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Gini coefficient is among the most popular and widely used measures of income inequality in economic
studies, with various extensions and applications in finance and other related areas. This paper studies
confidence intervals on the Gini coefficient for simple random samples, using normal approximation,
bootstrap percentile, bootstrap-t and the empirical likelihood method. Through both theory and simulation
studies it is shown that the intervals based on normal or bootstrap approximation are less satisfactory for
samples of small or moderate size than the bootstrap-calibrated empirical likelihood ratio confidence
intervals which perform well for all sample sizes. Results for stratified random sampling are also presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Income inequality has long been an active research area in economic
studies. Among various measures of income inequality proposed in the
statistical and economic literature, the Gini coefficient, G, is probably the
most popular and widely used measure. It was originated from Gini's
mean difference (Gini 1912, 1936), and is closely related to the Lorenz
curve, thepopularmeasure for the sizedistributionof incomeandwealth.
Lorenz curves are alsowidelyused in economic analysis (Kakwani, 1977).

Let F(y)=P(Y≤y) be the cumulative distribution function of a
nonnegative continuous random variable Y. We will refer to Y as the
income variable. Let X and Y be two independent random variables
following the same distribution F(y). The Gini mean difference is then
defined as

D = E jX−Y j = ∫+∞
0

∫+∞
0

jx−y jdF xð ÞdF yð Þ:

The value of D is the average absolute difference of incomes of
two randomly selected individuals and hence reflects the income
inequality in the population. Noting that 0≤D≤2μ, where μ=E(Y)=
∫
0
+∞ydF(y) is the population mean income, the Gini coefficient, G, is

defined as the normalized mean difference, i.e., G=D /(2μ)∈ [0, 1],
which can be equivalently written as (David, 1968)

G =
1
μ
∫+∞
0

2F yð Þ−1f gydF yð Þ: ð1Þ

The Gini coefficient is also closely related to another popular
measure of income inequality, the Lorenz curve (Lorenz, 1905;

Sendler, 1979). Let F−1(t)=inf{ξ :F(ξ)≥ t} for t∈ [0, 1]. The Lorenz
curve based on the income distribution F(⋅) is then defined as

L α; Fð Þ = 1
μ
∫α
0
F−1 tð Þdt = 1

μ
∫F−1 αð Þ
0

xdF xð Þ

for α∈ [0, 1]. The Gini coefficient G is equal to twice the area between
a 45-degree line and the Lorenz curve, i.e., G = 2 0:5−∫1

0 L α; Fð Þdα
n o

.

There exists an extensive literature on the Gini measure of income
inequality. In addition to various applications and extensions in
economic studies, statistical investigations focused largely on vari-
ance estimation; see, for instance, Glasser (1962), Sandström et al.
(1985, 1988), Yitzhaki (1991), Karagiannis and Kovacevic (2000),
among others. In particular, Yitzhaki (1991) calculated jackknife
variance estimators of the plug-in moment estimator, Ĝ, of G, under
simple random sampling and stratified random sampling. However,
confidence intervals for the Gini coefficient have not been studied by
previous authors, with the exception of Sandström et al. (1988)where
95% normal approximation confidence intervals based on three
variance estimators were briefly mentioned.

This paper presents confidence intervals on the Gini coefficient,
G, using normal and bootstrap approximations and empirical
likelihood (EL) based methods. We first consider the case of
independent and identically distributed (iid) samples (or simple
random samples when the sampling fraction is negligible), and
then extend the results to stratified random sampling. In Section 2,
we establish the asymptotic normality of the point estimator, Ĝ, of
G and construct confidence intervals on G based on the normal
approximation. Confidence intervals on G based on the bootstrap
percentile and the bootstrap-t methods are also given. In Section 3,
the limiting distribution of the EL ratio statistic is established and
the EL ratio confidence intervals are presented. A bootstrap-
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calibrated EL confidence interval on G is also presented. Results of a
limited simulation study on the finite sample performance of the
proposed confidence intervals are reported in Section 4. Extensions
to stratified random sampling are outlined in Section 5. Proofs of
theorems are relegated to Appendix A.

2. Normal and bootstrap approximation confidence intervals

Let {y1, ⋅ ⋅ ⋅,yn} be an iid sample from F(y) and Fn(u)=n−1∑ j=1
n

I(yj≤u) be the empirical distribution function based on the sample,
where I(⋅) denotes the indicator function. Noting that G=E[{2F
(Y)−1}Y] /E(Y), a simple plug-in moment estimator of G is given
by

Ĝ =
1
μ̂
⋅1
n
∑
n

i=1
2Fn yið Þ−1f gyi½ �; ð2Þ

where μ̂ = y is the sample mean. Let h(u1,u2)= I(u2≤u1)u1+ I(u1≤
u2)u2. For u1≥0, let

h1 u1ð Þ = Eh u1; Yð Þ = u1F u1ð Þ + ∫∞
u1
ydF yð Þ: ð3Þ

We have the following result on the asymptotic normality of Ĝ.

Theorem 1. Suppose that 0bE(Y2)b∞. Then, as n→∞,

ffiffiffi
n

p
Ĝ−G
� �

→
d

N 0;σ2
1

� �
;

where σ1
2=μ−2Var{2h1(Y)−(G+1)Y} and→d denotes convergence in

distribution.

Using this result, a (1−α)-level normal approximation confidence
interval on G is given by

Ĝ−zα=2
σ̂1ffiffiffi
n

p ; Ĝ + zα=2
σ̂1ffiffiffi
n

p
!
;

 
ð4Þ

where zα /2 is the upper α /2 quantile from the standard normal
distribution and

σ̂2
1 =

1

μ̂2 ⋅
1

n−1
∑
n

i=1
u1i−u1

� �2 ð5Þ

with

u1i = 2ĥ1 yið Þ− Ĝ + 1
� �

yi; u1 =
1
n
∑
n

i=1
u1i ð6Þ

and

ĥ1 uð Þ = uFn uð Þ + 1
n
∑
n

j=1
yjI yj≥u
� �

: ð7Þ

The symmetric interval (Eq. (4)) has asymptotically correct
coverage probability for large samples. For small samples,
however, the normal interval (Eq. (4)) tends to have under-
coverage problems, as observed from the simulation results
reported in Section 4. In addition, the tail error rates of this
interval also tend to be unbalanced, due to skewness of income
distributions.

The normal approximation can be replaced by bootstrap proce-
dures. A (1−α)-level confidence interval based on the bootstrap
percentile of Ĝ−G is given by

Ĝ−P1−α=2; Ĝ−Pα=2

� �
; ð8Þ

where Pα is the 100αth percentile of the sampling distribution of Ĝ*− Ĝ,
and Ĝ* is the estimator of G calculated based on a bootstrap sample
{y1* ,⋅⋅⋅,yn*} taken from the original sample {y1,⋅⋅⋅,yn} by simple random
sampling with replacement. The percentile Pα can be obtained through
Monte Carlo approximations by drawing a large number of bootstrap
samples. LetĜ* bð Þ be the estimate of G computed from the bth bootstrap
sample {y1*(b),⋅⋅⋅,yn*(b)}, b=1,⋅⋅⋅,B and let Ĝ* 1½ �≤⋅⋅⋅≤Ĝ* B½ � be the
ordered sequence of the Ĝ* bð Þs. Then Pα≐Ĝ* αB½ �−Ĝ.

The bootstrap-t confidence interval on G is constructed as

Ĝ−T1−α=2
σ̂1ffiffiffi
n

p ; Ĝ−Tα=2
σ̂1ffiffiffi
n

p
� �

; ð9Þ

where Tα is the 100αth percentile of the sampling distribution of
Ĝ*−Ĝ
� �

= σ̂*1 =
ffiffiffi
n

p Þ
�

, and Ĝ* and σ̂*1 =
ffiffiffi
n

p
are the estimator of G and the

associated standard error based on a bootstrap sample {y1*,⋯,yn*}.
Once again, Tα can be obtained through Monte Carlo approximations.

3. Empirical likelihood ratio confidence intervals

The empirical likelihood (EL) method is a nonparametric approach
and is particularly suitable to handle inferential problems involving
skeweddistributions. EL confidence intervals, obtained fromprofiling the
empirical likelihood ratio statistic, are range respecting and transforma-
tion invariant. The shape and orientation of the EL intervals are
determined by the data (Owen, 2001), unlike the normal approximation
and bootstrap intervals. The log-EL ratio statistic for θ=G is given by

R θð Þ = ∑
n

i=1
logfnp̃i θð Þg; ð10Þ

where p̃1 θð Þ; ⋯; p̃n θð Þ maximize the log-EL function l pð Þ = ∑n
i = 1

log pið Þ subject to the following set of constraints:

pi N 0; ∑
n

i=1
pi = 1 and ∑

n

i=1
pi 2Fn yið Þ−1f gyi−θyi½ � = 0: ð11Þ

The last constraint in Eq. (11) is induced by the estimating
equation E[{2F(Y)−1}Y−θY]=0 which defines the parameter θ=G,
with the unknown distribution function F(⋅) replaced by the empirical
distribution function Fn(⋅).

Let Z(yi,θ)={2Fn(yi)−1}yi−θyi, i=1,⋅ ⋅⋅,n. It can be shown, by
using the Lagrange multiplier method, that

R θð Þ = − ∑
n

i=1
logf1 + λZ yi; θð Þg;

where λ is the solution to the equation

1
n
∑
n

i=1

Z yi; θð Þ
1 + λZ yi; θð Þ = 0:

Theorem 2 establishes the asymptotic distribution of the log-EL
ratio statistic R(θ).

Theorem 2. Suppose that 0bE(Y3)b∞. Then, as n→∞,

−2R θð Þ→d σ2
3

σ2
2

χ2 1ð Þ;

where σ2
2=Var{2YF(Y)−(θ+1)Y}, σ3

2=Var{2h1(Y)−(θ+1)Y}, and
h1(⋅) is defined in Eq. (3).

Using this result, a (1−α)-level EL ratio confidence interval on G
can be constructed as

θ j−2R θð Þ≤k̂
−1χ2

α 1ð Þ
n o

; ð12Þ
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where χα
2(1) is the upper α quantile of the χ2 distribution with

one degree of freedom. The scaling factor, k̂, in Eq. (12) is given by
k̂ = σ̂

2
2 =σ̂

2
3, where

σ̂2
2 =

1
n−1

∑
n

i=1
u2i− u�2

� �2 ð13Þ

with

u2i = 2yiFn yið Þ− Ĝ + 1
� �

yi; u2 =
1
n
∑
n

j=1
u2j ð14Þ

and

σ̂2
3 =

1
n−1

∑
n

i=1
u1i− u�1

� �2
; ð15Þ

where u1i and u�1 are defined in Eq. (6). Note that k̂ is a consistent
estimator of k=σ2

2/σ3
2 as n→∞.

The EL ratio confidence interval (Eq. (12)) has asymptotically
correct (1−α)-level coverage probability for large samples. The EL-
based interval, however, often has under-coverage problems when
the sample size n is small or moderate. This has been observed in
many other applications of the EL method (Owen, 2001). The
following bootstrap-calibrated EL interval is an attractive alternative
under such scenarios.

Let {y1* ,⋯,yn* } be a bootstrap sample selected from the original
sample {y1,⋯,yn} using simple random sampling with replacement.
Also, let R*1 Ĝ

� �
be the value of R(θ) calculated from the bootstrap

sample, using θ = Ĝ. Repeat the process independently for a large
number of times, B, to get R*1 Ĝ

� �
; ⋯;R*B Ĝ

� �
. Let Cα be the upper 100α%

sample quantile of the B values−R*1 Ĝ
� �

, ⋯,−R*B Ĝ
� �

. The (1−α)-level
bootstrap-calibrated EL ratio interval on G can then be constructed as

θ j−R θð Þ≤Cαf g: ð16Þ

Another major advantage of using the bootstrap-calibrated EL
interval (Eq. (16)) is that the scale factor k̂ = σ̂

2
2 =σ̂

2
3, which is

required in the EL ratio interval (Eq. (12)), is not needed here in the
construction of the interval. It can be shown, by following the same
lines of the proof of Theorem 2, that the bootstrap version of the EL
ratio function R*1 Ĝ

� �
converges to the same scaled χ2(1) distribution

as n→∞, and hence the two intervals (Eqs. (12) and (16)) have the
same asymptotic coverage probabilities under large samples. The
bootstrap-calibrated interval (Eq. (16)), however, performs better
when sample sizes are small or moderate, as shown in the simulation
study reported in Section 4.

4. A simulation study

We examined the finite sample performances of five confidence
intervals for the Gini coefficient G through a simulation study: (i) the
normal approximation interval (Eq. (4)), denoted by NA; (ii) the
bootstrap percentile interval (Eq. (8)), denoted by BTp; (iii) the
bootstrap-t interval (Eq. (9)), denoted by BTt; (iv) the EL ratio interval
(Eq. (12)), denoted by EL1, based on the scaledχ2 approximation; and
(v) the EL ratio interval (Eq. (16)), denoted by EL2, using the
bootstrap calibration method. Four different population distributions
were considered: (i) the χ2 distribution with one degree of freedom
(χ2(1)); (ii) the χ2 distribution with three degrees of freedom (χ2

(3)); (iii) the standard exponential distribution (Exp(1)); and (iv) the
standard lognormal distribution (LN(0,1)). The population distribu-
tions considered here represent potential income distributions one
might encounter in real-world situations. The true value of the Gini
coefficient G for Exp(1) is 0.5 and the true values of G for χ2(1), χ2(3)

and LN(0,1) are approximately 0.6366, 0.4244 and 0.5205, respec-
tively, obtained through Monte Carlo simulations.

Confidence intervals on Gwere evaluated in terms of the simulated
coverage probability (CP), lower (L) and upper (U) tail error rates and
the average length (AL). For each simulated sample, we constructed
confidence intervals on G using NA, BTp, BTt, EL1 and EL2, with
B=2000 for the bootstrap procedures. The simulation process was
repeated R=2000 times for each of the four population distributions
and selected sample sizes ranging from n=20 to n=80.

Tables 1 and 2 report the simulation results for the 95% confidence
intervals on G. Major observations from the simulation can be
summarized as follows: (i) The normal approximation interval
(NA), the bootstrap percentile interval (BTp) and the EL interval
based on the χ2 approximation (EL1) have very similar performances
and none of them seems to be satisfactory when n≤60. (ii) The
bootstrap-calibrated EL interval (EL2) has coverage probabilities very
close to the nominal value for all sample sizes considered when the
population distribution is χ2(1), χ2(3) or Exp(1). (iii) The EL2
intervals also demonstrate balanced tail error rates for the χ2(1)
distribution and to a lesser extent for the χ2(3) and Exp(1)
distributions. (iv) The bootstrap-t interval (BTt) has coverage
probabilities comparable to EL2 when the population distribution is
χ2(1) or Exp(1) but the BTt intervals are wider in those cases. For
instance, the lengths of the BTt and EL2 intervals are respectively
0.297 and 0.269 for n=20 and the χ2(1) distribution. The BTt and EL2
intervals are similar in length for the χ2(3) distribution but the
coverage probability of the BTt interval is not as good as the EL2
interval when n=20. (v) None of the methods provides very good
results for the lognormal distribution, but the bootstrap-calibrated
EL2 intervals have marginally acceptable results regardless of the
sample size: coverage probabilities around 92% for EL2 compared to
86–90% for NA, BTp, BTt and EL1. Moreover, in the lognormal case, EL2
outperforms BTt in terms of AL and yet gives coverage probabilities
closer to nominal 95% than BTt. For example, for n=20 Table 2 gives
92.8% and 0.281 as CP and AL for EL2 compared to 86.2% and 0.350 for
BTt.

In a recent paper Giorgi et al. (2006) reported results from a
simulation study that the bootstrap-t confidence intervals for the so-
called S-Gini and E-Gini indices have superb coverage probabilities for
all cases considered in their paper. The superiority of the bootstrap-t
interval, however, does not seem to show up for the scenarios
examined here on the Gini coefficient G. The bootstrap-calibrated

Table 1
Simulation results for 95% confidence intervals on G: χ2(1) and χ2(3).

n CI L CP U AL L CP U AL

χ2(1) χ2(3)

20 NA 8.4 88.9 2.7 0.244 9.9 87.9 2.2 0.208
BTp 7.4 86.5 6.1 0.243 4.7 88.4 6.9 0.204
BTt 2.3 93.5 4.2 0.297 3.3 91.9 4.8 0.235
EL1 6.9 89.9 3.2 0.233 9.7 87.8 2.5 0.201
EL2 3.3 94.8 1.9 0.269 4.9 94.2 0.9 0.240

40 NA 5.7 91.5 2.8 0.183 6.2 91.5 2.3 0.154
BTp 5.0 90.7 4.3 0.181 3.8 90.6 5.6 0.152
BTt 2.4 94.0 3.6 0.207 2.9 93.5 3.6 0.167
EL1 4.8 92.1 3.1 0.179 6.3 91.3 2.4 0.152
EL2 3.2 94.4 2.4 0.194 4.7 93.6 1.7 0.166

60 NA 5.2 92.4 2.4 0.151 4.9 92.5 2.6 0.128
BTp 4.8 91.5 3.7 0.150 2.9 92.3 4.8 0.126
BTt 2.6 94.3 3.1 0.166 2.5 94.1 3.4 0.135
EL1 4.7 92.6 2.7 0.149 4.8 92.5 2.7 0.127
EL2 3.7 94.1 2.2 0.157 3.9 94.1 2.0 0.134

80 NA 3.5 93.8 2.7 0.132 4.0 94.5 1.5 0.112
BTp 3.4 93.2 3.4 0.132 2.7 93.9 3.4 0.110
BTt 1.6 95.3 3.1 0.143 2.5 95.4 2.1 0.117
EL1 3.4 93.6 3.0 0.130 3.8 94.7 1.5 0.111
EL2 3.0 94.4 2.6 0.136 3.2 95.5 1.3 0.115
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empirical likelihood ratio confidence interval EL2 seems to be the best
among the five intervals included in our study.

5. Stratified random sampling

Suppose that the population is divided into S strata with known
stratum sizes N1, ⋅ ⋅ ⋅,NS. Let Ws=Ns /N, s=1, ⋅ ⋅ ⋅,S, where N =
∑S

s = 1Ns is the overall population size. Independent simple random
samples of sizes ns, s=1, ⋅⋅⋅,S are drawn from the strata, and the
strata sampling fractions, ns /Ns, are assumed to be negligible. Hence,
we regard the sample in stratum s, {ysi, i=1,...,ns}, as an iid sample
generated by the continuous random variable Ys with distribution
function Fs(y)=P(Ys≤y). The overall population mean and distribu-
tion function are respectively given by

μ = ∑
S

s=1
Wsμs and F yð Þ = ∑

S

s=1
WsFs yð Þ;

where μs=E(Ys). The estimators of μ and F(y) are respectively given
by

μ̂ = ∑
S

s=1
Ws μ̂s and Fn yð Þ = ∑

S

s=1
WsFns yð Þ; ð17Þ

where μ̂s = n−1
s ∑ns

i = 1 ysi and Fns yð Þ = n−1
s ∑ns

i = 1 I ysi≤yð Þ. Finally,
the plug-in moment estimator of the Gini coefficient G based on the
stratified sample is given by

Ĝst =
1
μ̂
∑
S

s=1
Ws

1
ns

∑
ns

i=1
2Fn ysið Þ−1f gysi:

5.1. Normal approximation confidence intervals

Let n = ∑S
s = 1 ns be the overall sample size. We have the

following result on the asymptotic normality of Ĝst .

Theorem 3. Suppose that 0bE(Ys2)b∞, ns /n→τs (0bτsb1), s=1⋯,S.
Then, as n→∞,

ffiffiffi
n

p
Ĝst−G
� �

→
d

N 0;σ2
a1

� �
;

where

σ2
a1 =

1
μ2 ∑

S

s=1
τ−1
s W2

s Var 2YsF Ysð Þ + 2∫∞
Ys
ydF yð Þ− G + 1ð ÞYs

n o
:

Using this result, a normal approximation confidence interval for
G with asymptotically correct coverage probability 1−α is given by

Ĝst−zα=2
σ̂a1ffiffiffi
n

p ; Ĝst + zα=2
σ̂a1ffiffiffi
n

p
� �

; ð18Þ

where zα /2 is the upper α /2 quantile from the standard normal
distribution and

σ̂2
a1 =

1

μ̂2 ∑
S

s=1

n
ns

W2
s ⋅

1
ns−1

∑
ns

i=1
u1si− u�1s

� �2 ð19Þ

with

u1si = 2ĥa1 ysið Þ− Ĝst + 1
� �

ysi; u�1s =
1
ns

∑
ns

i=1
u1si ð20Þ

and

ĥa1 uð Þ = uFn uð Þ + ∑
S

s=1
Ws

1
ns

∑
ns

j=1
ysjI ysj≥u
� �

: ð21Þ

5.2. Empirical likelihood ratio confidence intervals

Under stratified random sampling, the log-EL ratio statistic for
θ=G is given by

R θð Þ = ∑
S

s=1
∑
ns

i=1
logfnsp̃si θð Þg; ð22Þ

where fp̃si θð Þ; i = 1; ⋯;ns; s = 1; ⋯; Sg maximize the log-EL function
l pð Þ = ∑S

s = 1∑
ns
i = 1 log nspsið Þ subject to the following set of

constraints:

psi N 0; ∑
ns

i=1
psi = 1; s = 1; ⋯; S and ∑

S

s=1
Ws ∑

ns

i=1
psi 2Fn ysið Þ−1f gysi−θysi½ � = 0:

ð23Þ

Let Z ysi; θð Þ = 2Fn ysið Þ−1f gysi−θysi, i=1,⋯,ns, s=1,⋯,S. It can be
shown, by using the Lagrange multiplier method, that

psi =
1
ns

1
1 + msλZ* ysi; θð Þ ;

wherems=nWsns
−1, Z* ysi; θð Þ = Z ysi; θð Þ−∑ns

i = 1 psiZ ysi; θð Þ, and λ=
λ(θ) is the solution of the equation

∑
S

s=1
Ws

1
ns

∑
ns

i=1

Z ysi; θð Þ
1 + msλZ* ysi; θð Þ = 0:

Thus,

R θð Þ = − ∑
S

s=1
∑
ns

i=1
logf1 + msλZ* ysi; θð Þg:

Algorithms for evaluating the log-EL ratio function under stratified
random sampling and other sampling designs are given by Zhong and
Rao (2000) and Wu (2004).

Theorem 4 below establishes the asymptotic distribution of the
log-EL ratio statistic R(θ).

Table 2
Simulation results for 95% confidence intervals on G: Exp(1) and LN (0,1).

n CI L CP U AL L CP U AL

Exp(1) LN (0,1)

20 NA 7.4 89.8 2.8 0.228 6.4 85.6 8.0 0.248
BTp 4.4 88.6 7.0 0.224 6.8 78.9 14.3 0.243
BTt 2.5 93.2 4.3 0.265 2.7 86.2 11.1 0.350
EL1 6.6 90.3 3.1 0.220 5.3 86.0 8.7 0.237
EL2 3.6 95.2 1.2 0.256 1.9 92.8 5.3 0.281

40 NA 6.0 91.0 3.0 0.170 2.9 88.3 8.8 0.199
BTp 4.5 89.7 5.8 0.167 4.8 82.5 12.7 0.193
BTt 2.9 93.5 3.6 0.186 1.0 89.4 9.6 0.271
EL1 5.7 91.1 3.2 0.167 2.7 87.8 9.5 0.193
EL2 3.9 94.0 2.1 0.179 1.3 91.2 7.5 0.216

60 NA 5.4 92.7 1.9 0.141 2.4 90.7 6.9 0.171
BTp 3.9 92.3 3.8 0.139 4.1 86.6 9.3 0.167
BTt 2.8 94.4 2.8 0.151 1.2 92.0 6.8 0.223
EL1 5.0 93.0 2.0 0.139 2.2 90.6 7.2 0.168
EL2 3.8 94.4 1.8 0.146 1.3 92.2 6.5 0.183

80 NA 3.9 93.9 2.2 0.123 1.8 91.4 6.8 0.155
BTp 3.3 92.8 3.9 0.122 3.2 87.9 8.9 0.151
BTt 2.5 94.2 3.3 0.130 1.0 92.1 6.9 0.197
EL1 3.8 93.6 2.6 0.122 1.8 91.4 6.8 0.152
EL2 3.4 94.6 2.0 0.126 1.2 92.2 6.6 0.164
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Theorem 4. Suppose that E(Ys3)b∞, ns /n→τs(0bτsb1), s=1,⋯,S.
Then, as n→∞,

−2R θð Þ→d μ2σ2
a1

σ2
a2

χ2 1ð Þ;

where σa1
2 is defined in Theorem 3 and

σ2
a2 = ∑

S

s=1
W2

s τ
−1
s Ef2YsF Ysð Þ− θ + 1ð ÞYsg2:

Using the result in Theorem 4, a (1−α)-level confidence interval
on G with asymptotically correct coverage probability can be con-
structed as

θ j−2R θð Þ≤k̂
−1
a χ2

α 1ð Þ
n o

; ð24Þ

where χα
2(1) is the upper α quantile of the χ2 distribution with

one degree of freedom. The scaling factor k̂a in Eq. (24) is given by
k̂a = σ̂

2
a2 = μ̂

2
σ̂

2
a1

� �
, where μ̂ is given by Eq. (17), σ̂

2
a1 is given by

Eq. (19) and

σ̂2
a2 = ∑

S

s=1
W2

s
n
n2
s
∑
ns

i=1
f2ysiFn ysið Þ− Ĝst + 1

� �
ysig2:

Note that k̂a is a consistent estimator of ka = σ2
a2 = μ2σ2

a1

� �
. A

bootstrap-calibrated EL ratio confidence interval can also be con-
structed along the lines of Eq. (16) by drawing independent bootstrap
samples {ysi, i=1,⋅⋅ ⋅,ns} from {ysi, i=1, ⋅⋅⋅,ns}, s=1,⋅ ⋅⋅,S by simple
random sampling with replacement.

6. Additional remarks

The Gini coefficient is defined as G=E[{2F(Y)−1}Y] /E(Y), which
is equivalently defined by the estimating equation

E f2F Yð Þ−1gY−GY½ � = 0: ð25Þ

This is not an easy-to-handle estimating equation since it also
involves the unknown distribution function, F(⋅).

The maximum EL estimator of G may be defined as the maximizer
of the log-EL function l θð Þ = ∑n

i = 1 logfpi θð Þg, where for a fixed θ
the pi(θ) maximize ∑n

i = 1 log pið Þ subject to ∑n
i = 1 pi = 1 and

∑
n

i=1
pi f2F̂ yið Þ−1gyi−θyi
h i

= 0; ð26Þ

F̂ yið Þ = ∑
n

j=1
piI yj≤yi
� �

; i = 1; ⋯;n: ð27Þ

A computational difficulty arises since Eqs. (26) and (27) together
define a non-linear constraint on the pi. For any fixed θ, however, the
solution pi(θ) can be obtained through an iterative procedure as follows:

(i) Start with pi
(0)=1/n and let F̂ yið Þ = ∑n

j = 1 p
0ð Þ
i I yj≤yi
� �

;
(ii) Findpi(1)whichmaximize∑n

i = 1 log pið Þ subject to∑n
i = 1 pi = 1

and Eq. (26) only;
(iii) Let pi(0)=pi

(1) and iterate between (i) and (ii) until convergence.

While theoretical properties of the maximum EL estimator θ̂ of G,
which is the maximizer of l(θ), are not immediately clear, simulation
results (not reported here) showed that θ̂ is virtually identical to the
plug-in moment estimator, Ĝ. The direct use of Fn(yi) in the constraint
(11) has a major advantage of computational simplicity compared to
the use of F̂ yið Þ in the constraint (26).

Empirical likelihood confidence intervals on the Gini mean dif-
ference D=E|X−Y| were discussed by Wood et al. (1996) and Jing

et al. (2008) using results from U-statistics. Those results, however, do
not apply to the Gini coefficient G which is a ratio of D and 2μ. The
sample version of D is a U-statistic with the kernel h(x,y)=|x−y| but
the sample version of μ=E(X) is a U-statistic with kernel h(x)=x.
Therefore, it seems that none of the existing approaches on empirical
likelihood methods for U-statistics can simultaneously handle two U-
statistics with kernels of different degrees. Moreover, the U-statistic
approach does not readily extend to stratified sampling, even for the
Gini mean difference D, unlike the approach proposed in this paper.

Most income distributions are heavily skewed, and the bootstrap-
calibrated empirical likelihood method is a very attractive approach to
interval estimation under such scenarios, as demonstrated by the
simulation results reported in Section 4 for the Gini coefficient G.
Empirical likelihood-based interval estimation from complex survey
samples, such as data from stratified multi-stage sampling, is currently
under investigation, using the pseudo empirical likelihood approach of
Wu and Rao (2006). Empirical likelihood-based interval estimation for
othermeasures of income distributions, such as low income proportions,
Lorenz curve ordinate and quantile share, is also under investigation.
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Appendix A. Proofs

Proof of Theorem 1. The proof given here is based on standard
results for von Mises statistics, the associated U-statistics and the
projections of U-statistics (Serfling, 1980, Chapter 5). It is necessary,
however, to spell out the details since we will need to extend the
approach to prove Theorem 3 for stratified random sampling.

Le t μ 1 = E {2h 1 (Y ) − Y } , Xn1 = n−1∑n
i = 1f2h1 yið Þ−yi−μ1g,

Xn2 = n−1∑n
i = 1 yi−μð Þ, and

Vn = n−2∑
n

i=1
∑
n

j=1
2I yj≤yi
� �

yi

= n−2∑
n

i=1
∑
n

j=1
fI yj≤yi
� �

yi + I yi≤yj
� �

yjg:

Noting that Vn is a von Mises statistic, we denote its corresponding
U-statistic as Un. When E(Y2)b∞, it is well-known (Serfling, 1980,
p. 206) that

ffiffiffi
n

p
Vn−Unð Þ = op 1ð Þ, where op(1) denotes a term that

goes to zero in probability as n→∞. The projection of Un is

Ûn = Eh1 Yð Þ + 2
n
∑
n

i=1
h1 yið Þ−Eh1 Yð Þf g;

where h1(⋅) is defined in Eq. (3) and Eh1(Y)=2E{YF(Y)}. It follows
from Serfling (1980, p. 190) that

ffiffiffi
n

p
Ûn−Un

� �
= op 1ð Þ. Thus

Ĝ =
Vn−μ̂
μ̂

=
Ûn−μ̂

μ̂
+ op n−1=2

� �

=
n−1∑n

i = 1f2h1 yið Þ−yi−Eh1 Yð Þg
μ̂

+ op n−1=2
� �

=
Xn1 + μ1−Eh1 Yð Þ

Xn2 + μ
+ op n−1=2

� �

=
Xn1 + 2EfYF Yð Þg−μ

Xn2 + μ
+ op n−1=2

� �

=
Xn1 + Gμ
Xn2 + μ

+ op n−1=2
� �

;

ð28Þ
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where op(n−1/2) denotes a term of lower order than n−1/2 in
probability. Here we have used the facts that Eh1(Y)=2E{YF(Y)}
and E[{2F(Y)−1}Y−GY]=0. Note that

ffiffiffi
n

p
Xnj = Op 1ð Þ; j = 1;2,

where Op(1) denotes a term bounded in probability. A standard Taylor
series expansion leads to 1/(Xn2+μ)=μ−1−μ−2Xn2+Op(n−1),
where Op(n−1) denotes a term of order of n−1 in probability.
Substituting this into Eq. (28), we have

Ĝ = G + μ−1 Xn1−GXn2ð Þ + op n−1=2
� �

: ð29Þ

The result of Theorem 1 then follows from Eq. (29) and the cen-
tral limit theorem (CLT) applied to Xn1−GXn2. □

Proof of Theorem 2. It can be shown that

max
1≤i≤n

jZ yi; θð Þ j = op n1=2
� �

ð30Þ

and that

1
n
∑
n

i=1
Z2 yi; θð Þ = 1

n
∑
n

i=1
f2Fn yið Þ−1gyi−θyi½ �2 + op 1ð Þ = σ2

2 + op 1ð Þ;

ð31Þ

where σ2
2=E {2YF(Y)− (θ+1)Y} 2=Var {2YF(Y)−(θ+1)Y}. From

the proof of Theorem 1, we have

n−1=2 ∑
n

i=1
Z yi; θð Þ = n−1=2 ∑

n

i=1
f2h1 yið Þ− θ + 1ð Þyi−Eh1 Yð Þg + op 1ð Þ:

On the other hand, Eh1(Y)=E{2YF(Y)} and E[{2F(Y)−1}Y−θY]=
0 imply that E{2h1(Y)−(θ+1)Y−Eh1(Y)}=0. Therefore, by the CLT,
we have

n−1=2 ∑
n

i=1
Z yi; θð Þ→d N 0;σ2

3

� �
; ð32Þ

where σ3
2=Var{2h1(Y)−(θ+1)Y}. From Eqs. (30), (31), (32), and

the proof of Theorem 1 in Owen (1990), it can be shown that

−2R θð Þ = 1
n
∑
n

i=1
Z2 yi; θð Þ

	 
−1	
n−1=2 ∑

n

i=1
Z yi; θð Þ


2
+ op 1ð Þ→d σ2

3

σ2
2

χ2 1ð Þ:

□
Proof of Theorem 3. Let

H u; vð Þ = uI v≤ uð Þ;
θst = EH Ys;Ytð Þ;
hst10 uð Þ = EH u;Ytð Þ−θst ;

hst01 uð Þ = EH Ys;uð Þ−θst ;

hs1 uð Þ = EfH u;Ysð Þ + H Ys;uð Þg = uFs uð Þ + ∫∞
u
ydFs yð Þ;

and

Vn = 2∑
S

s=1
∑
ns

i=1
Wsn

−1
s ysiFn ysið Þ

= 2∑
S

s=1
∑
S

t=1
WsWtn

−1
s n−1

t ∑
ns

i=1
∑
nt

j=1
ysiI ytj≤ysi
� �

= 2∑
S

s=1
W2

s n
−2
s ∑

ns

i=1
∑
ns

y=1
ysiI ysj≤ysi
� �

+ 2∑
S

s=1
∑
t≠s

WsWtn
−1
s n−1

t ∑
ns

i=1
∑
nt

j=1
ysiI ytj≤ysi
� �

= 2∑
S

s=1
W2

s Vns + 2∑
S

s=1
∑
t≠s

WsWtVnst ;

where Vns = n−2
s ∑ns

i = 1∑
ns
j = 1 ysiI ysj≤ysi

� �
and Vnst = n−1

s n−1
t

∑ns
i = 1∑

nt
j = 1 ysiI ytj≤ysi

� �
.

Noting that Vns is a von Mises statistic and ns /n→τs (0bτsb1), it
follows from the proof of Theorem 1 that

2Vns = Ehs1 Ysð Þ + 2
ns

∑
ns

i=1
hs1 ysið Þ−Ehs1 Ysð Þf g + op n−1=2

� �
:

When s≠ t, Vnst is a two-sample U-statistic. From Theorem 12.6 in
van der Vaart (1998), we have

Vnst = θst +
1
ns

∑
ns

i=1
hst10 ysið Þ + 1

nt
∑
nt

i=1
hst01 ytið Þ + op n−1=2

� �

= θst +
1
ns

∑
ns

i=1
ysiFt ysið Þ−E

(
YsFt Ysð Þg

" #

+ 1
nt

∑
nt

i=1
∫∞
yti
ydFs yð Þ−E ∫∞

Yt
ydFs yð Þ

n oh i
+ op n−1=2

� �
:

It follows that

Vn = 2∑
S

s=1
∑
S

t=1
WsWtθst + 2∑

S

s=1
Ws

1
ns

∑
ns

i=1
½ysiF ysið Þ−EfYsF Ysð Þg

+ ∫∞
ysi
ydF yð Þ−E ∫∞

Ys
ydF yð Þ

n o� + op n−1=2
� �

:

Further, from F yð Þ = ∑S
s = 1WsFs yð Þ and the definition of G in

Eq. (1), we have

2 ∑
S

s=1
∑
S

t=1
WsWtθst−μ = Gμ :

Thus

Ĝst =
Vn−μ̂
μ̂

=
Xn1 + Gμ
Xn2 + μ

+ op n−1=2
� �

; ð33Þ

where

Xn1 = 2 ∑
S

s=1
Ws

1
ns

∑
ns

i=1
ysiF ysið Þ−EfYsF Ysð Þg + ∫∞

ysi
ydF yð Þ−E ∫∞

Ys
ydF yð Þ

n oh i
− μ̂−μ
� �

and Xn2 = μ̂−μ . Note that, by the CLT,
ffiffiffi
n

p
Xnj = Op 1ð Þ; j = 1;2. Taylor

series expansion leads to 1/(Xn2+μ)=μ−1−μ−2Xn2+Op(n−1).
Substituting this into Eq. (33), we have

Ĝst = G + μ−1 Xn1−GXn2ð Þ + op n−1=2
� �

= G + μ−1Xn3 + op n−1=2
� �

;

ð34Þ

where

Xn3 = 2 ∑
S

s=1
Ws

1
ns

∑
ns

i=1
ysiF ysið Þ−EfYsF Ysð Þg + ∫∞

ysi
ydF yð Þ−E ∫∞

Ys
ydF yð Þ

n oh i
− G + 1ð Þ μ̂−μ

� �
:

The result of Theorem 3 then follows from Eq. (34), using the CLT
for stratified random sampling. □

Proof of Theorem 4. First we can show that

∑
S

s=1
Wsn

−1
s ms ∑

ns

i=1
fZ* ysi; θð Þg2 = ∑

S

s=1
Wsn

−1
s ms ∑

ns

i=1
Z2 ysi; θð Þ + op 1ð Þ

= σ2
a2 + op 1ð Þ:

ð35Þ
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Note that

∑
S

s=1
Wsn

−1
s ∑

ns

i=1
Z* ysi; θð Þ = ∑

S

s=1
Wsn

−1
s ∑

ns

i=1
Z ysi; θð Þ:

Thus, from the proof of Theorem 3, we have

ffiffiffi
n

p
∑
s=1

Wsn
−1
s ∑

ns

i=1
Z* ysi; θð Þ→d N 0; μ2σ2

a1

� �
: ð36Þ

From Eqs. (35), (36) and the proof of Theorem 1 in Owen (1990), it
can be shown that

−2R θð Þ = ∑
S

s=1
Wsn

−1
s ms∑

ns

i=1
fZ* ysi; θð Þg2

( )−1

×
ffiffiffi
n

p
∑
S

s=1
Wsn

−1
s ∑

ns

i=1
Z* ysi; θð Þg

2

+ op 1ð Þ→d μ2σ2
a1

σ2
a2

χ2 1ð Þ:
(

References

David, H.A., 1968. Gini's mean difference rediscovered. Biometrika 55, 573–575.
Gini, C., 1912. Variabilità e mutabilità, contributo allo studio delle distribuzioni e

relazioni statistiche. Studi Economico-Giuridici della R. Università di Cagliari.
Gini, C., 1936. On the measure of concentration with special reference to income and

wealth. Abstract of Paper Presented at the Cowles Commission Research
Conference on Economics and Statistics. Colorado College Press, Colorado Springs.

Giorgi, G.M., Palmitesta, P., Provasi, C., 2006. Asymptotic and bootstrap inference for the
generalized Gini Indices. Metron LXIV, 107–124.

Glasser, G.J., 1962. Variance formulas for the mean difference and coefficient of
concentration. Journal of the American Statistical Association 57, 648–654.

Jing, B.Y., Yuan, J.Q., Zhou, W., 2008. Empirical likelihood for non-degenerate U-
statistics. Statistics and Probability Letters 78, 599–607.

Kakwani, N.C., 1977. Applications of Lorenz curves in economic analysis. Econometrica
45, 719–727.

Karagiannis, E., Kovacevic, M., 2000. A method to calculate the jackknife variance
estimator for the Gini coefficient. Oxford Bulletin of Economics and Statistics 62,
119–122.

Lorenz, M.O., 1905. Methods for measuring concentration of wealth. Journal of the
American Statistical Association 9, 209–219.

Owen, A.B., 1990. Empirical likelihood ratio confidence regions. Annals of Statistics 18,
90–120.

Owen, A.B., 2001. Empirical Likelihood. Chapman & Hall/CRC.
Sandström, A., Wretman, J.H., Waldén, B., 1985. Variance estimators of the Gini

coefficient: simple random sampling. Metron 43, 41–70.
Sandström, A., Wretman, J.H.,Waldén, B., 1988. Variance estimators of the Gini coefficient

—probability sampling. Journal of Business & Economic Statistics 6, 113–119.
Sendler, W., 1979. On statistical inference in concentration measurement. Metrika 26,

109–122.
Serfling, R.J., 1980. Approximation Theorems of Mathematical Statistics. John Wiley &

Sons, New York.
van der Vaart, A.W., 1998. Asymptotic Statistics. Cambridge University Press, New York.
Wood, A.T.A., Do, K.A., Broom, N.M., 1996. Sequential linearization of empirical

likelihood constraints with application toU-statistics. Journal of Computational and
Graphical Statistics 5, 365–385.

Wu, C., 2004. Some algorithmic aspects of the empirical likelihood method in survey
sampling. Statistica Sinica 14, 1057–1067.

Wu, C., Rao, J.N.K., 2006. Pseudo-empirical likelihood ratio confidence intervals for
complex surveys. The Canadian Journal of Statistics 34, 359–375.

Yitzhaki, S., 1991. Calculating Jackknife variance estimators for parameters of the Gini
method. Journal of Business & Economic Statistics 9, 235–239.

Zhong, B., Rao, J.N.K., 2000. Empirical likelihood inference under stratified random
sampling using auxiliary population information. Biometrika 87, 929–938.

1435Y. Qin et al. / Economic Modelling 27 (2010) 1429–1435


