
CODEN:LUTEDX(TETS-5315)/1-75/(1998)&local 2

Department of
Communication Systems
Lund Institute of Technology
Lund University

Software Engineering
Research Centre
The Royal Melbourne
Institute of Technology and
The University of Melbourne

How to measure reliability

in an Erlang System

a Master Thesis by

Hans Danielsson and Kent Olsson

February 26, 1998

Supervisor: Claes Wohlin, Lund
Fergus O’Brien, Melbourne



Abstract

Today, the quality of a software product has become more and more impor-
tant when a customer choose supplier. This has led to desire to be able to
write a contract where you can specify the quality and then at delivery show
the customer that your product fulfil these requirements. This thesis shows
that it is possible to specify the requirements for at least one quality aspect,
the reliability, in the contract and then have full control over these through
the whole development process and even during the operational phase.

We have defined reliability metrics and described aspects that one have to
take in consideration when collecting these metrics. We have also developed
design guidelines to follow, to be able to collect these metrics in an Erlang
system.

To validate our method we have build a monitor and analysis program and
used this with a web server, written in Erlang.



Preface

This Master Thesis is undertaken for the Department of Communication Sys-
tem at Lund Institute of Technology, Lund, Sweden, Erlang System, Stock-
holm, Sweden and Software Engineering Research Centre (SERC) in
Melbourne, Australia. The thesis has been performed at SERC.

We would like to thank all the people at SERC, and especially Prof. Fergus
O’Brien, for letting us conduct our Master Thesis at SERC. We really
enjoyed performing our thesis at SERC and we are grateful for that we had
the opportunity to stay in such a lovely place as Melbourne. This thesis
would never been possible to carry through without all the helpful sugges-
tions and ideas from the people at SERC.

We also like to thank Roy Bengtsson at Erlang System and Mike Williams at
OTP for their allowance that helped us to come to Australia.

A special thank you, to our supervisor in Sweden, Claes Wohlin at Lunds
Institute of Technology for all his ideas and views through the project and
especially his support at the end.

Now you probably think that we will go on thanking people through the
whole report, but we only have one thank left and that is the most important.

Thank you, Torbjörn Törnkvist, for all you support through this thesis. You
have given us all support we could ever ask for about Erlang. You have also
been very helpful for the other parts in this thesis, with all your ideas and the
discussions we had. You have been an outstanding supervisor, but a poor
squash- and table tennis player, once again THANKS.

Kent Olsson
Hans Danielsson

25 February, 1998
Melbourne



Table of contents

Abstract

Preface

CHAPTER 1 Introduction................................................. 1
1.1 Software Engineering....................................................................1
1.1.1 Software Quality ..........................................................................1
1.1.2 Software Reliability .....................................................................2
1.1.3 Software Measurements...............................................................2
1.1.4 Monitoring ...................................................................................3
1.2 Computer environment ................................................................3
1.2.1 The Erlang Engine .......................................................................3
1.2.2 Erlang/OTP ..................................................................................4

CHAPTER 2 Purpose......................................................... 5
2.1 Software quality research at SERC.............................................5
2.2 Purpose of this thesis.....................................................................6
2.3 Course of action.............................................................................7

CHAPTER 3 Software Reliability Engineering............... 8
3.1 Overview ........................................................................................8
3.1.1 System Reliability Requirements.................................................9
3.1.2 System Reliability Modelling ......................................................9
3.1.3 System Reliability Allocation ....................................................11
3.1.4 System Reliability Prediction.....................................................11
3.1.5 System Reliability Growth Testing ............................................11
3.1.6 System Reliability demonstration Testing .................................12
3.1.7 System Failure Reporting and Corrective Action Systems........12
3.2 Basic Definitions ..........................................................................12
3.2.1 Failures and Faults .....................................................................12
3.2.2 Time ...........................................................................................12
3.2.3 Input space and Operational profile ...........................................13
3.2.4 Reliability...................................................................................13
3.3 Software Reliability Growth Testing .........................................14
3.3.1 Software Reliability Growth Models .........................................14
3.3.2 Model selection ..........................................................................15
3.4 System Reliability Demonstration Testing................................21
3.5 Operational Profile......................................................................23
3.5.1 Customer Profile ........................................................................24
3.5.2 User Profile ................................................................................24
3.5.3 System-mode Profile ..................................................................25
3.5.4 Functional Profile.......................................................................25
3.5.5 Operational Profile .....................................................................25
3.5.6 Test Selection .............................................................................25



3.6 Two selected models ....................................................................26
3.6.1 Execution Time Component.......................................................26
3.6.2 Calendar Time Component ........................................................30
3.6.3 Parameter Determination ...........................................................34
3.6.4 Model choice..............................................................................37
3.7 Software Reliability Tools...........................................................37

CHAPTER 4 Monitoring ................................................. 40
4.1 Overview ......................................................................................40
4.1.1 Program execution monitor........................................................40
4.2 Monitoring non-functional requirements .................................42

CHAPTER 5 Computer environment ............................ 44
5.1 Erlang System/OTP ....................................................................44
5.1.1 Program structure.......................................................................46
5.1.2 Failure behaviour .......................................................................47
5.2 The Erlang Engine ......................................................................47

CHAPTER 6 Possible Solutions ...................................... 49
6.1 Overview ......................................................................................49
6.2 Different reliability solutions......................................................49
6.3 Automatic or semi-automatic.....................................................50
6.3.1 Automatic...................................................................................50
6.3.2 Semi-automatic ..........................................................................50
6.4 How to divide the target program .............................................51
6.4.1 Process- and function-subsystem...............................................51
6.4.2 Transaction subsystem ...............................................................51
6.5 When and for how long shall we monitor the program...........52
6.5.1 Only monitor during the test phase............................................52
6.5.2. Monitoring a certain time..........................................................52
6.5.3 Monitoring all the time ..............................................................53

CHAPTER 7 Our solution............................................... 54
7.1 Metrics for calculating the reliability ........................................54
7.1.1 Definition ...................................................................................54
7.1.2 System components....................................................................54
7.1.3 Analysing metrics ......................................................................56
7.1.4 Other aspects ..............................................................................56
7.2 How do we monitor these metrics through the Erlang system56
7.2.1 Information sent about transactions ...........................................56
7.2.2 How do we connect a failure to a transaction ............................57
7.2.3 Future failure..............................................................................58
7.2.4 Information sent connected to failure and future failure............59
7.2.5 How do we get the target program to send messages ................59
7.3 Overview of our practical solution and guidelines for usage ..60
7.3.1 Overview of the practical solution.............................................61
7.3.2 Example of the implemented code.............................................62
7.3.3 Design Guidelines ......................................................................66



CHAPTER 8 The monitor program ............................... 67
8.1 Main components ........................................................................67
8.1.1 Mon ............................................................................................67
8.1.2 Mon_collector ............................................................................67
8.1.3 Mon_log .....................................................................................68

CHAPTER 9 The analysis program ............................... 69
9.1 Main components ........................................................................69
9.2 Transaction and failure analysis ................................................69
9.2.1 Concurrent file handling.............................................................69
9.2.2 Execution time ...........................................................................69
9.2.3 Data extraction ...........................................................................70
9.2.4 Pseudo failure.............................................................................70
9.3 Reliability analysis ......................................................................71
9.3.1 Metrics .......................................................................................71
9.3.2 Multiple failures.........................................................................71
9.4 Future failure analysis ................................................................71
9.5 Outputs.........................................................................................71

CHAPTER 10 Practical Application .............................. 73
10.1 The Test Environment ..............................................................73
10.1.1 System components..................................................................73
10.1.2 Transaction types......................................................................74
10.1.3 Test cases..................................................................................75
10.1.4 Test case generator ...................................................................76
10.1.5 Failure simulation ....................................................................76
10.2 Test Results ................................................................................76
10.2.1 Validation of our solution.........................................................76
10.2.2 Web server failures...................................................................76
10.2.3 Comments to the graphs...........................................................77

CHAPTER 11 Retrospect and future work ................... 79
11.1 Retrospect...................................................................................79
11.1.1 Reliability .................................................................................80
11.1.2 Monitoring................................................................................80
11.1.3 Test application ........................................................................80
11.2 Future work ...............................................................................80

References.......................................................................... 81

Appendix A Erlang source code...................................... 83

Appendix B Gnuplot source code.................................. 105

Appendix C Test source code......................................... 113

Appendix D Test results ................................................. 116



1

CHAPTER 1

Introduction

This chapter gives a brief, broad view of everything that is relevant to this
thesis. We start with what software engineering is and why it is needed and
then continue with monitoring. Finally, we describe Erlang/OTP, the compu-
ter environment used in this thesis.

1.1 Software Engineering
For about ten years ago software products were something the ordinary
human never used. The technical machines around us mostly consisted and
depended on hardware, but during the last decade software has become a big
part of our everyday life. Everywhere there is more software and less hard-
ware. Today, programs must be so easy to use that everyone can manage
them, even if they do not have any training. The software also handles more
and more critical and dangerous tasks, such as nuclear power plants, landing
systems for aeroplanes and so on. This has resulted in higher requirements
on the software, both when it comes to functionality and quality. It has also
made software quality a key factor for the customer when he or she chooses
supplier.

To be able to meet the new requirements software companies have to change
their development organisation. They must find ways of controlling the
whole development process. However one problem is that so far most people
have seen software development as an art performed by “Hackers” and not as
a well engineering discipline. To cope with this problem companies and uni-
versities have initiated a lot of research in this new field called “Software
Engineering” has evolved. Software Engineering deals with all problems
related to software development and has till now resulted in a number of dif-
ferent tools and methods. These methods intend to help the organisation, and
in particular the manager, to keep track of the progress during a project. This
way he can make sure that a product has a certain quality. Since the software
industry is very changeable and there are seldom two projects with the same
requirements, the methods must be under constant development.

1.1.1 Software quality
Software products are very hard to understand. The reason for this is that you
can not see or touch software. The only thing you can do is to see their reac-
tion on different inputs. This makes them very subjective. Software products
are often very logically complex, which makes them very hard to test as well.
This uncertainty of what a software product really is, and the problems
involved with testing have led to numerous different definitions of software
quality. Almost every organisation has its own way of defining quality based
on what characteristics they think are important. However, there is some
characteristics that most organisations have in common, some of these are:



2

•Reliability -How reliable the program is. How often it fails.

• Performance -Which performance the program has. How long
time it takes before I get a response.

• Maintainability -How easy it is to maintain the program during
operation.

•Portability  -How easy it is to move the program to another envi-
ronment.

None of these characteristics are more important than anyone else, it depends
on the situation. If the software should control a nuclear power plant reliabil-
ity is very important. You really do not want the program to fail. But, since
the program is tailor made for this particular plant and thus should run in the
same computer environment, you are not so interested in high portability. In
another situation it could be the opposite, e.g. a word processor. You do not
care if it fails sometimes. The most important aspect is that as many people
as possible can use it in their environment

1.1.2 Software Reliability
According to [1] the definition of reliability is“The probability of failure-
free software operation for a specified period of time in a specified environ-
ment”. This is widely used but it is not the only definition. Another com-
monly used way to express reliability is Mean Time To Failure (MTTF).
Reliability is one characteristic of software quality that often is considered as
important. Even if there is no danger involved when a program fail, the user
will probably not tolerate this too happen to frequently.

When we have decided which definition to use there are still a number of
aspects to consider. First of all, what is a failure? Is it when the program
stops working or is it when it gives you an incorrect answer? One definition
of failure, which is broadly used, is when the program behaviour departs
from the requirements.

1.1.3 Software measurements
If you want to improve the quality of the products you develop you must first
of all define what you mean by quality (see above). Then you have to find a
way to measure the quality, otherwise you do not know if you have improved
your product or not. If it is a hardware product you can easily pick a random
sample and then run some tests on that sample. But how do you perform
measurements on a software product which you can not see or touch? There
is no short answer to this question but there are two methods you can use to
collect measures from software:

• Execution -Execute the program and see how the program
behaves for different sets of inputs.



3

• Reviews -During the whole development process you stop and
inspect your result at certain points to make sure that it follows the
requirements and meets your quality objectives as well.

These two methods does not exclude each other, on the contrary, they should
be used together. The first method is good when the program is finished, but
then it may be too late to do any changes. It can also be hard to analyse the
internal behaviour of the program. The good thing with reviews is that you
will early see your mistakes so that you can correct them before it is too late.
You can also early predict if your program will meet the objectives when it is
finished.

1.1.4 Monitoring
If you want to collect data from your program when it is executing, you do
not want this to interfere with the normal behaviour of the program. If it
should interfere, your data will be inaccurate and thus you will draw the
wrong conclusions. A good way to avoid this is to monitor your program.
This means that you only watch the execution of the program and passively
collect data. You may have to do some changes in your program to be able to
extract the data. If so, you must consider this very carefully and be sure it
does not affect the behaviour of the program.

1.2 Computer environment
When you want to develop a program with very high quality it may not be
enough to change your development process. You may also have to change
your development environment. If you can not find anyone that suits you,
you may be forced to take this one step further and develop your own envi-
ronment.

1.2.1 The Erlang Engine
One of Ericsson’s major successes is the telephone switch AXE-10. It has
been sold to a numerous of countries all over the world. The problem now is
that it is getting old and needs to be upgraded to stay competitive. Of course,
this has been done regularly ever since it was first introduced but now it is
not enough to do small changes. This time it needs a major upgrade. It is the
extreme growth in applications that causes the biggest problem and one way
to solve this is to connect the AXE-10 to new architectures. One of these
architectures uses the Erlang/OTP environment (see below) and is called The
Erlang Engine. The Engine is a high performance multiprocessor approach
to the implementation of intelligent network applications.



4

1.2.2 Erlang/OTP
For about ten years ago, the Swedish telephone company Ericsson was in the
situation mentioned above. They wanted a computer environment that could
help them to develop telecommunication applications with very high reliabil-

ity. What they1 did was to take a telecommunication application and imple-
ment several programs with the same functionality using different computer
languages. Then they took the best parts from each program and put them
together in a new language, called Erlang.

It was not enough to develop a new programming language. Ericsson also
had to develop a whole new environment to support the development of
Erlang products. They called this environment Open Telecom Platform
(OTP). OTP is based on a high level language and contains not only Erlang
but also a number of well tested modules which solves critical basic prob-
lems.

1. The actual development was done by CSLab (Ericsson Computer Science
Laboratory)



5

CHAPTER 2

Purpose

This chapter describes the purpose with this thesis and how we are intending
to set about it. The chapter also contains a short description on other related
projects at SERC.

2.1 Software quality research at SERC
In chapter 1 we mentioned that the increasing requirements on software qual-
ity initiated a lot of research in a new field called Software Engineering.
Software quality is also referred to as non-functional requirements, i.e. eve-
rything that does not relate to the actual functionality of the software. One
research centre that takes this very seriously is the Software Engineering
Research Centre (SERC) of the Royal Melbourne Institute of Technology,
Melbourne (RMIT), Australia. At SERC they concentrate their software
quality research on three of these non-functional requirements, reliability,
performance and, maintainability.

A lot of research in software quality concentrates on the actual construction
of the program, and the steps before and after are often forgotten. At SERC
they wanted to control the quality through all steps involved in a software
project starting with the contract and ending when the program is thrown
away. To achieve this they have set out several projects each addressing qual-
ity from a different point of view.

Till now, there has been one project undertaken, Quality of Telecommunica-
tion Application Software by Anna-Karin Carlsson and Fredrik Gustavsson
[2], that addressed the problems involved in identifying the requirements and
specify them in the contract. The outcome of this project was a way to iden-
tify and describe a business as a number of different transactions, e.g. ordi-
nary call, call forward, billing. Carlsson and Gustavsson also found a way to
decide which level of quality you need for every type of transaction to make
a good business, e.g. a reliability of 99,9% for call forward.

The other projects that has been undertaken have been concentrated on mon-
itoring the quality in a software based system, both during development and
operation [3]. Since SERC is closely connected to Ericsson, they were intro-
duced to Erlang/OTP and they found that it already contained many of the
desired features of a monitoring system. To be able to monitor the system
continuously, without affecting the performance, a dual pentium based sys-
tem, using a new Erlang compiler, is under construction by Geoff Wong. The
idea is to execute the main application on one processor and the monitor pro-
gram on the other. So far there has been projects undertaken to solve the
problems with monitoring performance and maintainability. Wong’s system
is intended to be included in the Erlang Engine mentioned in chapter 1.



6

2.2 Purpose of this thesis
This thesis is both a continuation on the project by Carlsson and Gustavsson
and a part of the monitor project conducted by Geoff Wong. The whole thesis
is concentrated on one quality characteristic, namely reliability. Figure 2.1
shows how the three different projects are related.

The outcome from Carlsson and Gustavsson’s method are the non-functional
requirements in the contract. Our job is to first define reliability metrics,
which is a part of the quality metrics, in a way that suites Erlang systems.
Then we should find a way to connect these metrics to the non-functional
requirements in the contract and also supports the use of Wong’s Erlang
compiler. Our method will be presented as a set of design guidelines. Since
the monitor project is not finished we will also have to write a monitor pro-
gram, in Erlang, to collect the data we need to calculate the reliability. We
will also write a program to analyse the data we have collected.

Functional
Require-
ments

Non-
functional
Require-
ments

Contract

Design
(Which sup-
ports both
the functional
and the non-
functional
require-
ments)

Coding
Wong’s
Erlang
Compiler

Application
Program

Monitor
Program

Quality Metrics

LOG
Files

Analysis
Program

User friendly
quality
information

Figure 2.1: Project relations



7

2.3 Course of action
First we will learn Erlang so that we know the possibilities and limitations of
an Erlang system [4], see chapter 5. We will also conduct a literature study to
see what has already been done in the field of reliability and monitoring, see
chapter 3 and 4. Then we will use our new knowledge to join these three
parts together and identify different possible solutions, see chapter 6. When
this is done we will implement the best solution in our monitor program, see
chapter 7-9, and to prove that our solution works, we will finally use this pro-
gram together with a suitable Erlang application, see chapter 10.



8

 CHAPTER 3

Software Reliability Engineering

This chapter describes the software reliability theory we use in this project.
We start with an overview of Software Reliability Engineering and gives
some basic definitions. After this, we move deeper down in reliability growth
and demonstration testing and also describe how you develop your opera-
tional profile. Then we describe in detail two ways of modelling reliability
and ends with a quick view of modelling tools.

3.1 Overview
Software quality contains a lot of different aspects. One of the most impor-
tant is Reliability. The good thing with reliability is that it is user-oriented
instead of developer-oriented, e.g. fault counting. This means that it is
derived from a user point of view which makes it more understandable for
the customer. It also relates to operation rather than design which makes it
more dynamic than static. Another advantage is that you can calculate relia-
bility both for hardware and software which makes it possible to calculate
the whole computer system’s reliability.

Software Reliability Engineering (SRE) is a part of Software Engineering
that, just as it sounds, concentrates on the quality characteristic Reliability.
SRE involves all steps in the development process, from identifying reliabil-
ity requirements to verifying that the requirements are fulfilled in the finished
product. Figure 3.1 shows the different tasks, and their interrelationships,
that has to be solved to be in full control of the development process [5].
Since telecommunication applications consist of both hardware (HW) and
software (SW) components this must be considered when building up the
control process. The Reliability control process consists of seven major com-
ponents. These components interact with each other and most of them are
under constant refinement during the project. All components consists of
both a hardware part and a software part.

This thesis concentrates on the software part of two of the seven compo-
nents, System Reliability Growth Testing and System Reliability Demonstra-
tion Testing. The other five will only be briefly described since these are not
directly in the scope of this thesis. For a more thorough description see [5].



9

3.1.1 System Reliability Requirements
The System Reliability Requirements should be elaborated together with the
customer. A good way to do this is to use Carlsson’s and Gustavsson’s [2]
method mentioned in chapter 2. This method gives a good assessment of the
overall reliability but it does not give any separate estimate for hardware and
software components which is needed. This has to be done with another
method.

3.1.2 System Reliability Modelling
System reliability modelling provides a functional representation of the sys-
tem under analysis. An accurate system model provides a mechanism for all
reliability analysis performed. System reliability modelling for hardware and
software systems is an evaluation of the dependency between system serv-
ices and the various hardware components and their associated software. The
system model is developed as an iterative process of decomposing the
dependencies within the various system structural components.

System
Requirements
Analysis and
Design

Hardware
Requirements
Analysis

Hardware
Preliminary
Design

Hardware
Detailed
Design

Fabrication Test System
Integration
and Test

Software
Requirements
Analysis

Software
Preliminary
Design

Software
Detailed
Design

Coding
and Unit
Test

CSC
Integration
Test

CSCI Test

System
Reliability
Require-

System
HW/SW
Reliability
Model

System
HW/SW
Reliability
Allocations

HW/SW
Reliability
Predictions

Assessment
Report

Assessment
Report

Evaluate
Results

HW/SW
Demo
Test

To Program and
Engineering Manager

Program Review Board Activity

ReDesign Activity

Progress Evaluation

HW/SW Growth Testing

Evaluate Growth

Design Activity

Not OK

Design
Correction

Reallocation
Needed

Reassign Resources

Figure 3.1: System Reliability Tasks

ments



10

The system is decomposed until it consists of a series of discrete hardware
and hardware/software components, see example 3.1 taken from [5].
Detailed models of the individual hardware components that do not host soft-
ware can then be developed in accordance with established hardware relia-
bility techniques.

Example 3.1: Hardware/Software Decomposing
In figure 3.2 some of the components in a missile guidance system is illus-
trated. The Inerital Measurement Unit (IMU) and Inerital Navigation System
(INS) are hardware-only components, but the mission computer contains
both software and hardware. The Operating System (OS) is operating contin-
uously while the Application Software (AS) only operates when it is com-
manded to do. These time factors must be accounted for in the reliability
analysis.

The hardware/software components are decomposed as shown in figure 3.3.
As you can see, the software part of the component is divided into two parts.
Non-Developmental Software, which includes the operating system, and
Newly Developed Software. Since the different components are independent
the failure rates also are independent, and when failure rates are independent
and exponential they can be directly added together.

CPU

HW Component
INS

HW Component

IMU

HW Component OS

SW Component

AS

SW Component

Guidance Kit Software

Mission Computer

HW/SW Component

Figure 3.2: Block diagram for Missile Guidance System

Hardware
Configuration
Item

Non-
Developmental
Software

Newly
Developed
Software

Software Configuration Item

Figure 3.3: Reliability model for HW/SW components



11

For those cases where redundant equipment for hardware/software elements
is supplied, the reliability model developed will depend on the exact method
used to implement fault detection and recovery.

Even though the tasks involved in modelling software and hardware are sim-
ilar there is one big difference. Software systems consist of Computer Soft-
ware Configuration Items (CSCIs) which are generally independent
programs associated with Hardware Configuration Items. The CSCI can be
divided into Computer Software Units (CSUs), that perform a given software
function, see figure 3.4. These CSUs can never be independent which means
that they will not have independent failure rates.

3.1.3 System Reliability Allocation
During system reliability modelling you divided your system into different
independent components. When this is done, you need to allocate every com-
ponent a reliability goal so that the total system reliability meets the require-
ments. This allocation is an iterative process as knowledge of achievable
failure rates is not always available.

3.1.4 System Reliability Prediction
System Reliability Predictions are used to assess overall design progress
toward achieving the specified system reliability. Reliability predictions and
estimates for the various system components are combined using a system
model. The resultant reliability calculation is then compared against the
specified system requirement to determine whether or not the current system
design achieves the specified reliability.

3.1.5 System Reliability Growth Testing
System Reliability Growth consists of hardware and software reliability
growth. By using the system reliability model you combine the two inde-
pendent growth estimates into one total system reliability growth over time
estimate.

Program

CSCI CSCI CSCI

CSU CSU CSU

Figure 3.4: Dependency of software CSUs



12

Software Reliability Growth testing is conducted during the software system
test phase, after the software has been fully integrated. The purpose with this
testing is to assess the current reliability, identify and eliminate faults, and
forecast future reliability. During growth testing you should execute the pro-
gram in an environment that as much as possible resemble to the environ-
ment used during the operational phase. It is very important that the test
cases are randomly selected in accordance with the software’s operational
profile. This way of testing is very efficient in finding the failures that affects
the reliability most, i.e. those failures the user is most likely to encounter.
When a failure is observed, the execution time is recorded and these failure
times are then used as input to a software reliability growth model. The mod-
els normally assume that the faults causing the failures are immediately
removed.

3.1.6 System Reliability Demonstration Testing
System Reliability Demonstration Testing is conducted in the end of system
test and its purpose is to, with a certain statistical confidence, prove that the
system meets the requirements.

3.1.7 System Failure Reporting and Corrective Action Systems
System Failure Reporting and Corrective Action Systems (FRACAS)
describes how the different components in the reliability control process
interacts. It should include, among other things, documented procedures for
reporting failures, analysing failures to determine their root causes, and
establishing effective corrective action to prevent future recurrence of the
failure.

3.2 Basic Definitions
3.2.1 Failures and Faults
One of the first thing you have to do is to define what you mean by the term
failure. Which failures to count and which not to. Usually a failure means
that the program’s behaviour departs from the requirements. In this thesis
however, we define failures as failed transactions, i.e. non completed transac-
tion.

A fault, on the other hand, is a defect in the program that under certain cir-
cumstances causes a failure. It is often referred to as a bug. One fault can
cause more than one failure since different inputs makes the program behave
differently.

It is very important to know the difference between failures and faults. These
two terms often get mixed up and sometimes people even thinks that they
mean the same thing.

3.2.2 Time
Reliability quantities are often related to time since this feels natural for most
people. However, there are different types of time units.



13

Calendar time is what we usually refer to when we talk about time in our
daily life. It is very useful to express reliability with respect to calendar time
because this gives managers and developers, mostly in test groups, the
chance to see when, which date, they will reach their objectives. But, as you
will see later, most models use another kind of time, namely execution time
to derive reliability. The reason for this is because these models are superior
to those which use calendar time. To be able to express reliability with
respect to calendar time, the models convert execution time to calendar time
in a later state.

The second type of time is, as mentioned above, execution time. This is the
time the program spends in the processor. It can be hard to derive this time
since there can be many different programs running at the same time. The
models we will use, and most others, to calculate the reliability is based on
that failures occur randomly. Since it is only during the execution time that a
failure can occur, it is very important to use this time in your calculations.

3.2.3 Input space and Operational profile
The input space is all the sets, states, of inputs that the program should be
able to handle. If you then add the probability that this particular state should
be chosen to every state, you have your operational profile. That is, you
decide which probability a input state should be chosen with during test, see
example 3.2. The different probabilities are determined so that the opera-
tional profile reflects how the program is executed during normal operation.

Example 3.2
Suppose we only have three different end user functions (transactions), ADD,
DELETE, and UPDATE. The user has estimated that he will of all runs use
ADD 23%, DELETE 12% and UPDATE 65% of the time. Therefore we will
associate ADD with the real interval [0, 0.23], DELETE with [0.23, 0.35]
and UPDATE with [0.35, 1]. This is our operational profile. When we then
shall choose test cases we simply generate random numbers between [0, 1]
for each test case.

3.2.4 Reliability
One way to define reliability is the probability of failure-free operation of a
computer program for a specified time in a specified environment [6]. This
means that if you have a reliability of 0.99 for 10 hours the program will, in
average, during these 10 hours fail one time out of hundred.

Another way to express reliability is failure intensity, i.e. failures per time
unit. The relationship between failure intensity and reliability depends, as
you will see later in this chapter, on which model you use. One can not say
that one is better than the other, it depends on what you will use it for. Relia-
bility is better when you want to combine different component’s reliability to
one system reliability because the calculations will be simpler. Failure inten-
sity however, can be better suited in a program where the risk of failure at
any point in time is of paramount concern, e.g. a nuclear power plant.



14

For hardware reliability Mean Time To Failure, MTTF, is often used. It is
also used in software reliability but more and more seldom. The reason for
not to use it, is that there are many cases in software reliability in which
MTTF is undefined. Even if the relation between reliability and failure inten-
sity depends on the model you use, they usually vary during the test phase, as
faults are removed, as depicted in figure 3.5. As you can see, the failure
intensity decreases and the reliability increases with time.

3.3 Software Reliability Growth Testing
As mentioned in section 3.1.5 the purpose with reliability growth testing is to
assess the current reliability, identify and eliminate faults, and forecast future
reliability. You do this by executing the program, in an environment that as
much as possible reflects the environment it will operate in after delivery,
and record the times when failures occur. You remove the fault that caused
the failure immediately and then continue to test the program. The test cases
should be selected according to the operational profile as discussed later in
this chapter.

3.3.1 Software Reliability Growth Models
To keep track of the progress you use a reliability growth model. The model
takes the failure times as input and then calculates the current reliability and
also projects the future reliability. This way the project manager knows how
much more testing that needs to be done before they reach their objective.

When you shall model reliability, the first you have to consider are the fac-
tors that affect the reliability. These factors are [6] fault introduction, fault
removal and the environment. Fault introduction mainly depends on the
characteristics of the developed code, primary size, and the development
characteristics, software engineering technologies, tools and the level of
experience of personnel. Fault removal depends on time, operational profile
and the quality of the repair activity. Finally the environment depends
directly on the operational profile.

1.0

R
el

ia
bi

lit
y

F
ai

lu
re

 In
te

ns
ity

Time (hours)

Reliability

Failure intensity

Figure 3.5: Reliability and Failure Intensity



15

Some of these factors are probabilistic and therefore most models are based
on random processes. The different models use different probability distribu-
tion of failure times or number of failures experienced and also assumes dif-
ferent time variations of the random process. All models have a set of
parameters that have to be set for every project e.g. Initial failure intensity
and Total number of failures. By doing this you can tailor the model to suit
your specific project. The values of the parameters can be determined
through either prediction or estimation. Before you start to execute your pro-
gram you can use properties of the program to predict the parameters, or you
can wait until you have executed your program and collected some failure
data. You can then use these to estimate the parameters. In both cases, there
will be some uncertainty and therefore you should always use confidence
intervals. There is always a risk that the parameters will change during a
project. If they do, you have to compensate for this otherwise your calcula-
tions will be inaccurate.

There are several important characteristics that a model must have. The
model should:

•give good predictions of future failure behaviour

•compute useful quantities

•be simple

•be widely applicable

•be based on sound assumptions

There is a substantial amount of theoretical work involved in developing a
new useful software reliability model. This effort generally requires several
person years.

3.3.2 Model selection
There are several models available today and it can be very hard to know
which one to use. If you want to you can choose more than one model. If you
do this, you can compare the results from every model and maybe derive a
better final result. The disadvantage is that the more models you use the
higher the cost will be. In research projects it can be good to use several
models, but in real projects the cost for using more than two will probably be
too high.

Lakey and Neufelder have in [5] made a summarize of the most commonly
used models in industry and also a chart that shows when to use which one.
This is reconstructed in table 1 and figure 3.6A-B. For more information on
these models see [6], [7], [8], [9].



16

Model Name
Function for failure
intensity decrease

Data and/or
estimation required

Limitations and
constraints

General Exponential

(General form of the
Shooman, Jelsinski-
Moranda, and Keene-
Cole exponential
models)

• Number of cor-
rected faults (Ec)
at some time x.

• Estimate of E0

• Software must be
operational.

• Assumes that no
new faults are
introduced in cor-
rection.

• Assumes that
number of resid-
ual faults
decreases linearly
over time

Musa Basic • Number of
detected faults
(µ) at some time
x.

• Estimate of initial
failure intensity
λ0.

• Software must be
operational.

• Assumes that no
new faults are
introduced in cor-
rection.

• Assumes that the
number of resid-
ual faults
decreases linearly
over time

Musa Logarithmic • Number of
detected faults
(µ) at some time
x.

• Estimate of initial
failure intensity
λ0.

• Relative change
of failure rate over
time (φ).

• Software must be
operational.

• Assumes that no
new faults are
introduced in cor-
rection.

• Assumes that the
number of resid-
ual faults
decreases expo-
nential over time

Littlewood/Verrall • Estimate ofα
(Number of fail-
ures).

• Estimate ofψ
(Reliability
growth).

• Time between
failures detected
or the time of the
failure occurrence

• Software must be
operational.

• Assumes uncer-
tainty in correc-
tion process

Table 1: Reliability Growth Models

K E0 EC X( )–( )

λ0 1 µ
ν0
-----– 

 

λ0e
φµ–

α
t ψ i( )+( )

---------------------------



17

Schneidewind model • Faults detected in
equal interval i.

• Estimation ofα
(failure rate at
start of first inter-
val).

• Estimation ofβ
(proportionality
constant of fail-
ure rate over
time).

• Software must be
operational.

• Assumes that no
new faults are
introduced in cor-
rection.

• Rate of fault
detection
decreases expo-
nentially over
time.

Duane’s model • Time of each fail-
ure occurrence.

• b estimated by
(n=number of
detected failures)

• Software must be
operational

Brook’s and Mot-
ley’s IBM model

Binomial model

Expected number of
failures=

Poisson model

Expected number of
failures=

• Number of faults
remaining at start
of i:th test (Ri).

• Test effort of
each test (Ki).

• Total number of
faults found in
each test (ni).

• Probability of
fault detection in
i:th test.

• Probability of cor-
recting faults
without introduc-
ing new ones.

• Software devel-
oped incremen-
tally.

• Rate of fault
detection
assumed to be
constant over time

• Some software
modules may
have different test
effort than others

Yamada, Ohba, and
Osaki’s S-shaped
model

• Time of each fail-
ure detection.

• Simultaneous
solving of a and b.

• Software must be
operational.

• Fault detection
rate is S-shaped
over time.

Weibull model MTTF= • Total number of
faults found dur-
ing each testing
interval.

• The length of each
testing interval.

• Parameter estima-
tion of a and b.

• Failure rate can be
increasing,
decreasing or con-
stant

Model Name
Function for failure
intensity decrease

Data and/or
estimation required

Limitations and
constraints

Table 1: Reliability Growth Models

αe
βi–

λt
b

t
-------

n

tn ti+( )ln
i 1=

n

∑
-----------------------------------

Ri
ni

 
  qi

ni 1 qi–( )
Ri ni–

Riφi( )
ni

e
Ri φi–

ni!
----------------------------------

ab2te
bt–

b
a
---Γ 1

a
--- 

 



18

Geometric model • Either time
between failure
occurrences Xi or
the time of the
failure occur-
rence.

• Estimation of con-
stant D which
decreases in geo-
metric progres-
sion (0<φ<1) as
failures are
detected.

• Software must be
operational.

• Inherent number
of faults are
assumed to be
infinite.

• Faults are inde-
pendent and une-
qual in probability
of occurrence and
severity.

Thompson and Chel-
son’s Bayesian model

• Number of fail-
ures detected in
each interval (fi).

• Length of testing
time for each
interval i (Ti).

• Software is cor-
rected at the end
of testing interval.

• Software must be
operational.

• Software is rela-
tively fault free.

Model Name
Function for failure
intensity decrease

Data and/or
estimation required

Limitations and
constraints

Table 1: Reliability Growth Models

DΦt 1–

fi f0 1+ +( )
Ti T0+( )

-----------------------------



19

Step 1
What phase of the life
cycle is the software

development currently in?

Step D

See figure 3.7B

Step B
It is to early too perform
reliability estimations or

growth assessments

Step C
It is to early too perform
reliability estimations or

growth assessments

Step A
It is too early to perform
reliability estimations or

growth assessments

Formal
Qualification

Test or System
Integration

Coding, Unit
or CSCI

Integration

System or
Software

Requirements

Preliminary or
Detailed
Design

Figure 3.6A: Reliability Growth Models



20

Step D
Is the plot of failure intensity vs.

cumulative failures...

Step D1
The S-Shaped and

Weibull models can
be used

Do you have...

Step D2
Has the software
been in operation

for some time with-
out a failure?

Step D3
The Schneidewind,

S-Shaped and
Weibull models can

be used

Are the data points
for the later failure
events decreasing?

Discard the
earlier data

points and go
to Step D2

The Thomp-
son/Chelson
model can be

used

Step D2A
Is the plot in

Step A...

Littlewood/
Verrall

model can be
used. Calcu-
lations are
complex
however.

The Geomet-
ric model

can be used

Increasing Decreasing Combination

Imperfect
corrective

action process

Periodic
failure
Data

Yes

YesNo

Step D2A1
The Schneidewind, S-Shaped and

Weibull model can be used.

Is there historical or collected data to...

Step D2A2
The Schneidewind, S-Shaped and

Weibull
model can be used.

Is thera historical or collected data to... or
is the development process incremental?

Curved
Shaped

Straight
Line

The Musa
Logarith-
mic model
can be used

The Goel-
Okumoto

model
can

be used

 The Goel-
Okumoto

and the Musa
Logarithmic
model can be

used

The Musa
Basic

model can
be used

The Gen-
eral Expo-

nential
models can

be used

The Brooks-
Motley

model can be
used

Predict
initial
failure
rate

Predict ini-
tial failure

rate

Estimate
number of
Inherent
faults

Estimate the
expected rate
of change of
failure inten-

sity

Estimate
number
of Inher-
ent faults

Incremental
Develop-

ment
process

Figure 3.6B: Reliability Growth Models



21

Figure 3.6A shows that it is only in Step D that you can perform reliability
estimations and growth assessments. If you should be in one of the other
steps there are ways to predict certain characteristics that can be used in the
beginning of growth testing.

3.4 System Reliability Demonstration Testing
System Reliability Demonstration Testing is conducted in the end of system
test and its purpose is to, with a certain statistical confidence, prove that the
system meets the reliability requirements. This is sometimes referred to as
beta testor first office application.During this testing it is even more impor-
tant that you test the system in an environment that reflects field use. During
demonstration testing, the software should be under configuration control
(just as it would be between releases) which means that when a failure is
observed, it will only be recorded and not corrected. You should also this
time count multiple occurrences of the same failure since the demonstration
test should represent a true operational environment.

The basic idea of demonstration testing is described in figure 3.7. In this
example we have used sequential testing (see below). As you can see we
continue to test the program until we have had four failures. Then we stop
and accept the software.

There are three different types of test methods that can be used during dem-
onstration testing. These and their advantages and disadvantages are summa-
rized in table 2.

Execution timeτ

F
ai

lu
re

s

Figure 3.7: Reliability Demonstration Chart

Reject

Continue

Accept



22

As mentioned earlier in this subsection, the failures discovered will not be
corrected, only recorded. Due to this the system can, under certain circum-
stances listed below, be modelled to have a constant failure rate and inter-
failure times exponentially distributed. The following types of hardware are
modelled with a constant failure rate:

•Components that are in their “useful life” period, i.e. after burn-in but

before wearout.

•Assemblages of those parts, when in a series reliability configuration.

•Complex, maintained equipment that does not have redundancy.

When software runs concurrently and in series with such hardware, the over-
all failure intensity will be a constant that is the sum of the constant hardware
failure intensity and the constant software failure intensity. If you then also
assume that the times between failures are exponentially distributed the Reli-
ability R and the failure intensityλ will be exponentially related as shown in
equation 3.1 [6]. Note that the reliability is dependent not only on the failure
intensity but also on the period of execution timeτ, se figure 3.8.

Test Type Advantages Disadvantages

Fixed Duration Total test time is known in
advance. An estimate can be

made of true failure rate

Takes longer time than
sequential test on average.

Sequential Accepts very low and rejects
very high failure rate

quickly. Shorter test times
on average than the other

types.

Total test duration is unde-
termined. Maximum dura-
tion must be planned for.

Failure-Free
Execution
Interval

Will accept very quickly if
true failure rate is much bet-

ter than required

Can take a long time if true
failure rate is close to that

required

Table 2: Demonstration Test Types

Reliability R τ( ) e
λτ–( )

3.1( )=



23

A lot of programs have several releases during their operational phase, which
makes the reliability and failure intensity functions to step functions. For
every new release there will be a new step. If the releases are frequent and
the trend of failure intensity is decreasing, one can often approximate the
step functions by one of the software reliability models we have presented.
One can also apply the models directly to reported unique failures. Note that
the model then will represent the failure intensity that will occur when the
failure has been corrected. This approach is analogous to the one commonly
taking place during system test of ignoring the failure correction delay,
except that the delay is much longer here. If the failures are actually cor-
rected in the field, then the operational phase should be handled just like the
growth testing phase.

3.5 Operational Profile
The software’s behaviour is significantly dependent on the environment in
which it is executed and it consists of the hardware platform, the operating
system, the workload and the operational profile. The operational profile is,
as described earlier in this chapter, a set of input states and their probability
of occurrence.

Software reliability testing is based on randomly selecting input states from
an input space according to the operational profile. If the reliability estimate
should be accurate, this selection must reflect the way the software will be
operated in the field. Therefore it is very important to derive a good opera-
tional profile that really reflects the field environment.

According to [10] the process for developing the operational profile is as
described in figure 3.9. You start from the top and work your way down to
the bottom.

1.0

R
el

ia
bi

lit
y 

R

Period of execution timeτ

Figure 3.8: Reliability versus period of execution time



24

3.5.1 Customer Profile
The customer is the individual, group or organisation that is purchasing the
software system. If the system is meant to be sold to several customers there
could be different types of customers, e.g. educational institutions, busi-
nesses, and individual home users who will use the system in different ways.
All the users in a group uses the system in a similar way. The customer pro-
file consists of a list of the customer types and their probability of occur-
rence, see table 3.

3.5.2 User Profile
A system’s users may be different from the customers of a software product.
A user is a person, group, or institution that operates, as opposed to acquires,
the system. A user type is a set of users that operates the system similarly.
The User Profile is the set of user types and their associated probabilities of
using the system.

Customer Type Occurrence Probability

Educational Institution 0.45

Business Organisation 0.35

Individual Home User 0.20

Table 3: Customer Profile

Customer
Profile

User Profile

System-mode
Profile

Functional Profile

Operational Profile

Test Selection

Figure 3.9: Operational Profile Development



25

3.5.3 System-mode Profile
A system mode is a way that a system can operate. Most systems have more
than one mode. For example, a car can be in normal mode or four wheel
drive. It may also be in normal mode or cruise control. A system can switch
modes sequential, or it can permit several modes to operate concurrently,
sharing the same system resources. A System Mode Profile is the set of
modes and their associated probabilities of occurrence.

3.5.4 Functional Profile
After a good system mode profile has been developed, the focus should turn
to evaluation of each system mode for the functions, in this thesis called
transactions, performed during that mode. Functions are tasks that a user can
perform with the system. For example, the user of an e-mail system would
want to: create messages, send messages, open messages etc. Functions are
established during requirements based on what activities the customer wants
the system to be able to perform.

3.5.5 Operational Profile
Figure 3.10 shows the elements involved in determining the operational pro-
file from functions. A function may comprise several operations. In turn,
operations are made up of many run types. Grouping run types into opera-
tions partitions the input space into domains. A domain can be partitioned
into subdomains or run categories. To use the operational profile, first choose
the domain that characterizes the operation, then the subdomain that charac-
terizes the run category, and finally the input state that characterizes the run.

3.5.6 Test Selection
Now, when you have derived your operational profile you simply generate a
random number between zero to one and then choose that test case which is
associated with that number. You do this until you have selected enough test
cases to satisfactorily test your software system.

Function

Operation
(Domain)

Run Category
(Subdomain)

Run Type
(Input State)

Input Space

Figure 3.10: Operational Elements



26

3.6 Two selected models
In this project we have chosen to more deeply describe two of the different
models in table 1,Musa Basic andMusa Logarithmic [6]. These will from
now on be referred to asBasic andLogarithmic. The reasons we choseBasic
are because it is simple, well established, widely applied to actual projects,
its parameters has a clear physical interpretation and it usually predicts satis-
factorily. Logarithmic is a newer model and has not been used as much as
Basic, but it is almost as simple and gives good predictions. Both models
also use execution time. It should be noted that none of these models should
be used on very small programs, less than 5000 lines of code, since they may
not experience sufficient failures to permit accurate estimations of Execution
Time Component parameters and the various derived quantities.

Each model consists of two components, Execution Time Component and
Calendar Time Component. In the first component, the models use, just as it
says, execution time. After this, in the calendar time component, the models
convert execution time to calendar time. The reason for this is because quan-
tities expressed in calendar time are more meaningful to most engineers and
managers. During this conversion, the models use the way in which human
and computer resources are applied to the project. If you are not interested in
calendar time, you do not need to use this component.

3.6.1 Execution Time Component
Both models assume that failures occur as a random process1 but they have
different failure intensity functions. The easiest way to illustrate the differ-
ence is to look at how the failure intensity varies with mean failures experi-

enced2. Basic assumes that the decrement in failure intensity per experienced
failure is constant, se figure 3.11 and equation 3.2.Logarithmic however,
assumes that the failure intensity decreases exponentially, see figure 3.12 and
equation 3.3. The quantityθ is called the failure intensity decay parameter
and it represents the relative change of failure intensity per failure experi-
enced. As you can see,Basic assumes that there is a total number of failures
in the system, whileLogarithmic assumes there is an infinite number of fail-
ures.

Both models also assume that after you have found a failure you will identify
the fault, that caused the failure, and remove it immediately. However, in
practise you probably do not stop testing for every failure. You wait until you
have found a couple of failures and then removes all the faults at the same
time. This delay in fault removal is called failure correction delay and as
long as it is kept reasonably short, it will not affect the correctness of the
models much. Note that sometimes you will fail to remove the fault and even
inject new ones. This can make the failure intensity higher for a short period
of time.

1. More specific, as a nonhomogeneous Poisson process
2. In this discussion, since failures occur randomly, we are referring to “average fail-

ures experienced”.



27

With straightforward [6] derivation we can obtain an interesting relationship,
namely mean failures experienced as a function of execution time. This is
shown for both models in figure 3.13 and also in equation 3.4 and 3.5.

F
ai

lu
re

 In
te

ns
ity

λ

Mean failures experiencedµ

Initial failure intensityλ0

Total failures v0

Figure 3.11:Basic Failure Intensity
function

F
ai

lu
re

 In
te

ns
ity

λ

Mean failures experiencedµ

Initial failure intensityλ

Figure 3.12:Logarithmic Failure
Intensity function

0

Basic λ µ( ) λ0 1 µ
v0
-----– 

  3.2( )=

Logarithmic λ µ( ) λ0e θµ–( ) 3.3( )=

Execution timeτ

M
ea

n 
fa

ilu
re

s 
ex

pe
rie

nc
edµ

Total failures

Basic

Logarithmic

Figure 3.13: Mean failures experienced versus
execution time

Basic µ τ( ) v0 1 e

λ0

v0

-----τ– 
 

–
 
 
 
 

3.4( )=



28

Another relationship that is of real interest is the failure intensity as a func-
tion of execution time, see figure 3.14. This is, in fact, the fundamental
expression of the failure intensity function. If you compare figure 3.14 with
figure 3.11 and 3.12, you can see that figure 3.14 is stretched out to the right.
This is because intervals between failures increase as failures are experi-
enced.

Equation 3.6 shows the aritmetic expression forBasic and equation 3.7 for
Logarithmic. This relationship is useful for determining the present failure
intensity at any given value of execution time. For the same set of data, the
failure intensity drops more rapidly forLogarithmic than forBasic at first.
Later, it drops more slowly. At large values of execution time,Logarithmic
will have larger values of failure intensity thanBasic.

Logarithmic µ τ( ) 1
θ
--- λ0θτ 1+( ) 3.5( )ln=

F
ai

lu
re

 in
te

ns
ity

λ

Execution timeτ

Figure 3.14: Failure intensity versus execution time

Basic

Logarithmic

Basic λ τ( ) λ0e

λ0

v0

-----τ– 
 

3.6( )=

Logarithmic λ τ( )
λ0

λ0θτ 1+
--------------------- 3.7( )=



29

Now, we are ready to derive some useful quantities which, among other
things, will help us to estimate additional time spent in test to reach our fail-
ure intensity objective. Assume you have set a failure intensity objective and
suppose some portion of failures has been removed. Then you can use your
objective and the present failure intensity to determine the additional
expected number of failures∆µ that has to be experienced to reach that
objective, see figure 3.15. Equations describing the relationships can easily
be derived using equation 3.2 and 3.3. The results are showed in equation 3.8
and 3.9.

In the same way, you can, by using equation 3.6 and 3.7, determine the addi-
tional execution time∆τ required to reach the failure intensity objective for
either model. The resulting equations will then be described by 3.10 and
3.11. The only difference from figure 3.15 is that the horizontal-axis now
shows execution time.

Initial

Present
λp

Objective
λFF

ai
lu

re
 in

te
ns

ity 
λ

∆µ
Mean failures experiencedµ

Figure 3.15: Additional failures to reach failure
intensity objective

Basic ∆µ
v0

λ0
----- λP λF–( ) 3.8( )=

Logarithmic ∆µ 1
θ
---

λP

λF
------

 
 
 

3.9( )ln=

Basic ∆τ
v0

λ0
-----

λP

λF
------

 
 
 

3.10( )ln=

Logarithmic ∆τ 1
θ
--- 1

λF
------ 1

λP
------– 

  3.11( )=



30

The foregoing derived quantities are of interest. The additional expected
number of failures required to reach the failure intensity objective gives
some idea of the failure correction workload. The additional execution time
required gives an indication of the remaining amount of test required. Both
these quantities are also used in making estimates of the additional calendar
time required to reach your failure intensity objective. How to do this, will be
described in the next section about the Calendar Time Component.

3.6.2 Calendar Time Component
If you have calculated the additional execution time required to reach your
objective, you, or at least your manager, probably would like to know how
many days it will take. To do this you have to convert execution time to cal-
endar time, which is exactly what the Calendar time Component do. During a
project, the resources available will be more or less constant and established
in its early stages. Increases are generally not feasible during the system test
phase because of the long lead times required for training and computer pro-
curement. There will always be one of these resources limiting the rate at
which execution time can be spent per unit calendar time.

The limiting resource will change during the test phase. At the beginning, the
failure intensity will be high and the time interval between failures will be
short. Testing must be stopped from time to time to let the failure correction
personnel keep up with the load. Thus, the limiting resource will here be the
failure correction personnel. After a while the failure intensity has decreased
and there is not so many failures to correct. At this point it is the failure iden-
tification personnel who is the bottleneck. Finally, when the failure intensity
has decreased even more, the capacity of the computing facilities becomes
the limiting resource. This resource then determines how much testing that
will be accomplished.

All the different parameters used and their connections to the three different
resources are listed in table 4 and explained in table 5. The resource utiliza-
tion of failure identification personnelρI is 1 because it is not restricted by
any queuing constraints. As you can see in table 4, the failure correction is
not dependent on execution time. This is quite obvious since the program is
not running during changes. However, the failure correction time is depend-
ent on mean failure experiencedµ and this is in turn dependent on execution
time. This makes the resource usage a function of execution time only. The
parameter PC is also a little special. It represents the available computer time
in terms of prescribed work periods. For example, if available computer time
per week is 80 hours and the prescribed work week is 40 hours, then PC = 2.
This unit was chosen so that computer resources would be stated in the same
units as personnel.



31

Resources

Usage
parameters

Planned parameters
requirements

per:

CPU
hour

Failure
Quantities
available

Utilizations

Failure identification
personnel

θΙ µI PI ρI=1

Failure correction
personnel

θF=0 µF PF ρF

Computer time θC µC PC ρC

Table 4: Calendar Time Component Resources and Parameters

Parameter Explanation

θI Average failure identification work expended per unit
execution time (e.g.person hours per execution hours)

θC Average computer time expended per unit execution time

µI Average failure identification work required per failure
(hours per failure)

µF Average failure correction work required per failure
(hours per failure)

µC Average computer time required per failure
(hours per failure)

PI Number of available failure identification personnel

PF Number of available failure correction personnel

PC Available computer time
(measured in terms of prescribed work periods)

ρI Failure identification personnel utilization factor during
the failure-identification-personnel-limited period

ρF Failure correction personnel utilization factor during
the failure-correction-personnel-limited period

ρC Computer utilization factor during the computer-limited
period

Table 5: Parameter explanations



32

Equation 3.13 shows how the usageχ of a resource r (I, F or C) is computed.
τ is still the execution time.

Example 3.3: Suppose a test team runs test cases for 10 CPU hours and
during this time they identify 30 failures. The resource usage is 8 person
hours per execution hour and 2 person hour per failure. The total failure
identification effort required will then, by using equation 3.13, be

We can also calculate the effort per execution hour by dividing the result
with the execution time (140/10 = 14 person hours / execution hours) or
the effort per failure by dividing the result with the number of failures
(140/30 = 4.67 person hours / failure).

If we differentiate equation 3.13 with respect to execution time, we will get
an expression, see equation 3.14 that gives us the change in resource usage
per unit of execution time. Since the failure intensity decreases with testing,
the effort used per hour of execution time also tends to decrease with testing,
see figure 3.16.

We can also differentiate equation 3.13 with respect to failures. This will
give us the change in resource usage per failure, see equation 3.15. Note that
the execution time between failures tends to increase with testing. Thus, fail-
ure identification effort and computer time required for each failure tend to
increase throughout the test period, see figure 3.17.

Usage χr θrτ µrµ 3.13( )+=

χI θIτ µIµ+ 8 10( ) 2 30( )+ 140 person hours= = =

Usage per time unit
dχr

dτ
-------- θr µrλ 3.14( )+=

R
es

ou
rc

e 
us

ag
e 

pe
r

un
it 

ex
ec

ut
io

n 
tim

e

Execution timeτ

θ

Figure 3.16: Variation of resource usage per unit execution
time with execution time



33

As mentioned before, it is hard to increase the resources during the test
phase, thus it can be assumed that resource quantities and utilizations are
constant for the period over which the model is being applied. By dividing
the resource usage per unit execution time, equation 3.14, with the resources
available that can be utilized, we get the instantaneous ratio of calendar time
to execution time, see equation 3.16. t is here the calendar time.

Example 2: Consider example 1 and assume that it is the failure identifi-
cation personnel (resource I) that is the limiting one. Recall that the 14
person hours of effort were used per hour of execution time, on the aver-
age. Suppose there are 2 members and they are fully utilized. Then the
calendar time to execution time ratio will be:

We can also compute the elapsed calendar time to 7*10=70 hour which is
almost 2 working weeks.

Since the limiting resource changes during the test phase, you have to calcu-
late the calendar time to execution time ratio for all resources to see which
one is the bottleneck, has the highest ratio. If you plot the instantaneous ratio
of calendar time to execution time for all your resources you can see the rate
at which calendar time is expended, see figure 3.18. You can also see where
the changes between different limiting resources occur.

µ

Mean failures experiencedµ

r

R
es

ou
rc

e 
us

ag
e 

pe
r 

fa
ilu

re

Figure 3.17: Variation of resource usage per failure with
mean failures experienced

Usage per failure
dχr

dµ
-------- θr

dτ
dµ
------ µr 3.15( )+=

Time ratio
dt
dτ
----- 1

ρrPr
-----------

dχr

dτ
--------

θr µrλ+

ρrPr
-------------------- 3.16( )= =

∆t
∆τ
------

1
ρIPI
----------

∆χI

∆τ
--------- 1

1 2( )
------------- 14( ) 7= = =



34

3.6.3 Parameter Determination
To use these two models you have to determine a couple of parameters. This
section briefly describes how this is done. For a more thorough interpretation
see [6].

The different parameters are summarized in table 6 and 7. One thing you
have to bear in mind is that the values of the parameters are estimations of
their real value. Therefore you should always use confidence intervals. Table
8 shows which methods you can use to determine the different parameter
values.

Parameter Basic Logarithmic

Initial failure intensity λ0 λ0

Failure intensity change:
Total failures
Failure intensity decay parameter

v0

-
-
θ

Table 6: Execution Time Component parameters

Execution timeτ

In
st

an
ta

ne
ou

s 
ca

le
nd

ar
 ti

m
e 

to
ex

ec
ut

io
n 

tim
e 

ra
tio

I

F
C

Figure 3.18: Calendar time to execution time ratio
for different limiting resources



35

Execution Time Component
The Execution Time Component parameters forBasic can be determined
both by prediction and estimation. Prediction is done before execution of the
program and uses various characteristics of the program code. However, we
will not use this since we do not have enough experience and no previous
projects to rely on. Erlang is a quite new computer language and there has
not been much research in this area.

Resources

Usage
parameters

Planned parameters
requirements

per:

CPU
hour

Failure
Quantities
available

Utilizations

Failure identification
personnel

θΙ µI PI ρI

Failure correction
personnel

0 µF PF ρF

Computer time θC µC PC ρC

Table 7: Calendar Time Component Resources and Parameters

Parameter
group

Method

Pred-
iction

Est-
imation

Ident-
ification

Formula
and/or

Experience
Data

Execution Time
Component

Basic
Logarithmic

X X
X

Calendar Time
Component
(both models)

Planned
Resource

quantity
Resource

utilization
Resource usage

X

X
X

Table 8: Method of parameter determination



36

When the program has been executed and failure data has been collected one
can determine the Execution Time Component parameters for bothBasic and
Logarithmic using maximum likelihood estimates. It is most efficient to use a
program to do the calculation. The process is illustrated schematically for
Basic in figure 3.19.

The solid line is the actual failure intensity. This is calculated as number of
failures in a time interval divided by that time interval.Basic then provides
the basis for plotting the dashed line of anticipated failure intensity. This line
is determined by the two parametersλ0, initial failure intensity, and V0, total
expected failures. The values of these should be chosen to maximize the like-
lihood of occurrence of the set of failures intensities that have been experi-
enced. In an approximate sense, the curve is being fit to the data indicated.
The process is exactly the same forLogarithmic. The only difference is that
you have a different failure intensity function. This has also two parameters
namelyλ0, initial failure intensity, andθ, failure intensity decay parameter.

Calendar Time Component
Table 8 shows that the values of the Calendar Time Component parameters is
the same for both models. The resources you should include are those who
can limit the amount of work done, e.g. test or failure correction. In some
projects, the failure identification personnel and the failure correction per-
sonnel are the same persons. In this case you must merge the resources and
the resource requirements.

The resource quantities available are quite easily determined by identifica-
tion, i.e. ask the person responsible, usually the project manager. Note that
available is not the same thing as used. Personnel are simply counted regard-
less of the length or time of their working hours.

The resource usage parameters tend to be dependent on the factors of pro-
grammer skill level, level of task difficulty and development environment.
Their values are determined through experience and prior data.

Actual

Model

Execution timeτ

F
ai

lu
re

 in
te

ns
ity 

λ

Figure 3.19: Conceptual view of parameter estimation



37

3.6.4 Model choice
The choice of which of the two models to use in, any given application,
depends on several factors, see table 9. Sometimes you may be able to use
both of them and sometimes the choice is critical. One option may be to
employBasic for pretest studies and estimates and during periods of evolu-
tion. When integration is complete you should switch toLogarithmic.

3.7 Software Reliability Tools
As described in this chapter there are a lot of work involved with software
reliability engineering. If we only look at reliability growth testing there are
still several steps that needs to be executed:

1. Collecting failure and test time information.

2. Calculating estimates of model parameters using the information.

3. Testing the fit of a model against the collected information.

4. Selecting a model to make predictions of remaining faults, time to

test, or other items of interest.

5. Applying the model.

To simplify this work there have been several automatic tools developed.
Lyu gives in [11] a summary of some of these tools, see table 10. Note that
there is a constant flow of new tools being developed and it is a good idea to
look around before choosing one.

Purpose of application or existence of condition Basic Logarithmic

Studies or predictions before execution X

Studying effects of software engineering
technology (through study of faults)

X

Program size changing continually and
substantially

X

Highly nonuniform operational profile X

Early predictive validity important X

Table 9: Choice between models



38

Tool name Models
Minimum
Operating

System

Current
release/
Original
release

Statistical model-
ling and estimation
of reliability func-
tions for software
(SMERFS)

Littlewood/Verrall
Musa Basic
Musa/Okumoto
Jelsinski-Moranda
Geometric
Execution Time NHPP
Generalized Poisson
NHPP
Brooks/Motely
Schneidewind
S-Shaped

DEC VMS
MS DOS 3.0
Cyber
Operating
System

Oct-93/
Oct-83

Software Reliabil-
ity Modelling Pro-
grams (SRMP)

Musa/Okumoto
Duane
Jelsinski/Moranda (JM)
Goel/Okumoto
Bayesian JM
Littlewood/Verrall
Littlewood
Keiller/Littlewood
Littlewood NHPP

MS DOS 3.0 May-88/
May-88

GOEL Goel/Okumoto MS DOS
2.11

Nov-87/
Nov-87

ESTM Goel/Okumoto with
economic testing criteria

UNIX
System

Jun-93/
87

AT&T SRE Toolkit Musa Basic
Musa/Okumoto

UNIX
System

May-91/
May-91

SoRel Goel/Okumoto
Littlewood/Verrall
Hyperexponential
Yamade S-Shaped

Macintosh May-91/
May-91

Table 10: Software Reliability Tools



39

CASRE Littlewood/Verrall
Musa Basic
Musa/Okumoto
Jelsinski-Moranda
Geometric
Execution Time NHPP
Generalized Poisson
NHPP
Brooks/Motely
Schneidewind
S-Shaped

MS DOS 5.0
or higher
with
Windows 3.1
Windows NT
Windows 95

95/
94

Tool name Models
Minimum
Operating

System

Current
release/
Original
release

Table 10: Software Reliability Tools



40

 CHAPTER 4

Monitoring

In this chapter we present monitoring theory used in this thesis and discuss
what have been done by others. We will also describe a project in the field of
monitoring that SERC has undertaken which is related to our work.

4.1 Overview
To be able to develop and deliver a software product with good quality, you
have to understand the program and know how it behaves in its real environ-
ment. To make this easier, companies have started to develop program under-
standing tools. These helps the developers and the software quality assurance
group to understand the program in full. These tools can be separated into
two groups,Static analysis toolsand Dynamic analysis tools[12]. With
Static analysis toolsyou examine the program text and provide data for the
program that is true for all kind of inputs to the program. The group we con-
centrate on isDynamic analysis tools, also calledprogram execution moni-
tors. This means a program that monitors the execution of another program.
With monitoring means that you collect information that helps you to super-
vise the program during execution. You can collect different information
depending on what you are interested in.

Still there are a lot of companies, that are not performing any monitoring on
their programs. Actually, we found out that there is no real good common
way of program execution monitoring and there is not much information in
this area. We also found that the companies, that are performing monitoring
are doing this by collecting failures and special events, whatever they want
to monitor, manually. So, our conclusion is that there are still a lot of work
that has to be done in the area of monitoring. We will now describe the most
common theories behind a program execution monitor.

4.1.1 Program execution monitor
The first thing you have to decide before performing an execution monitor is
if you like to present the information to the user run-time or post-mortem.
With run-time you present the information as the program executes and with
post-mortem you present the information after the execution completes.
Except from this there are three different main aspects you can characterize
existing system in. These are:

Information sources and access methods
The most critical things when designing a monitor are how to obtain infor-
mation from, and how to access, the target program. It is very important to
solve these problem in an efficient way to reach a good quality in your moni-
toring results. The four most common methods to do this are,run-time
instrumentation [13], manual instrumentation[14], interpreter instrumenta-
tion [15] andinstrumenting compilers[16].



41

Run-time instrumentation means that you make the adjustments in the target
program code prior to or during execution. These adjustments are often that
you replace an instruction with a jump or operating system trap. Instead of
executing this instruction you jump to some code that send information to the
monitor. You make this modifications in a few selective areas and let the rest
of the program execute as normal.

In manual instrumentation you implement code manually into the program
being monitored. This method demands a lot of work for each program that
should be monitored.Manual instrumentation are mostly used in system for
algorithm animation and as a debugging tool when other debugging tools are
ineffective.

When usinginterpreter instrumentation you do not make any modification in
the program being monitored. Instead you make some changes in the lan-
guage interpreter and you get the information from all programs executed by
the interpreter.Interpreter instrumentation is common for high-level lan-
guages and varies widely in the range of features that are instrumented and
the nature of the algorithm to be animated.

The last one,instrumenting compilers, modifies the code in the preprocessors
and in the code generators as they produce output. With this method you can
instrument any program written in the language that the compiler recognize.

Execution Models
There are a lot of different models for the relationship between the monitor
and the program being monitored. However, it is possible to distinguish three
main models: theone-process model [14,17], the two-process model [13,18]
and thethread model[19].

In theone-process model, the monitor runs in the same process as the target
program. The advantages of theone-process model are, simple, highest-per-
formance arrangement and that the monitor has convenient access to the pro-
gram being monitored. The disadvantages are, code intrusive and that a
failure in the target program or in the monitor code affect each other in a crit-
ical way.

In thetwo-process model, the monitor runs in a separate process. The advan-
tages are that it reduces the problem with that failures in the monitor code or
the target program affects each other. The disadvantages are, that it becomes
much more complicated to access the program being monitored. This can
lead to performance problems.

The thread model works as if the monitor is a separate thread in a shared
address space occupied by the program. This model has some of the advan-
tages and disadvantages from both the one-process model and the two-proc-
ess model. E.g. the risk that an error in either the monitor code or the target
program will affect each other.



42

User-interaction facilities
How should you present the information for the user? You can present it as
text or with graphics or maybe both. It should be up to the user to choose
how he wants it. Another thing about how you present the data is if you
should update the data continuously during execution, or provide the data
during breaks in the execution. The third thing is how much you can control
from your monitor interface. It could be everything between, start and stop
the execution to modifying the target program.

Which methods you choose from above depends on several aspects and it is
hard to recommend one or another.

4.2 Monitoring non-functional requirements
At SERC they have undertaken a project about how to perform continuous
monitoring of non-functional requirements, during the lifetime of a software
system. Non-functional requirement means e.g. reliability, maintainability
and performance. To do this they started to develop a dual pentium based
system using a new Erlang compiler. Parallel to this project there has been a
few Master thesis projects running to see how to handle the non-functional
requirements in an Erlang system. The outcome from this project is that you
by specifying certain characteristics into the compiler makes it possible to
monitoring the non-functional requirements. Then the monitoring process
will be autobuilt by the system. Thus, this system will use the methods
instrumenting compiler and two-process model described above. As a matter
of fact it takes the model instrumenting compiler one step further when it
autobuild the monitoring process. To avoid the disadvantages, that the target
program becomes more complicated to access, when using the two-process
model, SERC use Erlang, supporting distributed systems and messages send-
ing between processes. Since they also use a dual pentium system, where the
monitor executes on one processor and the target program on the other, they
will avoid performance problem.

The essential components of the monitoring infrastructure are shown in Fig-
ure 4.1. In the upper part of the picture you have the setup environment.
There are two different branches into this environment. The input to the left
branch is your target program, the program you like to execute, and the input
to the right branch are some parameters that are required for being able to do
the monitoring. This environment compiles the target program and autobuild
the monitoring process. The two programs execute on two different proces-
sors and communicate with message sending.



43

MAIN APPLICATION

PROCESSOR

APPLICATION
PROCESS

SPAWN MONITOR

RENDEZVOUS

MONITORING PROCESSOR

MONITORING
PROCESS

LOG
PROCESS

STATISTICS

PROCESS

GRAPHICAL

DISPLAY

EXECUTION ENVIRONMENT

SETUP ENVIRONMENT

Figure 4.1: The essential components of monitoring infrastructure

STANDARD ERLANG
APPLICATION PROCESS

MODIFIED ERLANG

COMPILER

SET LINKS TO
MONITORING PROCESS

MONITORING

PARAMETERS

AUTOBUILD
MONITORING PROCESS

MODIFIED ERLANG
COMPILER

SET LINK FOR
MONITORED PROCESS

LOADER FOR
MULTIPROCESSOR

SYSTEM NODE



44

CHAPTER 5

Computer environment

5.1 Erlang System/OTP
The computer language Erlang has, as mentioned in chapter 1, been devel-
oped by CSLab (Ericsson Computer Science Laboratory) in about the last ten
years. The idea was to develop a language especially for telecommunication
systems. Erlang’s roots come from Prolog, Strand, Parlog and Eri-Pascal and
it is a functional language which supports parallelism. A functional language
is a language in which programs are constructed from a large number of
functions [20]. The key features of Erlang are:

• Concurrency -Erlang has a process-based model of concurrency
with asynchronous message passing. This makes it possible for the
user to have full control over the sequential flow of execution and at
the same time separate different tasks in different independent flows.
The processes require little memory and creating, deleting and mes-
sage passing require little computational resources.

• Real-time -Erlang is intended for programming soft real-time1 sys-
tems where response times in the order of milliseconds are required.

• Continuous operation -Primitives for code replacement in runtime.
This means that you can upgrade your system with a new version
without shutting it down.

• Robustness -Mechanisms to detect run-time errors.

• Memory management-Erlang is a symbolic programming language
with a real-time garbage collector.

• Distribution  -There is no shared memory. All interaction between
processes is by asynchronous message passing, which is transparent
in respect to where in a computer network the processes are located.

• Integration -Erlang can easily call or make use of programs written
in other languages.

• Portability -Current support exists for several platforms.

1. Soft Real-time is when you can “stretch” time, e.g. it does not matter if something
takes 1,2 or 5 milliseconds.



45

To support the development of Erlang systems, CSLab has also developed a
Open telecom Platform called Erlang System/OTP. The platform which is
based on Erlang, contains a number of well tested modules which solves crit-
ical basic problems. The environment supports short time to market develop-
ment, openness to sourced hardware/software components, platform
independence and low costs for development and operations. Erlang System/
OTP version 4.5.3 is available on a number of different platforms. These are
SunOS 4, Solaris 2 (Sparc and intel/x86), Linux, Windows NT (4.*) and
Windows 95.

Erlang System/OTP runs on standard computer hardware and operating sys-
tems. Figure 5:1 shows the structure of Erlang system/OTP and its key fea-
tures are:

• Erlang Run-Time -This is the Erlang emulator that is running your
Erlang code. It is written in C and contains commands and the Erl
Interface C Library Functions [21]. The Run-Time system is a virtual
machine, which handles memory management, light weight proc-
esses and real time behaviour.

• SASL -The SASL is the System Architecture Support Library which
handles Start up scripts, Error handling, debugging and high level
software upgrades, in runtime without shutdown. SASL also con-
tains an application concept. This helps the developer to decompose
the system into different applications and then program these with
the help of a number of behaviours. The behaviours are design pat-
terns such as application, supervisor and server.

• Mnesia -This is a real time, fault tolerant, distributed database. Com-
plicated queries are supported by an optimising query compiler.
Views are available as rules in the Mnemosyne query language [22].

• Tools -There are a number of different tools in OTP, e.g. develop-
ment tools (compiler, debugger), performance tools (process moni-
tors, coverage testers), jive (Erlang Java interconnection and inets
(WWW server tools) [21].

Computer Hardware

Operating System

Erlang Run-Time
Sourced
Programs

SASL Mnesia Tools

Application Programs
in Erlang
or C

Figure 5.1: Open Telecom Platform



46

• Sourced Programs-The OTP defines how sourced programs, which
include protocol stacks and management applications, may be incor-
porated into a system and made to interwork with programs that were
developed by application programmers.

• Application Programs -These programs are designed by the user
and can be written in Erlang or C.

Erlang and Erlang system/OTP are constantly developed to include new
functions and to support new platforms. There will also be changes in the
already existing modules.

5.1.1 Program structure
Erlang uses, as mentioned earlier, a process based model of concurrency.
This means that you can separate different tasks into different parallel proc-
esses. Figure 5.2 shows an example on how a program can be structured. The
structure is dynamic, i.e. you can create new processes or terminate old ones
as you like during execution. The lines in the figure shows which process
that has created which (top-down). As default there is no connection between
the processes once they have been created but if you like you can link them
together. This way you will have full control over which processes you have
in your system. In this example process A,C,E, and F are linked together.
The links works both ways so it does not matter if process C has set up the
link or if it is process E or F.

The only way to communicate between processes is to send messages. This
message passing is asynchronous which means that there is no synchronisa-
tion between sending and receiving messages. A process can send a message
and then continue with something else regardless what happens with the
message. The sent message will end up in the receiving process’ mail box
and will stay there until the process asks for it. One disadvantage with this is
that you can not be sure that messages sent from different processes will
arrive in the same order as they were sent. The only way to control this is to
set a timestamp in the messages and then sort them after this.

A

CB

D E F

Figure 5.2: Process tree



47

5.1.2 Failure behaviour
When a failure occurs in a process it will terminate. At the same time it will
also send a exit message, containing the reason for its termination, to all
processes it is linked to. This will cause these processes to terminate with the
same reason, and they will in turn send a exit message to the processes they
are linked to. There is a way to stop this chain by trapping the exit messages
(see process A). Then the process can take desired actions and if it wants to it
can terminate in a latter stage. If we suppose that process E terminates it will
send an exit message to process C. C will then terminate and send exit mes-
sages to process A and F. F will terminate immediately but A will trap the
exit message and take action depending on with which reason process E ter-
minated.

A big advantage with Erlang, compared to many other languages, is the fail-
ure handling. When a failure occurs in an Erlang program you will immedi-
ately get a notice about this. In other languages, for example C, you may not
see the failure for after a few days, e.g. if a pointer in C points at the wrong
location in the memory, or if you write over data in the memory that is
needed later. These things cannot happen in an Erlang system, a failure can
not hide.

5.2 The Erlang Engine
The Erlang Engine is a multiprocessor system within the context of AXE-10
and Erlang System/OTP [23]. The Engine is meant to be used for implemen-
tation of Intelligent Network (IN) applications and takes full advantage of
the specific characteristics of an Erlang environment. As shown in figure 5.3
the Erlang Engine is a logically component of OTP but is physically a dis-
tinct Erlang node. The reason for separating the Erlang Engine is that the
Erlang environment is based on the functional language Erlang which is sig-
nificantly different from the procedural approach e.g. C/UNIX. This way
each environment can be optimized based on its own characteristics.

The key features in figure 5.3 are:

• High Speed Interface-To be able to handle the growing require-
ments for IN applications the Engine must communicate with the
AXE-10 at the maximum possible rate.

• I/O -This is a standard interface of OTP. The idea is to have a local
and tightly coupled UNIX system so that a high speed link and mini-
mum protocol may be utilised.

• Kernel -This is the operating system, which is to be chosen so that it
fits the Erlang environment best way possible. One candidate is
QNX.



48

• Ericsson Core Software-Surveys show that Ericsson will not be
able to write all the applications by themselves. In fact, they will just
be able to write 10% of what is needed. To handle this Ericsson will
just write the critical applications, that among other things have to be
free from side effects.

• Outsourced Software-This is the rest of the applications that a third
party company will write. These applications should essentially be
stateless which permits both a clear method for specifying the needed
application components and generating a profitable contractual rela-
tionship.

There are several problems in the Erlang Engine concept that have to be
solved. Today, there are a number of different projects running, which deals
with different aspects of these problems. The Engine is constantly evolving
and will hopefully help the AXE-10 to live for the next 10-15 years.

Outsourced Software
(Erlang)

Ericsson Core Software
(Erlang)

Kernel I/O

High Speed Interface

MP Erlang Engine

C, C++
Software

I/O Unix TCP/IP

Disc

Graphics

Coms

COTS System

OTP

CPA CPB

RP SP

RP Bus APS AXE

Figure 5.3: The Erlang Engine



49

 CHAPTER 6

Possible Solutions

6.1 Overview
In this chapter we discuss a few different approaches to the problems in our
thesis. There are four main parts in our thesis, where we came up with differ-
ent solutions. We describe all these parts separately with their alternative
solutions. In the end we specify how we decided to solve the problems and
why we chose these solutions. The four theory parts that we talk about are:

•Which reliability measures shall we use?

• Shall the implementation of the monitoring code be automatic or
semi-automatic?

• How can we divide the target program into smaller parts, which we
shall measure the reliability on?

• When shall we monitor and for how long time?

Before we start to describe these parts we will give you a short overview of
our solution, just to make the rest of this chapter easier to understand. For
more detailed information on our solution, see chapter 7-9. In the solution we
look at the reliability of the target program by finding out the reliability for
small pieces of the program. It is important that these pieces can be specified
in the contract. Our monitor program consists of three Erlang-processes that
receive messages from the target program. These messages are sent by code
implemented by us. The monitor program receives the messages and then
takes the correct action. If you want to monitor a program with our method,
you first start our monitor program. Into this program you send an infile
where you have specified information about the target program. Then our
program makes some changes in the code and then compiles the target pro-
gram. After this, you start the target program and it will be monitored.

6.2 Different reliability solutions
When it comes to reliability one of the biggest problem is to develop a good
understanding of the field. It is a very fuzzy field and almost everyone has his
or her own opinion. When we started to read about reliability we thought that
the problem was to find good definitions, it is not. The problem is how to
conduct the measurements. You have to be very careful how you do this, oth-
erwise your measures will not be usable.



50

In chapter 3 we have tried to describe the field without getting too deep down
in small details. We have defined reliability in three different ways (probabil-
ity, MTTF and failure intensity), which we believe will cover most situations
and we have also given examples of several different models to use. As
described in the chapter is it impossible to say which one to use, it depends
on the situation.

Chapter 3 also describes how to choose test cases. This part is as important
as the rest of the reliability theory. If you do not follow these guidelines, the
theory is not applicable.

6.3 Automatic or semi-automatic
6.3.1 Automatic
With automatic implementation you should be able to execute the monitor
program on every other program without doing any changes in the target pro-
gram. All you need to do is specify some detailed input, about the target pro-
gram, into the monitor program. By doing this you avoid manual
instrumentation in the program and it is easy to turn off and on the monitor-
ing. This method is good since there is always a risk to make mistakes when
you implement new code manually in a program. When you want to monitor
your program you monitor-compile the program, otherwise you perform a
normal compilation. When you perform the monitor-compiling you create
code in specified places in the target program. This code handles the sending
of messages to the monitor process.

To perform the monitoring the automatic way would be the preferred way,
but there are some major problems. To make this work, at least according to
what we have come up with, you have to give the designer of the target pro-
gram very specified rules on how to make the design and you also have to
create a very detailed infile to the monitor program. The monitor program
would also become very complex and large. This lead to that the automatic
idea has lost its advantage of being easy to use on all programs, instead it
creates the opposite affect. After we had drawn this conclusions we decided
to try semi-automatic instead.

6.3.2 Semi-automatic
Semi-automatic is a solution between manual and automatic. Some of the
code, that handles the message sending, will be implement in the monitor-
compiling but some has to be manually implemented. The advantages of this
method are, that you can use it on all programs independent of the design,
and a big part of the implementation can be done automatic so it is not that
labour intensive. The worst disadvantages are that you have to consider
where this code should be implemented already in the design and there can
be a problem to turn on and off the messages sent to the monitor. But still we
think this is the best solution that we could come up with. In the end product
from SERC all code will be automatic instrumented by the Erlang-compiler
that we mentioned in chapter 2 and 4. How to do that is not in the scope of
this thesis.



51

6.4 How to divide the target program
As we mentioned before we like to divide the target program into smaller
subsystems and calculate the reliability for these subsystems. Then calculate
the reliability for the whole system depending on the reliability of the sub-
systems. The problem was how to define a subsystem and how to calculate
the total system’s reliability, since you have to consider how important the
different subsystems are. It is also important that you can specify the subsys-
tems, and their influence on the reliability in the contract with the customer.
We have been working with two different solutions.

6.4.1 Process- and function-subsystem
As we described in chapter 5 an Erlang program is built of processes. Our
first theory was to divide the system into subsystems depending on the proc-
esses. Our idea was based on the theory that every process works with one
application, e.g. a CGI-script, at the time and that you could match every
process with an application. The user would have to specify, in a list, how
important every process was. We would give them a couple of classes they
could choose between. This list should be the base when we decided how
important every failure was. We were also thinking about measuring the time
spent in every process and all reductions made by functions in a specified
process. A reduction can be described as a function call, and is a good way to
measure the activity in a function. This should also help us to decide how
important the process is. With this theory we could decide in which process
the failure occurs and how important the process was, and thereby how
imported the failure was.

Unfortunately, this theory failed due to a couple of reasons. The most impor-
tant was that we could not decide how important the failure was for the end
user only knowing the importance of the process. This is the case since a
process can work with different applications and we could not restrict the
design of a program to only one application in every process. A few other
disadvantages with this solution are that it is hard to connect these subsystem
to the contract, the monitor program would be very complex and the data
sent between the target program and the monitor would be huge. Another
problem with this solution is to calculate the total reliability of the system.
The reason for this is that the different processes are not independent and
their interrelations can be very complex. This makes the reliability calcula-
tions almost impossible. The only real advantage with this method is that the
monitor program becomes a better debugger when we can decide more
exactly where the failure occurs. But that is not supposed to be the outcome
from this thesis.

6.4.2 Transaction subsystem
We decided to divide the target program into transactions instead. With a
transaction we mean a user function going through the system. A few exam-
ples of a transaction in a webserver could be, loading a page or executing a
CGI-script. By dividing the system into transactions we have obtained a lot
of advantages compared to the other solution. Some of these are:



52

• Easy to decide how important the failure is for the end user. We know
what he tried to do and what went wrong.

• It is easy to calculate the reliability for every transaction. You just fire
these transactions through the system and see what will come out.

• It is easy to specify the different transactions in the contract and they
are easy for the customer to understand.

• It is easy to calculate the reliability of the whole system. If you can
get data about the user characterization it is easy to calculate how the
total reliability depends on the subsystem’s reliability.

The only disadvantage is that it will not be so easy to see where in the code
the failure occurs, but we will use checkpoints to give you a possibility to
roughly find out where it happened. We describe more about this in the next
chapter.

6.5 When and for how long shall we monitor the program
In the next area we will discuss a couple of different solutions to monitor the
target program. We will investigate three main solutions.

6.5.1 Only monitor during the test phase
One method could be to just perform the monitoring during the test phase.
This was however never an alternative for us in this thesis. If we only do it
then, we loose the information we are after. What we want to know are how
the program behaves in its real environment and how it changes with time.
You usually say that a software product does not grow old, but there could be
some exceptions to this rule, e.g. if a failure occurs in a program and the pro-
gram does not terminate, there can be strange things going on that you do not
know about. In an Erlang program this could result in that a lot of processes
are still alive even though they do not execute any more. This can for exam-
ple lead to memory problems. There are a lot of other things that can happen
in a program’s real environment that we never can predict in a test-environ-
ment.

Another thing that is important for our solution is that we can see if an
upgrade of the program will make it better or worse in the real environment.
So, we definitely have to perform the monitoring in the real environment.
There is however one advantage with only performing it in the test phase and
that is that you gain better performance in the real environment. But since the
end product from the monitoring projects at SERC, will execute on two proc-
essors, as described in chapter 4, this is not a problem for us.

6.5.2 Monitoring a certain time
One solution would be to monitor the program in the real environment for a
certain time. You start to monitor the program and when the program has
been executing for X hours without any failure we can stop the monitoring.



53

The disadvantages with this method, are:

•How long shall you monitor? What happens if you stop the monitor
and then a failure occurs that terminates the system. Then you will
not find out about this failure and what have gone wrong until it is to
late. So, there is always a risk to trust the program and stop the moni-
toring.

•Another disadvantage is that you have to disconnect and connect the
monitor between the monitoring. It is always risky to make changes
in the code. And again, the performance gain is the only real advan-
tage with this method. Like we said before we do not have to take this
in consideration.

6.5.3 Monitoring all the time
Because of the disadvantages described about the other methods we choose
to perform the monitoring all the time. By doing this we gain the following
things:

• We have control of the program all the time. If something happens we
will notice and can take care of the problem immediately. This can
save a lot of money and time.

• We can also see what is happening to the program during a longer
time in operation.

• We do not have to connect and disconnect the monitoring program. If
we for example upgrade the program we can just keep on monitoring
and see if the upgrade makes the program better or worse.

This method gives you a more stable and safer monitor.



54

 CHAPTER 7

Our solution

In this chapter we will give a more detailed description of the solution we
have come up with. The problems we should solve could be defined in two
sentences.

• Define metrics which connects the customers’s and the developers’s view
of the system’s reliability.

• Find a way to monitor these metrics in an Erlang system during execution.

7.1 Metrics for calculating the reliability
The first part, mentioned above, is the more theoretical part of our solution.
We have not only come up with a definition on reliability metrics, but also
described important issues to think of when collecting these metrics. Further
we have described different ways of analysing the metrics, both when it
comes to calculate the current reliability and predicting the future reliability.
The reason we have done this is because to be able to have full control over
the reliability, which SERC wants to, you must consider all these aspects.

7.1.1 Definition
The definition we have used in our solution to calculate the reliability is “The
probability for failure free operation during a specified time in a specified
environment”and it has been calculated, by assuming constant failure inten-
sity and exponentially distributed times between failures, according to equa-
tion 3.1. We have also chosen to express the reliability as Mean Time To
Failure (MTTF) for those who prefer this measure.

7.1.2 System components
In chapter 3, we described how to break down the system in independent
components. The reason for this is to be able to calculate the reliability for
every component and then combine these to one system reliability. In our
solution we have chosen to both divide the system in independent compo-
nents but also to describe the system as a set of transactions. Transactions are
more a way to look at the system from the user’s point of view. The user is
not interested in the different components of the system, he or she is more
interested in what different types of functions the system performs and of
course, if the system succeeds to perform these functions when required.

How do we then define a transaction? Examples of transactions could be a
call forward or a ordinary call in a telephone switch, or a CGI-script or load-
ing a normal page in a webserver. Sometimes you have to divide the transac-
tions in the contract into sub transactions, to be able to follow them through
the system. There are some specified guidelines to follow when you define
your transactions. These are:



55

• It must be possible to connect the transaction to the contract with the cus-
tomer.

• It must be possible to specify where the transaction starts and stops.

• If an Erlang process terminates, all transactions it works with fail.

• The same transaction can exist in many Erlang processes at the same time.

• The transaction should be a basic function in the system, so every system
only consists of a small number of transactions.

• The different transactions should be independent.

When all the transaction types are defined you will be able to measure the
reliability for every transaction type and also the whole system’s reliability.
If you find out that the reliability are too low, you can check which transac-
tion that needs improvements.

To further simplify the search for finding the weak part in the program we
also divide every transaction into smaller sequential parts. We do this by
using checkpoints in every transaction. Checkpoints can be described as
defined spots along the transaction’s path through the system, see fig 7.1. We
will be notified every time a checkpoint is passed by a transaction. This way
we can decide between which checkpoints an eventual failure occurs and
where the improvements have to be made.

There is a problem that may occur when you define your transactions. In
some applications you cannot distinguish a special type of transaction in the
beginning. All the transaction types can execute the same code in the begin-
ning, so you cannot decide which transaction type it is. If a failure would
occur during this common phase, how should we know which type of trans-
action the system tried to execute. The solution we come up with is that you
should count all the failures for this common phase separately and then split
them on the different transaction types. When you do this you have to con-
sider how many transactions you have executed of every type, e.g. if 15% of
all transactions was of typevanilla, 15% of the failures in the common phase
should be added to this transaction type’s failures and so on.

Transaction
started

Transaction
finished

Checkpoint 1 Checkpoint 2

Figure 7.1: A transaction with its checkpoints.



56

7.1.3 Analysing metrics
When the metrics have been collected it is time to analyse them, i.e. calculate
the reliability. If you want to you can calculate the current reliability and then
be satisfied with this, but then you will not be in control of the reliability.
Instead you should use growth testing and the models described in chapter
3.3 to see how the reliability is evolving and also be able to see when you
will reach your objectives. This way you will be in control over the reliabil-
ity and know when to stop testing. If you have data from previous projects,
you can even already in the end of the design phase predict your final relia-
bility.

It is impossible to say which of the models described in chapter 3 you should
use. As described, it depends on the situation. In the beginning it could be
wise to use more than one model and then combine the results. This way you
can get a more accurate result. When you get more experience you will know
which model to use in the different situations. Note, that the models are
based on statistical assumptions so you should always use confidence inter-
vals.

7.1.4 Other aspects
Another really important aspect to think of is how to choose test cases. This
should be done randomly with the probability according to the operational
profile, described in chapter 3. If you do not do this, the reliability theory is
not applicable. The reason for this is that all the models are, as mentioned
before, built on statistical assumptions and since software failure occur-
rences are deterministic in themselves you have to introduce a randomness.

In chapter 3 we have given more aspects to think of when dealing with relia-
bility but, these are the most important ones.

7.2 How do we monitor these metrics through the Erlang sys-
tem
We will now describe the procedure of how we trace the transactions and the
other information from the target program. The target program is the pro-
gram that we like to monitor and calculate the reliability for.

7.2.1 Information sent about the transactions
We get the information from the target program by sending messages from
the target program to the monitor at specified moments. To get the informa-
tion about the transactions we send messages when the transaction starts,
passes a checkpoint and when it is finished, see fig 7.2. When the transaction
starts we create a Transaction Identifier, Tid, that are specific for this transac-
tion. We use the Tid to identify every transaction through the target program
and in the monitor. Then we send the message to the monitor including the
start time for the transaction, the Tid and the Process Identifier, Pid, the trans-
action started in.



57

Then when the transaction arrives to a checkpoint we send the next message,
including the time the transaction arrived to this checkpoint, the Tid and the
Checkpoint Identifier, Cid. The reason for using checkpoint identifiers is that
transactions, of the same type, could go different paths through the system
depending on the input and the program environment. By using Cids we

know which checkpoints we passed and which path the transaction took1.
This message will of course be sent for every checkpoint that the transaction
pass. Then when the transaction is finished we send a new message including
the stop time, the Tid and the Pid we finished in. All information belonging
to a specified Tid will be saved together by the monitor in a file.

7.2.2 How do we connect a failure to a transaction
Erlang is a good language if you like to trap failures. The reason for this is
that you immediately notice all failures that occur, as described in chapter
5.1.2. So, when a failure occurs we immediately get a message from the tar-
get program. This message includes the Pid the failure occurred in, but we
are interested to know which transaction it was that failed. How do we con-
nect a failure to a specific transaction?

1. Cids have not been implemented in this version of the program.

Transaction

Set Tid
Transaction
Started

Checkpoint 1

Checkpoint 2

Transaction

finished

Msg to the monitor

Starttime, Tid, Pid

Checktime, Tid, Cid

Checktime, Tid, Cid

Stoptime, Tid, Pid

Figure 7.2: Transaction messages that sends to the monitor



58

To solve this problem we need to have full control over the transactions in
the system. We need to know which transaction, or transactions, every Pid
are working with. To do this we once again use message sending. Every time
a process starts working with a transaction it sends a message to the monitor
and every time a process has finished to work with a transaction it sends a
message, see Fig 7.3.

We then save this information in a list containing all information about
which transactions that every process works with. So, when a failure occurs
we get information about which Pid that terminated, then we check the list to
see which transactions this Pid was working with. We then see these transac-
tions as failed transactions and save them in a file. Then we take these trans-
actions out from all the other Pids in the list. This way we know exactly
which transaction, or transactions, the failure affected.

7.2.3 Future failure
Except from ordinary failures we also measure something we call future fail-
ure. With this we mean failures that do not cause a transaction to fail today,
but indicates that something is wrong, which may result in a failed transac-
tion in the future. There are two types of future failures, catched failures and
message to a non existing process.

Pid 1

Pid 2

MONITOR

Pid 1 start working with Tid B

Pid 1 stop working with Tid A

Pid 2 start working with Tid B

Pid 2 stop working with Tid B

Figure 7.3: Messages that help you connect a failure to a transaction.

Pid 1 start working with Tid A



59

A catched failure occurs when an ordinary failure occurs in the monitored
program, but the monitored program catches it by using the Erlang command

catch1. It is not enough to only catch the failure, the program must also be
able to handle this particular failure, otherwise a new failure will occur.

The second type of future failure, message to a non existing process, occurs
when a process sends a message to another process which does not exist.
This can for example depend on a fault in the sending command or if the
receiving process has terminated abnormally, due to a failure.

These two values can help you to see, at an early stage, that something has
gone wrong and prevent a future system breakdown. They could also be use-
ful when you make an upgrade of a program, if one of these two rises after
the upgrade, maybe the upgrade was not that good.

7.2.4 Information sent connected to failure and future failure
The information belonging to failure and further failure are, as mentioned
above, sent by messages from the target program. When a failure, that is not
within a catch-clause, occurs the process it occurred in will terminate. The
target program will then send a message to our monitor process including the
Pid, reason and time.

When acatch-erroroccurs the target program sends the Pid it occurred in,
the expression, Reason and the time when it occurred. A catch-clause often
look like this:

catch case function_A([Argument_list]) of
........
........

end

where function_A([Argument_list]) is the expression.

The reason is an Erlang-term describing the failure that occurred.

When a message is sent to a process that does not exist, the monitor receives
a message including the message that was sent, the Pid it was sent from, the
Pid it was sent to and the time when it was sent.

7.2.5 How do we get the target program to send the messages
To send these messages from the target program to the monitor we have to
instrument code at some specified places in the target program. As we
described in the previous chapter we do this instrumentation semi-automatic,
i.e. both manual and automatic. All messages that help us to control the
transactions have to be made manually and all messages containing informa-
tion about failure and future failure are instrumented automatically. We will
describe these two groups separately and start with the transaction messages.

1. Catch and throw are the Erlang exception handling primitives



60

Transaction messages. With transaction messages we mean, start messages,
checkpoint messages, stop messages and the messages that help us to control
which transactions a Pid works with. As we said above, the code that sends
these messages has to be manually instrumented. You should decide where
this code should be placed already in the design and this code should be writ-
ten at the same time as the rest of the code.

Another thing that also has to be considered, already in the design, is how to
send the Tid in all messages. A transaction could start in one process, having
its checkpoints in another process and end in a third process. You then have
to send the Tid as a parameter through the system together with the transac-
tion, so we can include it in all the messages.

If the system is designed to have transaction start, stop and all checkpoints in
the same process there is a short cut to this problem. You can then use the
Erlang commandsget andput. Put takes a value, the Tid, and put it in the
process dictionary together with a keykey andget gets the value, the Tid,
with keykey.If you can do it this way, you do not have to send it trough the
whole system.

Failure and future failure messages.These messages are the catch-error-,
message to a non existing process - and exit messages. The code that sends
these messages are automatically instrumented. To get the messages belong-
ing to exit and messages to a non existing process we use an Erlang com-
mand calledtrace. When you set the trace-flag = true you make it possible to
trace the processes in this file. You can start this tracing from another proc-
ess, the monitor. The process that is being traced will then send a message, to
the process that started the trace, every time the process exits or sends a mes-
sage to a non existing process. You can also set a flag that makes it possible
to trace all the processes that the traced process spawns. So, by starting the
trace in the right place you can easily trace a whole system. It is very impor-
tant that you really think through where you should start to trace.

We cannot get the messages, that contain information about the catch-error,
by using trace. Instead we wrote a program that look through the executable
source code of the target program and swaps all catch commands to a func-
tion that we called hks:catch (Hans’s and Kent’s catch). We also use this pro-
gram to instrument where we shall start the trace, more about this soon. The
hks:catch works exactly as a normal catch except from that it also sends a
message to the monitor server.

7.3 Overview of our practical solution and guidelines for
usage
Here we present an overview of our practical solution, how it works in a
higher level and guidelines for usage.



61

7.3.1 Overview of the practical solution
When you perform the monitoring, the system consists of the three bigger
parts, the target program, the monitor server and the analysis program, see
Fig 7.4. The target program and the monitor program are executed at the
same node while the analysis program is executed at another node. By doing
it this way you can sit at the office and make the analysis on the target pro-
gram, even though this executes at some other place in its real environment.
It is no problem to implement the solution this way, since Erlang supports
distributed programming and message sending between different nodes.

The monitor program and the analysis program are more described in the
next two chapter,

The first thing you have to do, to start up the system, is to write an infile. This
infile contains the following information: the names of all modules in the tar-
get program, a start function including the name of the module and how
many arguments there are in this function. For example an infile could look

Infile

MONITOR TARGET
PROGRAM

ANALYSIS
PROGRAM

Log-file

Msg

Msg

Msg

Req_to_analyse

OK

Data

Data

Figure 7.4: An overview of how the programs works.

PROGRAM



62

like this:

{files, [httpd, httpd_conf, httpd_example, httpd_listener
.........................................]}.
{startfkn,[{httpd_listener,connection,4}]}.

Then you start the monitor program with the infile as an argument. The mon-
itor program then works like a preprocessor and swap all the catch-clauses,
as we described above, in all the files specified in the infile. The start func-
tion defines where to start trace the target program, also described above.
Our monitor program then also instruments code, at this location, that starts
the trace of this process. We will then also trace all processes this process
spawns. Then we compile all the specified files with the trace flag set to true.
Now the system is ready to start up. After you started it you can perform an
analysis without turning off the monitor, more about this in chapter 9.

7.3.2 Example of the implemented code
We will now give an example of how the target program’s source code look
like before and after we have done our implementation. Assume that we have
the code below in the target program from the beginning. Note that this is
only an example, written in pseudo code, for a webserver loading a page. Of
course this code is simplified but it does not matter since we only use it for
this example. For those that do not know Erlang there might be a problem to
understand parts of this example, but hopeful the fundamental idea will be
understood.

request_from_a_client() ->
receive_the_request_from_the_client(),
create_a_new_listener_for_next_client().

create_a_new_listener_for_next_client() ->
case catch create_the_listener() of

{‘ERROR’, Reason} ->
make_some_arrangement()

OK ->
make_a_connection_to_the_client()

end.

make_a_connection_to_the_client() ->
make_the_connection(),
deliver_the_page().

deliver_the_page() ->
deliver_the_page_to_the_client().



63

To load a homepage is defined as a transaction in this system. We have also
defined that this transaction starts when we get a request from the client. We
also imagine two checkpoints for this transaction. Checkpoint1 is when the
new listener is created and checkpoint2 when the connection with the client
is set. Then we define the transaction as finished when we delivered the page.
After we inserted the first part of the code that should be implemented manu-
ally the program look like this instead. We write these changes in Erlang
code.

request_from_a_client() ->
receive_the_request_from_the_client(),
Tid = make_ref(), (creates a Tid)
monitor_server ! {Tid,now(),self(),start_trans}, (sends a Msg)
create_a_new_listener_for_next_client(Tid ).

create_a_new_listener_for_next_client(Tid ) ->
case catch create_the_listener() of

{‘ERROR’, Reason} ->
make_some_arrangement()

OK ->
Cid = checkpoint1,
monitor_server ! {Tid, now(), Cid,checkpoint},
make_a_connection_to_the_client(Tid )

end.

make_a_connection_to_the_client(Tid ) ->
make_the_connection(),
Cid = checkpoint2,
monitor_server ! {Tid, now(), Cid,checkpoint},
deliver_the_page(Tid ).

deliver_the_page(Tid ) ->
deliver_the_page_to_the_client(),
monitor_server ! {Tid,now(),self(),stop_trans}.

If we now assume that all of the following functions are working in different
processes:

request_from_a_client(),
create_a_new_listener_for_next_client(Tid),
make_a_connection_to_the_client(Tid),
deliver_the_page(Tid)

This is not very reasonable, but let us assume this, just for the example. Then
we also should implement the code that sends messages when a process
starts or stops working with a transaction. To settle potential misunderstand-
ings we should also mention that, when you send the message that a transac-
tion started you do not have to send a message for a new Tid in that Pid. Our
program handles that automatically. The code will then look like this.



64

request_from_a_client() ->
receive_the_request_from_the_client(),
Tid = make_ref(), (creates a Tid)
monitor_server ! {Tid,now(),self(),start_trans},
monitor_server ! {Pid,Tid,del_tid,now()},
create_a_new_listener_for_next_client(Tid).

create_a_new_listener_for_next_client(Tid) ->
monitor_server ! {Pid,Tid,new_tid,now()},
case catch create_the_listener() of

{‘ERROR’, Reason} ->
monitor_server ! {Pid,Tid,del_tid,now()},
make_some_arrangement()

OK ->
Cid = checkpoint1,
monitor_server ! {Tid, now(), Cid,checkpoint},
monitor_server ! {Pid,Tid,del_tid,now()},
make_a_connection_to_the_client(Tid)

end.

make_a_connection_to_the_client(Tid) ->
monitor_server ! {Pid,Tid,new_tid,now()},
make_the_connection(),
Cid = checkpoint2,
monitor_server ! {Tid, now(), Cid,checkpoint},
monitor_server ! {Pid,Tid,del_tid,now()},
deliver_the_page(Tid).

deliver_the_page(Tid) ->
monitor_server ! {Pid,Tid,new_tid,now()},
deliver_the_page_to_the_client(),
monitor_server ! {Tid,now(),self(),stop_trans},
monitor_server ! {Pid,Tid,del_tid,now()}.

Now all the manual implementations are made, and it is time to show what
those that are automatically implemented look like. Let us say that the start
function in the infile was request_from_a_client() then the code will look
this.

request_from_a_client() ->
mon:event_start_trace(self()),
receive_the_request_from_the_client(),
Tid = make_ref(), (creates a Tid)
monitor_server ! {Tid,now(),self(),start_trans},
monitor_server ! {Pid,Tid,del_tid,now()},
create_a_new_listener_for_next_client(Tid).



65

create_a_new_listener_for_next_client(Tid) ->
monitor_server ! {Pid,Tid,new_tid,now()},
casehks:catch create_the_listener() of

{‘ERROR’, Reason} ->
monitor_server ! {Pid,Tid,del_tid,now()},
make_some_arrangement()

OK ->
Cid = checkpoint1,
monitor_server ! {Tid, now(), Cid,checkpoint},
monitor_server ! {Pid,Tid,del_tid,now()},
make_a_connection_to_the_client(Tid)

end.

make_a_connection_to_the_client(Tid) ->
monitor_server ! {Pid,Tid,new_tid,now()},
make_the_connection(),
Cid = checkpoint2,
monitor_server ! {Tid, now(), Cid,checkpoint},
monitor_server ! {Pid,Tid,del_tid,now()},
deliver_the_page(Tid).

deliver_the_page(Tid) ->
monitor_server ! {Pid,Tid,new_tid,now()},
deliver_the_page_to_the_client(),
monitor_server ! {Tid,now(),self(),stop_trans},
monitor_server ! {Pid,Tid,del_tid,now()}.

Now all the code that is needed are implemented.



66

7.3.3 Design guidelines
We present these guidelines to get it as simple and clear as possible.

DESIGN GUIDELINES

Define transactions that you can write in the
software contract

Divide these transactions, if necessary, into new
transactions you can trace through the system

Define the following locations, for every

*Where do the transaction start?
*Where are the checkpoints we are interested in?

transaction, in the target program.

*Where do the transaction stop?

Define, for every process, where it starts working
with a new transaction and where it stop working
with a transaction.

Instrument code that sends messages in all the
locations you defined above.



67

 CHAPTER 8

The monitor program

This chapter gives an overview on the monitor program and mention all spe-
cial implementations.

8.1 Main components
The monitor program consists of four different modules, see appendix A,
where every module is one process. The modules aremon.erl, mon_collector,
mon_log andmon_msg. mon_msgis only used to control the message send-
ing between the monitor program and the analysis program, more about this
in the next chapter. Except from modules with executable code, the monitor
program uses two configurations-files,mon.hrl andmon_config.hrl.

8.1.1 Mon
The Mon module is the start up module. It starts reading the infile and per-
forms some action with this data. Then this process checks if there are any
processes registered as monitor_server or monitor_log, if not it spawns the
monitor_server process and the monitor_log process and register them with
these names. Then this process starts to instrument the executable source
code in the target program.

8.1.2 Mon_collector
Mon_collector is the main part of the monitor program. The process in which
it is executed is registered as monitor_server. This process is receiving all the
messages from the target program and take some action depending on the
message. The process also handles the Tid-list, which contains all the infor-
mation about the Tids in the target program, and the Pid-list which contains
information about which transactions every Pid is working with. In this proc-
ess we also measure the execution time for the target program, more about
this in the next chapter, in this process. When this process has received all
the information about a transaction, from start to stop, or failure, it sends a
message to the monitor_log process. The monitor_log process then saves this
information on disk. Then this process deletes these transactions in the Tid-
list and in the Pid-list. When a failure occurs the process looks in the Pid-list
and connect the failure to the right transactions. Then it deletes these transac-
tions in the Pid- and Tid-list and sends a new message to the monitor_log.
The monitor_log then saves this information on disk.

One special problem we had to think about in this program was, whether we
can be sure of that the messages connected to the same transaction arrive to
the monitor_server in the correct order. Because of this we have to look
through the mail box after other messages belonging to a Tid when we
receive a message for this Tid. This process is also, of course, the process
that traces the target program, otherwise the messages would not be sent to
this process.



68

8.1.3 Mon_log
Mon_log is executed in the process monitor_log. It handles all the communi-
cation with the log-files, it is registered as monitor_log. When something is
to be saved to the files, this process receives a message from the
monitor_server containing the information to be saved. Every transaction
type has its own log-file. In these files we save both failed and succeeded
transactions.

This process also opens and closes the log-files. When we open a file we get
a handle to this file. After we open, we have to use this handle every time we
like to communicate with the file. We save these handles in a list consisting
of tuples. Every tuple consists of the handle and the name of the transactions
type in this file. When we like to save something in a transaction type’s file,
we look in the list after the name of this type and then get the handle to the
file. The names of the transaction types that are used as a key to get the han-
dle are defined in the mon_config.hrl file. These names and the names of the
transaction types, sent from the target program, have to be the same.

Except from the files for the transactions, the monitor_log process also han-
dles the files for execution time, catch-error and msg-to-non-existing-proc-
ess.



69

CHAPTER 9

The Analysis Program

This chapter describes the analysis program. The program is not described in
detail, but all special implementations are discussed.

9.1 Main components
The analysis program and the monitor program are, as described in previous
chapter, two separate components. They are intended to run on separate
nodes and communicate via an interface defined by themon_msg.erl module.
All other code needed for the analysis is assembled in theanalyse.erlmod-
ule, and uses the same configuration files as the monitor program, i.e.
mon_config.hrlandmon.hrl. The analysis program is divided into three suc-
cessive parts, transaction and failure analysis, reliability analysis and, future
failure analysis. All Erlang code is listed in appendix A.

9.2 Transaction and failure analysis
9.2.1 Concurrent file handling
The first thing that happens in the transaction analysis is a control to see if
the monitor server is running. If so, the analysis program asks for permission
to start analysing. The reason for this, is because of problems with concur-
rent use of the log files. The monitor server must first close them before
another program can open them. After the analysis program has opened the
files, the monitor program can reopen them without problem, since that pro-
gram created the files. When the analysis program has opened the files, it will
not be able to read anything the monitor program has written in the files after
this point. To do so a new analysis must be performed at a later time.

9.2.2 Execution time
As mentioned in chapter 3, it is very important to only count the time when
the program is executed in the processor, since it is only then a failure can
occur. We also only want to count the time when, at least, one transaction is
being processed by the program. If the program is executing in spite the fact
that the program does not process any transaction, a transaction type may
have been forgotten in the design phase, or maybe the program performs
some kind of action that does not classify as a transaction, e.g. upgrading
source code. We do not separate different types of transactions when it
comes to execution time. If you are interested in only one type of transaction,
you have to perform tests which only use that type.



70

Since Erlang programs often are intended to run in a time sharing environ-
ment it is not obvious how to calculate the execution time. The foundation in
our calculations is the use of the Erlang commanderlang:statistics(runtime).
This command returns the time, in milli seconds, the program has been exe-
cuted since this command last was called. If you at the same time measures
the calendar time elapsed, between two calls, you can calculate the percent-
age part the program has been executed. This can then be used to transform
calendar time to execution time. The reason for not simply using the answer
from the Erlang call is because this answer is for the whole Erlang system. If
there would be several transactions processed at the same time, in different
processes, they would interfere with each other.

The problem is, due to the risk of being out scheduled, to exactly measure the
calendar time at the same time as executing the runtime call. We have solved
this problem by measuring the calendar time precisely before and after we
execute the runtime command. Then we assume that the call was executed in
the middle of these times. This does not solve the problem completely, but it
gives a reasonable good estimation. In the future this will not be any prob-
lem, because then the monitor code will be autobuilt in Geoff Wong’s system
which supports better time measurements.

We execute the measurements mentioned above every time the system is
empty and a new transaction comes in, when the last transaction leaves the
system and when a failure occurs. If the system continuously process trans-
actions and no failure occurs we will, with constant intervals, perform the
measurements to avoid problems with load fluctuations in the time sharing
system. If the time interval between two measurements is too long, the per-
centage part that the program executes, can vary heavily.

9.2.3 Data extraction
The analysis program reads all the log files created by the monitor program
and extracts the desirable data. Some of the data are only stored in new log
files, see appendix D, while others are also used as input to the reliability
analysis, e.g. time to failure (in execution time) and total execution time.
There are also plot files generated to make it possible to plot various data
with the UNIX plot command gnuplot, see appendix C.

9.2.4 Pseudo failure
When the test run have been completed and the last test case does not fail one
must make some accommodation for all the successful test executions since
the last failure. According to [24] a good way to do this is to assume that the
program will be failure free for at least as long as it has been since the last
failure. This means that if the program has been executed 100 seconds since
the last failure, we assume that the next failure will occur in additionally 100
seconds. The pseudo failure is automatically added to the real failures. Due
to this, the total execution time for the various types of transactions can differ
since we also have to add execution time as well, i.e. 100 seconds in the
example above.



71

9.3 Reliability analysis
9.3.1 Metrics
The reliability analysis part uses the data produced by the transaction and
failure analysis part, to produce various metrics which are of interests when
studying the reliability, e.g. number of succeeded transactions, mean time to
failure (MTTF), number of failures and, the probability of failure free execu-
tion. This is done for every transaction and also for all transactions together.
Further it calculates the distribution between the different types of transac-
tions. When we calculate the probability for failure free execution, here
called reliability, we assume that the failure intensity, or MTTF, is constant.
Due to this, we can calculate the reliability according to equation 3.1. If the
failure intensity is not constant, you should not rely on this measure and
instead use one of the reliability growth models, mentioned in section 3.3, to
calculate the reliability. As input to these models you use the failure times
calculated in the transaction and failure analysis part.

9.3.2 Multiple failures
During reliability growth testing it is assumed that all faults, that causes fail-
ures, are removed immediately when discovered, otherwise they will cause
multiple failures. If this is not the case and multiple failures have occurred,
the reliability growth models will not give an accurate result unless you
remove the multiple, all except the first, failure times from the failure time
file. This program cannot recognize multiple failures. However, during the
demonstration test phase all failures should be counted since this testing
reflects the operational phase where faults are not corrected.

9.4 Future failure analysis
The last part of this program is the future failure analysis part. In this part we
analyse failures that do not cause a transaction to fail today, but indicates that
something is wrong which may result in a failed transaction in the future, i.e.
catched failures and messages to non-existing processes. All the information
about future failures are stored in the two log files, Catched_error.log and
Msg_non_ex_proc.log.

9.5 Outputs
The program produces both output to the screen and to disk. Some of the
disk files are constructed in a way, that makes it possible to plot the data with
the UNIX based plot program, gnuplot. In appendix D examples are given to
show different types of outputs generated by the analysis program. The infor-
mation shown on the screen are:

• Number of succeeded transactions, for every transaction type and

total.

• Mean time of succeeded transactions, for every transaction type.

• Distribution between different types of transactions.



72

• Number of failures, for every transaction type and total.

• Mean Time To Failure (MTTF), for every transaction type and total.

• Reliability for a specified time with current MTTF, for every transac-

tion type and total.

The different plots available are:

• Transaction times for succeeded transactions, for every transaction

type.

• Time to failure, for every transaction type and total.

• Reliability versus execution time, for every transaction type and total.

All the plots are also saved as postscript files to support easy printing.

The data stored on disk are:

• Time to failure, for every transaction type and total.

• Failure times, for every transaction type and total.

• Transaction times, for every transaction type.

• Catched errors, for all transactions

• Message to non-existing process, for all transactions.



73

CHAPTER 10

Practical Application

This chapter first describes our test system. Then we explain the tests we
conducted and also the results from these tests.

10.1 The Test Environment
To be able to test our solution, we needed an application. Our basic require-
ments on the application are that it should be similar to a telecommunication
system and of course, written in Erlang. After discussions with the experi-
enced researches here at SERC we decided to use a newly developed web
server from CSLab/OTP. The similarity between a web server and a telecom-
munication system is that it should be up and running all the time and it
should be possible to upgrade the system without shutting it down. Since the
web server is fairly new it is also very likely that it still contains faults
(which we found to be the case). The good thing with this is that we can not
be sure that the code only contains our own simulated faults, which makes
the tests more realistic.

10.1.1 System components
Figure 10.1 shows the different components of our test system and as you
can see, it consists of both hardware and software components. Example
10.1 describes a typical scenario.

Example 10.1
The first thing that happens is that the user, called Tobbe, at computer 1
wants to look at a web page, e.g. The Erlang Association. He tells his
browser, e.g. Netscape or Microsoft Explorer, to collect the page by writing
(or click on) the address and name (URL) of the page. The browser then
sends a request to the web server located in computer 2. The web server
picks up the request and loads the right page from disk and then sends it back
to the browser, which in turn shows it for Tobbe.

In this system, Tobbe is the end user, but since we are only interested in the
web server, we only look at that part. If a failure, that affects the web server,
would occur in any other part of the system we just ignore this when it comes
to our reliability calculations.



74

All testing is done with UNIX as operating system. This is a time sharing
environment which, from a user point of view, seems to execute several dif-
ferent processes, programs, at the same time. In reality there is only one
process at a time that is being executed in the processor, the others have to
wait for their turn. All UNIX processes have to share the time in the proces-
sor. Note that we are talking about UNIX processes and not Erlang proc-
esses. The whole web server, which consists of several Erlang processes, is
one UNIX process. Due to this it is very important that we only count the
time when the web server is executed in the processor since it is only then a
failure can occur. The computers are connected in a local area network.

10.1.2 Transaction types
The purpose of this thesis is to measure the reliability for different types of
transactions. Therefore we must identify the different transactions the web
server should handle. Normally, this is done in the requirements phase. Since
the intention with this testing is to validate our solution and not to fully test
the web server, we only use some of all the different types of transactions
possible. The ones we use are:

•Vanilla  -This is the transaction performed when it is an ordinary page.

•Mod_CGI -This is the action performed when a page contains a exe-
cution command to a program. Instead of returning a document the
web server executes the program and returns the output. These types
of programs are called Common Gateway Interface (CGI).

•Mod_ESI -This is the same case as for Mod_CGI but instead of exe-
cuting CGI programs an Erlang program is executed. These types of
programs are called Erlang Scripting Interface (ESI).

Web
Server

Browser
Operating
System

Hardware

Hardware

Disk

Computer 1

Tobbe

Software

Operating
System Hardware

Computer 2

Software

Network

Figure 10.1: Test System



75

There are several more types of transactions that the web server can perform,
but there is no special reason that we chose these particular ones.

10.1.3 Test cases
Before we start to test the web server we must create a set of web pages that
uses one or more of the different transactions. This part has been done by
manually writing source code (see Appendix C) for different web pages. As
mentioned before this testing is only intended to validate our solution and not
to fully test the web server, and therefore we have only created a couple of
pages for each transaction type.

10.1.4 Test case generator
In chapter 3 we discussed the aspects involved when choosing test cases and
this is valid for this situation too. To our luck, Geoff Wong, has already
developed a test generator for a web server, which takes all these aspects into
consideration. The generator randomly chooses which page to request and
also how often.

To use the generator you first create different scenarios. A scenario is a
sequence (one or more) of web pages that the generator should request from
the web server. If you create more than one scenario the generator will ran-
domly choose from these.

There are five different parameters you can use to tailor the generator to suit
your case. The parameters are listed and described in table 11.

Parameter Description

Number of Sessions A session is the same as a user. By using more
than one session you can simulate the realistic
case when several different users try to collect
pages from the web server.

Random number Seed To generate random number the generator
needs a start seed. By using the same value you
can recreate the exact same test sequence sev-
eral times.

Sequence probability This is the probability that the sequence given
in a scenario is followed. If you use zero the
sequence picked will be totally random.

Sleep time This is the average time a session waits until it
makes a new request.

Run time Test time in seconds.

Table 11: Test case generator parameters



76

10.1.5 Failure simulation
Even if there is a high probability that the web server contains faults we can-
not be sure that we will find them. Especially not since we do not conduct a
thorough and exhaustive test. Because of this we must simulate failures and
then validate if we have found these. To make the test more realistic we want
these simulated failures to occur randomly.

The way we have solved this is by manually inserting a new piece of code
(see Appendix A) in the web server. This code will with a certain probability
terminate the process, in which it is executed, with the reason simulation.
This will then be traced by our monitor program. There is a good chance that
our simulated failure will cause other failures in the system but it is only the
first one, and time of occurrence, that we want to log.

10.2 Test Results
10.2.1 Verification of our solution
After conducting several different test runs we can, with very high confi-
dence, claim that our solution works. We have with manual calculations ver-
ified all our results. Since the web server contained faults, as we suspected,
we could also verify that our solution could handle failure propagation, only
record the first failure, catched errors and messages to non-existing proc-
esses. We have also been able to create the scenario when the web server
catches a simulated error but generated a new failure in a latter state. Our
program successfully recorded the new failure. We have used different load,
requests per second, and different combinations of transaction types, but all
the tests shows the same thing, our solution works to the full. In appendix D
we show some of the test results. The figures in themselves are not important
since we did not intend to test the web server, only verify our solution.

10.2.2 Web server failures
As we suspected the web server contained faults. Some of the recorded fail-
ures have been sent to CSLab/OTP with the hope that they will be corrected
in the next version. The failures that occurred, and reason why, are as fol-
lows:

Too high load -When the load is too high, the web server starts catching
errors and sending messages to non-existing processes. Eventually the whole
web server breaks down. The reason for this is that the socket handler, the
part which connects the program to the physical port in the computer, in the
web server cannot manage to serve all requests when they come to fast. This
problem did not occur when the web server was used in a Free BSD UNIX
environment instead of a SunOS UNIX environment.

Start up failures -When the web server is started, before you start sending
requests, it catches a huge amount of errors. The reason for this does not
have to be because of a fault in the program. Sometimes a designer chooses
to use the catch command on purpose and this may be the case here.



77

Break down -If a transaction fails, between that the web server get a request
from the client and that the webserver started a new socket listener, the
whole web server breaks down. The reason for this is unknown to us.

10.2.3 Comments to the graphs
In appendix D we present figures and graphs from the tests on the webserver.
There have been no time to make a complete analysis of the results, but we
comment the graphs and also provide a possible reason for some of the
behaviours.

The first three graphs are from the same test. To avoid the problems with
high load, mentioned above, we used a relatively low load.

The first graph shows the transaction times for vanilla transactions. There is
one really high spike around transaction 38. We have no idea what happened
here. You can also see a trend that the transaction times rise the longer we
execute. The reason for this, is that a new transaction starts before the old
one is finished. This lead to that the number of transactions executed at the
same time increases. Thus more processes, transactions, have to share the
time in the processor.

The next graph shows the transaction times for the MOD_ESI transaction.
You can also in this graph see a trend of increasing transaction time the
longer we execute. We think that the reason for this is the same as for the
vanilla transactions.

The third graph shows the transactions times for the MOD_CGI transaction.
In this graphs something very strange happens. While executing the first 80
transactions there are no problem. Then all of a sudden, the transaction times
rise real high for a few transactions. After this the webserver terminates. Pre-
cisely before the web server terminates we receive a higher amount of mes-
sages to non existing processes and catched errors. We do not know what
happened in this test case. We tried to reproduce it, but we did not succeed.
Since we used a low load in this test, we do not think that this termination
depends on the same problem as the load termination.

The next three graphs are from another test. This time we have conducted the
test over a longer period of time, i.e. executed more transactions.

The fourth graph is another one of transaction times, but now for a
MOD_ESI transaction. There is not much to say about this graph. There are
some spikes, but overall it looks okay.

The fifth graphs shows times to failure, or time between failure, for the trans-
action type MOD_ESI. The first failure occurs after about 330 seconds, then
the next failure occurs after additionally 420 seconds, and so on. Those val-
ues that are real low, about 10 seconds, are really bad. This means that an
failure occurred only 10 seconds after another failure. Note, that we simulate
failures during these tests, which means that this does not say anything about
the web server’s quality. This only shows that our method works.



78

The last graph shows the reliability versus execution time for the web server
when it is executing Mod_ESI transactions. The reliability in this graph are
defined as“The probability for failure free operation during a specified time
in a specified environment”. The equation we used is:

The reason that the reliability is so poor in this graph, is that we only tested a
short time and simulated several failures.

Reliability R τ( ) e
λτ–( )

3.1( )=



79

CHAPTER 11

Retrospect and Future work

11.1 Retrospect
To understand the purpose with this thesis one has to look at some of the
other projects SERC has undertaken. SERC’s goal is to develop a method
where you can specify the non-functional requirements in the contract and
then track, and be in full control of, them through the development process
and even during the operational phase. The first part of this, the contract, has
been solved by Anna-Karin Carlsson and Fredrik Gustavsson [2]. They
developed a method to break down a customer’s business into a set of trans-
action types and also define which quality needed for every type of transac-
tion.

The main tasks of our thesis was to “Define metrics which connects the cus-
tomer’s and the developer’s view of the system’s reliability” and “Find a way
to monitor these metrics in an Erlang system during execution”, which is the
next step in this chain. Our thesis in turn is a part of a monitor project con-
ducted by Geoff Wong. His aim is to automatically create all monitor code in
a special Erlang compiler. This compiler also divides the code in two differ-
ent parts, so that the functional code is executed on one processor and the
monitor code on another processor.

11.1.1 Reliability
When we started this part we thought that the problem was to define reliabil-
ity and which metrics you need to calculate the reliability. We soon realized
that this is not the case. The problem is how to collect the metrics.

First of all you need to divide your system into independent components.
You do this so that you can calculate the reliability for every part and then
combine these to one system reliability. We have also chosen to look at the
system from the user’s point of view by dividing it, in our case only the
erlang part, into transactions according to Carlsson’s and Gustavsson’s
method. You can then calculate the reliability for every type of transaction
and directly relate this back to the contract.

Another problem is how to test the system. Test cases should be chosen ran-
domly according to the probability that they would be chosen during opera-
tion. By choosing test cases randomly you introduce statistical independence
for failure occurrences. This is very important, otherwise the different statis-
tical reliability models we described will not be applicable. You also need to
look for multiple failures so that you only count these ones. Next problem
during test is to choose the right model to use. This depends on, among other
things, the times between failures. Is the failure intensity for example
decreasing or increasing?



80

The problems mentioned above are only a few of all those that exists. In
chapter 3 we have described more characteristics that have to be considered,
but we have not been able cover them all. Reliability is a quite new engineer-
ing discipline and much work is done to develop this further.

11.1.2 Monitoring
Our first approach how to handle the monitoring was to do it totally auto-
matic since, this is the way it is supposed to be in Geoff Wong’s system.
Unfortunately we could not find a way to connect a failure to a specific trans-
action this way. We needed some way to track a transaction’s path through
the whole Erlang system. We did this by manually instrumenting code in our
test application, the web server. Since we did this after the application was
finished it took quite a time to find the right places. If you have this in mind
already when you make your design, this will only take a fraction of time
compared with making an ordinary design.

11.1.3 Test application
We chose to use a web server written in Erlang as test application. This
turned out to be a good choice since the version we got was an early one. The
good thing with this was that it contained bugs. For some of these bugs we
have also found out where the problem is, which has been sent to the current
developer, OTP.

11.2 Future work
The most important thing, when it comes to future work, is to integrate our
method with Geoff Wong’s system, since this is the final aim with this
project. Our monitor program is not intended to be used in the future, only
the ideas. A first step to this could be to make small changes in our program
so that you will have one main monitor process and then one monitor process
for every application process. This is the way it is intended to work in
Wong’s system.



81

References

[1] ANSI/IEEE, “Standard Glossary of Software Engineering
terminology”, STD-729-1991, ANSI/IEEE, 1991

[2] A.-K. Carlsson, F. Gustavsson, “Quality of Telecommunication
Application Software, SERC, 1997

[3] G. Wong, “Continuous Systems Monitoring”, Department of
Computer Science, RMIT University, Melbourne, Australia, 1996

[4] J. Armstrong, R. Virding, C. Wikström, M. Williams, “Concurrent
Programming in Erlang”, Second Edition, Prentice Hall, 1996

[5] P. B. Lakey, A. M. Neufelder, “System and Software Reliability
Assurance Notebook”, Softrel, 1997

[6] J. D. Musa, A. Iannino, K Okumoto, “Software Reliability:
Measurement, Prediction, Application”, McGraw-Hill
publishing Company, 1990

[7] Farr, Dr. William, “A Survey of Software Reliability Modelling
and Estimation”, Naval Surface Weapons Center, Dahlgren, 1983

[8] Dr. S Keene, G. F. Cole, “Reliability Growth of Fielded Software”,
Reliability Review, Vol 14, 1994

[9] American Institute of Aeronautics and Astronautics,
“Recommended Practice for Software Reliability”,
ANSI/AIAA R-01301992, 1993

[10] J. D. Musa, “Operational Profiles in Software Reliability
Engineering”, IEEE Software Magazine, 1993

[11] M. R. Lyu, “Handbook of Software Reliability Engineering”,
McGraw-Hill, 1996

[12] L. J. Clinton, “A Framework for Monitoring Program Execution”,
Department of Computer Science, The University of Arizona,
Arizona, 1988

[13] M. A. Linton, “The Evolution of Dbx”, Proceedings of the
Summer 1990 USENIX Conference, pages 211-220, June 1990

[14] M.H. Brown, R. Sedgewick, “A System for Algorithm Animation”,
Computer Graphics, 18(3), pages 177-186, July 1984



82

[15] H. D. Bocker, G Fischer, H/ Nieper, “The Enhancement of
Understanding through Visual Representations”, CHI ‘86
Proceedings, pages 44-50, June 1986

[16] R. R. Henry, K. Whaley, B. Forstall, “The University of Washington
Illustrating Compiler”, Proc. ACM SIGPLAN ‘90, pages 223-233,
White Plains, NY, June 1990

[17] R London, R Duisberg, “Animating Programs Using Smalltalk”,
IEEE Computer, pages 61-71, Aug. 1985

[18] R Sosic, “Dynascope: A Tool for Program Directing”,
Proceedings of the ACM/SIGPLAN ‘92 Conference on
Programming Language Design and Implementation,
volume 27, pages 12-21, San Francisco, California, June 1992

[19] Z. Aral, I Gertner, “High-level Debugging in Parasight”,
Proceedings of the ACM/ SIGPLAN PPEALS 1988,
pages 21-30, September 1988

[20] P. Henderson, “Functional Programming Application and
Implementation”, Prentice Hall, ISBN:0133315797, 1980,

[21] A. Fedoriw (ed.), H. Nilsson (ed.), “Erlang System/OTP 4.5
Development Environment Reference manual”, 1997

[22] H. Mattson, H. Nilsson, C. Wikström, “MNESIA Reference
Manual”, Rev. 1.2.1 1997

[23] SERC-group, “The Erlang Engine Manual”, version 1 January 1997

[24] M. Dyer, “The Cleanroom Approach to Quality Software
Development”, John Wiley & Sons, Inc, 1992



83

Appendix A: Erlang source code

In this appendix we lists all the source code written in Erlang. The different
modules are listed after which program they belongs to.

• Configuration modules (used by both programs)
mon_config.hrl
mon.hrl

• Monitor program modules
mon.erl
mon_log.erl
mon_collector.erl
instrument.erl
tmon_cover.erl

• Analysis program module
analyse.erl

• Failure simulation module (inserted in the web server)
mon_failure.erl

• Communication module (between the two programs)
mon_msg.erl

• Instrumented code



105

Appendix B: Gnuplot source code

In this appendix we lists all the source code written to create the different
plots with gnuplot. The different source files are listed after which plots they
create:

• Transaction times and times to failure (for one type of
transaction)

mon_Vanilla.plot
mon_Mod_CGI.plot
mon_Mod_ESI.plot

• Reliability versus execution time (for one type of transaction)
mon_rel_Vanilla.plot
mon_rel_Mod_CGI.plot
mon_rel_Mod_ESI.plot

• Time to failure and reliability versus execution time
(for all transactions)

mon_rel_all.plot



113

Appendix C: Test source code

In this appendix we lists the source code of the web pages we used during
validation of our method. The files are listed according to which transaction
type they belong to. The files are:

• Vanilla pages
hemsida.jpg
index.html
page1.html
star.gif

• Mod_CGI script
cgi-bin/test
test.tif
tmp.dvi

• Mod_ESI script
kent_hans
yahoo



116

Appendix D: Test results

In this appendix we show some of the results from the testing. The different
outputs are listed depending on type:

• Screen data
Screen sample

• Plots
Transaction times for Vanilla transactions
Transaction times for Mod_ESI transactions
Transaction times for Mod_CGI transactions
Transaction times for Mod_ESI transactions
Time to failure for Mod_ESI transactions
Reliability versus execution time for Mod_ESI transactions

• Files
Transaction times for all transaction types
Transaction errors for all transaction types
Failure times for all transaction types
Time to failure for all transaction types
Messages to non-existing processes
Catched errors


