communication range and coverage can be extended by supporting shadowed areas

where there are strong shadowing effects. These benefits make MIMO relaying techniques an important

component for next generation wireless networks. A general information theoretic analysis of the relay

channel was first reported in [5] and [6]. Furthermore, recently, researches on the capacity of MIMO

relaying systems have been studied in [7]–[9].

MIMO relaying systems can be designed as either regenerative or non-regenerative. The regenerative

scheme, also known as the decode-and-forward (DF) scheme, indicates that the relay decodes the original

information from the previous node before it retransmits the information to the subsequent node. In

contrast, the non-regenerative relay, or the amplify-and-forward (AF) scheme, implies that the relay

node does not decode the signal while only a linear weighting process is performed. In practical relay

systems, a non-regenerative method shows advantages of simple implementation and small processing

delay compared to the regenerative relay systems. For these reasons, this paper focuses on the non-

regenerative relaying system.

Currently many schemes have been developed based on the AF relaying in [10]–[18] Several studies

have shown that proper linear operations can improve the system performance remarkably. For example,

[12]–[14] have demonstrated that in a AF relaying network, a linear technique based on singular value

decomposition (SVD) is optimal for maximizing the system performance. Especially allowing perfect

channel state information (CSI) of both the source-to-relay link and the relay-to-destination link at the

relay and the destination, the authors in [12] and [14] proposed the relay-destination joint optimization

scheme with respect to minimum mean square error (MMSE) and maximum channel capacity (MCC),

respectively. More recently, when the perfect CSI of both sides is available at all nodes, optimal source-

relay-destination joint designs were developed with respect to the MCC [15], quality-of-service (QoS)
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[16] and MMSE criteria [17], where all solutions are found by an iterative method. In this paper, we

refer to the case where the CSI of both sides of links is available as global CSI, and the case where the

CSI of its own link is available at the source or destination as local CSI.

In this paper, we provide a new MMSE design strategy to achieve the optimal performance for closed-

loop relaying systems. Instead of conventional SVD based methods, we address the problem in a different

approach using the Wiener filter solution [19]. Then we prove that the error covariance matrix for the

MMSE relaying system is decomposable into a sum of two individual error matrices, which leads to easy

derivations of the joint MMSE designs. Although the global CSI is required for achieving the optimal

performance, our design strategy also demonstrate that the local CSI incurs little performance loss in

terms of MMSE.

As an extended structure of the existing relay-destination joint optimal scheme [14], we first provide a

new source-relay-destination joint MMSE design. In contrast to the iterative solutions in [15]–[17], our

joint MMSE design strategy generates a general closed form solution and does not require the source and

destination to know about the CSI of the other side of link. Although a high signal-to-noise ratio (SNR)

approximation is employed in the derivation of the proposed solution, it can be confirmed by numerical

results that it provides little performance loss in all SNR range in comparison to the optimal designs with

much reduced complexity.

Second, from our proposed design, it becomes readily provable that for the limited feedback (or

quantized feedback) scenario, the Grassmannian codebook [20]–[22] is efficient for quantizing the optimal

precoders at the source and relay. The single stream optimal beamforming design in [23] is a special case

of our solution. Simulation results show that the proposed joint MMSE scheme provides about 7.5dB

and 5dB gains at a bit error rate (BER) of 10−4 for 4QAM and 16QAM cases, respectively, over the

existing relay-destination joint optimized scheme, and we can get close to the optimal unquantized case

with only a few feedback bits.

The remainder of this paper is organized as follows: In Section II, we first describe the system model.
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Then in Section III, we show that from the MMSE point of view, the error covariance matrix can be

decomposed into a sum of two individual error covariance matrices. Section IV proposes the optimal

joint MMSE design and then the quantized precoding design is presented in Section V. In Section VI,

we show that the proposed MMSE designs do not require the source-to-relay channel information at the

destination. In Section VII, Monte Carlo simulations are performed. Finally, the conclusion is given in

Section VIII.

Throughout this paper, normal letters represent scalar quantities, boldface letters indicate vectors and

boldface uppercase letters designate matrices. The superscripts (·)T , (·)† and (·)∗ stand for transpose,

conjugate transpose, and element-wise conjugate, respectively. E[·] denotes the expectation operator, IN

indicates an N ×N identity matrix, and tr (A) represents the trace of a matrix A. Furthermore λmin(A)

and λmax(A) indicate a minimum and maximum singular value of a matrix A. Accounting for a complex

matrix A, we denote the real part of A by <{A} and the stacked columns of A by vec(A).

II. SYSTEM DESCRIPTION

In this section, we consider a system model for non-regenerative MIMO relaying channels as shown

in Figure 1. The source node transmits data information to the destination node through one relay node

which helps the communication between two nodes. We assume that the source, relay and destination node

use Nt, Nr and Nd antennas, respectively, and no direct path is assumed due to a large path loss between

the source and the destination. As we consider a spatial multiplexing (SM) system which transmits Ns

data streams simultaneously, we assume Ns ≤ min{Nt, Nr, Nd}. Furthermore, in this paper, we basically

assume the half-duplex system, where data transmission in the relay system occurs in two separate time

slots since in the full duplex mode, the power of the transmitted signal at the relay typically overshadows

that of the desired signal at the relay.

In the first time slot, the symbol vector x is precoded by the Nt by Ns precoding matrix F, and

transmitted to the relay node. As shown in Figure 1, the Nr dimensional received signal vector yR at
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the relay node is given as yR = HFx + n1, where H ∈ CNr×Nt denotes the first hop channel matrix

of the source-to-relay link, x represents the Ns dimensional transmit signal vector with E[xx†] = σ2
xINs

and n1 indicates the additive complex Gaussian noise vector at the relay node with zero mean and the

covariance matrix E[n1n
†
1] = σ2

n1
INr . Then the received signal yR at the relay is multiplied by the

Ns × Nr relay receiver LR. Assuming tr(FF†) = Ns, we define the total source transmit power as

PT , E[‖Fx‖2] = σ2
xNs.

In the second time slot, the relay signal y = LRyR = LR(HFx+n1) is precoded by the Nr×Ns relay

precoder γB and transmitted to the destination node. Here LR, B and the scaling parameter γ which

compose the relay filter Q will be explained later. The Nd dimensional signal yD at the destination is

given as

yD = GQHFx + GQn1 + n2

= γGBLRHFx + γGBLRn1 + n2,

where G ∈ CNd×Nr indicates the second hop channel matrix of the relay-to-destination link and n2 is the

zero mean complex Gaussian noise vector at the destination node with E[n2n
†
2] = σ2

n2
INd

. In this case,

Q needs to satisfy the total relay transmit power PR as E[‖QyR‖2] = PR. Then the received signal yD

is multiplied by the linear receiver WD at the destination node, and we have the final observation ỹD as

ỹD = WDyD.

The SNR between each channel link is defined as SNR1 , PT /(Nsσ
2
n1

) and SNR2 , PR/(Nsσ
2
n2

),

respectively. In addition, we define the following singular value decompositions as

H = UhΦV†
h and G = UgΩV†

g,

where Φ and Ω represent Nr × Nt and Nd × Nr matrices with singular values φi ∈ R for i =

1, 2, . . . , min(Nt, Nr) and ωi ∈ R, for i = 1, 2, . . . , min(Nr, Nd), in a descending order on the main

diagonal, respectively. Furthermore Ns dimensional square diagonal matrices Φ and Ω are defined

as Φ , diag{φ1, φ2, . . . , φNs} and Ω , diag{ω1, ω2, . . . , ωNs}, respectively. We denote the matrix
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constructed by the first Ns columns of a unitary matrix Uh, Vh, Ug and Vg as Uh, Vh, Ug and

Vg, respectively.

III. DECOMPOSITION OF THE ERROR COVARIANCE MATRIX

In this section, we show that from the MMSE point of view, the error covariance matrix can be

decomposed into a sum of two individual error covariance matrices where each of them corresponds to

the first hop channel H and second hop channel G.

A. Optimum Destination Receiver

First we derive the optimal receive filter ŴD at the destination. Throughout this paper, unless specified

otherwise, we assume that the MMSE optimal receive filter ŴD is adopted at the destination and refer to

this filter as the destination Wiener filter (D-WF). Defining the error vector as e , γ−1ỹD−x = WDy
′
D−x

where y
′
D = γ−1yD, the problem can be mathematically formulated as

ŴD = arg min
WD

E
[‖e‖2

]
. (1)

Here a scaling parameter γ−1 is introduced for simplification of the derivation for the relay filter Q in

the following subsection. For given specific Q, F and γ, the optimal receive filter ŴD is easily obtained

as [24]

ŴD = Rx,y′D
(Ry′D,y′D

)−1

= γRxF
†H†Q†G† (GQHFRxF

†H†Q†G† + Rn

)−1
,

= γ
(
F†H†Q†G†R−1

n GQHF + (1/σ2
x)INs

)−1
F†H†Q†G†R−1

n , (2)

where Rn = σ2
n1

GQQ†G†+σ2
n2

INd
. Note that for the derivation of (2), we have used a matrix inversion

lemma. Then using the result in (2), we obtain the error covariance matrix RE , E[ee†] as

RE = E[(WDy
′
D − x)(WDy

′
D − x)†]

=
(
F†H†Q†G†R−1

n GQHF + (1/σ2
x)INs

)−1
. (3)

Note that E [‖e‖2] = tr(RE).
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B. Optimum Relay Transceiver

Next, in view of the relay node, the problem for minimizing the mean square error (MSE) under the

relay power constraint is written as

min
Q

E
[‖e‖2

]

s.t. tr
(
Q(σ2

xHFF†H† + σ2
n1

INr)Q
†) = PR. (4)

Note that it can be easily verified that the MSE function in (4) is convex over the relay transceiver filter

Q when the source transmit filter F, the destination receiver filter WD and γ are given, and is also

convex with respect to γ if F, WD and Q are fixed. Then we can find necessary conditions for Q and

γ by constructing the cost function C with the Lagrangian multiplier λ as

C = E
[‖e‖2

]
+ λ{tr

(
Q(σ2

xHFF†H† + σ2
n1

INr)Q
†)− PR}. (5)

In the following Lemma, using the cost function C in (5), we provide the MMSE optimal relay filter Q̂.

Lemma 1: For given F and WD, the optimal relay transceiver Q̂ for minimizing the MSE has the

following form as Q̂ = γQ̃ = γBLR, where γ, B and LR are computed as

γ =

√
PR/tr(Q̃(σ2

xHFF†H† + σ2
n1

INr)Q̃
†
),

B = G†W†
D(WDGG†W†

D +
tr(σ2

n2
WDW†

D)

PR

INs)
−1 (6)

and LR = (F†H†HF + (σ2
n1

/σ2
x)INs)

−1F†H†. (7)

Proof: See Appendix A.

In Lemma 1, we can identify that B and LR correspond to the relay transmit Wiener filter for the second

hop channel G and the relay receive Wiener filter (R-WF) for the first hop channel H, respectively. The

scaling parameter γ indicates the relay power normalizing coefficient. Note that only from the relay point

of view, the optimum B has the Wiener filter solution as in (2) or (6), while from the joint optimization

perspective with F and WD, the optimal B̂ follows the channel diagonalizing structure as will be shown

in Section IV.
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C. Decomposition of RE

In the following lemma, we will show that from the MMSE point of view, the error covariance matrix

RE is composed of two individual error covariance matrices.

Lemma 2: Given the optimal relay transceiver Q̂ = γBLR and the destination receiver ŴD, the overall

error matrix RE in (3) can be decomposed into a sum of two individual error matrices as

RE(F,B) = σ2
n1

(
F†H†HF +

σ2
n1

σ2
x

INs

)−1

+ σ2
n2

(
γ2B†G†GB + σ2

n2
R−1

y

)−1
, (8)

where Ry stands for the covariance matrix of the relay signal y = LR(HFx + n1).

Proof: See Appendix B.

Note that the R-WF LR in (7) is completely a function of F. Thus we need to optimize only F and B

in (8).

IV. JOINT MMSE DESIGN STRATEGY

In this section, we investigate joint MMSE designs assuming that the perfect CSI is available at all

nodes. Our designs are based on the constraint which bounds the expected norm of the transmit power

as E [‖Fx‖2] = tr(FF†)σ2
x = PT and E [‖By‖2] = tr(BRyB

†) = PR. It should be noted that in this

section, the relay power normalizing coefficient γ is assumed to be included in the relay precoder B.

Nevertheless, such a norm constraint (NC) does not restrict the peak power at the output. Hence in this

section, we also provide the optimal solution based on the maximum eigenvalue constraint (MVC) [25]

given as LT = λmax(σ
2
xFF†) and LR = λmax(BRyB

†). From the fact that tr(A) ≤ λmax(A)N for any

M by N (M ≥ N ) matrix A, the MVC limits the norm power as well while imposing a limit on the

peak power of the transmit vectors.

A. Source-Relay-Destination Joint MMSE Design

For the case where the relay and the destination nodes know the full CSI of both H and G, the jointly

optimized filter at the relay-destination was derived in [14]. We refer to this as the relay-destination
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joint MMSE design with NC (RD-NC). In this section, assuming the CSI of the channel H is available

additionally at the source node, we provide the source-relay-destination joint MMSE filter design. Note

that in contrast to existing schemes in [15]–[17], the CSI of the channel G is not required at the source

in our design criteria.

1) Norm Power Constraint: As we have shown in the previous section, the optimal relay transceiver

Q̂ allows us to decompose the composite relay channel as two individual MIMO channels. Now using

Lemma 2, we can set up the problem for minimizing the MSE as

min
{F,B}

tr (RE(F,B))

s.t. tr
(
σ2

xFF†
)

= PT and tr
(
BRyB

†) = PR. (9)

In principle, the jointly optimal source and the relay precoder F̂ and B̂ which satisfy the problem

(9) should be computed iteratively as in [17] because two matrices are mutually connected. However

an iterative method may not be desirable in practical implementation. Instead here we propose an

approximated method to obtain a closed form solution. From equation (28) in Appendix B, it can be

easily checked that under the practical assumption of σ2
x

σ2
n1

À 1, Ry rapidly approaches the identity matrix

σ2
xINs . In this case, the source precoding matrix F can be determined independent of B because it does

not have any effect on the second term of (8) with this assumption. Numerical results in Section VII

show that this practical assumption causes almost no performance loss even in the low SNR1 region.

Accordingly, the original problem in (9) can be separated as

min
F

tr
(

σ2
n1

(F†H†HF +
σ2

n1

σ2
x

INs)
−1

)
min
B

tr
(
σ2

n2

(
B†G†GB + σ2

n2
R−1

y

)−1
)

s.t. tr
(
σ2

xFF†
)

= PT s.t. tr
(
BRyB

†) = PR. (10)

It is remarkable that in this situation, there is no need for the source node to know about the channel

information of G. Each problem in (10) is the same as the optimization problem in conventional MIMO

systems derived in [26] and [27]. Especially in [27], it was shown that the channel diagonalizing structure
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is optimal for minimizing a trace function. When the objective function f(·) is Schur-concave, it is known

that the following bound holds as

f (δ(RE)) ≤ f (d(RE)) , (11)

where δ(RE) and d(RE) denote vectors which consist of the eigenvalues and diagonal elements of RE

in a decreasing order, respectively. The equality in (11) holds when the matrix RE has a diagonalized

structure and the trace function is a representative Schur-concave function. Therefore, without loss of

generality, we can assume that the optimal solutions of (10) are expressed in the form of F̂ = Vh∆f and

B̂ = Vg∆b where the power loading matrices ∆f and ∆b are defined as ∆f , diag{f1, f2, . . . , fNs}

and ∆b , diag{b1, b2, . . . , bNs}, respectively.

These problems in (10) can be solved efficiently using the Lagrangian multipliers ν and τ , and we

obtain the water-pouring like solutions as

|fi|2= 1

φ2
i σ

2
x

(√
σ2

n1
φ2

i σ
2
x

ν
− σ2

n1

)+

and |bi|2= 1

ω2
i ri

(√
σ2

n2
ω2

i ri

τ
− σ2

n2

)+

. (12)

where (x)+ is defined as max(x, 0) and ri = σ4
xφ

2
i f

2
i /(σ2

xφ
2
i f

2
i +σ2

n1
) stands for the i-th diagonal element

of Ry. Here ν and τ are chosen to meet the power constraint (9). Note that if ri = 0, then bi = 0. From

this result, we have LR = (∆2
fΦ

2
+ (σ2

n1
/σ2

x)INs)
−1∆fΦU

†
h.

Then we obtain a closed form solution for F̂ and Q̂ as

F̂ = Vh∆f and Q̂ = VgΘU
†
h,

where the elements of ∆f are given in (12) and Θ indicates an Ns × Ns diagonal matrix as Θ =

diag{θ1, · · · , θNs}. Here θi is computed from

|θi|2= 1

ω2
i (σ

2
xφ

2
i f

2
i + σ2

n1
)

(√
σ4

xσ
2
n2

ω2
i φ

2
i f

2
i

τ(σ2
xφ

2
i f

2
i + σ2

n1
)
− σ2

n2

)+

.

Note that only amplitudes of fi, bi and θi are given, since the phase does not affect the MSE. We refer

to this design criterion as the source-relay-destination joint MMSE design with NC (SRD-NC).
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In what follows, we briefly address the bit error rate (BER)-based criteria. Until now, we have studied

the optimization based on the MMSE criterion. However the optimization in the MMSE sense may not

lead to a solution which minimizes the BER. Recently, it was shown in [27] that by applying a discrete

Fourier transform (DFT) matrix or a Hadamard matrix to the diagonalized error covariance matrix, we

can make all diagonal elements of the error covariance matrix have the same value while maintaining the

MSE. This is equivalent to minimizing the maximum MSE in each stream, and is called the average BER-

based criteria or ARITH-BER [27]. This approach can be directly applied to relaying systems by setting

F̂ = Vh∆fZ and B̂ = Vg∆bZ, where Z indicates the Ns×Ns DFT matrix, and from this we obtain the

BER optimized precoders. We refer to this design criterion as the BER-based source-relay-destination

joint design with NC (SRD-BNC).

2) Maximum Eigenvalue Constraint: In the following, we determine F̂ and B̂ which minimize the

MSE based on the MVC constraint. As shown previously, the problems for F and B are given separately

as

min
F

tr
(

σ2
n1

(F†H†HF +
σ2

n1

σ2
x

INs)
−1

)
min
B

tr
(
σ2

n2

(
B†G†GB + σ2

n2
R−1

y

)−1
)

s.t. λmax(σ
2
xFF†) = LT s.t. λmax(BRyB

†) = LR. (13)

Each problem corresponds to the conventional MIMO systems with the source transmit vector x and

the relay receiver output signal y. Especially the first problem in (13) is the exactly same one in [25]

whose solution is given as F̂ =
√

LT

σ2
x
Vh.

For the second problem in (13), denoting MSEG , σ2
n2

(
B†G†GB + σ2

n2
R−1

y

)−1
, we have tr (MSEG)

=
∑Ns

i=1 σ2
n2

ri(σ
2
n2

+ ri|ωibi|2)−1. Then from the constraint λmax(BRyB
†) = maxi (ri|bi|2) = LR, we

obtain the following inequality as

tr (MSEG) ≤
Ns∑
i=1

σ2
n2

ri(σ
2
n2

+ LR|ωi|2)−1 (14)

where the equality holds when ∆bRy∆
†
b = LRINs . Therefore we can compute the optimal relay precoder

B̂ = Vg∆b where the i-th element of ∆b is given as bi =
√

LR

ri
. We refer to this as the source-
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relay-destination joint MMSE design with MVC (SRD-MV). It should be emphasized that B̂ approaches
√

LR

σ2
x
Vg as SNR1 increases, since ri comes close to σ2

x.

B. Optimal Relay-Destination Joint MMSE Design

As mentioned earlier, it was shown in [14] that the jointly optimal relay filter Q for RD-NC has a

canonical form of VgΛU†
h where Λ is a Ns(= Nt) by Nr diagonal matrix. Although the approach in

[14] provides a solution for the open-loop case where the source does not have any information on the

channel, the destination is required to know about both the channel H and G for achieving the optimal

performance. In this section, we provide a new approach for the jointly optimized designs at the relay-

destination with two different constraints and show that the existing RD-NC [14] is a special case of our

design strategy. From this result, we will describe in Section VI that the RD-NC [14] can also be applied

to the case with the local CSI where only the information of the relay-to-destination link is allowed at

the destination.

1) Norm Power Constraint: We consider a system where the perfect CSI is allowed only at the relay

and the destination node. In this case, we cannot determine the source precoder F, and thus F is set to

F = INt . Then, the optimization problem (9) is rephrased as

min
B

tr (MSEG) s.t. tr
(
BRyB

†) = PR. (15)

Here the SVD of Ry and LR is given as Ry = VhΣV†
h and LR = VhΣ̃U†

h, respectively, where

Σ , σ4
xΦ

2(σ2
xΦ

2 + σ2
n1

INs)
−1 and Σ̃ , σ−2

x Σ. Note that the covariance matrix Ry is a positive definite

matrix, and is not a diagonal matrix.

Without loss of generality, from (11), we can assume that the optimal B̂ has a form of B̂ = VgΞV†
h

where Ξ indicates an Ns by Ns diagonal matrix. Then we obtain

min
B

tr (MSEG) = min
Ξ

tr
(
σ2

n2
(VhΞ

†V
†
gG

†GVgΞV†
h + σ2

n2
VhΣV†

h)
−1

)

= min
Ξ

tr
(
σ2

n2
(Ξ†Ω

2
Ξ + σ2

n2
Σ)−1

)
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and finally the simple convex problem is determined as

min
Ξ

tr
(
σ2

n2
(Ξ†Ω

2
Ξ + σ2

n2
Σ)−1

)
s.t. tr

(
ΞΣΞ†) = PR. (16)

This problem can be solved very efficiently using the Lagrangian multiplier τ . Denoting ξi as the i-

th diagonal element of Ξ, we obtain the optimal solution as |ξi|2= 1
ω2

i Σi

(√
σ2

n2
ω2

i Σi

τ
− σ2

n2

)+

, where

Σi = σ4
xφ

2
i /(σ

2
xφ

2
i + σ2

n1
) designates the i-th diagonal element of Σ, and τ is the water-level chosen to

satisfy the power constraint. As a result, the optimal relay transceiver Q̂ = BLR is given as Q̂ = VgΛU†
h,

where Λ = diag{Λ1, · · · , ΛNt} is defined as an Ns ×Nr diagonal matrix. Here Λi is obtained from

|Λi|2= 1

ω2
i (σ

2
xφ

2
i + σ2

n1
)

(√
σ4

xσ
2
n2

ω2
i φ

2
i

τ(σ2
xφ

2
i + σ2

n1
)
− σ2

n2

)+

. (17)

Note that the solution in (17) is the same as the result in [14].

2) Maximum Eigenvalue Constraint: Considering the MVC, we can rewrite the problem in (16) as

min
Ξ

tr
(
σ2

n2
(Ξ†Ω

2
Ξ + σ2

n2
Σ)−1

)
s.t. λmax

(
BRyB

†) = LR.

Then using a similar approach, we can compute the optimal precoder B̂ = VgΞV†
h, where ξi is calculated

as ξi =
√

LR

Σi
. We refer to this as the relay-destination joint optimal design with MVC (RD-MV). It should

also be noted that B̂ approaches
√

LR

σ2
x
VgV

†
h as SNR1 increases.

V. QUANTIZED PRECODING DESIGN

So far, we have assumed still ideal cases which allow the perfect CSI of the channel H or G at the

transmit sides (i.e., source or relay). This may be realized in time division duplex (TDD) systems with

channel reciprocity, while in frequency division duplex (FDD) systems, a proper channel identification

process is required. One efficient solution which minimizes the required feedback overhead is to share

a codebook of precoding matrices among all nodes and to send back the index of the codeword to

the transmit sides. For the case of conventional MIMO Gaussian channels, it has been shown that the

codebook design is associated with Grassmannian packing problems [20]–[22]. In this section, we briefly
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show that the Grassmannian codebook is also efficient for quantizing the optimal precoding matrices in

MMSE-based relaying systems.

We assume that the source precoding matrix F belongs to a codebook UF (Nt, Ns) shared between

the source and the relay. Similarly, the relay precoding matrix B is determined by a possibly different

codebook UB(Nr, Ns), shared between the relay and the destination. Denoting Fi ∈ UF (Nt, Ns) and

Bj ∈ UB(Nr, Ns) where i and j indicate the codeword indices, we further assume that Fi and Bj are

unitary matrices consisting of Ns orthogonal unit vectors. Note that this assumption is not especially

restrictive since it follows a form of optimal precoders with the MVC illustrated in the previous section.

From Lemma 2, the unconstrained problem for minimizing the MSE is given as

min
{i,j}

tr (RE(Fi,Bj))

≈ min
{i,j}

tr

(
σ2

n1

(
F†iH

†HFi

)−1

+ σ2
n2

(
PR

Nsσ2
x

B†
jG

†GBj

)−1
)

(18)

≤ min
i

Nsσ
2
n1

λ2
min(HFi)

+ min
j

N2
s σ2

xσ
2
n2

PRλ2
min(GBj)

, (19)

where we used a high SNR assumption in (18) and a fact that λmax(A
−1) = λ−1

min(A) in (19). Note

that in high SNR, γ approaches a constant
√

PR/(Nsσ2
x) under the unitary precoding assumption. Thus

maximizing the λ2
min(HFi) and λ2

min(GBj) is an approximated method for minimizing the MSE.

The authors in [22] have shown that the Grassmannian codebook designed for maximizing the minimum

projection 2-norm distance [21] among codewords is most efficient for maximizing the minimum singular

value λ2
min(HFi) or λ2

min(GBj). Therefore, from the result in (19), we can see that the projection 2-norm

distance based Grassmannian codebook is also efficient for quantizing the optimal source and the relay

precoding matrices. It is remarkable that quantizing the relay precoder B with the unquantized R-WF is

more suitable for the MMSE criterion than directly quantizing the relay transceiver Q. It should be also

noted that the optimal and the quantized beamforming design in [23] is a special case of our solutions

with Ns = 1.

We refer to this quantized precoding design as SRD-Q. Alternatively, with the same manner in Section
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IV-B, if no CSI is available at the source (i.e., F = INs), we can assume that only the codeword index for

the relay precoder is conveyed from the destination to the relay, which is referred as RD-Q. Numerical

results in Section VII illustrate that we can get close to the optimal designs with only a few feedback

bits.

VI. CSI REQUIREMENT FOR DESTINATION

In general, for achieving the optimal performance, conventional AF relaying systems require the global

CSI at the destination. However, in practical implementation, this may be undesirable because of a large

system overhead. In this section, we show that our design strategy can be well suited to systems with

the local CSI at the destination where only the CSI of the relay-to-destination link is available at the

destination. From the MMSE point of view, we can obtain a simplified form of D-WF in (2) in the

following Lemma.

Lemma 3: Given the optimal relay transceiver Q̂ = γBLR, the D-WF in (2) can be simplified as

ŴD =
(
B†G†GB + (σ2

n2
/γ2)R−1

y

)−1
B†G†. (20)

Proof: See Appendix C.

Recall that Ry can be approximated as σ2
xINs in the practical situation of σ2

x

σ2
n1

À 1. Hence from Lemma

3, we can obtain the suboptimal D-WF referred to as D-Sub as

WD−Sub = (B†G†GB +
σ2

n2

σ2
xγ

2
INs)

−1B†G†. (21)

This indicates that the destination node does not need to know about the channel information of H.

Besides, as we have studied previously, the source precoder F does not require any knowledge of the

second hop channel G. In other words, for all our MMSE designs, the source or the destination only

needs to know the local CSI corresponding to its own link such as the source-to-relay or the relay-to-

destination. Note that in the case of RD-NC and RD-MV, the optimal relay precoder B includes Vh,

so the CSI of the effective channel G̃ , GB is required at the destination. In the following section,
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simulation results will show that the proposed D-Sub has almost no performance loss even in the low

SNR region compared to the optimal case. The required CSI comparison is described in Table I. Here

kF and kB designate the codebook size of UF (Nt, Ns) and UB(Nr, Ns), respectively.

VII. SIMULATION RESULTS

In this section, Monte Carlo simulations are performed to illustrate the BER and MSE performance

of our proposed schemes in flat fading channels. We assume that σ2
n1

= σ2
n2

= 1 and Nr = 4. The total

transmit power to noise ratio is defined as SNRo , P/σ2
n1

, assuming that PT = P/2 and PR = P/2,

where P denotes the total transmit power. We use the notation Nt ×Nr ×Nd to denote an system with

Nt source antennas, Nr relay antennas and Nd destination antennas. For all simulations, we set the same

peak eigenvalue LT = PT /Ns and LR = PR/Ns so that the norm power constraints are satisfied as

σ2
xtr(FF†) = PT and tr(BRyB

†) = PR. Moreover, we assume that elements of the channel H and G

have an independent and identically distributed (i.i.d.) complex Gaussian distribution with zero mean and

unit variance.

From Figure 2 to 5, we provide the performance of the proposed joint MMSE designs. The AF w/ D-

WF indicates the most simple scheme where no filtering operation is performed at the relay (Q = γINr)

while the optimal receiver D-WF is adopted at the destination to exhibit the performance lower bound.

Note that the MCC [12] [15] and the QoS [16] schemes are not included in the simulation results since

their design criteria are different from our MMSE based design strategy.

In Figure 2, we show the MSE performance of various schemes. Note that we have normalized the

MSE by σ2
x when obtaining the MSE curve. Clearly the proposed SRD-NC outperforms the RD-NC

because all nodes of the source, the relay and the destination are jointly optimized while RD-NC is

optimized only for the relay and the destination. It is remarkable that the proposed designs show almost

no performance loss even when only the local CSI is allowed at the destination. We also provide the MSE

performance of the optimal design based on the minimum arithmetic sum of MSE (MA-MSE) criterion



17

which has been solved by an iterative method in [17]. Note that MA-MSE follows the same criterion as

our proposed design SRD-NC. From this plot, we can confirm that except for a little MSE loss in the

low SNR region, our approximated method almost achieves the performance of the optimal designs with

substantially reduced complexity and smaller CSI requirement.

In Figure 3, we provide the BER performance of the optimal design which minimizes the maximum

MSE (MM-MSE) [17] and the proposed design SRD-BNC in various antenna configurations. MM-MSE

follows the same design criterion as SRD-BNC. From this plot, we can check that compared to the optimal

solution founded by an iterative method, the proposed approximation scheme shows little performance

loss in all SNR range under the BER-based criterion.

The BER performance comparison with suboptimal designs in 4QAM and 16QAM constellations are

presented in Figures 4 and 5, respectively. From these plots, we can check that the proposed SRD-BNC

exhibits about 7.5dB and 5dB gains over the RD-NC at a BER of 10−4 for 4QAM and 16QAM cases,

respectively. It is also worthwhile to note that in the local CSI situation at the destination, the proposed

designs with D-Sub almost achieves the optimal performance. Therefore in comparison to conventional

schemes [10]–[17], our design strategy is more practical in terms of saving the cost related to the CSI.

In Figures 6, 7 and 8, we present the MSE and BER performance of the Grassmannian quantization

schemes comparing to the optimal designs. We simulate two streams precoding on 2×4×2 and 4×4×2

wireless relaying systems. The codebooks are designed for maximizing the minimum projection two-

norm distance between any pair of the codeword matrix column space, defined as dproj(A1,A2) ,

‖A1A
†
1−A2A

†
2‖2

2. The codebook sizes kF and kB are chosen from 4, 16 or 64 which correspond to 2, 4

or 6 required bits. For all simulations, the codewords Fi and Bj are selected independently at the relay and

the destination in accordance with the criteria Fi = arg mini tr
(
σ2

n1
(F†iH

†HFi +
σ2

n1

σ2
x
INs)

−1
)

and Bj =

arg minj tr
(
σ2

n2
( PR

σ2
xNs

B†
jG

†GBj +
σ2

n2

σ2
x
INs)

−1
)

, respectively. Figure 6 exhibits the MSE performance of

the Grassmannian precoding designs both at the source and the relay. As the plot shows, we can get very

close to the optimal scheme SRD-MV with only a few feedback bits. Also, the MSE and BER performance
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of the relay only precoding design with quantization can be seen from Figures 7 and 8. The system with

only 6 feedback bits almost achieves the performance within 1dB of the optimal unquantized schemes

RD-MV and RD-NC at a BER of 10−4. Although not presented in this paper, the proposed MMSE based

quantizing schemes with D-Sub also have no performance loss when only the local CSI is allowed at the

destination.

VIII. CONCLUSION

In this paper, we have shown that from the MMSE point of view, the optimal relay filter is composed

of two individual receive and transmit Wiener filters and then the overall error covariance matrix can

be decomposed into a sum of two individual error covariance matrices. From this approach, we have

easily formulated and solved the two optimal joint MMSE schemes for an relay-destination and a source-

relay-destination joint design. Also for the limited feedback scenario, we have addressed the codebook

design and the selection criteria for multiple streams precoding design in the relaying system. Finally,

we have illustrated that for all our MMSE designs, the source or the destination only needs to know the

CSI corresponding to its own link such as the source-to-relay or the relay-to-destination. The analytical

results are verified by comparing the performance of the optimal and suboptimal schemes under different

scenarios.

APPENDIX A

OPTIMAL RELAY TRANSCEIVER

We first set the derivations of the cost function (5) to zero as [24]

∂C
∂Q∗ = γ−2σ2

xG
†W†

DWDGQHFF†H† − σ2
xγ

−1G†W†
DF†H†

+σ2
n1

γ−2G†W†
DWDGQ + λσ2

xQHFF†H† + σ2
n1

λQ = 0 (22)

and
∂C
∂γ

= tr(σ2
xWDGQ(ρ2HFF†H† + σ2

n1
INr)Q

†G†W†
D + σ2

n2
WDW†

D)

−tr
(
γσ2

xWDGQHF
)

= 0. (23)
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These results can be verified using some rules such as dtr (Y) = tr (dY), vec(dX) = dvec(X), tr(XTY) =

vec(X)T vec(Y) (For detail, see [28]). When deriving (23), we have used a fact that tr (<{σ2
xWDGQHF}) =

tr (σ2
xWDGQHF).

Combining the power constraint in (4) and (22), we obtain Q̂ = γQ̃ with

Q̃ = (G†W†
DWDG + λγ2INr)

−1(G†W†
Dσ2

xF
†H†)(σ2

xHFF†H† + σ2
n1

INr)
−1, (24)

where γ =

√
PR/tr

(
Q̃

(
σ2

xHFF†H† + σ2
n1

INr

)
Q̃
†)

. It should be noted that directly evaluating Q̃ and

γ is formidable since Q̃ and the scalar value γ are inter-related. Letting µ = λγ2, we can overcome this

difficulty as in [19].

Defining A and D as A , (G†W†
DWDG+µINr)

−1 and D , (σ2
xHFF†H†+σ2

n1
INr)

−1, respectively,

the last term of equation (23) can be modified as

tr
(
γ2σ2

xWDGQ̃HF
)

= tr
(
γ2σ2

xWDGA(G†W†
Dσ2

xF
†H†)DHF

)

= tr
(
γ2(G†W†

Dσ2
xF

†H†)DHFσ2
xWDGA

)

= tr
(
γ2A−1A(G†W†

Dσ2
xF

†H†)DD−1DHFσ2
xWDGA

)

= tr
(
γ2A−1Q̃D−1Q̃

†)

= tr
(
γ2(G†W†

DWDG + µINr)(Q̃(σ2
xHFF†H† + σ2

n1
INr)Q̃

†
)
)

. (25)

Substituting this result in (25) into equation (23), we compute µ = tr
(
σ2

n2
WDW†

D

)
/PR. Finally, using

the matrix inversion lemma, the closed form solution for the optimal relay transceiver Q̂ is given as

Q̂ = γG†W†
D

(
WDGG†W†

D +
tr(σ2

n2
WDW†

D)

PR

INr

)−1 (
F†H†HF +

σ2
n1

σ2
x

INs

)−1

F†H†.

APPENDIX B

DECOMPOSITION OF RE

By Lemma 1, we can rewrite the error covariance matrix RE in (3) as

RE =
(
γ2F†H†L†RB†G†R−1

n GBLRHF + (1/σ2
x)INs

)−1

, (26)
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where Rn = γ2σ2
n1

GBLRL†RB†G† + σ2
n2

INd
. Let the effective channel H of the overall source-to-

destination link be H = γGBLRHF. Then using the matrix inversion lemma, the RE in (26) becomes

RE = σ2
xINs − σ4

xH† (Rn + σ2
xHH†)−1H

= σ2
xINs − σ4

xH† (γ2GBRyB
†G† + σ2

n2
INd

)−1H, (27)

where Ry is calculated as

Ry = LR(σ2
xHFF†H + σ2

n1
INr)L

†
R

= σ2
xF

†H†HF
(
F†H†HF + (σ2

n1
/σ2

x)INs

)−1
. (28)

Applying the matrix inversion lemma again on equation (27) and using simple calculations, we can

obtain

RE = σ2
xINs −

σ4
x

σ2
n2

H†H +
σ4

xγ
2

σ4
n2

H†GB

(
γ2

σ2
n2

B†G†GB + R−1
y

)−1

B†G†H (29)

= σ2
xINs −

σ4
x

σ2
n2

H†H +
σ4

xγ

σ2
n2

H†GB

(
γ2

σ2
n2

B†G†GB + R−1
y

)−1

×
(

γ2

σ2
n2

B†G†GB + R−1
y −R−1

y

)
LRHF

= σ2
xINs −

σ4
x

σ2
n2

H†H +
σ4

x

σ2
n2

H†H− σ2
xγ

σ2
n2

H†GB

(
γ2

σ2
n2

B†G†GB + R−1
y

)−1

J (30)

= σ2
xINs − σ2

xF
†H†L†R

(
γ2

σ2
n2

B†G†GB + R−1
y −R−1

y

)(
γ2

σ2
n2

B†G†GB + R−1
y

)−1

J

= σ2
xINs − σ2

xF
†H†L†RJ + σ2

n2
J † (γ2B†G†GB + σ2

n2
R−1

y

)−1 J

where we have used a fact that γ2

σ2
n2

B†G†GB = γ2

σ2
n2

B†G†GB + R−1
y −R−1

y in the last term of (29) and

(30), and J is defined as J , σ2
xR

−1
y LRHF. Note that J is equivalent to an identity matrix INs . Then

finally it follows

RE = σ2
xINs − σ2

xF
†H†L†R + σ2

n2

(
γ2B†G†GB + σ2

n2
R−1

y

)−1

= σ2
n1

(
F†H†HF +

σ2
n1

σ2
x

INs

)−1

+ σ2
n2

(
γ2B†G†GB + σ2

n2
R−1

y

)−1
.
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APPENDIX C

SIMPLIFICATION OF D-WF

Using the matrix inversion lemma, the original D-WF in (2) can be reformed as

ŴD = γ2σ2
xF

†H†L†RB†G†(γ2σ2
xGBLRHFF†H†L†RB†G† + Rn)−1.

Then after some manipulations, we have

ŴD = γ2σ2
xF

†H†L†RB†G†(γ2GBRyB
†G† + σ2

n2
INd

)−1

= γ2σ2
xF

†H†
(
HF(F†H†HF +

σ2
n1

σ2
x

INs)
−1

)
B†G†(γ2GBRyB

†G† + σ2
n2

INd
)−1

= γ2RyB
†G†(γ2GBRyB

†G† + σ2
n2

INd
)−1

= γ2(γ2B†G†GB + σ2
n2

R−1
y )−1B†G†, (31)

where we have used the results of (7) and (28).

REFERENCES

[1] G. J. Foschini and M. Gans, “On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas,”

Wireless Personal Communications, vol. 6, pp. 311–335, March 1998.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecom., vol. 10, pp. 585–595, November 1999.

[3] G. Caire, G. Taricco, and E. Biglieri, “Bit-Interleaved Coded Modulation,” IEEE Transactions on Information Theory, vol. 44, pp. 927–

946, May 1998.

[4] I. Lee, A. Chan, and C.-E. W. Sundberg, “Space-Time Bit-Interleaved Coded Modulation for OFDM systems,” IEEE Transactions on

Signal Processing, vol. 52, pp. 820–825, March 2004.

[5] E. C. van der Meulen, “Three Terminal Communication Channels,” Advanced in Applied Probability, vol. 3, pp. 120–154, Spring

1971.

[6] T. M. Cover and A. Gamal, “Capacity theorems for the relay channels,” IEEE Transactions on Information Theory, vol. 25, pp. 572–584,

September 1979.

[7] B. Wang, J. Zhang, and A. Host-Madsen, “On the Capacity of MIMO Relay Channels,” IEEE Transactions on Information Theory,

vol. 51, pp. 29–43, January 2005.

[8] H. Bolcskei, R. U. Nabar, O. Oyman, and A. J. Paulraj, “Capacity Scaling Laws in MIMO Relay Networks,” IEEE Transactions on

Wireless Communications, vol. 5, pp. 1433–1444, June 2006.



22

[9] S. Simeone, O. Munoz, J. Vidal, and A. del Coso, “On the Gaussian MIMO relay channel with full channel state information,” IEEE

Transactions on Signal Processing, vol. 57, pp. 3588–3599, September 2009.

[10] A. Sendonaris, E. Erkip, and B. Aazhang, “User Cooperation Diversity-Part I and Part II,” IEEE Transaction on Communications,

vol. 51, pp. 1927–1948, November 2003.

[11] R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fading relay channels: Performance Limits and Space-Time Signal Design,” IEEE

Journal on Selected Areas in Communications, vol. 22, pp. 1099–1109, August 2004.

[12] X. Tang and Y. Hua, “Optimal Design of Non-Regenerative MIMO Wireless Relays,” IEEE Transactions on Wireless Communications,

vol. 6, pp. 1398–1407, April 2007.

[13] O. Munoz-Medina, J. Vidal, and A. Agustin, “Linear Transceiver Design in Nonregenerative Relays With Channel State Information,”

IEEE Transactions on Signal Processing, vol. 55, pp. 2593–2604, June 2007.

[14] W. Guan and H. Luo, “Joint MMSE Transceiver Design in Non-Regenerative MIMO Relay Systems,” IEEE Communications Letters,

vol. 12, pp. 517–519, July 2008.

[15] Z. Fang, Y. Hua, and J. C. Koshy, “Joint Source and Relay Optimization for a Non-regenerative MIMO relay,” in IEEE Workshop on

Sensor Array Multichannel Signal Processing, pp. 239–243, July 2006.

[16] R. Mo and Y. H. Chew, “MMSE-based Joint Source and Relay Precoding Design for Amplify-and-Forward MIMO Relay Networks,”

IEEE Trasnactions on Wireless Communications, vol. 8, pp. 4668–4676, September 2009.

[17] Y. Rong, X. Tang, and Y. Hua, “A Unified Framework for Optimizing Linear Non-Regenerative Multicarrier MIMO Relay

Communication Systems,” Accepted for Publication in IEEE Transactions on Signal Processing, 2009.

[18] J. Laneman, D. Tse, and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior,”

IEEE Transactions on Information Theory, vol. 50, pp. 3062–3080, December 2004.

[19] M. Joham, W. Utschick, and J. A. Nossek, “Linear Transmit Processing in MIMO Communications Systems,” IEEE Transactions on

Signal Processing, vol. 53, pp. 2700–2712, August 2005.

[20] J. H. Conway, R. H. Hardin, and N. J. A. Sloane, “Packings Lines, Planes, etc.: Packings in Grassmannian Spaces,” Experimental

Mathematics, vol. 5, pp. 139–159, 1996.

[21] A. Barg and D. Y. Nogin, “Bounds on Packings of Spheres in the Grassmann Manifold,” IEEE Transactions on Information Theory,

pp. 2450–2454, September 2002.

[22] D. J. Love and R. W. Heath, “Limited Feedback Unitary Precoding for Spatial Multiplexing Systems,” IEEE Transactions on Information

Theory, vol. 51, pp. 2967–2976, August 2005.

[23] B. Khoshnevis, W. Yu, and R. Adve, “Grassmannian Beamforming for MIMO Amplify-and-Forward Relaying,” IEEE Journal on

Selected Areas in Communications, vol. 26, pp. 1397–1407, October 2008.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. The Edinburgh Building, Cambridge: Cambridge University Press, 2004.

[25] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal Designs for Space-Time Linear Precoders and

Decoders,” IEEE Transactions on Signal Processing, vol. 50, pp. 1051–1064, May 2002.



23

TABLE I

COMPARISON OF THE REQUIRED CSI

Scheme Source Relay Destination

Conventional QoS [16] / MA-MSE [17] / MM-MSE [17] H, G H, G H, G

designs RD-NC [14] / MCC [12] None H, G H, G

R-MMSE [29] / R-ZF [29] None H, G None

Proposed SRD-NC / SRD-BNC / SRD-MV H H, G G

designs RD-NC / RD-MV None H, G G̃

w/ D-Sub SRD-Q (log2 kF ) bits H, (log2 kB) bits G

RD-Q None H, (log2 kB) bits G

F H R
L γB G D

W⊕ ⊕

1n 2n

R
y D

y

( )Q

yx
D
y%

Fig. 1. System description for the non-regenerative MIMO relaying system

[26] H. Sampath, P. Stoica, and A. Paulraj, “Generalized Linear Precoder and Decoder Design for MIMO Channels Using the Weighted

MMSE Criterion,” IEEE Transactions on Communications, vol. 49, pp. 2198–2206, December 2001.

[27] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx Beamforming Design for Multicarrier MIMO Channels: A Unified

Framework for Convex Optimization,” IEEE Transactions on Signal Processing, vol. 51, pp. 2381–2401, September 2003.

[28] A. Hjorungnes and D. Gesbert, “Complex-Valued Matrix Differentiation: Techniques and Key Results,” IEEE Transactions on Signal

Processing, vol. 55, pp. 2740–2746, June 2007.

[29] O. Oyman and A. J. Paulraj, “Design and analysis of linear distributed MIMO relaying algorithms,” in IEE Proc. Communn., vol. 153,

pp. 565–572, August 2006.



24

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

SNR
2
 (dB)

M
S

E

MSE performance in 4by4by4 AF MIMO relaying systems with Ns=4

R−MMSE [29]
RD−NC [14]
RD−NC w/ D−Sub
SRD−NC
SRD−NC w/ D−Sub
MA−MSE [17]

SNR
1
=5dB

SNR
1
=10dB

Fig. 2. MSE performance of various designs as a function of SNR2

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

SNR
0
 (dB)

B
E

R

BER in AF MIMO relaying systems with Nr=4

SRD−BNC 4QAM
MM−MSE [17] 4QAM
SRD−BNC 16QAM
MM−MSE [17] 16QAM

Nt=Nd=Ns=4

Nt=Nd=Ns=3

Fig. 3. BER performance comparison as a function of SNR0



25

0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

SNR
0
 (dB)

B
E

R

BER in 4by4by4 AF MIMO relaying systems with Ns=4

AF w/ D−WF
R−ZF [29]
R−MMSE [29]
RD−NC [14]
RD−NC w/ D−Sub
SRD−BNC
SRD−BNC w/ D−Sub

Fig. 4. BER performance comparison as a function of SNR0 with 4QAM

10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

SNR
0
 (dB)

B
E

R

BER in 4by4by4 AF MIMO relaying systems with Ns=4

AF w/ D−WF
R−ZF [29]
R−MMSE [29]
RD−NC [14]
RD−NC w/ D−Sub
SRD−BNC
SRD−BNC w/ D−Sub

Fig. 5. BER performance comparison as a function of SNR0 with 16QAM
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Fig. 6. MSE performance of various designs as a function of SNR0
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Fig. 7. MSE performance of various designs as a function of SNR0



27

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

SNR
0
 (dB)

B
E

R

BER in 2by4by2 AF MIMO relaying systems with Ns=2

SRD−BNC
RD−NC [14]
RD−MV
RD−Q (6bit)

Fig. 8. BER performance of various designs as a function of SNR0 with 4QAM


