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Abstract

Due to the principal role of Data warehouses (DW) in making strategy decisions, data warehouse quality is crucial for organizations.
Therefore, we should use methods, models, techniques and tools to help us in designing and maintaining high quality DWs. In the last
years, there have been several approaches to design DWs from the conceptual, logical and physical perspectives. However, from our
point of view, none of them provides a set of empirically validated metrics (objective indicators) to help the designer in accomplishing
an outstanding model that guarantees the quality of the DW. In this paper, we firstly summarise the set of metrics we have defined to
measure the understandability (a quality subcharacteristic) of conceptual models for DWs, and present their theoretical validation to
assure their correct definition. Then, we focus on deeply describing the empirical validation process we have carried out through a family
of experiments performed by students, professionals and experts in DWs. This family of experiments is a very important aspect in the
process of validating metrics as it is widely accepted that only after performing a family of experiments, it is possible to build up the
cumulative knowledge to extract useful measurement conclusions to be applied in practice. Our whole empirical process showed us that

several of the proposed metrics seems to be practical indicators of the understandability of conceptual models for DWs.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Data warehouses (DW), which are the core of most of
the current decision support systems, provide companies
with many years of historical information for the decision
making process [32]. A lack of quality in the data ware-
house can have disastrous consequences from both techni-
cal and organizational points of view: loss of clients,
important financial losses or discontent amongst employees
[16]. Therefore, it is crucial for an organization to guaran-
tee the quality of the information stored in its DW from the
early stages of a DW project.

When dealing with data warehouse information quality,
we have to consider different types of issues (see Fig. 1):
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presentation quality and data warehouse quality. Data
warehouse quality can be influenced by database manage-
ment systems quality, data quality and data model quality
(which can be considered at different levels, conceptual,
logical and physical). Thus, one of the main issues that
influence the data warehouse quality lays on the data mod-
els (conceptual, logical and physical; see Fig. 1) we use to
design them. In this paper, we will focus on the quality
of conceptual models as we believe that the sooner we deal
with aspects regarding the data warehouse quality, we will
have more chances in implementing a high quality data
warehouse [53]. Our current focus is on assessing and
enhancing the understandability of the data warehouse
conceptual models, because as we can see on Fig. 2, under-
standability (among other characteristics) affects the
quality of the data warehouse models.

There are several criteria for selecting the best dimen-
sional model (e.g., understandability, maintainability, cou-
pling, cohesion, etc.); some of them could be in conflict
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We definitely think that we need objective metrics for
this purpose. It may look obvious which is the best alterna-
tive option, but intuition is not a good counsellor, we have
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Fig. 2. Relationship between structural properties, cognitive complexity,
understandability and external quality attributes.

with others. Designers should prioritize these criteria and
decide which one this criteria is the most important in their
work and use the metrics that fits their necessities.

Multidimensional (MD) modelling has been widely
accepted as the foundation of data modelling for data
warehouses. Respect to logical and physical models, some
approaches and methodologies have been lately proposed
— see [62]. Even more, there are several recommendations
for creating “good” multidimensional data models — the
well-known and universal star schema by Kimball and
Ross [36] or the proposal from Inmon [27]. Nevertheless,
from our point of view, we claim that design guidelines
or subjective quality criteria are not enough to guarantee
the quality of a data warechouse model.

The first design steps accomplished in data warehouses
involve producing a conceptual schema by using a concep-
tual model that conveniently represents the multidimen-
sional modelling properties. Several approaches have
been lately presented to represent the multidimensional
modelling properties from a conceptual perspective (see
Section 2 for a more detailed list). However, none of these
models tackle the quality of conceptual models for data
warehouses neither with subjective nor objective (metrics)
indicators. As a consequence, we may face up with several
conceptual schemas for the same DW with no objective cri-
teria that helps us decide which is the best one.

to prove that intuitive ideas are practically valid. Metrics
should be useful in supporting decisions basing on objec-
tive numbers. This objective metrics are even more impor-
tant when differences between alternative schemata are not
obvious. Therefore, we believe that a set of formal and
quantitative measures should be provided to reduce subjec-
tivity and bias in evaluation, and guide the designer in his
work.

Getting a set of valid and useful metrics is not only a
matter of definition; instead, it involves a complete process.
This process includes, among other steps, theoretical and
empirical validation of the metrics to assure the utility of
the proposed metrics [17,37]. Following this consideration,
we have previously defined a set of metrics for the concep-
tual modelling of data warehouses [55]. The proposed met-
rics have been defined for measuring the understandability
of data warehouse conceptual models, focusing on the
complexity of the models. In defining metrics, we have used
the extension of the UML (Unified Modelling Language)
presented in [59,42]. This is an object-oriented conceptual
approach for data warehouses that easily represents main
data warehouse properties at the conceptual level. Then,
we have theoretically validated them in [53] using the
Briand et al. [8] framework, and, in this paper, we present
the theoretical validation of the proposed metrics following
the DISTANCE framework [49]. Currently, we are getting
involved in the empirical validation of these metrics. In
[55,56], we presented the first experiments we accomplished
for the empirical validation of our proposed metrics. Nev-
ertheless, it is widely accepted that only after performing a
family of experiments, it is possible to build up the cumu-
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lative knowledge to extract useful measurement conclu-
sions to be applied in practice [4].

Therefore, in this paper, we summarise the set of metrics
we defined for data warehouse conceptual models and we
provide their formal validation to assure their correctness.
Moreover, we deeply describe the empirical validation pro-
cess we have carried out through a family of experiments
performed by students, professionals and experts in DWs,
which highly complements our first experiment. Our family
of experiments showed us that several of the proposed met-
rics seems to be practical indicators of the understandabil-
ity of conceptual models for data warehouses.

The remainder of this paper is structured as follows:
Section 2 summarises the most relevant related work. Sec-
tion 3 presents the global method we follow for defining
and obtaining correct metrics. Section 4 presents the iden-
tification phase of this method in which we provide the
goals of our metrics. Section 5 describes the creation phase,
including metric definition and a summary of the UML-
based model we use for the conceptual modelling of data
warehouses. Section 5.2 summarizes the theoretical valida-
tion of the proposed metrics. Section 5.3 deeply describes
the family of experiments we have carried out for the
empirical validation of the metrics. Finally, Section 6 draws
conclusions and sketches immediate future works arising
from the conclusions reached in this work.

2. Related work

In this section, we will organize the related work regard-
ing the three main research topics covered by this paper: (i)
multidimensional modelling, (ii) Quality issues and metrics
for Software Systems in general, and (iii) quality aspects
and metrics specially proposed for data warehouses.

2.1. Multidimensional modelling

Lately, several MD data models have been proposed.
Some of them fall into the logical level (such as the well-
known star-schema by R. Kimball [36]. Others may be con-
sidered as formal models as they provide a formalism to
consider main MD properties. A review of the most rele-
vant logical and formal models can be found in [6] and [1].

In this section, we will only make brief reference to the
most relevant models that we consider “pure” conceptual
MD models. These models provide a high level of abstrac-
tion for the main MD modelling properties at the concep-
tual level and are totally independent from implementation
issues. One outstanding feature provided by these models is
that they provide a set of graphical notations (such as the
classical and well-known EER model) that facilitates their
use and reading. These are as follows: The Dimensional-
Fact (DF) Model by Golfarelli et al. [21,22], The Multidi-
mensionall ER (M/ER) Model by Sapia et al. [50,51], The
starER Model by Tryfona et al. [60], the Model proposed
by Hiiseman et al. [25], and The Yet Another Multidimen-
sional Model (YAM?) by Abell6 et al. [2]. Unfortunately,

none of them has been accepted as a standard for the con-
ceptual modelling of Data Warehouses. Recently, another
approach [42,59] has been proponed as an object-oriented
(O0) conceptual MD modelling approach. This proposal
is a profile of the Unified Modelling Language (UML)
[47], which use the standard extension mechanisms (stereo-
types, tagged values and constraints) provided by the
UML.

However, none of these approaches for MD modelling
considers the quality of conceptual schemas as an impor-
tant issue of their models and they do not neither subjective
nor objective (metrics) indicators.

2.2. Quality issues and metrics for software systems

Software measurement is fundamental in organizations
who want to reach high levels of maturity in their software
processes. This fact is evidenced by the central role that
measurement has in the current standards and models for
process maturity and improvement such as CMMI [52],
ISO 15504 [28] and the ISO/IEC 90003 [31]. From the
methodological perspective, software measurement is sup-
ported by a wide variety of proposals, with the GQM
(Goal Question Metric) method [61], the PSM (Practical
Software Measurement) methodology [45] and the ISO
15539 [30] and IEEE 1061-1998 [26] standards deserving
special attention.

There are several approaches to measuring software sys-
tems like measure the lines of code of a system, the Soft-
ware Science metrics by Halstead [24], the widely used
Function Points [3] or the Cyclomatic Complexity of McC-
abe [44].

Regarding object-oriented systems, some works have
been developed in response to the high demand of metrics
for such systems. Among those, we can find the proposed
by Chidamber and Kemerer [14], Brito e Abreu and Cara-
puca [10], Lorenz and Kidd [41] and Marchesi [43], which
although are metrics for an advanced design or code, some
of them can be applied to conceptual schemas, such as class
diagrams. We are aware that more proposals exist, but to
our knowledge these are possibly the most used at a
high-level design stage.

Even though several quality frameworks for data mod-
els have been proposed, most of them lack valid quantita-
tive measures to evaluate the quality of conceptual data
models in an objective way. Regarding logical data mod-
els, there are few proposals, standing out the works from
[11]. On the other hand, we have found several metrics
proposals for conceptual data models, like the works of
Eick [15], Gray et al. [23], Kesh [35], Moody [46], and
[19].

As we can see there are not too many proposals for mea-
suring or assessing the quality of software systems, leading
this situation to a lack of interest in assessing the quality of
software. Fortunately, this perspective is changing, and
researchers and practitioners are becoming aware of the
benefits of this issue, and, nowadays, some metrics and
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indicators proposals are appearing. In defining our data
warehouse metrics proposal, we have considered all of
these contributions.

2.3. Quality issues and metrics for data warehouses

As previously presented in the introduction, few works
have been presented in the area of objective indicators or
metrics for data warehouses; instead most of the current
proposals for DWs still delegate the quality of conceptual
models in the experience of the designer.

Following this idea, in the last years, we have been
working in assuring the quality of data warehouse logical
models and we have proposed and validated both formally
[53] and empirically [53,54] several metrics for evaluate the
quality of star schemas at logical level.

From our point of view, only the model proposed by
Jarke et al. [32] which is described in more depth in Vassiladis’
Ph.D. thesis [62] explicitly considers the quality of concep-
tual models for data warehouses. Nevertheless, these
approaches only consider quality as intuitive notions. In
this way, it is difficult to guarantee the quality of DW con-
ceptual models, a problem which has initially been
addressed by Jeusfeld et al. [33] in the context of the
DWAQ project. This line of research addresses the definition
of metrics that allows us to replace the intuitive notions of
“quality” regarding the conceptual model of the DW with
formal and quantitative measures. Sample research in this

direction includes normal forms for DW design as original-
ly proposed in [40] and generalized in [39]. These normal
forms represent a first step towards objective quality met-
rics for conceptual schemata.

Lately, Si-Said and Prat [57] have proposed some met-
rics for measuring multidimensional schemas analyzability
and simplicity. Nevertheless, none of the metrics proposed
so far has been empirically validated, and therefore, have
not proven their practical utility [17].

3. Method for defining metrics

Metric definition should be based on clear measurement
goals and metrics should be defined following organisa-
tion’s needs that are related to external quality attributes.
In defining metrics is also advisable to take into account
the experts knowledge. Fig. 3 presents the method we apply
for obtaining valid and useful metrics. This method is
based on the methods proposed by [12] and the MMLC
(Measure Model Life Cycle [13]). In this figure continuous
lines show metric flow and dotted lines show information
flow.

This method has five main phases going from the iden-
tification of goals and hypotheses to the metric application,
accreditation and retirement:

Identification: Goals of the metrics are defined and
hypotheses are formulated. All the following phases will
be based upon these goals and hypotheses.

T Metric Retirement

IDENTIFICATION Reuse
P
GOALS  f--------------------- > HYPOTHESES ACCREDITATION
I
'\ Goals
i Requisites ‘\ ' Feedback
Y Y
CREATION
Goals APPLICATION
REEEEEEEES & METRICS DEFINITION <o R
1 l K Accepted Metrics
3 3 Non-Accepteti‘
! ! Metrics z
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i EMPIRICAL VALIDATION i
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Fig. 3. Metrics creation process.



M. Serrano et al. | Information and Software Technology 49 (2007) 851-870 855

Creation: This is the main phase, in which metrics are
defined and validated. This phase is divided into three
sub phases:

Metrics definition. Metric definition is made taking into
account the specific characteristics of the system we wish to
measure, the experience of the designers of these systems
and our work hypotheses. A goal-oriented approach as
GQM (Goal-Question-Metric [5]) can also be very useful
in this step.

Theoretical validation. The formal (or theoretical) vali-
dation helps us to know when and how to apply the met-
rics. There are two main tendencies in metrics formal
validation: the frameworks based on axiomatic approaches
[63,8] and the ones based on measurement theory
[64,66,49]. The goal of the formers is merely definitional,
as on this kind of formal framework, a set of formal prop-
erties is defined for given software attributes and it is pos-
sible to use this set of properties for classifying the
proposed metrics. On the other hand, in the frameworks
based on measurement theory, the information obtained
is the scale to which a metric pertains and, based on this
information, we can know which statistics and which trans-
formations can be applied to the metric.

Empirical validation. The goal of this step is to prove the
practical utility of the proposed metric. Empirical valida-
tion is crucial for the success of any software measurement
project as it helps us to confirm and understand the impli-
cations of the measurement of our products. Although
there are various ways of performing this step, basically,
we can divide the empirical validation into: experiments,
case studies and surveys [4,17,48,65,34].

This process is evolutionary and iterative and as a result
of the feedback, the metric could be redefined or discarded
depending on their formal and empirical validation. As a
result of this phase a valid metric is obtained.

Acceptance: The aim of this phase is the systematic
experimentation of the metric. This is applied in a context
suitable to reproduce the characteristics of the application
environment, with real business cases and real users, to ver-
ify its performance against the initial goals and stated
requirements.

Application: The accepted metric is used in real cases.

Accreditation: This is the final phase of the process. It is
a dynamic phase that proceeds together with the applica-
tion phase. The goal of this phase is the maintenance of
the metric, so it can be adapted to application changing
environment. As a result of this phase the metric can be
retired or reused for a new metric definition process. In
the next sections, we will present the results of the first
two phases applied to the metrics we have defined and fur-
ther validated for conceptual models of data warehouses.

4. Identification phase
As previously presented, in this phase we must specify

the goals of the metrics we plan to create and we state
the derived hypotheses. In our case, the main goal is to

“Define a set of metrics to assess and control the quality
of conceptual models of data warehouse”

Structural properties (such as structural complexity) of a
model have an impact on its cognitive complexity [9] (see
Fig. 2). By cognitive complexity we mean the mental bur-
den of the persons who have to deal with the artefact
(e.g., developers, testers, and maintainers). High cognitive
complexity leads to an artefact reducing its analyzability,
understandability and modifiability leading to reduced
external quality attributes (ISO 9126 [29]).

Therefore, we can state our hypothesis as: “The pro-
posed metrics (defined for capturing the structural com-
plexity of conceptual models for data warehouses) can be
used for controlling and assessing the quality of a data
warehouse (through its understandability)”.

5. Creation phase

In this section, we present the metric creation process,
which involves several sub-steps as described as follows.

5.1. Metrics definition

Taking into account all the information derived from
the previous phase and the special characteristics of the
DW conceptual models that we explain in more detail in
the next subsection, we can define a set of metrics for con-
ceptual DW models.

5.1.1. Object-oriented conceptual data warehouses modelling
with UML

In this section, we outline our approach to conceptual
modelling based on UML for the representation of struc-
tural properties of multidimensional modelling.

This approach has been specified by means of a UML
profile that contains the necessary stereotypes in order to
carry out conceptual modelling successfully [42]. Tables 1
and 2 summarize the defined stereotypes along with a brief
description and the corresponding icon in order to facili-
tate their use and interpretation. These stereotypes are
classified into class stereotypes (Table 1) and attribute
stereotypes (Table 2). The metrics analyzed in the following
sections will be performed based on this classification.

In our approach, the structural properties of multidi-
mensional modelling are represented by means of a class
diagram in which the information is organized in facts
and dimensions. Some of the principal characteristics that
can be represented in this model are the relationships
“many-to-many’”’ between the facts and one specific dimen-
sion, the degenerated dimensions, the multiple classifica-
tion and alternative path hierarchies, and the non-strict
and complete hierarchies.

Facts and dimensions are represented by means of fact
classes (stereotype Fact) and dimension classes (stereotype
Dimension), respectively. Fact classes are defined as com-
pound classes in a shared aggregation relationship of n
dimension classes. The minimum cardinality in the role of
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Table 1

Stereotypes of class

Name Description Icon
Fact Classes of this stereotype represent facts in a MD model

Dimension Classes of this stereotype represent dimensions in a MD model Y
Base Classes of this stereotype represent dimension hierarchy levels in a MD model B
Table 2

Stereotypes of attribute

Name Description Icon
OID Attributes of this stereotype represent OID attributes of fact, dimension or base classes in a MD model OID
FactAttribute Attributes of this stereotype represent attributes of Fact classes in a MD model FA
Descriptor Attributes of this stereotype represent descriptor attributes of dimension or base classes in a MD model D
DimensionAttribute Attributes of this stereotype represent attributes of dimension or base classes in a MD model DA

the dimension classes is / to indicate that all the facts must
always be related to all the dimensions. The relationships
“many-to-many”’ between a fact and a specific dimension
are specified by means of the cardinality /,. . .,* on the role
of the corresponding dimension class. A fact is composed
of measurements, also called fact attributes (stereotype
FactAttribute).

By default, all the measures in a fact class are considered
to be additive. The semi-additive and non-additive mea-
sures are specified by means of restrictions specifying the
allowed operators on certain dimensions. Furthermore,
derived measures can also be represented (by means of
the restriction / ) and their derivation rules are specified
between brackets around the corresponding fact class.
Our approach also allows the definition of identifying attri-
butes (stereotype OID). In this way ‘“degenerated dimen-
sions”’, which provide the facts with other characteristics
in addition to the defined measures, can be represented
[36].

Regarding dimensions (stereotype Dimension), each
level of a classification hierarchy is represented by means
of a base class (stereotype Base). An association of base
classes specifies a relationship between two levels of a
classification hierarchy. The only prerequisite is that these
classes should define a Directed Acyclic Graph (DAG)
from the dimension class (DAG restriction is defined in
the stereotype Dimension). The DAG structure enables
the representation of both, multiple and alternative path
hierarchies. Each base class must contain an identifying
attribute (stereotype OID) and a descriptive attribute! (ste-
reotype Descriptive) in addition to the additional attributes
that characterize the instances of that class.

Due to the flexibility of UML, we can consider the pecu-
liarities of classification hierarchies as non-strict hierarchies

! The identifying attribute is used in commercial OLAP tools in order to
univocally identify the instances of one hierarchy level and the descriptive
attribute is the default label in the data analysis.

(an object of an inferior level belongs to more than one of a
superior level) and as complete hierarchies (all the members
belong to a single object of a superior class and that object
is exclusively composed of those objects). These character-
istics are specified by means of the role cardinality of the
associations and the restriction completeness, respectively.
Lastly, the categorization of dimensions is considered by
means of the generalization/specialization hierarchies of
UML.

In Fig. 4 we can see an example of an Object Oriented
data warehouse conceptual model by using our previously
described approach used in the family of experiments. In
this example, we are interested in analyzing the wine sales
(Fact Wine_sales) of a big store. This Fact contains the spe-
cific measures to be analyzed, i.e., gty and price. On the
other hand, the main dimensions along with we would like
to analyze these measures are the Time they were sold, the
specific Wine sold and the Customer to whom they were
sold. Finally, Base classes Week, Quarter and Year; and
City and Country represent the classification hierarchies
of the Time and Customer dimensions, respectively, along
with we are interested in analyzing measures.

5.1.2. Metric proposal

According to several authors [18,38], the complexity of a
system is determined by the number and variety of ele-
ments and the number and variety of relationships between
them. Taking into account this statement and the metrics
defined for data warehouses at a logical level [54] and the
metrics defined for UML class diagrams [20], we can pro-
pose an initial set of metrics for the model described in
the previous section. When drawing up the proposal of
metrics for data warehouse models, we must take into
account 3 different levels: class, star and diagram. Class
metrics refer to the attributes defined in a class (NA) and
the number of relations/associations (NR) a class partici-
pates in. On the other hand, diagram metrics refer to
multi-star schemas, i.e., schemas having more than one fact



M. Serrano et al. | Information and Software Technology 49 (2007) 851-870 857
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Fig. 4. Example of an object oriented data warehouse conceptual model using UML.

sharing some dimensions. Therefore, in this paper, we will
focus on the star level metrics as the star schema is the main
issue of a DW conceptual model.>

The following table (see Table 3) details the metrics pro-
posed for the star level composed of a fact class together
with all the dimension classes and associated base classes.

The values for the defined metrics, regarding the exam-
ple presented in Section 5.1 (Fig. 4), are shown in Table 7.
The example shown is the schema S09 used in the
experiment.

5.2. Theoretical validation of the metrics

We have theoretically validated the metrics proposed
using the Briand et al. framework [8], this validation can
be found in [53]. In this paper, we present the proposed
metrics validation using the DISTANCE framework [49].

2 Once star level metrics are validated and accepted, the next step of our
works will be validating diagram level metrics.

We have chosen the DISTANCE framework because it
guarantees that the metrics defined and validated using that
framework are in a ratio scale.

The DISTANCE framework provides constructive pro-
cedures to model software attributes and define the corre-
sponding measures [49]. The different procedure steps are
inserted into a process model for software measurement
that (i) details for each task the required inputs, underlying
assumptions and expected results, (ii) prescribes the order
of execution, providing for iterative feedback cycles, and
(i) embeds the measurement procedures into a typical
goal-oriented measurement approach such as, for instance,
GQM [5,4]. The framework is called DISTANCE as it
builds upon the concepts of distance and dissimilarity
(i.e., a non-physical or conceptual distance). This dis-
tance-based measure construction process consists of five
steps:

e Step 1. Find a measurement abstraction
e Step 2. Model distances between measurement abstra-
ctions
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Table 3
Star scope metrics
Metric Description
NDC(S) Number of dimension classes of the star S (equal to the number of aggregation relationships)
NBC(S) Number of base classes of the star S
NC(S) Total number of classes of the star S
NC(S) = NDC(S) + NBC(S) + 1
RBC(S) Ratio of base classes. Number of base classes per dimension class of the star S
NAFC(S) Number of FA attributes of the fact class of the star S
NADC(S) Number of D and DA attributes of the dimension classes of the star S
NABC(S) Number of D and DA attributes of the base classes of the star S
NA(S) Total number of FA, D and DA attributes of the star S
NA(S) = NAFC(S) + NADC(S) + NABC(S)
NH(S) Number of hierarchy relationships of the star S
DHP(S) Maximum depth of the hierarchy relationships of the star S
RSA(S) Ratio of attributes of the star S. Number of attributes FA divided by the number of D and DA attributes

¢ Step 3. Quantify distances between measurement abstrac-
tions

e Step 4. Find a reference abstraction

e Step 5. Define the software measure

5.2.1. NDC theoretical validation

The Number of Dimension Classes (NDC) measure is
defined at the diagram level as the total number of dimen-
sion classes within a data warehouse conceptual model.

In the following, we will follow each of the steps for
measure construction proposed in the DISTANCE frame-
work. In order to exemplify the process we will use the
models shown in Fig. 5.

e Step 1. Find a measurement abstraction. In our case the
set of software entities P is the Universe of data ware-
house conceptual models (UDCM) that is relevant for
some Universe of Discourse (UoD) and p is a Data
warehouse  Conceptual Model (DCM) (ie.,
p € UDCM). The attribute of interest aztr is the number
of dimension classes, i.e., a particular aspect of DCM

tz ‘ T ‘ tz
Y- I Y.
. HE .
Time Sales Product
12
Y
L g X-
Store
DCM A
1z 1z
v 1 v
: HEH T
Time DSS:SISB Product

Fig. 5. Two examples of conceptual models of data warehouse.

structural complexity. Let UDC be the Universe of
Dimension Classes relevant to the UoD. The set of
dimension classes within a DCM, called SDC(DCM) is
then a subset of UDC. All the sets of dimension classes
within the DCMs of UDCM are elements of the power
set of UDC, denoted by p(UDC). As a consequence we
can equate the set of measurement abstractions M to
p(UDC) and define the abstraction function as:

absxpc : UDCM — o(UDC) : DCM — SDC(DCM)

This function simply maps a DCM onto its set of dimen-
sion classes.In our example we have the set of dimension
classes of DCM A and of DCM B:

absypc(DCM A) =SDC(DCM A) = {Time, Store, Product}
absypc(DCM B) = SDC(DCM B) = {Time, Product}

e Step 2. Model distances between measurement abstrac-
tions. The next step is to model distances between the
elements of M. We need to find a set of elementary
transformation types for the set of measurement
abstractions p(UDC) such that any set of dimension
classes can be transformed into any other set of dimen-
sion classes by means of a finite sequence of elementary
transformations. Finding such a set is quite easy in case
of a power set. Since the elements of (UDC) are sets of
dimension classes, T, must only contain two types of ele-
mentary transformations: one for adding a dimension
class to a set and one for removing a dimension class
from a set. Given two sets of dimension classes
s1 € p(UDC) and s, € p(UDC), s; can always be trans-
formed into s, by removing first all the dimension classes
from s; that are not in s,, and then adding all the dimen-
sion classes to s; that are in s,, but were not in the ori-
ginal s;. In the ‘worst case scenario’, s; must be
transformed into s, via an empty set of attributes. For-
mally, T = {to.xpes ti-npe}s Where tonpe and tinpe
are defined as:

to_npe : p(UDC) — p(UDC) :s — sU{a},withaec UDC
ti_NDC: p(UDC) g p(UDC) S — S— {a},Wlth aecUDC
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In our example, the distance between absnypc(DCM A)
and absypc(DCM B) can be modelled by a sequence of
elementary transformations that does not remove any
dimension class from SDC(DCM A) and that adds Store
to SDC(DCM A). This sequence of 1 elementary trans-
formations is sufficient to transform SDC(DCM A) into
SDC(DCM B). Of course, other sequences exist and can
be used to model the distance in sets of dimension classes
between DCM A and DCM B. But it is obvious that no
sequence can contain fewer than 1 elementary transfor-
mation if it is going to be used as a model of this distance.
All ’shortest’ sequences of elementary transformations
qualify as models of distance.

Step 3. Quantify distances between measurement abstrac-
tions. In this step the distances in (UDC) that can be
modelled by applying sequences of elementary transfor-
mations of the types contained in T, are quantified. A
function dnpc that quantifies these distances is the met-
ric (in the mathematical sense) that is defined by the
symmetric difference model, i.e., a particular instance
of the contrast model of Tversky [58]. It has been proven
in [49] that “the symmetric difference model can always be
used to define a metric when the set of measurement
abstractions is a power set”.

dna 1 (UDC) x p(UDC) — R : (s,8) — [s— |+ s’ — s

This definition is equivalent to stating that the distance
between two sets of dimension classes, as modelled by
a shortest sequence of elementary transformations be-
tween these sets, is measured by the count of elementa-
ry transformations in the sequence. Note that for any
element in s but not in s’ and for any element in s’
but not in s, an elementary transformation is needed.

The symmetric difference model results in a value of 1
for the distance between the set of dimension classes of
DCM A and DCM B. Formally,

dnpe(absnpe(DCM A), absnpc(DCM B))
= |{Time, Store, Product} — {Time, Product}|
+ [{Time, Product} — {Time, Store, Product}|
= [{Store}| +[{ }[ =1

o Step 4. Find a reference abstraction. In our example, the
obvious reference point for measurement is the empty
set of dimension classes. It is desirable that an DCM
without dimension classes will have the lowest possible
value for the NDC measure. So that we define the fol-
lowing function:

ref xpc : UDCM — o(UDC) : DCM — {

e Step 5. Define the software measure. In our example, the
number of dimension classes of a Data warehouse Con-
ceptual Model DCM € UDCM can be defined as the
distance between its set of attributes SDC(DCM) and

the empty set of dimension classes @), as modelled by
any shortest sequence of elementary transformations
between SDC(DCM) and @. Hence, the NDC measure
can be defined as a function that returns for any
DCM € UDCM the value of the metric dnpc for the
pair of sets SDC(DCM) and 0:

YDCM € UDCM : NDC(DCM) = Sypc(SDC(DCM), )
— |[SDC(DCM) — ()| + | — SDC(DCM)|
= |SDC(DCM)|

As a consequence, a measure that returns the count of
dimension classes in a data warehouse conceptual model
qualifies as a number of dimension classes measure. And
this proves the validity of the NDC metric from a theoret-
ical perspective. It must be noted here that, although this
result seems trivial, other measurement theoretical
approaches to software measure definition cannot be
used to guarantee the ratio scale type of the NDC mea-
sure. The number of dimension classes in a DCM can,
for instance, not be described by means of a modified
extensive structure, as advocated in the approach of Zuse
[66], which is the best known way to arrive at ratio scales
in software measurement.

5.2.2. Other metrics validation

Due to space constraints, describing the construction
process and theoretical validation for all the other pro-
posed metrics would lead us to an extremely long paper,
and therefore, we do not provide it in detail.®> However,
the process is analogous and is summarized in Table 4.
As all the metrics have been defined following the dis-
tance-based process for metric construction, all the metrics
are defined as distances. This fact guarantees that all the
metrics are characterised by the ratio scale. That means
that they are theoretically valid software metrics because
they are in the ordinal or in a superior scale, as remarked
by Zuse [66], and are therefore perfectly usable.

5.3. Empirical validation

In this section, we present the empirical work we have
developed with the previously presented metrics. As Basili
et al. [4] remarks, after performing a family of experiments,
it is possible to build up the cumulative knowledge to
extract useful measurement conclusions to be applied in
practice. Therefore, in order to find out about the metrics
we decided to do different experiments.

Let us summarize the two previous studies developed
with the metrics [55,56] and then we will deeply present
the last experiment we have carried out. In all the cases
our goal is the same: trying to select which of the proposed
metrics are correlated with data warechouse conceptual
schema understandability. If we conclude that some of

3 Please, refer to [53] for a detail description of the whole process for all
metrics.
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Abstraction functions for the rest of the metrics

Metric

Abstraction function

NDC

NBC

NC

NADC

NAFC

NABC

NA

NH

DHP

absypce: UDCM — p(UC): DCM — SDC(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UC is the Universe of Classes relevant to an UoD
SDC(DCM) c UC is the set of dimension classes within a model
absnpe: UDCM — o(UC): DCM — SBC(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UC is the Universe of Classes relevant to an UoD
SBC(DCM) < UC is the set of base classes within a model
absyc: UDCM — p(UC): DCM — SC(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UC is the Universe of Clases relevant to an UoD
SC(DCM) c UC is the set of classes within a model
absyapc: UDCM — p(UA): DCM — SAD(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UA is the Universe of Attributes relevant to an UoD
SAD(DCM) c UA is the set of attributes of the dimension classes within a model
absnarpc: UDCM — o(UA): DCM — SAF(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UA is the Universe of Attributes relevant to an UoD
SAF(DCM) c UA is the set of attributes of the fact classes within a model
absyasc: UDCM — p(UA): DCM — SAB(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UA is the Universe of Attributes relevant to an UoD
SAB(DCM) c UA is the set of attributes of the base classes within a model
absnya: UDCM — o(UA): DCM — SA(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UA is the Universe of Attributes relevant to an UoD
SA(DCM) c UA is the set of attributes within a model
absn: UDCM — p(UH): DCM — SH(DCM)
where
UDCM is the Universe of Data Warehouse Conceptual Models
UH is the Universe of generalization relationships relevant to an UoD
SH(DCM) c UH is the set of generalization relationships within a model
Metric DHP is defined at class level as:
abspup: UC — p(UC): C — SLongestPath (C)
where
UC is the Universe of Classes
SLongestPath(C) < UC is the set of classes related by generalization relationships
In case of multiple relationships, only the classes in the longest path are considered

Metric DHP at model class is the maximum value of DHP calculated for all the classes of the model

RSA and RBC

These metrics cannot be defined using the DISTANCE framework, as the framework only considers lineal distances

between entities and these metrics are defined as combination of several metrics. However, being defined as a function
of valid metrics, these metrics can be considered valid

the metrics can be used as understandability indicators,
they would help data warehouse designers in the design
of quality data warehouses (for example, allowing them
to select among different design alternatives semantically
equivalents the most understandable one).

5.3.1. Previous experimental work
In this section we summarize the two previous experi-
ments developed with the data warechouse metrics.

The first experiment [55] was performed by 17 profes-
sionals working in a Spanish software consultancy that spe-
cialized in information systems development. The subjects
were thirteen men and three women (one of the subjects
did not give us this information), with an average age of
27.59 years. Respect to the experience of the subjects, they
have an average experience of 3.65 years on computers,
2.41 years on databases, but they have little knowledge
working with UML (only 0.53 years on average).
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In the second experiment [56] we replicated the first one
using as experimental subjects twenty-eight last course stu-
dents in MSc of Computer Science from University of
Castilla — La Mancha (Spain). The subjects were twenty
three men and five women, with an average age of 24.5
years. All the subjects had almost the same experience as
they are all students.

In both experiments, subjects attended to an explanatory
session in which we explained the basics of the data ware-
houses conceptual modelling and we told them how to
complete the exercises they were going to face. Subjects
in the experiments had to analyze 10 data warehouse con-
ceptual models and they had to do some exercises. The
experimental package can be found at http://alarcos.
inf-cr.uclm.es/english/research.html

For analyzing the experimental data we collected the
time that was spent in doing the exercises by the subjects.
And we tried to find if there was any type of relationship
between this understandability time and the proposed
metrics.

In the first experiment, we found that there exists a high
correlation between the understandability of the conceptual
models and the metrics NBC, NC, RBC, NABC, NA, NH
and DHP (Number of Base Classes, Number of Classes,
Ratio of Base Classes, Number of Attributes of Base Clas-
ses, Number of Attributes, Number of Hierarchies and
Depth of Hierarchy Path, respectively). In the second
experiment we found the same results as in the first one.

In Table 5, we summarize the results obtained from the
first two experiments. In that table we can see that there
exists a high correlation between the metrics NBC, NC,
RBC, NABC, NH and DHP and the understandability of
the schemas. This lead us to think that the amount of clas-
ses and hierarchies has an impact on the understandability
of conceptual data warehouse schemas. At the end of this
paper, we will discuss the conclusions we can draw from
the experimentation process as a whole.

5.3.2. Current work

In this section, we will present the current empirical val-
idation for the defined metrics. This time we tried to cor-
roborate the previous obtained results replicating the
experiment with database and UML experts and lecturers
from the University of Alicante (Spain). In this experiment,
we wanted to take a step further and we tested, not only the
understandability time, but also the efficiency and effective-
ness of the subjects when dealing with data warehouse con-
ceptual schemas.

In order to describe all the experimental process, we
firstly define the experimental settings (including the main

goal of our experiment, the subjects who participated in
the experiment, the main hypotheses under which we run
out the experiment, the independent and dependent vari-
ables used in our model, the experimental design, the exper-
iment running, the material used and the subjects that
performed the experiment). Then, we will discuss about
the collected data validation. Finally, we analyse and inter-
pret the results to find out if they follow the formulated
hypotheses or not.

5.3.2.1. Experimental settings.

Experiment goal definition

The goal definition of the experiment using GQM [5]
can be summarized as:

To analyze the metrics for data warehouse conceptual
models

for the purpose of evaluating if they are useful

with respect of the data warehouse understandability,
efficiency and effectiveness.

from the researcher’s point of view

in the context of experts

Subjects

Twenty-five experts from the University of Alicante
(Spain) participated in the experiment (see Table 6). All
of them were lecturers in the University of Alicante
(Spain). The subjects were 16 men and 8 women (one of
the subjects did not give us this information), with an aver-
age age of 28.52 years. Respect to the experience of the sub-
jects, they have an average experience of 10.08 years on
computers, 5.08 years on databases and they have little
knowledge working with UML (only 1.80 years on
average).

Hypotheses formulation

The hypotheses of our experiment are:

Null hypothesis, Hy,: There is no a statistically signifi-
cant correlation between the metrics and the under-
standability time of the data warehouse conceptual
data models.

Null hypothesis, Hy,: There is no a statistically signifi-
cant correlation between the metrics and the efficiency
of the subjects when dealing with data warehouse con-
ceptual data models.

Null hypothesis, Hys: There is no a statistically signifi-
cant correlation between the metrics and the effective-
ness of the subjects when dealing with data warehouse
conceptual data models.

Alternative hypothesis, H;;: —Hg,

Table 5
Results summary of previous experiments (v means that there is a relationship between understandability and the metric)
NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA
1st exp v v v v v v v
2nd exp v v v v v v v
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Table 6

Subjects of the experiment (data in years)

Subject# Sex Age Computers Databases UML
1 M 25 7 6 3
2 M 29 12 8 4
3 M 25 12 5 4
4 F 25 7 5 3
5 M 37 20 0 0
6 M 29 13 7 3
7 M 26 8 2 0
8 M 24 7 5 2
9 M 36 18 0 0
10 F 24 6 3 0
11 M 38 14 12 1
12 M 35 7 3 1
13 M 22 7 4 2
14 M 30 5 0 0
15 F 35 16 9 2
16 F 30 12 8 3
17 M 37 18 10 5
18 F 28 9 9 1
19 M 34 15 3 0
20 F 24 6 4 3
21 F 25 8 6 5
22 M 24 6 5 1
23 M 23 6 5 1
24 - 24 7 4 1
25 F 24 6 4 0
Mean 28.52 10.08 5.08 1.80
Minimun 22 5 0 0
Maximun 38 20 12 5
Std_Dev. 5.24 4.54 3.09 1.63

Alternative hypothesis, Hj,: —=Hg,
Alternative hypothesis, H;3: —=Hg;

Alternative hypotheses are stated to determine if there is
any kind of interaction between the metrics and the factor
we want to test, based on the fact that the metrics are
defined in an attempt to acquire all the characteristics of
a conceptual data warehouse model.

Variables in the study

Independent variables. The independent variables are the
variables for which the effects should be evaluated. In our
experiment this variable corresponds to the structural com-
plexity, which is measured thought the metrics being

researched. Table 7 presents the values for each metric in
each DW conceptual schema provided in the experiment
(see next sub-section).

Dependent variables. The understandability of the tests
was measured as the time each subject used to perform
the tasks of each experimental test. The experimental task
consisted in understanding the models and answer to some
questions about the models. For measuring the efficiency
we use the next formula:

. Number of correct answers
Efficiency =

Time
Regarding Effectiveness, we calculated it in this way:

. Number of correct answers
Effectiveness =

Number of questions

Material design and experiment running

Ten conceptual data warehouse schemas were used for
performing this experiment. Although the domain of the
schemas was different, we tried to select representative
examples of real world cases in such a way that the results
obtained were due to the difficulty of the schema and not to
the complexity of the domain problem. We tried to have
schemas with different metrics values (see Table 7). In order
to look up at the schemas, we refer the reader to http://
alarcos.inf-cr.uclm.es/english/research.html, where the
experimental packages can be found. An example of one
of the sheets used in the experiment is shown in Fig. 6

We selected a within-subject design experiment (i.e., all
the tests had to be solved by each of the subjects). The doc-
umentation, for each design, included a data warehouse
schema and a questions/answers form. The questions/an-
swers form included the tasks that had to be performed
and a space for the answers. For each design, the subjects
had to analyse the schema and answer some questions
about the design. The experimental tasks were constructed
using our experience in working with data warehouse real
cases, and therefore, we can consider these tasks significant
for the examples and similar to real world tasks. Also the
domains of the schemata were common and well known
to avoid problems with domain understanding.

Before starting the experiment, we explained to the sub-
jects the kind of exercises that they had to perform, the

Table 7
Values of the metrics for the schemas used in the experiment

NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA
S01 6 16 23 2.67 1 7 9 17 6 4 0.06
S02 5 19 25 3.8 1 11 20 32 9 4 0.03
S03 2 5 8 2.5 4 4 6 14 3 2 0.4
S04 4 17 22 4.25 4 6 17 27 9 3 0.17
S05 3 21 25 7 4 8 24 36 7 4 0.13
S06 5 13 19 2.6 3 0 31 34 5 4 0.1
S07 3 6 10 2 3 7 2 12 5 2 0.33
S08 4 5 10 1.25 3 13 5 21 2 3 0.17
S09 3 5 9 1.67 2 12 5 19 2 3 0.12
S10 2 4 7 2 1 7 2 10 3 2 0.11
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i

Wine_Sales
OoID ID
FA qty
FA price
1
T Y ’ ¥ ’ Y
Time Wine Customer
OoID ID OID ID OoID ID
D date D code D code
" DA name DA name
DA colc_)r DA familiy name
1 DA region DA address
DA year DA telephone
DA bottle_price *
Week 1
OID ID
D number
3 City
1 OID city_code
D name
Quarter 1
OID ID
D name
- Country
] OID country_code
D name
Year
OoID ID
D number

Write the starting time (HH:MM:SS):

1) Answer to this questions:

1. Which classes do you need to use for knowing the color of one wine?
2. Which classes do you need to use for obtaining a list of all the sales of a year?

2) Make the necessary modifications to the model to fit this requierements:

1. You need to store information about the taxes of each sale
2.You need to store information about the month to which a week belongs to
3. You need to store information about the promotions made with the wines

Write the finishing time (HH:MM:SS):

Fig. 6. Example of experimental material.

material that they would be given, what kind of answers
they had to provide and how they had to record the time
spent performing the tasks. We also explained to them that
before studying each schema they had to annotate the
starting time (hour, minutes and seconds), then they could
look at the design until they were able to answer the given
question. Once the answer to the question had been writ-
ten, they had to annotate the final time (again in hour, min-
utes and seconds).

Tests were performed in distinct order by different sub-
jects for avoiding learning and fatigue effects. The way we

ordered the tests was using a randomisation function. To
obtain the results of the experiment we used the number
of seconds needed for each schema by each subject. We
also check the experiments for correct answers.

5.3.2.2. Collected data validation. Before collecting time, we
marked all the tests to be sure that the provided answers
were correct. When we obtained all the times for each sche-
ma and subject (Table 8a), we notice that subject 5 did not
answer to the task of schema 6. We also noticed that the
time spent by subject 19 in the questions of the schema 9
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Table 8

Collected data from the experiment

Subject# S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
(a) Understanding time (seconds)

1 35 29 28 77 74 80 109 37 48 43

2 107 72 26 94 50 119 57 12 56 21

3 80 26 41 98 106 23 29 105 46 25

4 38 54 34 56 29 77 53 33 23 29

5 158 45 46 58 102 - 85 87 49 54

6 59 80 47 124 56 65 61 48 47 24

7 96 41 22 59 42 40 21 37 34 20

8 51 42 52 84 53 32 62 83 41 39

9 60 76 33 80 138 84 38 144 24 124
10 72 34 25 94 75 41 57 30 24 49

11 82 45 86 216 92 26 47 53 30 91

12 33 53 48 86 68 62 51 52 27 34

13 43 60 27 99 93 41 45 58 28 35

14 68 60 22 58 42 73 62 87 21 24

15 49 56 31 46 120 45 67 53 52 32

16 28 52 23 47 54 35 43 39 26 18

17 122 40 33 93 41 32 55 32 36 13

18 31 31 30 37 52 30 28 30 20 18

19 30 40 38 60 65 35 32 24 2 24
20 28 32 35 116 30 42 34 35 20 30

21 31 71 20 65 38 36 38 37 32 27
22 54 102 37 52 49 107 58 49 33 45
23 74 135 51 53 46 86 69 67 51 78
24 210 160 59 122 105 67 99 40 30 97
25 31 55 11 62 100 93 53 63 35 67
(b) Efficiency

1 0.14 0.14 0.18 0.06 0.07 0.06 0.05 0.14 0.10 0.09
2 0.05 0.04 0.19 0.04 0.10 0.03 0.07 0.25 0.09 0.24
3 0.06 0.12 0.12 0.05 0.05 0.17 0.14 0.04 0.09 0.16
4 0.13 0.09 0.15 0.07 0.17 0.06 0.09 0.15 0.17 0.10
5 0.03 0.11 0.11 0.07 0.05 0.06 0.06 0.10 0.07
6 0.07 0.04 0.11 0.03 0.09 0.08 0.07 0.10 0.09 0.21
7 0.05 0.07 0.23 0.07 0.12 0.10 0.24 0.14 0.15 0.25
8 0.10 0.12 0.10 0.05 0.09 0.13 0.08 0.06 0.12 0.13
9 0.08 0.07 0.15 0.05 0.04 0.06 0.11 0.03 0.17 0.03
10 0.07 0.12 0.20 0.04 0.07 0.12 0.07 0.17 0.21 0.10
11 0.06 0.11 0.06 0.02 0.05 0.15 0.09 0.06 0.17 0.04
12 0.12 0.06 0.10 0.06 0.07 0.08 0.10 0.10 0.15 0.09
13 0.09 0.07 0.19 0.05 0.05 0.12 0.11 0.09 0.18 0.11
14 0.07 0.05 0.23 0.07 0.12 0.05 0.06 0.06 0.24 0.17
15 0.10 0.05 0.16 0.09 0.04 0.11 0.06 0.06 0.08 0.09
16 0.14 0.10 0.22 0.09 0.09 0.14 0.12 0.10 0.19 0.22
17 0.03 0.13 0.15 0.04 0.12 0.13 0.09 0.16 0.14 0.38
18 0.16 0.13 0.17 0.11 0.10 0.17 0.14 0.17 0.20 0.28
19 0.13 0.13 0.13 0.08 0.08 0.14 0.16 0.21 2.50 0.21
20 0.18 0.09 0.14 0.03 0.17 0.05 0.12 0.14 0.25 0.13
21 0.16 0.04 0.25 0.06 0.13 0.11 0.11 0.08 0.13 0.11
22 0.09 0.05 0.14 0.08 0.10 0.05 0.09 0.08 0.15 0.09
23 0.07 0.04 0.10 0.08 0.11 0.06 0.07 0.07 0.10 0.06
24 0.02 0.03 0.08 0.03 0.05 0.06 0.04 0.13 0.13 0.05
25 0.13 0.09 0.45 0.08 0.05 0.05 0.09 0.08 0.14 0.07
(c) Effectiveness

1 1 0.8 1 1 1 1 1 1 1 0.8
2 1 0.6 1 0.8 1 0.8 0.8 0.6 1 1

3 1 0.6 1 1 1 0.8 0.8 0.8 0.8 0.8
4 1 1 1 0.8 1 1 1 1 0.8 0.6
5 0.8 1 1 0.8 1 1 1 1 1 0.8
6 0.8 0.6 1 0.8 1 0.8 1 0.8 1

7 1 0.6 1 0.8 1 0.8 1 1 1 1

8 1 1 1 0.8 1 0.8 1 1 1 1

9 1 1 1 0.8 1 1 0.8 1 0.8 0.8
10 1 0.8 1 0.8 1 1 0.8 1 1 1
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Table 8 (continued)

Subject# S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
11 1 1 1 0.8 1 0.8 0.8 0.6 1 0.8
12 0.8 0.6 1 1 1 1 1 1 0.8 0.6
13 0.8 0.8 1 1 1 1 1 1 1 0.8
14 1 0.6 1 0.8 1 0.8 0.8 1 1 0.8
15 1 0.6 1 0.8 1 1 0.8 0.6 0.8 0.6
16 0.8 1 1 0.8 1 1 1 0.8 1 0.8
17 0.8 1 1 0.8 1 0.8 1 1 1 1
18 1 0.8 1 0.8 1 1 0.8 1 0.8 1
19 0.8 1 1 1 1 1 1 1 1 1
20 1 0.6 1 0.8 1 0.4 0.8 1 1 0.8
21 1 0.6 1 0.8 1 0.8 0.8 0.6 0.8 0.6
22 1 1 1 0.8 1 1 1 0.8 1 0.8
23 1 1 1 0.8 1 1 1 1 1 1
24 0.8 0.8 1 0.8 1 0.8 0.8 1 0.8 1
25 0.8 1 1 1 1 1 1 1 1 1

was too short (2 s) and we decided to ignore this value. The
times for these subjects in these exercises were considered
as null values. Tables 8b and ¢ show the efficiency and effec-
tiveness of the subjects in the experiment, respectively.

We decided to study the outliers before working with the
average data. In order to find the outliers we made box
plots (Fig. 7) with the collected data (Table 8a—c). Observ-
ing this box plots (Fig. 7a—c) we can observe that there are
several outliers (shown in Table 9). The outlier values were
eliminated from the collected data. The eliminated values
are shown in Table 8a—c in italic font. The descriptive sta-
tistics of the final set of data can be found in Table 10a—c.
Then, we performed the analysis with these data.

Validity of results

As we know, different threats to the validity of the
results of an experiment exist. In this section we will discuss
threats to construct, internal, external and conclusion
validity.

Internal validity. The internal validity is the degree to
which conclusions can be drawn about the causal effect
of independent variables on the dependent variables. The
following issues should be considered:

o Differences among subjects. Within-subject experiments
reduce variability among subjects.

Differences among schemas. The domains of the schemas
were different and this could influence the results
obtained in some way.

Precision in the time values. The subjects were responsi-
ble for recording the start and finish times of each test.
We believe this method is more effective than having a
supervisor who records the time of each subject. Howev-
er, we are aware that the subject could introduce some
imprecision. For avoiding problems with this issue, we
projected the time (hh:mm:ss) in the wall of the room
where the experiment took place.

Learning effects. Using a randomisation function, tests
were ordered and given in a distinct order for different
subjects. So, each subject answered the tests in the given
order. In doing so, we tried to minimize learning effects.

o Fatigue effects. The average time for completing the
experiment was smaller than half an hour. With this
range of times we believe that fatigue effects hardly exist
at all. Furthermore, the different order of the tests
helped to avoid these fatigue effects.

Persistence effects. In our case, persistence effects are not
present because the subjects had never participated in a
similar experiment.

Subject motivation. Subjects were volunteers and they
were convinced that the exercises they were doing were
useful. The subjects wanted to participate in the experi-
ment and to contribute to this field. Therefore, we
believe that subjects were motivated in doing the
experiment.

Plagiarism and influence among subjects. In order to
avoid these effects a supervisor was present during the
experiment. Subjects were informed they should not talk
to each other or share answers with other subjects. Fur-
thermore, the subjects positions during the experiment,
did not allow them to communicate.

External validity. The external validity is the degree to
which the results of the research can be generalised to the
population under study and to other research settings.
The greater the external validity, the more the results of
an empirical study can be generalised to actual software
engineering practice. Two threats to validity have been
identified which limit the ability to apply such
generalisation:

o Materials and tasks used. We tried to use schemas and
operations representative of real world cases in the
experiments, although more experiments with larger
and more complex schemas could have been used.
Subjects. Although this experiment was run by experts,
we are aware that the number of subjects (25) could
be insufficient for generalise the results. More experi-
ments with practitioners and professionals must be
carried out in order to be able to generalise the
results.
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Fig. 7. (a) Box plot of the understanding time; (b) box plot of the
efficiency; (c) box plot of the effectiveness.

Conclusion validity. The conclusion validity defines the
extent to which conclusions are statistically valid. The only
issue that could affect the statistical validity of this study is

Table 9
Outliers
Schema Subject outliers
Time Efficiency Effectiveness
S01 5.24
S02 23.24
S03 11 25
S04 11
S05
S06 20
S07 1.24 7
S08 3.9
S09 19
S10 9.11.24

the size of the sample data (25 values), which perhaps is not
enough for both parametric and non-parametric statistic
tests [7]. We will try to obtain bigger sample data through
more experimentation.

Construct validity. The construct validity is the degree to
which the independent and the dependent variables are
accurately measured by the measurement instruments used
in the study. The dependent variable we use is understand-
ing time, i.e., the time each subject spent performing this
task, so we consider this variable constructively valid.
The construct validity of the measures used for the inde-
pendent variables is guaranteed by the Distance framework
[49] used for their theoretical validation (see Section 5) [53].

Although, we know that several aspects threaten the
validity of the results, we have tried to alleviate them by
different means. In this section we have discuss the prob-
lems that could affect the results of the experiment and
how we tried to solve them. We know that even though
we put a lot of effort in alleviate the threats, some of them
can affect the results and could lessen the strength of the
results. As we have made a family of experiments and we
have obtained the same results in all the experiments, we
think that those threats have had a small impact on the
results. We plan to make more experiments and case stud-
ies varying some empirical settings to get more conclusive
results.

5.3.2.3. Analysis and interpretation. We used the data col-
lected in order to test the hypotheses previously formulated.
As we were not able to assure that the data we collected
followed a common statistical distribution (mainly
because we had a very small group of subjects), we
decided to apply a non-parametric correlational analysis,
avoiding assumptions about the data normality. In this
way, we made a correlation statistical analysis using
the Spearman’s Rho statistic and we used a level of
significance « = 0.05

Table 11a shows the results obtained for the correlation
between each of the metrics and the time used by each sub-
ject (on each schema) in performing the tasks. Tables 11b
and c show the results of the correlation analyses between
metrics and efficiency and effectiveness, respectively.
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Table 10
Descriptive statistics

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
(a) Understanding time
Average 56.61 52.00 34.13 75.83 68.80 57.13 49.78 47.22 34.71 34.05
Minimum 28 26 11 37 29 23 21 12 20 13
Maximum 122 102 59 124 138 119 85 87 56 78
Deviation 27.14 18.78 11.82 25.05 30.15 27.39 15.38 19.87 11.31 16.43
(b) Efficiency
Average 0.02 0.03 0.06 0.02 0.04 0.03 0.04 0.03 0.08 0.03
Minimum 0.18 0.14 0.25 0.11 0.17 0.17 0.16 0.25 0.25 0.38
Maximum 0.05 0.04 0.05 0.02 0.04 0.04 0.03 0.05 0.05 0.09
Deviation 0.02 0.03 0.06 0.02 0.04 0.03 0.04 0.03 0.08 0.03
(c) Effectiveness
Average 0.8 0.6 1 0.8 1 0.8 0.8 0.6 0.8 0.6
Minimum 1 1 1 1 1 1 1 1 1 1
Maximum 0.1 0.18 0 0.09 0 0.1 0.1 0.15 0.1 0.15
Deviation 0.8 0.6 1 0.8 1 0.8 0.8 0.6 0.8 0.6
Table 11
Results of the experiment
Metric NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA
(a) Understanding time
Correlation 0.619 0.877 0.835 0.772 0.544 —0.215 0.756 0.745 0.773 0.687 —0.018
p-value 0.056 0.001 0.003 0.009 0.104 0.551 0.011 0.013 0.009 0.028 0.960
(b) Efficiency
Correlation —0.514 —0.853 —0.823 —0.723 —0.169 —0.006 —0.470 —0.515 —0.896 —0.482 0.164
p-value 0.129 0.002 0.003 0.018 0.641 0.987 0.171 0.128 0.000 0.159 0.651
(c) Effectiveness
Correlation —0.246 —0.062 —0.095 —0.012 0.302 —0.086 0.144 0.067 —0.346 0.090 0.220
p-value 0.493 0.865 0.794 0.973 0.396 0.812 0.691 0.854 0.328 0.804 0.542

Analysing Table 11a, we can conclude that there exists a
correlation between the understanding time used (under-
standability of the schemas) and the metrics NBC, NC,
RBC, NABC, NA, NH and DHP (the p-value is lower than
or equal to o =0.05) and that the metrics NDC, NAFC,
NADC and RSA are not correlated with time.

Analysing Table 11b, we can see that the metrics NBC,
NC, RBC and NH are correlated with the efficiency of the
experimental subjects when solving the experimental tasks.
This correlation is an inverse relationship, that is to say
that the lower the value of these metric is, the higher is
the efficiency of the subjects.

On the other hand we can see in Table 11c that none of
the proposed metrics are correlated with the effectiveness of
the subjects when dealing with conceptual data warehouse
schemas.

Table 12

5.3.3. Conclusions of the complete experimental work

Table 12 summarizes all the empirical work we have per-
formed with the metrics for conceptual data warehouse
models. After all the experimental work, we can conclude
that the metrics NBC, NC, RBC, NABC, NA, NH and
DHP (Number of Base Classes, Number of Classes, Ratio
of Base Classes, Number of Attributes of Base Classes,
Number of Attributes, Number of Hierarchy relationships
and maximum Depth of the Hierarchy Path) seem to be
correlated with the understandability of data warehouse
conceptual models.

Regarding efficiency and effectiveness, in the last exper-
iment we have found that there is a high inverse relation-
ship between NBC, NC, RBC and NH metrics with the
efficiency of the subjects working with data warehouse con-
ceptual schemas. It seems that the understandability and

Results summary of all the experimental work (v* means that there is a relationship between understandability and the metric. v'v' means that there is also

a relationship between efficiency and the metric)

NDC NBC NC RBC NAFC NADC NABC NA NH DHP RSA
Ist exp v v v v v v v
2nd exp v v v v v v v
3rd exp vV vV vV v v vV v
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the efficiency are related to the number of classes of the
DW conceptual schema and the number of the hierarchy
paths defined in dimensions.

Although we have found encouraging results, we must
go on with the experimental process in order to confirm
the influence of the proposed metrics in the efficiency
and effectiveness in using data warechouses. After these
new experiments, we will move into the next step of our
method (See Fig. 3) which means that the proposed met-
rics must be applied in real world projects prior to the
final acceptance.

With these metrics, designers could choose from alter-
native semantically equivalent schemata, basing on objec-
tive indicators. They could measure the schemata
obtained with different design techniques or different
design decisions and choose which one of them could fit
their goals. Also, they could use the metrics to predict
the effort of understanding that the users, who deal with
a schema, have to burden.

6. Conclusions and future research

As many strategic decisions taken in companies are
based on the data stored in data warehouses (DW), assur-
ing the quality of these DWs is absolutely crucial for com-
panies. One aspect to assure their quality is to guarantee
the quality of the models used in their design (conceptual,
logical and physical).

In this paper, we have proposed a set of metrics in
order to assure the quality of the conceptual schema used
in the early stages of a DW design. These metrics will help
us measure the understandability and the efficiency of
designers and users in working with the schemas. The
proposed metrics have been theoretically validated (by
using both the Briand and Poels frameworks) to guaran-
tee that they have been correctly defined and that they
will help us measure what they are intended for. Then,
we have also presented a set of experiments we have
accomplished in order to proof the validity of the pro-
posed metrics. After these experiments we can conclude
that several metrics are correlated with the understand-
ability of the models (mainly those measuring the number
of elements in the conceptual schema such as the number
of classes, associations, attributes, and so on) and with
the efficiency of the subjects when dealing with those
models (those measuring the number of classes, dimen-
sions, and the number of hierarchy levels defined in
dimensions).

Our immediate future work is to apply the valid metrics
in real world projects in order to pass into the next step of
our method, which will allow us the final acceptance of the
proposed metrics. We are also currently working in defin-
ing new metrics to measure the effectiveness of DW concep-
tual schemas. On having accepted a set of metrics to
measure all these aspects, we plan to define a set of quality
indicators which helps and guide the designer in designing
DWs. Another relevant issue would be to be able to define

the correct metrics thresholds under which several design
options can be taken. Another further aspect we will deal
with is the traceability of metrics as one conceptual schema
can be transformed into several logical schemas (pure star
schema, snowflake, normalizing only come dimensions,
and so on).
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