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Abstract

The International Energy Agency (IEA) reported that 10% of the world energy consumption
is due to pumps and pump related equipment.1 From this it is gathered that, by improving
the efficiency of pumps and lowering their energy consumption in general, a real difference
can be made in the global energy consumption. But on the other side of the coin, there
are practical limitations that are imposed on the pump design by the process conditions or
the surroundings in which the pump most operate. Real-life situations may require a pump
to operate far from its Best Efficiency Point (BEP), which in most cases will lead to the
development of cavitation.

Cavitation is defined as the process of formation and disappearance of a vapor phase in a liquid
when this liquid is subjected to reduced pressures, followed by an increase of pressure. One of
the main challenges in the design and application of centrifugal pumps is the ability to control
and limit the development of cavitation. It is generally unlikely that a pump will operate
across its entire operating range without any cavitation. But a distinction must be made
between the general presence of cavitation and the point at which the levels of cavitation
become too high and will start to influence the peformance of the pump and damage the
pump.

Computational Fluid Dynamics (CFD) is used extensively to model cavitation in pump
impellers. These models are almost always governed by empirical relations, which is no
problem for cold water that has ample test data to be validated with, but makes the prediction
of cavitation for hydrocarbons or amine solutions impossible. In the present work the cavitation
development of water, butane and propane is described using a barotropic model assuming
an isenthalpic expansion in the two-phase region. This barotropic relation should only be
governed by the fluid properties, no empiricism should be involved.

First a literature study is performed to gain insight into the mechanics and thermodynamics of
cavitation. The inception, growth and collapse phases of cavitation are individually discussed
and the related physics are analyzed. This is followed by a discussion of the different
possibilities to model cavitation in a CFD environment, explaining the pros and cons of
incompressible versus compressible modeling.

1IEA Report 2009, IEA Statistics, CO2 Emissions from fuel combustion
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The development of the model is divided in a physical section and a numerical section. The
physical section shows the development and validation of the barotropic model. Starting
with the mixed isentropic-isenthalpic model from Brennen, it is reduced to an barotropic
isenthalpic model assuming full thermal contact and the evaluation of fluid properties at
free stream temperature. Validating the model with data from a thermodynamic library, to
confirm isenthalpic expansion behavior, closes the section. Although butane and propane
are considered much more sensitive to the local thermal effects of cavitation than water, the
validation of the barotropic model showed satisfactory results for every fluid used in this work.
In the numerical section the finite volume method (FVM) is presented including the MUSCL
face extrapolation method to estimate quantities at the cell faces based on cell centered values.
The AUSM-HLLC hybrid scheme is reviewed, that will calculate the flux of the quantities
through each of the cell interfaces. The numerical section is closed by a full overview of the
model, showing the final implementation that combines the physical part with the numerical
part.

In order to validate the model, it is implemented in both 1-dimensional and 2-dimensional
situations. In the 1-dimensional situation the Euler equations are solved for a single dimension
in combination with source terms that model the varying area distribution of a Venturi-like
nozzle. By forcing all three liquids through the nozzle at different velocities and pressures,
insight is gained into the general qualitative performance of the model, both physical and
numerical. Also the first observations are made concerning the unique cavitation development
for each fluid. In order to validate the model quantitatively with test data, the model is
implemented into a 2-dimensional situation. A circular rod with a hemispherical head is
pointed into the flow to obtain the pressure distribution over the head and part of the rod.
This pressure distribution is then compared with data from Rouse & McNown, in order to
perform a simple quantitative validation of the model.

Based on the work done in this thesis it is concluded that an isenthalpic barotropic model is
a suitable approach to describe cavitation. Due to the independence from empirical relations,
the development of cavitation for three different fluids can be modeled, based solely on fluid
properties taken from a thermodynamic library. The results from the 1D implementation,
followed by a qualitative validation, show that the physical behavior and differences in
cavitation development are captured. However, the numerics are influenced by the fluid
properties, meaning that it is challenging to tune the numerics in such a way that it treats all
possible fluids in an equal manner. The 2D implementation for water shows that the shape of
the cavitation region is comparable with images from Rouse & McNown and that the resulting
pressure distribution over the head shape is relatively accurate. The 2D implementation
of butane and propane shows results that are plausible from a physical standpoint, but
remain unvalidated predictions based on the current model. The general results from the 2D
implementation are encouraging, but require more work to remedy the numerical instabilities
and extremely slow convergence of the solution. The general recommendation for future work
is to further develop and improve the numerics to make the solver more efficient and stable,
thus viable for bigger simulations.
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Preface

In September 2014 I started an internship with Flowserve at their offices in Etten-Leur. The
goal of the internship was to obtain a better understanding of the vapor formation in pumps
that were utilized as power recovery turbines. After successful completion of the internship
project, a possibility was offered to continue working at Flowserve for a thesis project. The
goal of the thesis project was to develop the basis for a new cavitation model that can be
used for Computational Fluid Dynamics (CFD) calculations. Correct prediction of the shape
and intensity of cavitation is an important tool to guarantee that the pump will achieve the
performance and the lifetime it was designed for.

About nine months ago I eagerly started to work on this thesis under the impression that it
would be very similar to the vapor evolution I researched during my internship. After a month
of literature study I was boggled by the complexity of the mechanics and thermodynamics
that are associated with cavitation. Cavitation is from both a physical and a numerical
perspective a very challenging phenomena to model.

This thesis is submitted in partial fulfillment of the requirements for a Master’s Degree in
Mechanical Engineering. It contains work done from January to September 2015. The project
was performed in-house at Flowserve in Etten-Leur under the daily supervision of dr.ir. F.C.
Visser. The project has been done under the supervision of dr.ir. Rene Pecnik of the Process
and Energy department at the Technical University of Delft.

This thesis has been solely made by the author. Many of the formulae, scientific data and
numerical methods used in the project are based on the research of others. The author has
made the best possible effort to provide an actual and correct reference to these sources.
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“When everything seems to be going against you, remember that the airplane
takes off against the wind, not with it.”
— Henry Ford





Chapter 1

Introduction

The purpose of this chapter is to briefly introduce the topic of cavitation and to motivate the
goals that are being set to be further explored in this thesis. Also a short background will be
given on previous modeling methods that are the main driving force behind this project. The
chapter is concluded by an outline of this thesis.

1.1 Introduction

Cavitation is defined as the process of formation and disappearance of a vapor phase in a
liquid when this liquid is subjected to reduced pressures, followed by an increase of pressure.
The formation of this vapor phase is a process that is almost identical to the boiling of a
liquid. The main difference is that boiling is achieved by the addition of heat, thus increasing
the temperature of the fluid up till the boiling point. It is normally assumed that cavitation
occurs at a more or less constant temperature and that the evaporation of the fluid is caused
by lowering the pressure below the saturation pressure at that temperature. Cavitation
should not be confused with the flashing of a liquid, since the vapor formed during the flash
will remain in the gaseous phase. For this reason cavitation is defined as a thermodynamic
change of phase with mass transfer from liquid to vapor phase and the other way around,
since the cavitation bubble will again implode when the pressure increases. Figure 1-1 again
illustrates the differences between these processes.

The correct prediction of cavitation is not important in the sense that it should be completely
avoided. In practice this could be easily achieved by preventing that at any point the pressure
falls below the saturation pressure. Even if the pump is correctly designed it is very likely
that it will develop some cavitation. But if cavitation is allowed to develop too far it will
result in the following negative (possibly damaging) effects:

• performance loss (head loss)

• physical material damage (figure 1-2)
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Figure 1-1: Boiling and cavitation illustrated in thermodynamical diagram

• vibrations

• noise

To better illustrate the difference between avoiding cavitation and acceptable levels of (centrifugal
pump) cavitation figure 1-3 is used. The figure shows the total head delivered by the pump
versus the net positive suction head (NPSH) available to the pump. NPSH is the amount of
total suction head above the vapor pressure. Starting on the right hand side of the figure and
traveling to the left the amount of NPSH available to the pump is lowered, causing increasing
cavitation along the way. Important to note is that the point where cavitation becomes
powerful enough to cause damage is not identical to the point of inception, meaning that
cavitation can form but will not cause any damage to the surface of the pump. A popular
method in industry to describe the allowable levels of cavitation is to look at the actual
performance of the pump. The ’NPSH3%’ norm determines the minimum amount of NPSH
required by the pump before it loses 3% of its head compared to non cavitating operation.
This point is indicated as ’Three-Percent Head Drop’ in figure 1-3.

Cavitation can occur on many different levels, ranging from a small group of bubbles to a
pump that is fully blocked by a big pocket of vapor (better known as ’vapor lock’) causing full
breakdown of head. Many of the pumps operating in the field are operating with cavitation,
but with a level acceptable for their purpose. In some cases it is specified that a pump
must always operate above inception (cavitation free) but this will restrict the performance
compared to a pump that is allowed to operate with low levels of cavitation. In the end a
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Figure 1-2: The resulting damage of continuous cavitation on a pump impeller [1]

certain criterion, based on hours of lifetime or performance, must be defined to determine
what level of cavitation is acceptable for the design. Cavitation is an important factor to take
into account when designing pumps and cannot be judged by the threshold of vapor pressure
alone.

1.2 Tascflow and the CEV-model

Nowadays CFD is the main tool to predict cavitation and many different software packages
containing a wide array of models are available to model the behavior of cavitating fluids.
Over the years Flowserve has used a small selection of models to predict cavitation and in
most cases the fluid of interest was water. The subject of this thesis comes into perspective
when the fluid concerned is not water but something like a hydrocarbon or an amine solution.
Many of the current cavitation models are based on empirical coefficients which have been
experimentally determined in literature but almost solely for water.

May 2000 AEA Technology, a privatized part of the Atomic Energy Authority (AEA), released
version 2.10 of their computational fluid dynamics software package CFX-Tascflow. This
release contained a new cavitation model, the ’Constant Enthalpy of Vaporization’ (CEV)
model that utilizes the full solution of mass, momentum and energy to obtain a solution for
the amount and location of vapor that is being formed when the local pressure falls below the
vapor pressure. The most interesting fact of this model is that it is completely dependent on
the actual fluid properties. Meaning that if the user has access to detailed information of the
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Figure 1-3: Typical stages of pump impeller cavitation [2]

properties of the liquid that is being pumped, it should be possible to fully physical model
the cavitation behavior of that fluid. More details about the CEV model and different ways
to model cavitation will be discussed in chapter 2 and 3. The cavitation model implemented
in Tascflow will be used as an initial reference for the derivation and selection of cavitation
models throughout the thesis.

CFX-Tascflow was utilized by Flowserve and led to very satisfactory results, especially when
predicting head-drop curves, as can also be seen in the paper by Visser [3]. This is also the
main motivation behind the choice for Tascflow as an initial reference. Unfortunately shortly
after acquiring CFX-Tascflow it was abandoned by ANSYS and when Flowserve upgraded its
computers from Windows XP to Windows 7, it was no longer possible to use CFX-Tascflow.
ANSYS never made the step from Windows XP to Windows 7 for CFX-Tascflow and the
software package disappeared from the market. Currently Flowserve Etten-Leur uses the
ANSYS CFX and Simeric’s Pumplinx software packages which only contain a Rayleigh-term
model1. A cavitation model that is based on physical fluid properties enables to capture
the thermodynamic effect on the development of cavitation when pumping hot water or
hydrocarbons.

Predicting cavitation on the basis of a Rayleigh-term model has its limitations as from a
practical standpoint it is impractical to determine the empirical coefficients needed for each
and every fluid. It would involve testing a pump with the same liquid as will be used in the
field, which often raises all kind of safety concerns and would be very costly.

1Rayleigh-term models or vapor transport models (see chapter 2.2.4) describe cavitation using a transport
equation for the vapor that is formed. The mass transfer between phases is governed by a complex source term
that is derived from the Rayleigh equation, hence Rayleigh-term model.
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1.3 Purpose and motivation

The reintroduction of a model similar to the previously described CEV model, which relies
only on physical properties of the fluid itself, would be much more practical. The main driving
force behind this thesis project is the desire of Flowserve to again have a cavitation model
at its disposal to predict cavitation for fluids other than cold water. Thus this thesis will be
focused on the physical modeling of cavitation using an enthalpy based model. The following
goals have been set and have been successfully incorporated into this thesis:

• Literature review of available models and their drawbacks, studying the cavitation fluid
mechanics and thermodynamics involved

• Develop an accurate barotropic model of the cavitation process utilizing a two-phase
isenthalpic expansion

• Guarantee that the model is only dependent on physical fluid properties; no experimental
fitting procedure should be required, as is the case with Rayleigh-term models.

• Design of a robust numerical method that can handle the large differences in density,
and can overcome other numerical issues like shock waves, discontinuities or spurious
oscillations.

• Modification of a density based solver to incorporate the physical models and numerical
schemes

• Using the solver to model cavitation for three different liquids: water, butane and
propane

• Investigate the influence of a fluid’s thermal properties when assuming isothermal flow
and referencing fluid properties at this free-stream temperature

• Investigate the role of a fluid’s gas-liquid density ratio in a density based solver

• Investigate the practical applicability of the model by focusing on important cavitation
details, like cavitation length and the correct modeling of the closure region

The choice to model water, butane and propane is partially based on the practical needs
of Flowserve and partially based on the physical properties of the fluids. From a physical
point of view the three liquids are quite different. The gas-liquid density ratio ( ρlρv ) for water,
butane and propane at 293K are respectively 57655, 109 and 28. Also the thermal effect of
butane and propane is much larger than that of water. Both these parameter will influence
the development of the cavitation as will be shown later on in this thesis. Water is an obvious
choice because every shop test is done with water. Butane and propane are candidates to
show that the model can predict cavitation behavior based on physical fluid properties. The
model will be validated with water based experimental data, butane and propane will remain
predictions due to the lack of experimental data.
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1.4 Thesis overview

To realize all the goals that have been set in the previous paragraph the thesis is structured
to work out each of these goals. To start, an overview of cavitation theory is presented.
Cavitation is as much a numerical problem as a physical problem. Each side of the problem
is described in its own chapter. The resulting model is then implemented in both a 1D- and
a 2D-situation. The results of these models are assessed by comparing them with theory and
experimental results.

Chapter 2 provides an extensive overview of the theory related to cavitation phenomena. It
will provide further insight into the thermodynamics and fluid mechanics that govern this
phenomena. Also the influence of viscosity and surface tension will be discussed, followed
by a description of quantities regularly used to describe cavitation. The chapter ends with a
description of cavitation modeling methods used in CFD simulations.

Chapter 3 starts with a detailed description of the original CEV model. This is followed by
a description and full derivation of the barotropic model by Brennen [4], which will serve as
the base for the new and modified CEV model. The modified CEV model is further worked
out and verified with Fluidprop [5] to check the isenthalpic nature of the model and the
assumptions made. The Tait equation of state [6] is presented that will be used to model the
fluid when no cavitation is present. The parameters that are needed to match the CEV model
and the Tait equation of state with a certain fluid (water, butane, propane) are presented. It
is explained how these parameters are derived from actual fluid data.

Chapter 4 provides the details of the numerical methods involved in the 1D- and 2D-model.
The Euler equations in combination with the Finite Volume Method (FVM) are presented.
The hybrid AUSM-HLLC 2 scheme used for the convective and pressure fluxes is described in
detail. Also special attention is payed to the (non-reflecting) boundary conditions needed for
both the 1D- and the 2D-model. The chapter concludes by giving an overview of the entire
model, with references to the physical methods describing the full algorithm.

Chapter 5 presents the results that have been obtained using the modified CEV model in an
1D-situation. These results are not compared with experiments since this is not feasible due
to the simplified 1D situation. The objective of the 1D-situation is to qualitatively check the
physics of the cavitation model and verify that the fluid properties are correctly modeled by
the CEV model.

Chapter 6 presents the results that have been obtained using the modified CEV model in an
2D-situation. These results are compared with the experiments by Rouse and McNown [9] to
further validate the model and quantify the accuracy of the CEV model. Some parameters
of special interest when modeling cavitation (e.g. cavitation length, void fraction, velocity in
the closure region) are analyzed with additional care.

Chapter 7 gives a summary of the conclusions of chapters 6 and 7. This is followed by a list
of recommendations for future progress on this work.

2A combination of the Harten-Lax-van Leer-Contact (HLLC) scheme introduced by Toro [7] and the
Advection Upstream Splitting Method (AUSM) scheme introduced by Liou [8]
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Chapter 2

Cavitation theory

The purpose of this chapter is to provide an overview of the theory involved with cavitation and
to give some practical examples of modeling strategies applied in CFD software packages. The
chapter is concluded by discussing the pros and cons of applying a certain modeling strategy.

2.1 Cavitation theory

The process of cavitation can be divided into three distinct steps. The first step is the initial
formation of a bubble, another name for this part is the inception of cavitation. After the
initial formation (or inception) the bubble enters the next step, namely the growth step,
where the bubble will grow to a certain size, controlled by the forces (pressures) acting on the
bubble. Note that the collapse of the bubble is the main difference between actual cavitation
and the flashing of a liquid to a vapor. Flashing a liquid involves the same phase change
(liquid to vapor) but the formed vapor will not turn back into a liquid.

Different authors have focused on different parts of the cavitation cycle, since each phase
has its own unique characteristics, driving forces and timescales. The practical interest is
also different for each step. For instance, the modeling of the collapse of the bubble is largely
focused on accurately predicting the forces involved to update models that are used to predict
the damage caused by cavitation bubbles. Another example is inception behavior, which is
studied intensively by the medical industry. Their goal is to accurately predict the location,
amount and size of the bubbles formed by their cavitation inducing devices used to destroy
kidney stones [10].

2.1.1 Types of cavitation

As described in the introduction, the definition of cavitation is the process of formation and
disappearance of a vapor phase in a liquid when this liquid is subjected to reduced pressures,
followed by an increase of pressure. But depending on the fluid flow regime and the shape
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the fluid is flowing over, many different types of cavitation can be formed. The following five
cavitation types are reviewed: bubble, sheet, cloud, vortex and super cavitation. Do note
that these are typical and relatively clear examples of a certain cavitation type, it is very well
possible to create cavitation regimes that are a combination of or transition between these
five types.

Much of the theory from the previous and coming paragraphs is concerned with a single
cavitation event, meaning a single (perfectly spherical) bubble. When these bubbles start to
form larger groups, and start to influence and alter the flow surrounding them, different types
of cavitation can be formed.

Bubble cavitation (figure 2-1) can be recognized by the individual bubbles that travel through
the flow field. These bubbles can be attached to a surface but can also detach and travel with
the flow. This cavitation generally occurs in low mass flow rate machines with a relatively
uniform pressure distribution across the surface. This type of cavitation is very harmful and
erosive since very large amounts of energy are transmitted to the surface when these large
bubbles collapse.

Sheet cavitation (figure 2-2) or blade attached cavitation is the next phase in the cavitation
process when the cavitation number is lowered further or the angle between the flow and the
hydrofoil is increased. The larger bubbles coalesce to form a single sheet that starts closely
downstream of the stagnation point of the geometry, for instance a little after the leading edge
of a hydrofoil. This form of cavitation is sometimes described as ’fully developed’ cavitation
because the sheet can keep a steady shape with a very clear and sharp interface between the
phases. In general the velocities for sheet cavitation are higher than for bubble cavitation, but
the individual bubbles are much smaller which means that this form of cavitation is generally
perceived as less noisy.

Cloud cavitation (figure 2-3) looks very similar to sheet cavitation except for the fact that
this cavitation is much less attached to the surface. In general the convecting velocities
are higher for cloud cavitation than for sheet cavitation, causing the top layer of the sheet
to become unstable. The shedding of these clouds from the main sheet is not completely
random but knows a certain temporal periodicity that for instance can be described by the
Strouhal-number. In rotodynamic machinery this periodicity can be caused by perturbations
induced by the machinery itself. The interaction between the impeller blades and the volute
cutwater inside a centrifugal pump is an example of such a perturbation.

These clouds of cavitation can be very damaging depending on the location where they
collapse. For hydrofoils these clouds are convected away from surface and implode somewhere
with the main flow, which is harmless for the hydrofoil. But inside a pump this cloud can be
convected to a high pressure zone somewhere near a wall, causing the entire cloud to implode
instantaneous resulting in a loud bang and high local erosion rates.

Vortex cavitation (figure 2-4) occurs in zones of very high vorticity. The tip of a ship propeller
is an example of a high vorticity region. In the center of the vortex the pressure is lower
causing the fluid to cavitate. The shape of vortex cavitation is thus determined by following
the local vorticity contours, resulting in long ’ropes’ of cavitation. Centrifugal forces play a
very important role in vortex cavitation. Firstly these forces cause the pressure to be lower
in the center of the vortex, correlating high vorticity with the pressure drop in the center.
Secondly in the work of Higuchi et al. [11] it has been hypothesized that the centrifugal forces
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are also responsible for the smooth shape of these cavitation ’ropes’. Higher centrifugal forces
would cause the bubbles to be pushed towards the center of the vortex, creating smoother
looking cavitation.

Super cavitation (figure 2-5) looks very similar to sheet cavitation but the difference is in
the location of the closure region. When sheet cavitation forms on a hydrofoil, it is possible
to stretch the cavity from the leading further back to the trailing edge of the hydrofoil by
increasing the angle between the hydrofoil and the flow. If the velocities are sufficiently high
it is possible to stretch the cavity to the point where it closes behind the trailing edge of
the hydrofoil. This situation is an example of super cavitation. The principle is used by
torpedoes to form a sheet enclosing the entire torpedo, drastically reducing the drag forces
under water [12].

A final note is directed to the simulation of these different cavitation types. Some of the
previously described cavitation types posses a steady state, for example sheet cavitation or
super cavitation, which on the scale of individual bubbles are very chaotic but form large stable
structures on a large scale. From a computational perspective it costs much less resources
to compute a stable flow structure than predict the convection of a cloud of vapor traveling
through the domain.

Figure 2-1: Example of bubble cavitation [13]

2.1.2 Quantities and dimensionless numbers

To correctly compare and scale cavitation across different fluids and geometries, a group of
dimensionless numbers and relevant quantities is introduced. The following dimensionless
numbers and quantities are maintained for this report:
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Figure 2-2: Example of sheet cavitation [13]

Figure 2-3: Example of cloud cavitation [13]

Figure 2-4: Example of vortex cavitation [13]
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Figure 2-5: Example of super cavitation [13]

α = Vv
Vl + Vv

(2-1)

x = mv

ml +mv
(2-2)

ptot = pstat + 1
2ρv

2 (2-3)

H = ptot
ρ · g

(2-4)

NPSH = ptot − pvap
ρ · g

(2-5)

Cp = pstat − p∞
1
2ρv

2 (2-6)

σ = pstat − pvap
1
2ρ∞v

2
∞

(2-7)

σT = NPSH

H
(2-8)

• void (volume) fraction α: fraction of the total volume that is occupied by the vapor
phase

• mass fraction x: fraction of the total mass that is occupied by the vapor phase

• total pressure ptot: the sum of the static and the dynamic component of the pressure

• head H: the height of a incompressible column of fluid which is equivalent to the energy
of that fluid

• net positive suction head NPSH: The amount of total head above vapor pressure

• pressure coefficient Cp: the ratio of static and dynamic pressure forces
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• cavitation number σ: the ratio of the static pressure difference between free-stream and
vapor pressure and the dynamic pressure at free-stream

• Thoma cavitation number σT : ratio between the net positive suction head and the local
head. Considered to be archaic standard for defining cavitation, may be found in older
references.

2.1.3 Inception

The first step of cavitation is the ’birth’ of the bubbles, better known as the inception of
cavitation. The bubbles emerge in the liquid due to nucleation. Nucleation can be divided in
two categories, homogeneous and heterogeneous nucleation. Homogeneous nucleation involves
the creation of a new phase in the midst of the liquid, away from any surfaces. Heterogeneous
nucleation involves the creation of a new phase by using nucleation sites, which are zones on
the surface on which the new phase is formed.

In most practical situations it is impossible to create cavitation through homogeneous cavitation.
Homogeneous nucleation would imply that the fluid is pulled and eventually torn apart to
make space and create an interface between the two phases. The governing equation behind
this statement is [4]:

pb − p = 2S
R

(2-9)

Assuming surface tension to be equal to S = 0.05N/m and that the radius r of the bubble is
equal to a single intermolecular distance unit in the order of 10−10m, the pressure difference
would be in the order of 10,000 bar of pressure. The calculation shows that it is near impossible
to create homogeneous nucleation under practical circumstances.

An interesting observation is that in early papers concerning cavitation researchers (Berthelot [14],
Dixon [15]) reported seeing bubbles appear in the center of the fluid, suggesting homogeneous
cavitation, having only applied a tensile pressure in the order of 100 bar. What in fact was
happening is that these researchers observed heterogeneous nucleation of cavitation, that used
nucleation sites on impurities that were drifting through the flow. Figure 2-6 provides a few
examples on possible shapes for nucleation sites. Note that the bubbles are no longer spherical
but have a certain contact angle θ at the vapor-liquid interface. The governing equation as
was described by equation 2-9, is now rewritten to include the effect of this angle θ:

pb − p = 2S · sinθ
R

(2-10)

For example A and B in fig 2-6 this would mean that the tensile pressure goes towards zero
if θ → π. Example B, showing the hydrophilic surface, this means making a spherical bubble
that would be identical to homogeneous nucleation. Example A, showing the hydrophobic
surface gives a possible explanation to why heterogeneous nucleation lowers the tensile pressure
needed, the tensile pressure goes towards zero if θ → 180◦, which would be possible for very
flat bubbles on very hydrophobic surfaces. Both A and B fail to illustrate why nucleation is
possible close to vapor pressure.

A realistic surface is not perfectly flat, the cast steel impeller of a pump is covered with
surface imperfections, much like example C in fig 2-6. If half-angle α at the bottom of the
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cavity is taken in to account for equation 2-10, the angle for zero tensile strength θ becomes
θ = α + 90◦. The value of alpha is well within in a range that could be encountered on the
surface of actual materials. If the situation would occur that θ > α + 90◦ it is even possible
to have nucleation sites that operate well below the vapor pressure. From all the above it
can be concluded that homogeneous nucleation is highly unlikely and that the inception of
cavitation most likely will occur inside small imperfections that are found across the surface
of the geometry involved.

Figure 2-6: Different sites for heterogeneous nucleation [4]

2.1.4 Growth

The step that follows after the inception of the cavitation bubble is the growth step. The
growth step is governed by the Rayleigh-Plesset equation, which describes the radius of the
bubble as a function of time, thus also including all the transient effects of bubble growth [16]:

pb(t)− p∞(t)
ρl

+ psat(Tb)− psat(T∞)
ρl

+ pG0
ρl

(
Tb
T∞

)(
R0
R

)3κ

= R
d2R

dt2
+ 3

2

(
dR

dt

)2
+ 4νl

R

dR

dt
+ 2S
ρlR

(2-11)

This equation is built up from a set of terms that denote the individual contributions of the
forces that work on or from the inside of the bubble:

• 1: Rd2R
dt2 + 3

2

(
dR
dt

)2
- inertial forces

• 2: 4νl
R

dR
dt - viscous forces

Master of Science Thesis Gert-Jan Meijn



14 Cavitation theory

• 3: 2S
ρlR

- surface tension

• 4: pb(t)−p∞(t)
ρl

- driving pressure

• 5: psat(Tb)−psat(T∞)
ρl

- thermal effect

• 6: pG0
ρl

(
Tb
T∞

) (
R0
R

)3κ
- bubble content state term

The equation is derived from the Navier-Stokes equation, assuming perfectly spherical bubbles.
Terms 1,2 and 3 are governing the mechanics of the bubble. Term 4 is the main driving force,
forcing a time-dependent external pressure p∞(t) on the bubble. Term 5 is the so called
’thermal effect’ that arises due to the temperature difference that can be formed when part
of the fluid is evaporated. Term 5 will be discussed in more detail in 2.1.7. Term 6 is often
omitted from the Rayleigh-Plesset equations, it describes the influence of the gas on the
inside of the bubble (at partial pressure pG0) using a state-like equation (with polytropic
coefficient κ). Note that if all transient terms are stricken from the equation, the bubble
contents are ignored and the thermal effects are assumed negligible, the static solution is
equal to equation 2-9.

The Rayleigh-Plesset equation is a second-order differential equation, meaning that the are
stable and unstable solutions. Stable solutions will result in stable growth or shrinkage to a
new bubble radius according to the imposed pressure. The bubbles do have a minimum size,
meaning that they will eventually become so small that mass diffusion from the surrounding
liquid will dissolve the remaining gas, making the bubble disappear [17].

2.1.5 Collapse

The unstable solutions, caused by a sudden decrease in pressure followed by an increase of
pressure, will respectively lead to an explosive growth followed by the collapse of a bubble.
The difference between controlled shrinkage and full collapse of a bubble lies with the so
called ’Blake threshold pressure’ [18]. Blake defined this critical threshold to be equal to:

pb,crit = pvap −
4S
3

(
8πS

9kmvTbRg

) 1
2

(2-12)

In which κ is equal to the polytropic coefficient, mv is equal to the mass of the vapor in the
bubble and Rg is equal to the universal gas constant (8.314 J/mol ·K). If the pressure is
lowered from p0 to a pressure that is still above pb,crit, the bubble will grow in a controlled
manner until the pressure gradient is reversed, causing the bubble to shrink back to its original
size. If the pressure is lowered from p0 to a pressure that is below pb,crit, the bubble will grow
explosively (uncontrolled) until the pressure gradient is reversed, but for this scenario the
bubble will collapse. The increased growth rate during the explosive expansion causes an
overshoot when the bubble is shrunk back to its original size and due to the increasingly
important role of surface tension, the rate of collapse will increase further. Eventually the
two bubble walls will hit each other, the energy converted by this collapse will cause very high
local pressure and very high local temperature also releasing shock waves from the bubble
walls that are traveling faster than the speed of sound.
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2.1 Cavitation theory 15

Figure 2-7: Close-up picture of the collapse of a single cavitation bubble [19]

If this collapse occurs somewhere in the main stream, far away from any surface, the bubble
will be split in two or more bubbles. Although relatively high amounts of energy are converted,
only the shock waves are felt by the surrounding boundaries generally not causing any damage
to the surface material of the boundary. Damage by cavitation occurs when the collapse of the
bubble is close to a boundary (distance to the boundary in the order of the bubble diameter).
The flow and pressure surrounding the bubble will be influenced by the (rigid) wall resulting
in the formation of a so called ’micro jet’ as can be seen in fig 2-7. The piercing damage
caused by this ’micro jet’ results in small pits (cavities) in the surface. If the cavitation is
allowed to persist over longer periods of time, the surface will become heavily damaged, as
shown in figure 1-2.

2.1.6 Thermodynamics

In order to model the phase change between the liquid and the fluid it is important to realize
that not only mass is transfered between phases but that heat is also transfered between
phases in order to make the jump from liquid to vapor. The inception, growth and collapse
as described previously are mainly described from the viewpoint of mechanics, ignoring the
heat transfer.

One way of approaching the heat transfer is to assume that the two phases are always in
thermodynamic equilibrium. The mixture is assumed to be perfectly homogeneous, the liquid
and the vapor are dispersed so finely that they are in contact with each other in the entire
mixture. This would imply that heat transfer occurs instantaneous, because the two phases
are in perfect thermal contact. This model is called the ’homogeneous equilibrium model’
and has applied been applied to cavitation in the work of Xie et al [20] and Khoo [21].

The opposite is to completely ignore heat transfer in the model, thus assume that the phase
change occurs without any heat transfer or that the heat transfer is infinitely slow. This
model is called the ’frozen flow model’. The actual physical truth lies somewhere in between
these models; the real mixture will have finitely dispersed phases. Part of the mixture will be
in contact to transfer heat, but the other part is separated and will not transfer heat. The

Master of Science Thesis Gert-Jan Meijn



16 Cavitation theory

’frozen flow model’ has been applied to cavitation in the work of Bouziad [16] and d’Agostino
& Raposelli [22].

2.1.7 Thermal influences and effects

In the introduction it was made clear that cavitation is not identical to boiling, since boiling is
largely temperature controlled at almost constant pressure and cavitation is largely pressure
controlled at almost constant temperature. This however does not mean that the cavitation
process is completely independent of temperature. The properties of the fluid dictate how
much temperature will play a role. To illustrate this principle the three fluids of interest for
this thesis are compared; water, butane and propane. The relevant physical properties are
listed in table 2-1.

Table 2-1: Physical properties of water, butane and propane

fluid name water butane propane unit

library IF97 RefProp RefProp -
temperature 293.15 293.15 293.15 K

density - liquid - ρl 998.1608 578.5912 500.0569 kg/m3

density - vapor - ρv 0.0173 5.3126 18.0823 kg/m3

ratio 57655 109 28 -

latent heat - hlv 2453550 366501 344314 J/kg
specific heat - liquid - cp,l 4185.10 2412.85 2666.21 J/kg ·K

thermal conductivity - liquid - kl 0.5984 0.1067 0.0961 W/m ·K
thermal diffusivity - liquid - Dl 1.433 · 10−7 7.646 · 10−8 7.206 · 10−8 m2/s

When the fluid undergoes a phase change it will need energy from its surroundings, equal to
the heat of evaporation to complete this change. If a cavitation bubble is formed, it will take
away this heat from the surrounding liquid causing a local decrease in the temperature of
the surrounding liquid. As observed in chapter 1.1 and figure 1-1 the saturation pressure is a
function of temperature, when the temperature is decreased, the saturation pressure will also
decrease. Combining these effects will result in a phenomena called the thermal suppression
of cavitation. To analyze the sensitivity of a fluid to this effect, a coefficient has been derived
by Brennen starting from a heat balance involving a mass of liquid and a (newly formed)
mass of vapor:

mv · hlv = ml · cp,l ·∆T (2-13)
m = ρ · V (2-14)

ρv · Vv · hlv = ρl · Vl · cp,l ·∆T (2-15)

∆T = ρv · Vv · hlv
ρl · Vl · cp,l

(2-16)
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2.2 Cavitation modeling in CFD 17

The actual derivation of Brennen is more complicated, as it is based on the Rayleigh-Plesset
equation but follows the same principle as described by equations 2-13 through 2-16. The
interested reader is referred to his book on cavitation [4]. To relate the local reduction in
temperature to a change in vapor pressure (suppression pressure) and eventually to fluid
properties, the Clausius-Clapeyron relation was used by Brennen:

dp

dT
= hlv

T · (Vv − Vl)
(2-17)

The diffusion and conduction of heat through the bubble and interface were also included
by Brennen to provide a very compact but complete parameter that describes the influence
of thermal properties on the total cavitation behavior. The final result will be the so called
Brennen thermal parameter Σ:

Σ (T ) = h2
lv · ρ2

v

ρ2
l · cp,l · T∞ ·D

1
2
l

(2-18)

Dl = kl
cp,l · ρl

(2-19)

In table 2-2 the Brennen parameter for each fluid is calculated at 293K based on the data in
table 2-1. The local gradient of vapor pressure as function of temperature Pa/K is defined by
the Clausius-Clapeyron relation (equation 2-17) and also provided in table 2-2. The resulting
values are clear, water is a very weak function of temperature at 293K. Butane and propane
are still very dependent on temperature at 293K. The choice to model cavitation with a
barotropic model, thus not including temperature dependencies, may not be ideal for fluids
that score relatively high on the Brennen parameter. The barotropic model is validated in
chapter 3.2.4. The assumption to base all fluid properties on free-stream temperatures will
be thoroughly reviewed in chapter 3.2.5.

Table 2-2: Thermal parameters of water, butane and propane

fluid name water butane propane unit

library IF97 RefProp RefProp -

Clausius Clapeyron 144.9 6703.4 22035.1 Pa/K
Brennen therm. parameter 3.9 57899.3 738842.6 -

2.2 Cavitation modeling in CFD

Over the years many different methods have been developed to model cavitation in CFD
applications. One should be aware that each of these methods has its own area of application
and depending on the application some methods will be computationally too expensive to
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even consider. For instance, the interface tracking method is intended to model the bubble
dynamics of a single bubble with very high detail. If this method were to be used for an entire
cloud of bubbles the calculation would simply take too long. It would be more advisable to
model this cloud of bubbles as a different phase with a lower density by using a vapor transport
model or a barotropic model. Another important choice lies with the fact that the cavitation
can be modeled as compressible or incompressible. The incompressible modeling of cavitation
is generally associated with empirical models that directly create or destroy vapor based on
the pressure field present. This allows for a time step that is much bigger than the physical
time scale of the problem. Fully compressible modeling of cavitation is completely governed
by the physics of the problem, meaning that the user should provide information on the
behavior of the fluid in the form of an equation of state or a simplified barotropic expression.
The main disadvantage is that the problem is bounded by physical timescale of the problem
to keep the solution stable. In practical application, for instance a cavitating water flow, this
means that the allowable time step will be around O

(
10−8). More details on the difference

between compressible and incompressible time step size is given in chapter 4.1.

2.2.1 Interface tracking

This method focuses on the interface between the bubble and the surrounding fluid. It utilizes
the previously discussed Rayleigh-Plesset equation, possibly with additional interaction terms,
to describe this interface in very high detail. The interested reader can read more on these
algorithms and mathematical methods in the work of Chen and Heister [23]. These interface
tracking methods are often used in conjunction with a type of VOF (Volume Of Fluid) method.
These VOF-methods are used to give additional accuracy in describing the interface between
the liquid and the gas. The main advantage of these methods is that they provide an extremely
sharp interface since the interface is always contained by a single cell, thus having a relatively
fine mesh will result in sharp interfaces. Due to computational limits it can be applied on a
single bubble or on a group of bubbles to study the interaction between them. It should be
stressed that these kind of models are not applicable to large cavitating structures as shown
in chapter 2.1.1 when using highly detailed interface models. It is possible to use a very
simplified type of these models to study large scale cavitation in hybrid Eulerian-Lagrangian
simulations [24].

2.2.2 Barotropic modeling

Since the main goal of this thesis is to model cavitation using a barotropic model, several
existing barotropic models from literature are analyzed and their strengths and weaknesses
are identified. As mentioned before, barotropic models are used in the compressible modeling
of cavitation and are bound by very small physical time steps to obtain stable solutions.

The simplest barotropic model is obtained by assuming a certain mathematical shape that
provides a smooth transition from the liquid phase to the vapor phase as the pressure
decreases. The relation between these barotropic models and the physical properties of the
fluid is very weak. The vapor and liquid densities are used as outer limits of the function, but
the only parameter to control the shape of the curve is the minimum value of the speed of
sound. Typically at p = psat the gradient of the curve is set to 1/c2

min (see also chapter 2.2.3).
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2.2 Cavitation modeling in CFD 19

The first example is from Kueny and Delannoy [25], who used the first quarter period of a sine
to provide the smooth transition. The advantage of this method is that it is easy to implement
in existing codes. Another advantage is the fact that the user is to choose equations of state
for the pure liquid and pure vapor phase, since the sine function has to be cut at zero and
after a quarter of its period. The main disadvantage of this method is that the sine function
has no physical meaning, it is an arbitrary function to connect the two phases. An example
of the model is shown in figure 2-8 for water at 293K, assuming that cmin is equal to 1 m/s.
The barotropic model by Kueny and Delannoy [25] is defined by the following equation:

ρ = ρl + ρv
2 + ρl − ρv

2 · sin
(
p− psat
c2
min

· 2
ρl − ρv

)
(2-20)

A very similar model has been used in the work by Koop [26]. The general idea is identical to
the work of Kueny and Delannoy except that Koop opted for a hyperbolic tangent instead of
a sine function to make the transition and rewritten the pressures to be dimensionless. The
function is just as easy to implement as the sine based function. A hyperbolic tangent has
two asymptotes, at 1 and -1. The advantage is that, if the function is rescaled to operate
between liquid and vapor density, it is always limited. However, it is not possible to choose
separate equations of state for the pure liquid and pure gas phase, these too are modeled by
the hyperbolic tangent. An example of the model is shown in figure 2-8 for water at 293K,
assuming that cmin is equal to 1 m/s, U∞ is equal to 1 m/s and that P∞ is equal to 1 ·105Pa.
The barotropic model by Koop is formed by the following equations:

ρ = 1
2

(
ρl + ρv

2 + ρl − ρv
2 · tanh

(
Cp − σ
ρl−ρv
ρl

· U
2
∞
a2

))
(2-21)

a2 =

(
dP
dρ

)
min

ρl−ρv
ρv

= c2
min

ρl−ρv
ρv

(2-22)

The final barotropic model is provided by Schmidt [27]. The general approach of this
barotropic model is quite different compared to the previous two. Instead of using a mathematical
function to interpolate between the states, this method uses the fact that by integrating the
speed of sound one can also obtain a barotropic relation. Chapter 2.2.3 and chapter 3 provide
more details on this method. The barotropic model by Schmidt is formed by the following
equations:

p = psat + pgl · ln
[
ρv · c2

v · ρl · c2
l · (ρl + α (ρv − ρl))

ρl ·
(
ρv · c2

v − α
(
ρv · c2

v − ρl · c2
l

))] (2-23)

pgl = ρv · c2
v · ρl · c2

l · (ρv − ρl)
ρ2
v · c2

v − ρ2
l · c2

l

(2-24)

pmin = −pgl · ln
[
ρ2
v · c2

v

ρ2
l · c2

l

]
(2-25)

Compared to the previous two methods, this method is more related to the physical properties
of the liquid, using the speed of sound and the vapor pressure in addition to the density of
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both phases. The main disadvantage lies in the fact that resulting barotropic relation has
numerical problems. Equation 2-25 gives an expression for pmin, which is minimum value that
can be selected for psat to guarantee that the pressure remains positive for the entire density
range. The paper by Khoo [21] illustrates that if the ratio between liquid and vapor density
is equal to 1000, the minimum allowed pressure for the model is equal to 18.3 bar. This
would also imply that the vapor pressure cannot be lower than 18.3 bar if the pressure should
remain positive. This restriction complicates the implementation of the model, a numerical
workaround has to be created in order to prevent the model from giving negative pressures
as an output. An example of the physical correct fluid properties is shown in figure 2-8
(star markers) for water at 293K, clearly showing that physically correct fluid properties do
not lead to a satisfying correlation between pressure and density. Another example of the
Schmidt model is shown in figure 2-8 (triangle markers) but the values have been altered to
represent satisfactory behavior of the model. The density of the vapor is lowered even further
(ρv = 0.0010kg/m3) and for both cases the pressure has to be shifted to ensure that the
curvature changes sign at p = psat.
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Figure 2-8: Barotropic curves of water at 293K using the models by Delannoy & Kueny [25],
Koop [26] and Schmidt [27]

2.2.3 Speed of sound in relation to barotropic models

As previously observed in the barotropic relation by Schmidt, it is possible to derive a
barotropic relation for a liquid if a function for the speed of sound is available. Per definition
the following is true:

c2 =
(
∂p

∂ρ

)
s

(2-26)

c2 = E

ρ
(2-27)
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The gradient of a barotropic relation is equal to the compressibility of that fluid, which is again
equal to the inverse of the speed of sound squared. Although the shapes of the sine function
and the hyperbolic tangent used by Delannoy & Kueny [25] and Koop [26] respectively are
not very physical, the slopes of the functions are related to the speed of sound, even though it
is for a single point

(
dρ
dp = 1

c2
min

for p = psat

)
. The previously discussed barotropic model by

Schmidt is based on the assumption that the speed of sound can be modeled by an isentropic
two-phase mixture. According to various sources, Wallis being the first [28], the speed of
sound in an isentropic mixture can be described with the following expression:

1
c2 = ρ

(
α

ρv · c2
v

+ 1− α
ρl · c2

l

)
(2-28)

The minimum speed of sound is generally found when the fluid is a 50-50 volumetric mixture
of gas and liquid (α = 0.5) as can be observed in figure 2-9. The actual value of cmin is hard
to predict and empirical data is also very limited on this subject. Work done by Karplus [29]
and Gouse and Brown [30] is both focused on a bubbly mixture of water and air, no reference
has been found on a fluid different from water. The (isothermal) experiments performed
by Karplus and Gouse & Brown confirm that the minimum speed of sound at atmospheric
pressure for a bubbly mixture of water and air is found at α = 0.5 and that the speed of
sound is equal to 21.3 and 18.7 m/s respectively. The calculated value of the isentropic
model (equation 2-28) is equal to 23.6 m/s. It is concluded that the isentropic model gives
a satisfactory approximation for the minimum speed of sound in a two-phase mixture and
is a suitable candidate for a simple barotropic model. The resulting barotropic model, the
Schmidt model still has some numerical issues, as described in chapter 2.2.2. Also note that
the speed of sound cannot be linearly interpolated between the liquid state (1545 m/s) and
the vapor state (472 m/s), the minimum value is far below any linear combination of the
two. If void fraction α is not close to the asymptotic values of 0 or 1, equation 2-28 can be
approached by:

1
c2 ∼ α (1− α) ρl

p
(2-29)

Which results in cmin ≈ 20 m/s for water at 1.013 bar, 50% void fraction.

2.2.4 Transport equation modeling

As mentioned before, transport equation based models are mostly used in the incompressible
modeling of cavitation and are able to make much bigger time steps than the compressible
modeling methods. In most commercial CFD packages this is the reason that transport
equation based models are preferred. To give an example; simulating 10 revolutions for a
pump that is rotating at 3000 rpm would require 0.2 seconds of physical time. With an
average time step of 10−8 this will require 20 million iterations to complete on a compressible
solver. If the same simulation is performed on a incompressible solver it can be executed with
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Figure 2-9: Isentropic speed of sound as a function of void fraction for p = psat for all three
fluids(water, butane and propane) at 293K

a time step that is roughly 100 times bigger, based on the CFL number1 [31]. The difference
between the compressible and incompressible CFL number can be found in chapter 4.1.

The general concept behind the vapor transport model is that the density is calculated through
the void fraction α (as defined in equation 2-1) and that the void fraction is directly solved
and influenced by source terms. The governing equation of the vapor transport models is:

∂(αρ)
∂t

+∇ · (αρU) = Γ (2-30)

Γ = ṁc + ṁd (2-31)

ṁc = Fe
3rn
Rb

(1− α) ρv

√
2
3
psat − p
ρl

(2-32)

ṁd = −Fc
3α
Rb
ρv

√
2
3
psat − p
ρl

(2-33)

Equation 2-32 and equation 2-33 show the creation and destruction source term respectively.
The source terms shown in these equations are the work of Zwart [32], but many others
(Singhal [33], Kunz [34]) have suggested source terms based on different approaches. The
source terms of Zwart still contain a few parameters that can be tuned to best represent
the cavitating behavior of water. For water at 293K the following parameters, based on
experiments, are considered the default values for this fluid [35]:

1The Courant-Friedrichs-Lewy (CFL) number is a dimensionless number that indicates the stability of an
explicit numerical scheme. Any time step that results in a CFL number larger than 1 will generally cause
the solution to destabilize. Implicit schemes can have a arbitrarily large CFL number, depending on the time
stepping scheme used, a larger CFL number will lead to a lower numerical accuracy in time.
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• Fe = 50

• Fc = 0.01

• rn = 5 · 10−4

• Rb = 10−6

Although these values are considered to be correct for any situation concerning water at 293K,
they are not by definition independent of geometry. A paper by Morgut and Nobile [36],
showed that just by calibrating the source term with pressure measurement obtained from a
hydrofoil and keep rn and Rb at their default values, the constants Fe and Fc become 300 and
0.03 respectively. The other two parameters, that represent bubble radius and nucleation rate,
are very difficult to obtain from experiments. Also the parameters Fe and Fc have no physical
meaning, further complicating the relation between the model parameters and actual fluid
properties. Even though these vapor transport models are numerically much more efficient
than the barotropic models, it is almost impossible to correctly adjust and scale the model
parameters without performing experiments.

2.2.5 Pros and cons

To summarize the above, there are three main options: surface tracking, compressible modeling
using an equation of state or incompressible modeling using a vapor transport equation.
Surface tracking is not taken into account at this point, it is clearly intended for the modeling
of a small group of bubbles, not large scale cavitation structures.

The main advantage of barotropic modeling is that the relations used are based on physical
properties of the liquid. If a pressure-density relation is found for water, it can easily be
altered and applied to model butane or propane. However, it should be noted that if certain
assumptions are made based on the fluid properties of water, these assumptions may not hold
true for every fluid.

The main disadvantage of barotropic modeling is due to the compressible CFL number the
time step must be chosen much smaller than for incompressible simulations, in the order
of 200 times smaller. Another disadvantage of barotropic modeling is that by definition
the gradients of pressure and density are aligned. The vorticity that would form when the
gradients of pressure and density are not aligned, the so called baroclinic vorticity. This an
important contributing factor to closing the vapor cavity. How much this will influence the
final result is unclear. The work by Gopalan and Katz [37] provides more background on the
influence of baroclinic vorticity in cavitation problems.

The advantage and disadvantage of the vapor transport modeling are the exact opposite of
the barotropic modeling method. The time step can be chosen much larger, making the solver
numerically more efficient, but the connection between the model and the physical properties
of the fluid are lost. One of the goals of this project is to guarantee that the model is only
dependent on physical fluid properties, no empiricism should be involved. If the same model
is to be used for water, butane and propane, then the compressible solver in combination with
a barotropic equation of station is the most viable option, according to these goals.
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Chapter 3

Physical modeling

The purpose of this chapter is to provide an overview of the physical models used in the 1D
and 2D calculations. Firstly the general outline of the CEV model as it was implemented in
Tascflow is given, followed by a full derivation of the barotropic model for cavitating flows
by Brennen. This model is taken as the starting point for the isenthalpic barotropic model
which is validated for the fluids of interest (water, butane and propane). Secondly the chapter
provides background on the equation of state used to model the non-cavitating flow and how
the parameters of the model should be chosen to represent the fluid of interest.

3.1 Constant Enthalpy Vaporisation (CEV) model

In the introduction the goal of creating a barotropic model, using an isenthalpic two-phase
expansion, was formulated. The motivation behind the choice for a barotropic model is given
in the original documentation of the CEV-model by AEA Engineering [38], the creators of
Tascflow.
The CEVmodel as it was implemented originally in Tascflow, was not a barotropic model. The
model relied on the full solution of the Navier Stokes equations (mass, momentum and energy)
to solve the cavitating flow. Figure 3-1 provides a schematic overview of the calculation
method that is followed by CFX-Tascflow to update the density from a known pressure and
enthalpy field. The CEV model is applied in the very last steps of an iteration to update
the density based on the enthalpy of the fluid. But according to the documentation, even
though the energy equation is solved by Tascflow and the fluid temperature is updated at
the end of each iteration, all the fluid properties are evaluated at the (constant) free-stream
temperature. It is not clear why, after the energy equation is solved, the temperature field
is updated but the fluid properties are not updated. Depending on the Brennen thermal
parameter (as discussed in chapter 2.1.7) the amount of cavitation can be heavily influenced
by the temperature dependence of properties like density, heat capacity and of course the
saturation pressure. It is concluded that the CEV model as implemented in Tascflow is
only dependent on pressure, the evaluation of the temperature field is useful to visualize the
cavitation zone but has no further influence on the physics taking place.
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Figure 3-1: Flowchart of the CEV model calculation algorithm in Tascflow
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3.2 Development of a barotropic model

To describe the isenthalpic two phase expansion of a fluid as a barotropic function, the general
thermodynamic path taken during the isenthalpic expansion is reviewed, based on figure 3-2.
Assuming that the fluid has a certain temperature T∞ before and during the expansion from
the free-stream condition to point 1 (figure 3-2). When the pressure is lowered further, the
fluid enters the two-phase region, since p1 is equal to psat(T∞). In the two-phase region the
enthalpy remains constant (definition), thus decreasing the pressure further will result in a
decrease of temperature. From an abstract point of view, one could say that if the saturation
curve is known as a function of pressure and the expansion path from point 1 to point 2 is
always straight down along an isenthalpic line, it should be possible to describe the mass
fraction of the two-phase mixture as a function of pressure. Referring back to chapter 3.1, the
three essential fluid properties that are needed (liquid density, vapor density and saturation
pressure) are always evaluated at point 1, which is equal to a known or prescribed free-stream
temperature. The decision to neglect the temperature differences has to be made based on the
fluid used. From chapter 2.1.7 it is known that butane and propane are much more susceptible
to thermal effects than water. Knowing that propane and butane are in fact bad candidates
for the free-stream temperature assumption, the influence of this assumption on the final
result can be observed. The validity of the temperature assumptions is further discussed in
chapter 3.2.4 and chapter 3.2.5. The energy conservation is removed from system, so that it
can be replaced by a barotropic relation, directly coupling the pressure and the density of
the fluid. This barotropic model will be based on Brennen’s model for homogeneous bubbly
flows [4].

3.2.1 Full derivation of Brennen’s model for homogeneous bubbly flows

To gain a deeper understanding of the physics involved with a two-phase expansion, the
barotropic model for homogeneous bubbly flows formulated by Brennen is taken as a starting
point for the development of a new barotropic model. As will become clear during the
derivation, the model is only partially assuming isenthalpic flow, the other part of the flow
is assumed to be isentropic. This model follows the assumptions surrounding cavitation
thermodynamics as described in chapter 2.1.6.

Let us consider a given mass m, occupying a volume V with corresponding density ρ. If the
mass is assumed constant then the changes in volume and density are related to a pressure
change dp as follows:

dρ

ρ
= −dV

V
⇒ c2 = −V

ρ

dp

dV
⇒ 1

ρc2 = − 1
V

dV

dp
(3-1)

A real cavitating liquid does not contain two perfectly mixed phases. A real mixture contains
bubbles of a finite size, which would also mean that the thermal contact and thus the heat
transfer is limited. Therefore assuming that the cavitating flow is in complete thermal
equilibrium, or assuming that the cavitating flow is completely frozen (no heat transfer),
is incorrect. This is also discussed in chapter 2.1.6. The original model by Brennen therefore
assumes that only a part of each phase attains thermal equilibrium while the other part
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Figure 3-2: Thermodynamical diagrams of an isenthalpic expansion
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behaves as a frozen flow. A fraction 0 ≤ εv ≤ 1 of the vapor and a fraction 0 ≤ εl ≤ 1 of the
liquid reach thermal equilibrium. The total volume of the fluid can be rewritten:

V = (1− εl)Vl + εlVl + (1− εv)Vv + εvVv (3-2)

Differentiating the above equation, assuming that the fractions εl and εv are held constant:

dV

V
= (1− εl)

dVl
V

+ εl
dVl
V

+ (1− εv)
dVv
V

+ εv
dVv
V

(3-3)

Using the definition of void fraction, being αl = Vl
V and αv = Vv

V the equation can be simplified
to:

dV

V
= (1− εl)

dVl
V

+ εl
dVl
V

+ (1− εv)
dVv
V

+ εv
dVv
V

(3-4)

The total mass of the fluid stays conserved, any increase in the mass of the vapor must come
from a decrease of the mass of the liquid and vice versa. dmv = −dml

dVl
Vl

= dml

ml
− dρl

ρl
(3-5)

dVv
Vv

= dmv

mv
− dρv

ρv
(3-6)

For both the frozen isentropic phase and the equilibrium isenthalpic phase, barotropic relations
are defined to quantify the changes in density:

dρl =


(
dρl
dp

)
sl
dp for the volume fraction 1− εl(

dρl
dp

)
sat
dp for the volume fraction εl

(3-7)

dρv =


(
dρv
dp

)
sv
dp for the volume fraction 1− εv(

dρv
dp

)
sat
dp for the volume fraction εv

(3-8)

Substituting equations 3-5 through 3-8 in equation 3-4 gives:

dV

V
= − αl

ml
dmv − (1− εl)

αl
ρl

(
dρl
dp

)
sl

dp− εl
αl
ρl

(
dρl
dp

)
sat

dp

+ αv
mv

dmv − (1− εv)
αv
ρv

(
dρv
dp

)
sv

dp− εv
αv
ρv

(
dρv
dp

)
sat

dp

(3-9)
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Furthermore:

αl
ml

= Vl
V ·ml

= 1
ρl · V

(3-10)

αv
mv

= Vv
V ·mv

= 1
ρv · V

(3-11)

Substituting equations 3-10 and 3-11 in equation 3-9 and using the expression for the speed
of sound, 1

ρc2 = − 1
V
dV
dp , yields:

1
ρc2 = (1− εl)

αl
ρl

(
dρl
dp

)
sl

+ εl
αl
ρl

(
dρl
dp

)
sat

+ (1− εv)
αv
ρv

(
dρv
dp

)
sv

+ εv
αv
ρv

(
dρv
dp

)
sat

+
( 1
ρl
− 1
ρv

) 1
V

dmv

dp

(3-12)

To further expand the mass balance, the entropy balance of the phase change is considered.
If it is assumed that the phase change is reversible, the entropy change of the entire fluid will
be zero. This is also consistent with the claim for the isenthalpic steady approximation of the
mean flow:

dS = d(mlsl +mvsv) = sldml + svdmv + dslml + dsvmv = 0 (3-13)

Where:

ml = (1− εl)Vlρl + εlVlρl (3-14)
mv = (1− εv)Vvρv + εvVvρv (3-15)

dsl =

0 for the volume fraction 1− εl(
dsl
dp

)
sat
dp for the volume fraction εl

(3-16)

dsv =

0 for the volume fraction 1− εl(
dsv
dp

)
sat
dp for the volume fraction εl

(3-17)

Again using that dmv = −dml:

(sv − sl) dmv + εlVlρl

(
dsl
dp

)
sat

dp+ εvVvρv

(
dsv
dp

)
sat

dp = 0 (3-18)
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Solving for dmv gives:

dmv = −
[
εlVlρl

(
dsl
dp

)
sat

dp+ εvVvρv

(
dsv
dp

)
sat

dp

]
dp

sv − sl
(3-19)

To rearrange this result further, the thermodynamic definition dh = T · ds+ v · dp is used:

T

(
dsl
dp

)
sat

=
(
dhl
dp

)
sat

− 1
ρl

(3-20)

T

(
dsv
dp

)
sat

=
(
dhv
dp

)
sat

− 1
ρv

(3-21)

For vaporization at constant pressure on the saturation line the definition T (sv − sl) = hv−hl,
combined with equations 3-20 and 3-21, can be used to rearrange 3-19 into:

1
V

dmv

dp
=

{
εlαl

[
1− ρl

(
dhl
dp

)
sat

]
+ εlαl
hv − hl

[
1− ρv

(
dhv
dp

)
sat

]}
(3-22)

Equation 3-22 is used to replace the last term in equation 3-12, which finally gives:

1
ρc2 = (1− εl)

αl
ρl

(
dρl
dp

)
sl

+ εl
αl
ρl

(
dρl
dp

)
sat

+ (1− εv)
αv
ρv

(
dρv
dp

)
sv

+ εv
αv
ρv

(
dρv
dp

)
sat

+
( 1
ρl
− 1
ρv

)
+
{
εlαl

[
1− ρl

(
dhl
dp

)
sat

]
+ εvαv

[
1− ρv

(
dhv
dp

)
sat

]} 1
ρl
− 1

ρv

hv − hl

(3-23)

or:

1
ρc2 = 1− α

p
[(1− εl) fl + εlgl] + α

p
[(1− εv) fv + εvgv] (3-24)

where:

fV = p

ρv

(
dρv
dp

)
sv

= p

ρvc2
v

(3-25)

fL = p

ρl

(
dρl
dp

)
sl

= p

ρlc
2
l

(3-26)

gV = p

ρv

(
dρv
dp

)
sat

+ p

hv − hl

( 1
ρl
− 1
ρv

)[
1− ρv

(
dhv
dp

)
sat

]
(3-27)

gL = p

ρl

(
dρl
dp

)
sat

+ p

hv − hl

( 1
ρl
− 1
ρv

)[
1− ρl

(
dhl
dp

)
sat

]
(3-28)
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3.2.2 Speed of sound

The final form of the barotropic relation for homogeneous bubbly flows by Brennen is given
by equation 3-24. For the isenthalpic model, the model by Brennen is simplified by only
taking the isenthalpic part of the model into account. As such, both εl and εv are set to 1,
eliminating the terms containing fL and fV , and density ρ moves to the right hand side,
resulting in an expression for the speed of sound c that reads:

1
c2 = ρ

(
α

p
· gV + 1− α

p
· gL

)
(3-29)

The parameters gL and gV in equation 3-29 are not used in the form as they are given by
equations 3-28 and 3-27. The parameters are rewritten in the form of a fitting function that
is only dependent on pressure. Chapter 3.4 will go into more detail concerning the function
that will replace the full expressions given by equations 3-28 and 3-27. Figure 3-3 gives
an example of how the speed of sound would behave in the case of isenthalpic two-phase
expansion, showing the speed of sound for water, butane and propane at their respective
saturation pressures for a temperature of 293K.

Comparing the isentropic case (figure 2-9) and the isenthalpic case (figure 3-3) for water, one
observes that the minimum speed of sound is lower for the isenthalpic case, and no longer
occurs at a 50/50 mix of liquid and vapor. This extremely low speed of sound will result
in very high Mach numbers for relatively low flow velocities, which can be quite challenging
to handle from a numerical standpoint as will be discussed in chapter 4. For the isenthalpic
case it seems that as soon as any vapor forms, the speed of sound instantly drops to its
minimum value, slowly increasing to the vapor speed of sound as the void fraction increases.
According to Brennen [39] the physical behavior will be somewhere in between these extreme
cases. However do note that the actual value of the minimum speed of sound remains a very
difficult value to predict accurately due to the complex physics occurring at the interface.

3.2.3 Isenthalpic model

As discussed in chapter 2.2.3, by integrating the relation for the speed of sound one can obtain
a barotropic model. Combining equation 2-26 and 3-29 gives:

∂ρ

∂p
= ρ

(
α

p
· gV + 1− α

p
· gL

)
(3-30)

With gV and gL as per equation 3-27 and 3-28 respectively. Integrating 3-30, using the
boundary condition ρ(psat) = ρl, results in:

ρ(p) = −ρ∗
(
tanh

[
ln

(
p

psat

)γ
− arctanh

(
ρl
ρ∗

)]
− 1

)
(3-31)
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Figure 3-3: Isenthalpic speed of sound as a function of void fraction for p = psat for all three
fluids(water, butane and propane) at 293K

in which

ρ∗ = gLρv − gV ρl
2 (gL − gV ) (3-32)

γ = gLρv − gV ρl
2 (ρl − ρv)

(3-33)

Without going into detail on how to determine the values of gL and gV , as will be discussed
in chapter 3.4, it will be often the case that gV /gL << 1 and that ρv << ρl. Equation 3-31
can then be replaced by an asymptotic approximation:

ρ ∼ −ρv

e
− ρv
ρl

[
1+gL·ln

(
psat
p

)]
− 1

(3-34)

as gV /gL → 0 and ρv/ρl → 0

In a later chapter (chapter 3.4) the exact determination of the values of gL and gV is given, also
showing that neglecting gV can be allowed. For cases where gL · ln

(
psat
p

)
>> 1, equation 3-34

can be further reduced to:

ρ ∼ −ρv(
psat
p

)[−gL· ρvρl ] − 1
(3-35)
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It is important to note that the previous condition gL · ln
(
psat
p

)
>> 1 does not hold per se,

limiting the situations in which this very simple expression can be applied. It only holds for
fluids that are not significantly affected by the thermal effects of cavitation, i.e. the Brennen
thermal parameter Σ should be relatively small for that fluid at the temperature of interest.

To demonstrate the effects of the simplifications made, equation 3-31, 3-34 and 3-35 are
applied to water and propane and compared with data from Fluidprop [5] that provides the
exact density of each fluid (ρFP ). The Tait equation of state [40], which will be discussed in
chapter 3.3, is used to model the saturated liquid phase of each fluid for p > psat. The results
of this comparison are shown in figures 3-4 and 3-5. Note that water and propane are evaluated
at 293K and that the temperature plays an important role. If the fluids are evaluated at a
different temperature, both psat and gL change, influencing whether gL · ln

(
psat
p

)
>> 1 is a

valid assumption or not.
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Figure 3-4: comparison of the simplified barotropic relations for water; density and relative error
percentage as function of pressure
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comparison of barotropic simplifications and their error − propane
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Figure 3-5: comparison of the simplified barotropic relations for propane; density and relative
error percentage as function of pressure
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From figure 3-4 it can be seen that equation 3-31, 3-34 and 3-35 all perform satisfactory
in describing the isenthalpic expansion of water. Even equation 3-35 results in an almost
identical approximation compared to the more complicated equation 3-31. The large spike
that is seen for the relative and absolute error of equation 3-35, just left of psat, is due to a very
small shift in pressure. Since 90% of the density of water is lost in the first 10 to 15 Pascals of
pressure reduction, the small shift leads to a large mismatch between equation 3-35 and the
data from Fluidprop. But if the small shift in pressure can be allowed, equation 3-35 is an
excellent substitute for the full expression given by equation 3-31. It is also interesting to note
that equation 3-34 gives an overall better approximation of the density than the other two
equations, which is surprising because gV (Brennen vapor index) is omitted in equation 3-34,
thus neglecting the thermodynamic influence of the vapor. This however does not mean
that equation 3-31 is replaced in the final implementation of the model, the full expression
(equation 3-31) is still required to accurately model the barotropic behavior of butane and
propane. Figure 3-5 shows why equation 3-35 cannot be applied in every situation. To avoid
overshoot of the density per equation 3-35, the solution shown in figure 3-5 is cut off at the
saturated liquid density between psat and 0.88 · psat. For pressures below 0.88 · psat there is
no overshoot but the relative error is found to be larger than 30% across the entire range
(p/psat < 0.88). Hence, for propane (at 293K) equation 3-35 cannot be used to model (by
approximation) the isenthalpic expansion.

3.2.4 Validation of CEV-model with Fluidprop

The final step in the development of the barotropic model is the validation of the barotropic
relation when compared to an isenthalpic expansion path obtained from a thermodynamic
library. Figure 3-6 shows the results of this validation. Three solid lines indicate the
isenthalpic expansion paths that are obtained from the Fluidprop software [5], starting at
their respective saturation pressures, going down to 30% of that saturation pressure. The
dashed lines with the cross-shaped markers indicate the results obtained from the model
using the free-stream temperature assumption. The density along the y-axis is normalized by
the saturated liquid density of the respective fluid. The general results of the model are more
than satisfactory. The model and validation lines for water are indistinguishable, guaranteeing
that water is accurately modeled for this purpose. The model and validation lines for butane
and propane are very similar in shape but the density tends to be underestimated by a small
amount. The cause for this deviation is likely due to inaccuracies in the curve fitting of gL
as will be described in chapter 3.4, or due to the free-stream temperature assumption as
discussed in chapter 3.2.

3.2.5 Free-stream temperature assumption

It is well possible that the small mismatch discussed in the previous paragraph is caused
due to differences in thermal behavior. As stated before, butane and propane are much
more susceptible to the local thermal effects of cavitation. To check if this is causing the
deviation the theoretical temperature drop accompanying the pressure drop is looked up in
thermodynamical library of the respective fluid. The result is shown in figure 3-7, all three
liquid start at the assumed free-stream temperature of 293K and start to cool down as the
pressure is lowered to 30% of their respective saturation pressures. At the lowest pressures
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the temperatures of fluids are lowered anywhere from 18K to 39K, more than enough to check
if the fluid properties significantly influence the result obtained from the barotropic model
(equation 3-31). To that end the barotropic model is run again, but the fluid properties
are adjusted for the temperature that corresponds with the current pressure according to
figure 3-7. Figure 3-8 contains a second set of dashed lines with the circle-shaped markers to
indicate the results obtained from the model using the temperature corrected fluid properties.

From the foregoing exercise two things are concluded. Firstly, the inaccuracy of the model is
likely caused due to inaccurate fitting of gL which can easily grow an order of magnitude in
a relatively small pressure range, influencing the results obtained from the model. Secondly,
the influence of temperature changes on the properties of the fluid is very limited, figure 3-8
clearly shows that the difference between temperature correction and free-stream assumptions
is minimal. The temperature can be considered as a second-order effect, and is not taken into
account for the current model.
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Figure 3-8: Density as a function of pressure comparing the CEV-model (equation 3-31)
with Refprop for all three fluids(water, butane and propane), fluid properties are corrected for
temperature drop

3.3 Completing the equation of state

The fluid is modeled for the scenario where p will be lower than psat assuming an isenthalpic
expansion to lower densities. In the non cavitating fluid where p is equal to psat or higher,
an equation of state is needed to model the (weakly) compressible liquid. The Tait equation
of state is chosen for this purpose. In the work by Dymond and Malholtra [6] an excellent
overview of the Tait equation of state is presented, describing the origin of the equation,
several different forms and the recent developments on estimation of the coefficients for
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complex multi-component mixtures. The original form of the Tait equation of state, used
to fit isothermal density data for elevated pressures, is given by the following expression [40]:

ρ− ρ0
ρ

= C · log
(
B + p

B + p0

)
(3-36)

3.3.1 Tait equation of state

The equation of state that is used in this work is the equation "attributed" to Tait, which
reads (Koop [26]):

p = K0

[(
ρ

ρl

)N
− 1

]
+ psat (3-37)

Although it is often referred to as the ’Tait’ equation of state, multiple authors (Koop [26],
Dymond and Malholtra [6]) voice the fact that this is actually not correct but that due to
a misquotation of earlier work this is in fact the Tammann equation of state [41]. For the
purpose of clarity equation 3-37 will also in this work be referred to as the Tait equation
of state. Besides the two coefficients K0 and N , which will need to be derived using a
curve fitting procedure, the equation needs a reference state: i.e. a reference pressure, p0,
and a reference density, ρ0. The reference pressure is chosen to be equal to the saturation
pressure, psat, and the reference density is chosen equal to the liquid saturation density, ρl.
Note that in theory both the reference quantities are a function of temperature, but since it
is decided in chapter 3.2.5 that the problem is considered isothermal, this is of no concern.

3.3.2 Speed of sound

For barotropic relations the speed of sound can be easily obtained by taking the first derivative
of the pressure with respect to the density, as seen in chapter 2.2.3, equation 2-26:

1
c2 = ∂p

∂ρ
(3-38)

Applying this to the Tait equation of state (equation 3-37) gives for the speed of sound:

c =

√√√√√NK0
(
ρ
ρl

)N−1

ρl
(3-39)

3.4 Parameter fitting

The strength of the barotropic models is that they can be fitted to any fluid if thermodynamic
data of the fluid is present. The three fluids of interest for this thesis: water, butane and
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propane have sufficient available data and measurements to accurately fit the fluid to the
corresponding models. For p < psat the models are fitted to the isenthalpic barotropic relation
as described in chapter 3.2.3, for p ≥ psat the models are fitted to the Tait equation of state
as described in chapter 3.3.1.

3.4.1 Tait equation of state: K0 and N

A point of attention for barotropic relations is the fact that when fitting fluid data from
a database (Refprop), fitting only the density to the pressure is not sufficient. The Tait
equation of state for liquids, as treated in chapter 3.3.1, is an example of this problem. For
the Tait equation the speed of sound is given by equation 3-39, this equation still contains K0
andN . Depending on the starting point, a curve fitting algorithm can produce different sets of
constants that fit the pressure-density relation with the same accuracy. Also in literature many
different sets forK0 and N are used by different authors (which are often only interested in the
pressure-density relation). But when these sets of constants are evaluated for equation 3-39,
the resulting speed of sound is not even close to the value provided by a thermodynamic
database.

To remedy this discrepancy, the constants K0 and N are determined by simultaneously fitting
the pressure and the speed of sound with the density of the liquid. The algorithm performs
a large number of curve fits, based on a wide range of starting points. At the end each curve
fit (consisting of i points) is evaluated to obtain P fit and cfit and is then compared with
data from the thermodynamic database, represented by P lib and clib. The set of constants
that is selected is the set that resulted in the lowest value of the object function defined by
equation 3-40.

objfun =
∣∣∣∣∣
n∑

i= 1

[
pfiti − p

lib
i

]∣∣∣∣∣+
∣∣∣∣∣
n∑

i= 1

[
cfiti − c

lib
i

]∣∣∣∣∣ (3-40)

This procedure is performed for the three fluids of interest: water, butane and propane
at 293K. The resulting values of K0 and N are presented in table 3-1 and are used for each
calculation in this thesis, unless stated otherwise. An example can be found in figures 3-4
and 3-5, which use the values from table 3-1 to model the density of the saturated liquid
phase of each fluid. In these figures it can also be seen that the error in calculated liquid
density is close to zero for the entire range where p > psat.

Table 3-1: Tait equation of state constants for water, butane and propane

K0 [Pa] N [-]

water 3.6904 · 108 5.9496
butane 4.7779 · 107 10.4209
propane 2.5835 · 107 10.9740
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3.4.2 CEV equation of state: gL and gV

The isenthalpic liquid and vapor indexes, as shown by equation 3-28 and 3-27, are too complex
to directly implement into the code. The solid lines in figure 3-9 show the liquid index of
water, butane and propane as a function of reduced pressure. The solid lines in figure 3-10
show the vapor index of water, butane and propane as a function of reduced pressure. The
derivatives that are found in equation 3-28 and 3-27 are numerically approached by a central
difference scheme, for instance for

(
dρl
dp

)
sat

:

(
dρl
dp

)
sat

= ρl,sat (p+ ∆p)− ρl,sat (p−∆p)
2 ·∆p (3-41)

Brennen [4] suggested that it is possible to replace the full expression of liquid index gL with
a curve fit that makes the liquid index a function of reduced pressure, pred. The reduced
pressure is defined as the pressure divided by the critical pressure of the fluid

(
pred = p

pcrit

)
.

The function that relates the liquid index to the reduced pressure has the form of a second
order polynomial on double logarithmic axes (Brennen [4]):

gL = e
[
a·log2

(
p
pc

)
+b·log

(
p
pc

)
+c
]

(3-42)

The dashed lines in figure 3-9 represent the fits that were found for water, butane and propane.
The three coefficients a, b and c of the second order polynomial for each fluid, that resulted
in a satisfactory fit, are shown in table 3-2.

The vapor index gV is not being fitted to a curve. For relatively low reduced pressures(
pred < 1 · 10−2) the liquid index is at least two orders of magnitude larger than the vapor
index, thus dominating the solution. Therefore the average value of the vapor index over the
entire pressure range is taken for gV . The dashed lines in figure 3-10 represent the averages
that were found for water, butane and propane. The values of the averages for gV are listed
in the last column of table 3-2.

Table 3-2: Isenthalpic liquid and vapor index constants for water, butane and propane

gL (equation 3-42) gV
a b c

water 0.01262 -0.6014 0.8241 0.887
butane 0.01726 -0.5168 1.4654 0.9424

propane 0.01747 -0.5136 1.2094 0.9084
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Figure 3-9: Brennen liquid index, gL, as a function of reduced pressure comparing the library
data (solid) with the fitted data (dashed) for all three fluids(water, butane and propane)
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Figure 3-10: Brennen vapor index, gV , as a function of reduced pressure comparing the library
data (solid) with the fitted data (dashed) for all three fluids(water, butane and propane)
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Chapter 4

Numerical modeling

The purpose of this chapter is to provide an overview of the numerical methods used in
the 1D and 2D calculations. Firstly the general outline of the Finite Volume Method is
given, including the MUSCL1 center to face extrapolation method, Barth-Jespersen [43] and
Venkatakrishnan [44] limiters and the AUSM-HLLC hybrid flux calculation algorithm. Secondly
the chapter provides background on the implementation of the 1D and 2D calculations (in
Matlab and OpenFOAM respectively) including matters such as boundary conditions and
turbulence models.

4.1 Finite volume method and the Euler-equations

Before focusing on the solution of the Euler-equations, a more general transport equation is
taken as an example to work out the principles of the finite volume method. The general
1D transport equation has the following form, with state vector Q and flux vector F , where
Q = Q(x, t) and F = F (x, t):

∂Q

∂t
+ ∂F

∂x
= 0 (4-1)

Defining that the grid is spaced in such a way that the center of the cell is denoted with index i
and the two faces (or endpoints) are denoted by i+ 1

2 and i− 1
2 . This means that the length

of the cell is equal to ∆x = xi+ 1
2
− xi− 1

2
. Also see figure 4-1 for a graphical representation of

the grid.

The evaluation of a conserved quantity q can be formulated by the following integral, in which
general autonomous flux f(q) only depends on q, according to Leveque [45]:

1The Monotonic Upstream-Centered Scheme for Conservation Laws developed by van Leer [42] is a
high-accuracy numerical scheme that can give stable solutions with the help of limiters, even if the system
encounters shocks or discontinuities.
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d

dt

∫ x
i+ 1

2

x
i− 1

2

q(x, t)dx = f(q(xi− 1
2
, t))− f(q(xi+ 1

2
, t)) (4-2)

This integral is then evolved in time, meaning that time is advanced by a known quantity ∆t =
tn+1 − tn. The integral is also dived by ∆x, resulting in the expression:

1
∆x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn+1)dx− 1
∆x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx =

1
∆x [

∫ tn+1

tn
f(q(xi− 1

2
, t))dt−

∫ tn+1

tn
f(q(xi+ 1

2
, t))dt]

(4-3)

The division of the entire integral by ∆x has been done for the reason that it is now possible
to define a value Q that is the average of a property in a certain cell i at time tn. A similar
assumption can be made for the flux that passes through a surface at xi+ 1

2
between time tn

and tn+1

Qni ≈ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx ≡ 1
∆x

∫
Ci

q(x, tn) (4-4)

Fn
i+ 1

2
≈ 1

∆t

∫ tn+1

tn
f(q(xi+ 1

2
, tn)dt (4-5)

The previous expressions (equations 4-4 and 4-5) can be used to drastically simplify the
problem and to obtain a solvable discrete expression for the time evolution of a conserved
quantity Q.

Qn+1
i = Qni −

∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
(4-6)

Note that the flux Fn
i± 1

2
is only an approximation and not equivalent to the solution of an exact

integral. Although it would be reasonable to calculate the flux through the left wall of cell i
(Fn

i− 1
2
) by using the value of cell i and its left hand neighbour cell i−1, it has the disadvantage

that it is a first order approximation. Due to the large density ratios and discontinuities found
in cavitation, it is a reasonable assumption that a higher order scheme will net better results
than a first order scheme. The higher order scheme is based on MUSCL-interpolation and
uses slope limiters to guarantee a stable and monotonous solution. The details of the higher
order method and the flux calculations are discussed in the coming paragraphs.

To further increase the stability of the scheme the explicit forward Euler time stepping is
replaced by a four step explicit Runge Kutta scheme. The advantage of this scheme is that
it will provide fourth order accuracy in time but is still a very simple explicit method to
implement into the code. Each of the four steps are written out in equations 4-7 through 4-10.
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Q(1) = Q(n) + 1
2

∆t
∆x

(
F

(n)
i+ 1

2
− F (n)

i− 1
2

)
(4-7)

Q(2) = Q(1) + 1
2

∆t
∆x

(
F

(1)
i+ 1

2
− F (1)

i− 1
2

)
(4-8)

Q(3) = 2
3Q

(n) + 1
3Q

(2) + 1
6

∆t
∆x

(
F

(2)
i+ 1

2
− F (2)

i− 1
2

)
(4-9)

Q(n+1) = Q(3) + 1
2

∆t
∆x

(
F

(3)
i+ 1

2
− F (3)

i− 1
2

)
(4-10)

The maximum allowed time step is calculated using the Courant-Friedrichs-Lewy (CFL)
condition. Note that in equation 4-12 the speed of sound is included when calculating the
CFL number. For incompressible flow solutions the CFL number is defined as the number of
cells that are passed by a fluid element in a single time step; i.e.:

CFL = (u) ∆t
∆x (4-11)

For compressible flows the CFL number is defined as the number of cells that are passed by
a pressure perturbation that is traveling trough the domain. This perturbation is traveling
at the wave velocity which is the convecting velocity of the fluid plus the speed of sound. For
this project a compressible solver is used, and the CFL number reads:

CFL = (u+ c) ∆t
∆x (4-12)

Instead of applying the finite volume method to a general transport equation, it is applied
to set of conservation equations know as the 1D Euler equations. This set governs the
mass, momentum and energy balance of a 1D adiabatic inviscid flow field. Note that each
conservation equation contains a time derivative and a convective term of certain conserved
quantity (ρ, ρU or ρE). Thus it is possible to use the previously described methods to obtain
a solution for the 1D Euler equations. The governing equations are:

∂ρ

∂t
+ ∂ρu

∂x
= − ρu

A(x)
dA

dx
(4-13)

∂ρu

∂t
+ ∂(ρu2 + P )

∂x
= − ρu2

A(x)
dA

dx
(4-14)

∂ρE

∂t
+ ∂(ρE + P )u

∂x
= −ρuE + Pu

A(x)
dA

dx
(4-15)

The right hand side of the Euler equations should normally be equal to zero for conservation,
but in the set described by equations 4-13 to 4-15, source terms have been added that can
model variable cross-sectional area along a single dimension. One of the steps in the validation
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process will be describing cavitating flow inside a Venturi-like nozzle in which these source
terms will play a very important role. These source terms are not necessary to describe the
flow field, but provide the possibility to describe the varying geometry of the nozzle along a
single axis, keeping the simulation one-dimensional.

For the purpose of this thesis the cavitation will be modeled by a barotropic equation of
state. As discussed in the previous chapter this implies that the cavitation occurs at constant
temperature. By definition the density of a barotropic fluid is a function of pressure alone.
The energy conversation equation (4-15) is replaced by a constitutive relation that connects
pressure with density. The newly closed system becomes:

∂ρ

∂t
+ ∂ρu

∂x
= − ρu

A(x)
dA

dX
(4-16)

∂ρu

∂t
+ ∂(ρu2 + P )

∂x
= − ρu2

A(x)
dA

dX
(4-17)

ρ = f(p) (4-18)

4.1.1 MUSCL face extrapolation scheme

The Monotone Upwind Schemes for Scalar Conservation Laws, or MUSCL-schemes are
collections of interpolation schemes that are used to estimate the values of a certain property
at the face of a cell, based on the values that are saved in the center of the cell. The
MUSCL-schemes show improved performance when handling, discontinuities , shocks and
large density gradients. All of which are to be expected when modeling cavitation. The
main improvement is in the fact that the flux through the face is no longer calculated by the
taking value in the center of the cell but by extrapolating the value of the cell to the faces.
The center values of each cell are extrapolated to the left and right face of the respective
cell. The flux calculation can now be performed by taking the values directly at the face,
extrapolated from the left and right neighbour. Figure 4-1 gives a graphical representation
of the MUSCL-scheme.

The values are extrapolated to the faces by using the central difference to estimate the
gradient. The resulting value for the left and right faces of cell i are:

qL
i− 1

2
= qi−1 + 1

2 ·
qi − ui−2

2∆x ·∆x (4-19)

qR
i− 1

2
= qi −

1
2 ·

qi+1 − ui−1
2∆x ·∆x (4-20)

qL
i+ 1

2
= qi + 1

2 ·
qi+1 − ui−1

2∆x ·∆x (4-21)

qR
i+ 1

2
= qi+1 −

1
2 ·

qi+2 − ui
2∆x ·∆x (4-22)

qi+ 1
2

=
[
qL
i+ 1

2
, qR
i+ 1

2

]
(4-23)

qi− 1
2

=
[
qL
i− 1

2
, qR
i− 1

2

]
(4-24)
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Figure 4-1: Sketch of the MUSCL method (with and without limiters)
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If the face extrapolations are used directly as described by equations 4-19 through 4-24,
the result would be equal to the dashed lines in figure 4-1. These results however are not
monotonic and will lead to numerical instabilities (oscillations).

4.1.2 Slope limiters

The second part of the MUSCL scheme is to implement slope limiters that will ensure that
values at the faces are monotonous with respect to the values in the center of the cell.
Equations 4-19 through 4-24 are rewritten to include a factor φ that will correct the slope
that was originally calculated with the central differences:

qL∗
i− 1

2
= qi−1 + 1

4 · φ
R
i− 1

2
· (qi − qi−2) (4-25)

qR∗
i− 1

2
= qi −

1
4 · φ

L
i− 1

2
· (qi+1 − qi−1) (4-26)

qL∗
i+ 1

2
= qi + 1

4 · φ
R
i+ 1

2
· (qi+1 − qi−1) (4-27)

qR∗
i+ 1

2
= qi+1 −

1
4 · φ

L
i+ 1

2
· (qi+2 − qi) (4-28)

q∗
i+ 1

2
=

[
qL∗
i+ 1

2
, qR∗
i+ 1

2

]
(4-29)

q∗
i− 1

2
=

[
qL∗
i− 1

2
, qR∗
i− 1

2

]
(4-30)

In figure 4-1, the graphical representation of the MUSCL scheme, the slope limited face
extrapolations are equal to the solid lines. Note that the face extrapolated values are
monotonic, eliminating the problem of spurious oscillations. The flux Fn

i± 1
2
will be evaluated

using the value q∗
i± 1

2
. Paragraphs 4.1.3 and 4.1.4 will provide details on two slope limiters

used in this work: the Barth-Jespersen limiter [43] and the Venkatakrishnan limiter [44].

4.1.3 Barth-Jespersen limiter

The role of a limiter is to provide a factor φ for each extrapolation in such a way that the
monotonicity for the entire domain is guaranteed. The slope limiter by Barth and Jespersen
is defined as [43]:
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qmaxi = max (qi−1, qi, qi+1) (4-31)
qmini = min (qi−1, qi, qi+1) (4-32)

rL
i− 1

2
=



qmaxi −qi
qL
i− 1

2
−qi

if qL
i− 1

2
− qi > 0

qmini −qi
qL
i− 1

2
−qi

if qL
i− 1

2
− qi < 0

1 if qL
i− 1

2
− qi = 0

(4-33)

rR
i+ 1

2
=



qmaxi −qi
qR
i+ 1

2
−qi

if qR
i+ 1

2
− qi > 0

qmini −qi
qR
i+ 1

2
−qi

if qR
i+ 1

2
− qi < 0

1 if qR
i− 1

2
− qi = 0

(4-34)

φL
i− 1

2
= min

(
1, rL

i− 1
2

)
(4-35)

φR
i+ 1

2
= min

(
1, rR

i+ 1
2

)
(4-36)

The slope limiter used in figure 4-1 is the Barth-Jespersen limiter, and as can be observed in
the figure, the unlimited dashed lines are corrected to the solid lines providing a monotonic
increase or decrease between each cell center. However this limiter has problems with solutions
converging to steady state, which is likely caused by the fact that functions like min()
and max() cannot be differentiated. The limiter by Venkatakrishnan [44] is a suggestion
to improve the limiter by Barth-Jespersen, improving the convergence for steady state.

4.1.4 Venkatakrishnan limiter

The general idea of the Venkatakrishnan limiter [44] is identical to the Barth-Jespersen
limiter but replaces the min() and max() function with the continuous function φ = r2+2·r

r2+r+2 .
The difference between the function is visualized in figure 4-2, clearly showing that the
Venkatakrishnan limiter is continuous, which will improve the convergence to steady state.
To further improve the function a variable ε is added to the equation which will function as
a threshold at which the limiter will function. This prevents the limiter from acting on very
small disturbances that will diffuse on their own. As such, equation 4-35 and 4-36 become:

φL
i− 1

2
=

(
rL
i− 1

2

)2
+ 2 · rL

i− 1
2

+ ε2(
rL
i− 1

2

)2
+ rL

i− 1
2

+ 2 + ε2
(4-37)

φR
i+ 1

2
=

(
rR
i+ 1

2

)2
+ 2 · rR

i+ 1
2

+ ε2(
rR
i+ 1

2

)2
+ rR

i+ 1
2

+ 2 + ε2
(4-38)
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The suggestion of Venkatakrishnan was to set the variable ε as follows:

ε2 = K · (∆x)3 (4-39)

Where ∆x is the characteristic length of the cell and K is a parameter to be chosen in
the O (1). Note that K is not dimensionless, according to the definition of ε and the definition
of the limiter given by equation 4-37 and 4-38, the unit of K contains the dimension of the
mesh size and the dimensions of the variable that is being limited. By settingK = 0 the limiter
is always active and by setting K to some arbitrary number bigger than zero the limiter is
not active until a certain threshold is surpassed, allowing for some deviations from monotonic
behavior. Setting K = 0 is known to stall convergence, as can be seen in figure 4-3. Setting
the value of K to higher values is known to create spurious oscillations near discontinuities
(figure 4-4), or in other words, the limiter is not active when it should be to guarantee accurate
numerical results.
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Venkatakrishnan - K = 50

Figure 4-2: Comparison between Barth-Jespersen and Venkatakrishnan limiter

4.1.5 AUSM-HLLC hybrid flux scheme

As stated previously, the flux through the cell faces is evaluated using the extrapolated and
limited value q∗

i± 1
2
, provided by the MUSCL scheme. Do note that each value of q∗

i± 1
2
still

has a left and a right state, as indicated by equation 4-29 and 4-30. To calculate the flux a
hybrid scheme is used, consisting partially of the AUSM-plus-up scheme [8] [47] and partially
of the HLLC scheme [7]. The scheme has been previously used by Koop [26] and Schmidt [48].
Both authors showed that the scheme is exceptionally useful for cavitating flows, which are
characterized by high density ratios and a large differences in compressibility between the
phases.
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Figure 4-3: Convergence with
Venkatakrishnan limiter for different
values of K [46]

Figure 4-4: Solution with Venkatakrishnan
limiter for different values of K [46]

The total flux F̂ through the cell faces is given by:

F̂ = ṁFconv + Fpressure (4-40)

For a three-dimensional situation the vectors of the fluxes are defined as:

Fconv =


1

uL,R
vL,R
wL,R
HL,R

 (4-41)

Fpressure =


0
p̂
p̂
p̂
0

 (4-42)

The calculation of the total flux F̂ is done in a similar manner to the AUSM schemes. The
flux is split into two parts, a convective flux and a pressure flux. The hybrid scheme uses
the AUSM-plus-up scheme to calculate the pressure flux. The convective flux is calculated
by multiplying the mass flow through the cell with the convective velocities as given by
vector Fconv. The mass flow for the convective fluxes is calculated by HLLC-scheme.

Equation 4-43 through 4-51 describe the procedure to obtain the pressure flux using the
AUSM-plus-up scheme:
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p̂ = P+
(5) (ML) · pL + P−(5) (MR) · pR

−Ku · P+
(5) (ML) · P−(5) (MR) · pR · (ρL + ρR) · (uR − uL) · fc

cL + cR
2

(4-43)

P±(5) =

 (1/M)M±(1) if |M | ≥ 1
M±(2)

[
(±2−M)∓ 16γMM∓(2)

]
if |M | < 1

(4-44)

M±(1) = ±(M ± 1)2 (4-45)

M±(2) = 1
2(M ± |M |) (4-46)

fc = M0(2−M0) ∈ [0, 1] (4-47)

Ku = 3
4 (4-48)

M0 = min
(
1,max

(
M̄2,M2

∞

))
∈ [0, 1] (4-49)

M̄2 = u2
L + u2

R

2
(
cL+cR

2

)2 (4-50)

γ = 3
16 (−4 + 5fc) (4-51)

The value ofM2
∞ in equation 4-49 is the Mach number squared of the flow in the far field. The

purpose of this parameter is to provide additional stability to the scheme. For the purpose of
cavitating flows, the value of M2

∞ will be close to zero in the far field, due to the combination
of flow velocities with O (10) and the speed of sound around 1430 m/s for pure liquid water.
Equation 4-52 through 4-55 describe the procedure to obtain the mass flow for the convective
flux using the HLLC scheme:

ṁ =


ρLuL if ZL ≥ 0

ρLuL + ZL
(
ρL

ZL−uL
ZL−ZM − ρL

)
if ZL < 0 ≤ ZM

ρRuR + ZR
(
ρR

ZR−uR
ZR−ZM − ρR

)
if ZM < 0 ≤ ZR

ρRuR if ZR < 0

(4-52)

ZL = min (uL − cL, uR − cR) (4-53)
ZR = max (uR + cR, uL + cL) (4-54)

ZM = pR − pL + ρLuL (ZL − uL)− ρRuR (ZR − uR)
ρL (ZL − uL)− ρR (ZR − uR) (4-55)
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4.2 Implementation of the cavitation model in 1D

The eventual goal of the 1D-simulations is to model cavitation in a Venturi-like nozzle. This
simulation will combine the physical models discussed in chapter 3 and the numerical methods
from this chapter to obtain a full model of cavitating flow in a nozzle. The 1D-simulation
will not provide a fully accurate picture of cavitation since it is area averaged along a single
axis. In reality the vapor will form pockets that are attached to the wall of the nozzle as
shown by fig 4-5, requiring at least 2 dimensions to accurately depict the flow field. As
stated in the introduction the 1D simulation will be used as proof of concept for the solving
strategy, observing if the solver is stable and to qualitatively validate the physics involved in
the cavitation process.

Figure 4-5: Visualization of cavitation in a nozzle [49]

4.2.1 Non-reflecting boundary conditions

Due to the nature of the compressible solver, the formation of shock waves is captured by the
numerics. When general zero-gradient boundary conditions are applied for the pressure field,
these spurious pressure waves will reflect off the boundaries of the domain and keep reflecting
back and forth. Eventually the diffusion created by the solver (numerical or physical) will
absorb the shock waves. There are different options to prevent these shock waves from
interfering with the solution and stop the reflecting behavior. One option could be to enlarge
or lengthen the domain of the calculation, forcing the shock waves to travel longer distances
through the diffusive fluid before hitting a boundary. But in the case of the Matlab solver
this is not possible, as it uses inviscid Euler equations, meaning that the shock waves need to
damp out using only the very limited numerical diffusion present. Depending on the severity
of the numerical diffusion this could take a very long time.

The other option is to use non-reflecting boundary conditions. The mathematical framework
of these special boundary conditions can be found in the work of Poinsot and Lele [50]. In the
work of Koop [26] these boundary conditions are worked out further so they can be applied
to the set of Euler equations. Assuming that the velocity is prescribed at the inlet and the
pressure is prescribed at the outlet, the following set can be used to calculate the boundary
conditions:
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c̄ = mean (c(1), c(2), c(n− 1), c(n)) (4-56)

CFL = u ·∆t
∆x (4-57)

pg,inlet =
p(1) + 1

2 · CFL [p(2) + p(1) + ρ(1) · c(1) · (uinlet − u(2))]
1 + CFL

(4-58)

pg,outlet =
p(n) + 1

2 · CFL [p(n− 1) + poutlet + ρ(n) · c(n) · (u(n− 1)− u(n))]
1 + CFL

(4-59)

ug,inlet =
u(1) + 1

2 · CFL
(
p(1)−p(2)
ρ(1)·c(1) + uinlet + u(2)

)
1 + CFL

(4-60)

ug,outlet =
u(n) + 1

2 · CFL
(
p(n−1)−poutlet

ρ(n)·c(n) + u(n) + u(n− 1)
)

1 + CFL
(4-61)

ρg,inlet =
[
pg,inlet − psat

K0
+ 1

] 1
N

· ρl (4-62)

ρg,outlet =
[
pg,outlet − psat

K0
+ 1

] 1
N

· ρl (4-63)

In the equations the grid is one-dimensional having n cells, starting at 1. The internal grid
starts at 2 and stops at n-1. The first and last cell are so called ’ghost points’, these two
points are not part of the solution but are used to enforce the boundary conditions and can
assume values that strongly differ from the internal grid.

4.2.2 MATLAB code

Matlab version R2014b [51] is used to implement the previously discussed set of physical
models and numerical methods to provide a solution for the 1D problem. The Matlab code is
too extensive and contains too many sub-functions to be fully discussed and reviewed. A full
printout of the code has been included in appendix A. The features used in the 1D code are:

• 4th order Runge Kutta time stepping (chapter 4.1)

• MUSCL face extrapolation scheme (chapter 4.1.1)

• AUSM-HLLC hybrid scheme (chapter 4.1.5)

• Euler equations with 1-dimensional area change (chapter 4.1)

• CEV equation of state (chapter 3.2.3)

• CFL limited time step (chapter 4.1)

• non-reflecting boundary conditions (chapter 4.2.1)

The flowchart shown in figure 4-6 gives an overview of the iterative algorithm followed by the
implementation of the models for the 1D situation:
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Runge Kutta step 1 

START 

Initialize fields 
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𝑑𝑥
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Runge Kutta step 2 

𝑈𝑖
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1

3
∙
𝑑𝑡
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Runge Kutta step 3 
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Runge Kutta step 4 
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1
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Extrapolate U to faces using MUSCL 
 UL - UR 

Apply EoS on UL 

ρL – vL – pL - cL   

Apply AUSM-HLLC on left and right states 
- F - 

Apply EoS on UR 

ρR – vR – pR - cR   

Calculate area source term 
- S - 

Calculate maximum allowed timestep 
- dt - 

Update boundary conditions 

Figure 4-6: Flowchart of the 1-dimensional calculation algorithm
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4.3 Implementation of the cavitation model in 2D

The eventual goal of the 2D-simulations is to model cavitation around a hemispherical
head shape. The simulation is developed as an application inside the OpenFOAM library.
This simulation will combine the physical models discussed in chapter 3 and the numerical
methods from this chapter to obtain a full model of cavitating flow. The 2D-simulation will
provide a more accurate picture of the cavitation than the 1D-simulation, in the sense that
it will actually show a zone of cavitation instead of a mean quantity along a single axis.
Having a visual cavitation zone also provides the possibility to visually check if the shape
of the cavitation is physically possible and comparable to images taken during the reference
experiments. As stated in the introduction the 2D simulation will be used to further validate
the models used, observing if the solver is still stable in 2D on a structured grid and to
quantitatively validate the physics involved in the cavitation process.

4.3.1 Compressible Navier-Stokes

The Euler equations are inviscid, but the viscosity of a liquid plays an important role in the
closure of the cavitation pocket and the shape of the cavitation pocket, as explained in the
work of Tseng and Shyy [52]. To obtain quantitatively accurate results during the validation
in 2D, the inviscid simplification is no longer valid. Thus the inviscid Euler equations are
upgraded to include viscosity, forming the compressible Navier-Stokes equations, shown in
equation 4-64 through 4-68. These equations completely replace the Euler equations shown
in equation 4-13 through 4-15. The viscosity is the summation of two parts, the physical
viscosity of the mixture and the turbulent viscosity provided by the turbulence models, as
seen in equation 4-66. Also the assumption is made that the viscosity of the fluid can be
taken as the volume (void fraction) averaged viscosity of the liquid and the vapor phase, as
seen in equation 4-67.

∂ρ

∂t
+∇ · (ρU) = 0 (4-64)

∂ρU

∂t
+∇ · (ρU ⊗ U) +∇ (pI) = ∇ ·

[
µeff

(
∇U + (∇U)T − 2

3I∇ · U
)]

(4-65)

µeff = µ+ µt (4-66)
µ = α · µl + (1− α) · µv (4-67)
ρ = f(p) (4-68)

Equations 4-64 through 4-68 can be written into a single system containing the vectors U , F
and V . The system formed by vectors U (equation 4-70) and F (equation 4-71) is basically
identical to the set of Euler equations as shown in chapter 4.1. The vector V (equation 4-72)
only contains the term τ , which represents the total viscous stresses, formed by the right hand
side of equation 4-65. By writing the compressible Navier-Stokes equation as a system, it is
shown that this system is almost identical to the Euler equations, only including an additional
stress component to account for the viscosity caused by the fluid and the turbulence. The
main advantage is that this system can be treated with the same numerical methods and
schemes as the Euler equations used for the 1D implementation.
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∂U

∂t
+∇ · F = ∇ · V (4-69)

U =
[
ρ
ρU

]
(4-70)

F =
[
ρU
ρUU

]
(4-71)

V =
[

0
τ

]
(4-72)

4.3.2 κ-ω Shear Stress Transport (κ-ω-SST) model

The κ-ω-SST by Menter [53] is chosen to model the turbulence. This model is a merger of
the κ-ε model by Launder and Sharma [54] and the original κ-ω by Wilcox [55]. The κ-ω
model is known for its abilities to accurately predict the turbulence close to the wall, all the
way down to the viscous sub-layer and to correctly predict separation zones. The downside
of the κ-ω model is that it is heavily influenced by the turbulence boundary conditions in
the free-stream zone far away from the wall. The κ-ε model is relatively insensitive to these
boundary conditions and provides a more accurate view of the turbulence development in
the area far away from the wall. The κ-ω-SST model combines the best of both worlds by
switching and averaging between the κ-ε and the κ-ω models depending on the distance from
the wall. Equations 4-73 through 4-82 fully describe the κ-ω-SST model:

νt = a1k

max(a1ω, SF2) (4-73)

∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω + ∂

∂xj

[
(ν + σkνT ) ∂k

∂xj

]
(4-74)

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 + ∂

∂xj

[
(ν + σωνT ) ∂ω

∂xj

]
+ 2(1− F1)σω2

1
ω

∂k

∂xi

∂ω

∂xi
(4-75)

F2 = tanh

[max
(

2
√
k

β∗ωy
,
500ν
y2ω

)]2
 (4-76)

Pk = min
(
τij
∂Ui
∂xj

, 10β∗kω
)

(4-77)

F1 = tanh


{
min

[
max

( √
k

β∗ωy
,
500ν
y2ω

)
,

4σω2k

CDkωy2

]}4
 (4-78)

CDkω = max
(

2ρσω2
1
ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(4-79)

σk1 = 0.85, σk2 = 1 (4-80)
σω1 = 0.5, σω2 = 0.856 (4-81)
µt = ρνt (4-82)
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The parameters α and β are different for the κ-ε and the κ-ω models. The F1-function
(equation 4-78) is used to provide a weighted average between the two parameters.

φ = φ1F1 + φ2(1− F1) (4-83)

α1 = 5
9 , α2 = 0.44 (4-84)

β1 = 3
40 , β2 = 0.0828 (4-85)

β∗ = 9
100 (4-86)

This model is readily implemented in the OpenFOAM library but still requires input from
the user, in the form of suitable boundary conditions.

4.3.3 Turbulence boundary conditions

Unless one is interested in the full startup of turbulence, starting with a stationary flow
field, it is sensible to prescribe a certain amount of turbulence at the inlet of the domain.
To correctly prescribe the levels turbulence at the inlet of the domain, the user is required
to calculate or estimate the kinetic energy (Ek) and the specific turbulence dissipation (ω)
at these boundaries. Kinetic energy Ek can easily be estimated by the known free stream
velocity U∞ and an assumed value for the intensity I of the turbulence [56]:

Ek = 3
2 (UI)2 (4-87)

The value of I is generally chosen between 0.001 (0.1%) for very weak turbulence and 0.05
(5%) for very strong turbulence. The specific turbulence dissipation is hard to estimate
directly because it is not directly related to free stream quantities. One way to estimate the
specific turbulence dissipation is to base its value on the dominant length scale of the problem,
for instance the inlet diameter of the nozzle. However for external flows, as is the case for the
current 2D problem, it is very hard to identify the characteristic length scale of the problem
and how it relates to the dimensions of the object. For external flow it is preferable to assume
a turbulent viscosity ratio β in the free stream and derive a free stream value for the specific
turbulence dissipation given that ratio. The following relation is used to estimate the specific
turbulence dissipation, given the density, ρ, viscosity, µ, turbulent viscosity ratio, β, and the
kinetic energy Ek of the turbulence [56]:

ω = ρEk
µ
· β−1 (4-88)

The value of β is generally chosen between 1 for almost laminar flows and 10 for highly
turbulent flows when external flow problems are considered. For internal flows the value of β
can increase to 100 for highly turbulent flows, but as stated before, most internal turbulent
flows are easier to describe using characteristic length scales.
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4.3.4 Far-field treatment

Although the 1D and 2D implementation use the same basic code and can both be described by
roughly the same system of equations, there are differences in the approach for the boundary
conditions. The 1D implementation required the use of non-reflecting boundary conditions
in order to minimize the reflections that would otherwise be reflected back into the nozzle,
introducing unphysical oscillations in the solution. The 2D implementation has the advantage
that the flow for this scenario is external and viscous, in other words, the shock waves are
free to travel away from the relevant geometry, while being dissipated through the viscosity
of the surrounding fluid. If the domain is chosen large enough, most of the shock waves
will dissipate before hitting any boundaries. The disadvantage of this method is that it
will enlarge the domain far beyond what would be necessary to accurately model the flow,
meaning that the flow is not influenced by the presence of the walls at the far edges of the
domain. To guarantee that the flow field is not disturbed by the shock waves, the previously
discussed methods are combined. The domain is chosen sufficiently large to prevent influences
from the walls, and the relevant boundary edges contain non-reflecting boundary conditions.
This combination ensures that shock waves are weakened before hitting the wall, where
the boundary conditions stop the shock wave from reflecting back to the cavitating zone
of the geometry. The non-reflecting boundary conditions are implemented in an identical
manner to the 1D implementation, as described in chapter 4.2.1. The documentation that
is accompanying OpenFOAM refers to the same paper by Poinsot and Lele [50], confirming
that the mathematics involved are functionally identical to the 1D implementation.

4.3.5 OpenFOAM code

OpenFOAM Extend edition version 3.1 is used to implement the previously discussed set of
physical models and numerical methods to provide a solution for the 2D problem. The
OpenFOAM code is much more complex than the Matlab code. OpenFOAM is a very
elaborate library for mathematical field manipulations. The solver is based on the existing
density-based Navier Stokes solver "dbnsTurbFoam" by Hrvoje Jasak [57] [58]. Runge Kutta
time stepping and MUSCL face extrapolation using the Venkatakrishnan limiter are already
present in this application. The existing solver is modified to include the AUSM-HLLC flux
scheme, barotropic EoS and volume averaged fluid viscosity. Instead of writing out every
modification, a printout of the code that covers the main application has been included in
appendix B. This application contains many references to other parts of the OpenFOAM
library, the interested reader can further explore the OpenFOAM library by visiting the
online depository of the code [59]. The flowchart shown in figure 4-7 gives an overview of the
application written in OpenFOAM used for the 2-dimensional application. The features used
in the 2D code are:

• 4th order Runge Kutta time stepping (chapter 4.1)

• MUSCL face extrapolation scheme (chapter 4.1.1)

• AUSM-HLLC hybrid scheme (chapter 4.1.5)

• Compressible Navier-Stokes equations (chapter 4.3.1)
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• κ-ω-SST turbulence model (chapter 4.3.2)

• CEV equation of state (chapter 3.2.3)

• CFL limited time step (chapter 4.1)

The flowchart shown in figure 4-7 gives an overview of the iterative algorithm followed by the
implementation of the models for the 2D situation:
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Figure 4-7: Flowchart of the 2-dimensional calculation algorithm
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Chapter 5

1D modeling results

The purpose of this chapter is to present and review the results obtained with the 1D models,
pointing out key observations derived from the results. Firstly an overview of the input of the
model is presented, listing all fluid properties and boundary conditions that are imposed on
the model. Secondly the output of the model is studied, making general observations on the
functioning of the model. Also the output for each fluid is studied to observe how cavitation
will differ for different fluids and their properties, resulting in a qualitative validation of the
model.

5.1 Setup and boundary conditions

The first step in the process to validate the models, as presented in chapters 3 and 4,
is to implement the models in a simplified 1D situation. The objective of this step is
pure qualitative validation. The details describing the 1D implementation can be found
in chapter 4.2 including the motivation behind the choice to only qualitatively validate the
1D situation. The maximum allowable time step for each iteration is calculated based on the
compressible CFL number (equation 4-12). The compressible CFL number is taken equal to
0.9.

The geometry of interest is a Venturi-like nozzle with a circular cross section as depicted in
figure 5-1. The area of the inlet and outlet of the nozzle is 2m2, the throat of the nozzle
narrows to 1m2. The nozzle is 2m in length, the converging section starts 0.5m after the
inlet and is fully diverged again 0.5m before the outlet. The throat area is described by:
A(x) = 1 + sin(π · x)2, in which x is defined as the axial coordinate in meters. The 1D
domain is divided in 252 cells, 250 cells form the actual solution domain of the problem and
a single cell at both the inlet and the outlet are marked as ’ghost points’ to assist with the
application of the boundary conditions.

The boundary conditions are implemented as non-reflecting boundaries, described in
chapter 4.2.1. At the inlet the velocity is prescribed and at the outlet the pressure is
prescribed. The inlet velocities are equal to 8m/s, 9m/s and 10m/s for all three fluids.
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Water is taken as the reference case, the outlet pressure for water is taken equal to 1.0 bar for
all three inlet velocities. This results in cavitation numbers equal to σ = 3.0575, σ = 2.4158
and σ = 1.9568, respectively for each inlet velocity. The inlet velocities for butane and
propane are equal to those of water. The outlet pressures for butane and propane are scaled
with the cavitation number (equation 2-7) to obtain comparable cases between the three
fluids.

The Venkatakrishnan limiter [44] contains a tunable parameter K that has to be set in order
to limit the solution without influencing the final answer. After a process of trial and error the
parameter K was set to a value of 0.3 to obtain the best results in the 1D cavitating nozzle.
Note that for the 2D situation, the value of K likely has to been changed to be compatible
with the flow and geometry of that problem (internal flow vs. external flow).

To prevent confusion all 9 scenarios (3 cavitation numbers for 3 different fluids) are printed at
the end of this chapter, figure 5-2 through 5-10. The red plots represent the cases involving
water, the blue plots represent the cases involving butane and the green plots represent
the cases involving propane. The conclusions that can be drawn from the results are split
into two parts, one part commenting on the general performance of the model (chapter 5.3)
and the second part commenting on the differences that have been found between the fluids
(chapter 5.4).
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Figure 5-1: plot of nozzle geometry, throat section is defined by A(x) = 1 + sin(π · x)2

5.2 Fluid properties used in the simulations

To avoid ambiguity surrounding the fluid properties, table 5-1 provides a full overview of all
the fluid properties used. All three fluids are evaluated at 293K, using the Fluidprop [5]
software that relies on the Refprop [60] library for butane and propane and relies on the
IF97-library [61] for the properties of water. The constants and coefficients used for the
equations of state are fitted according to the methods described in chapter 3.4 At the bottom
of the table all the inlet and outlet boundary conditions can be found as calculated using the
cavitation number to scale the outlet pressures for each fluid.
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Table 5-1: Overview of all parameters, coefficients and constants as used in the 1D cases

fluid name water butane propane unit

library IF97 RefProp, butane RefProp, propane -
temperature - T 293.15 293.15 293.15 K

density - liquid - ρl 998.1608 578.5912 500.0569 kg/m3

density - vapor - ρv 0.0173 5.3126 18.0823 kg/m3

ratio 57655 109 28 -

saturation pressure - psat 2.3392 · 103 2.0765 · 105 8.3646 · 105 Pa
critical pressure - pcrit 2.2064 · 107 3.7960 · 106 4.2512E · 106 Pa

Tait equation - K0 3.6904 · 108 4.7779 · 107 2.5835 · 107 Pa
Tait equation - N 5.9496 10.4209 10.9740 −

CEV model - coefficient a 0.01262 0.01726 0.01747 −
CEV model - coefficient b -0.6014 -0.5168 -0.5136 −
CEV model - coefficient c 0.8241 1.4654 1.2094 −

CEV model - parameter gV 0.8870 0.9424 0.9084 −

inlet velocity - case 1 8.00 8.00 8.00 m/s
inlet velocity - case 2 9.00 9.00 9.00 m/s
inlet velocity - case 3 10.00 10.00 10.00 m/s

outlet pressure 1.0000 · 105 2.6426 · 105 8.8539 · 105 −
cavitation number - σ - case 1 3.0575 3.0575 3.0575 Pa
cavitation number - σ - case 2 2.4158 2.4158 2.4158 Pa
cavitation number - σ - case 3 1.9568 1.9568 1.9568 Pa
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5.3 Cavitation in a nozzle: general observations

The general idea of compressible modeling has clearly succeeded since even the highest
cavitation numbers, which show no cavitation for butane and propane (figure 5-5 and 5-8),
are compressed by a very small amount. The density changes for butane and propane in these
cases are in the order of a tenth of a percent or even less. Even for these ’weakly’ compressible
liquids the model provides satisfying results, confirming that the AUSM-HLLC works for very
low Mach flows and weakly compressible liquids. The effects of high compressibility are also
captured by the scheme, as can be seen for the lowest cavitation number (figure 5-4, 5-7
and 5-10), where the inlet pressure and the outlet pressure substantially differ due to the
compressibility of the vapor phase. Most likely there is also a small difference in inlet
and outlet pressure for the non-cavitating situations (figure 5-5 and 5-8) due to the weakly
compressible saturated liquid, but this effects is so small that it cannot be observed in the
results.

One of the properties of the Euler equations is that they are inviscid. If the weakly compressible
effects of the fluid are ignored, the solution of the Euler equations can be approached with
Bernoulli’s principle. The calculation of the classical case of the Venturi nozzle results in
values that are very close to the results of the Euler equations (neglecting compressibility of
the liquid). For instance, the solution of water for σ = 3.075 (figure 5-2) shows that the lowest
pressure very close to psat since the fluids is barely cavitating. Using Bernoulli’s principle
and assuming that the inlet conditions are saturated liquid density, 1.0bar of pressure, and
8m/s inlet velocity, the result would be equal to a velocity of 16.1m/s through the throat of
the Venturi. This is in good agreement with the model.

The boundaries are enforced at the inlet and the outlet. No oscillations are observed at
either the inlet or the outlet and no waves are traveling back and forth through the domain,
concluding that the non-reflecting boundary conditions are working as intended.

Another interesting feature of the barotropic model is the fact that it actually has to operate
below vapor pressure to lower the density below the saturated liquid density. This is easily
observed in figure 5-10. The saturation pressure is around 8.36bar but at the minimum value
for the density the pressure goes slightly below 7bar. As will be discussed in the conclusions
(chapter 7), detailed information about the pressure inside the cavitation zone can be used to
estimate the energy that will be released when the bubbles implode and what level of damage
can be expected.

From figure 3-3 in chapter 3.2.3 it was known that the isenthalpic speed of sound can assume
extremely low values and that this lowest values occurs as soon as any vapor forms in the
liquid. When the vapor content is increased, the isenthalpic speed of sound steadily increases
towards the speed of sound of the saturated vapor. This effect is also clearly observed in the
results of the 1D models. In all situations where cavitation occurs, the inception point is just
to the right of the throat (x = 0). The inception point coincides with the largest value of the
Mach number, as would one expect based on the findings from figure 3-3. Also the decrease
of Mach number for increasing void fraction is found back in the models. In figure 5-4 one
can clearly see that the velocity is constant between x = 0 and x = 0.4, but the Mach number
decreases due to the decreasing density. Figure 5-4 provides another example to validate
correct barotropic behavior of the model, namely in the section between x = 0.6 and x = 0.8
the density, pressure, velocity and mach number are all constant. If the density is constant,
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the pressure should also be constant due to the barotropic nature of the model. The speed
of sound is related to the density through the void fraction, thus the speed of sound should
also be constant in the range between x = 0.6 and x = 0.8. Finally, the constant velocity
combined with the constant speed of sound results in a constant Mach number in the range
between x = 0.6 and x = 0.8, concluding that the coupling between density, pressure and
speed of sound is correct.

The closure of the cavitation zone is very sudden in the 1D models. In general it appears
that the density switches from its minimum value back to the saturated liquid density within
1 or 2 cells. From a numerical standpoint it shows that the combination of the MUSCL
interpolation scheme and the AUSM-HLLC flux scheme handles this discontinuity very well.
From a physical standpoint the behavior is deemed physical. The time needed for a cavitation
bubble to collapse (the so-called "Rayleigh time") has been described by Rayleigh [62] [63],
resulting in the following equation:

tRayleigh = 0.915 ·R0

√
ρl

p∞ − psat
(5-1)

For a cavitation bubble with a radius of 1 cm in water (ρl = 998 kg/m3 and psat = 2339 Pa)
with a far-field pressure of 1 bar, the bubble collapses in about 1 ms. This calculation shows
that the bubble collapses very fast en very violent, supporting the statement that the density
change can physically take place in the span of only a few cells. If some sort of stable sheet
cavitation would form on the inside of the nozzle (left picture in figure 5-1) it is possible that
the interface from a 1D perspective is very sharp, resulting in the very sudden switch from
minimum density back to saturated liquid density. On the other hand, one has to keep in
mind that the physics that govern the closure of the sheet and the flow patterns that emerge
in this zone are very complex and cannot be fully described in only one dimension.

The biggest shortcoming of the 1D implementation is the area-averaged density. All three
fluids go down to 40%-60% of their saturated liquid density (α = 0.4− 0.6), but never come
close to the actual density of their respective vapor phases. One could try to relate the void
fraction of the fluid to the cross area of the nozzle that is occupied by vapor. However for
this to work, one must assume that the fluid is either saturated liquid or saturated vapor and
that this area grows annularly from the walls of the nozzle to the central axis of the flow. The
density of the fluid, as shown in figures 5-2 through 5-10, can be taken as an indicator of the
intensity of the cavitation by calculating the void fraction. Thus knowing what part of the
cross section is occupied by vapor at a certain axial coordinate x. But since the cavitation
is not perfectly mixed, the shape and location of the cavitation cannot be predicted by a 1D
model.

5.4 Cavitation in a nozzle: different fluids

Except for general observations that look at the model as a whole, interesting observation
can also be made by looking at the similarities and differences that exist between the fluids.
These differences can occur either due to the fluid properties that influence the fluid mechanics
directly (like density) or they can occur due to the fluid properties that influence the numerics
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of the problem, like the speed of sound heavily influences the flux calculations of the AUSM
scheme.

In the cavitating regions of water (figure 5-2 through 5-4) the Mach number reaches values
between 300 and 500. This is a consequence of the very low isenthalpic speed of sound for
relatively low void fractions. If the void fraction is lower than 0.5, the isenthalpic speed
of water is lower than 0.08m/s with a minimum of 0.03m/s for the smallest possible void
fraction. Most likely this is not physical, since the experiments by Karplus [29] and Brown
& Gouse [30] have shown that the physical values are close to the isothermal speed of sound
as discussed in chapter 2.2.3. The problem however is not the physics but the numerics, the
very high Mach numbers combined with the high liquid-vapor density ratios will cause the
scheme to struggle with discontinuities.

Propane for σ = 2.4158 (figure 5-9) shows a different numerical problem related to the Mach
number. In the plot of the Mach number it can be observed that the Mach number is relatively
close to 1.0 when the fluid is cavitating. Without going in too much detail, the AUSM scheme
contains a number of functions that are intended to switch between subsonic and supersonic
treatment for the flux terms. If the fluid in a cell is well belowMa = 1.0, but the neighbour is
above and close to this switching point atMa = 1.0, the resulting flux calculation can become
inaccurate due to averaging between subsonic and supersonic treatment. The eventual result
is a small discontinuity, as can be observed in the pressure results of figure 5-9 and 5-10 at
x = −0.05.

Another interesting difference can be found when comparing the three fluids for the highest
cavitation number (σ = 3.0575) near inception. Comparing figures 5-2, 5-5 and 5-8, it appears
that butane and propane, although very close to inception, do not cavitate. Water on the
other hand just crosses the inception threshold, resulting in a small dip in density. It is
most likely caused by the differences in fluid properties, since the liquid density is almost two
times larger and the speed of sound is almost two times larger for water (ρl = 998 kg/m3

and cl = 1483 m/s), than for butane (ρl = 578 kg/m3 and cl = 928 m/s), and propane
(ρl = 500 kg/m3 and cl = 752 m/s), resulting in a significantly lower compressibility for
water compared to butane and propane. If the numerical scheme introduces a small error
that is enough to lower the pressure below the saturation pressure, this could also result in
the different inception behavior for water. In an attempt to rule out numerical issues, the
calculation for the scenario (water σ = 3.0575) has been repeated several times with different
limiter options and time step sizes. The resulting steady states of the scenarios remained
unchanged, showing that the difference in inception is caused by the physical differences
between the fluids and not due to numerical treatment. The compressibility of liquid water
is significantly lower than the compressibility of liquid butane and liquid propane. The lower
liquid compressibility resulted in a slightly lower pressure in the throat, causing the water
scenario to cross the cavitation threshold, as observed in figure 5-2.

The main difference between the three fluids is the liquid-vapor density ratio, which is equal
to 57655 for water, 109 for butane and a mere 28 for propane at a temperature of 293K.
The influence of the liquid-vapor density ratio is also observed in the momentum of the vapor
phase. Even if large volumes of water vapor were to form, the total weight of the vapor is
much smaller than the total weight of the liquid due to the low density of the vapor. Thus
for water the momentum of the vapor phase is negligible compared to the momentum of the
vapor. But for butane and propane the weight of the vapor will play a role for equal amounts
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of volume. Looking at figure 5-4, 5-7 and 5-10, which show the most severe cavitation for each
fluid, the influence of the momentum difference is seen in the velocity plots for each fluid. For
water the cavitation starts at x > 0 and even though the density is lowered significantly and
large amounts of vapor are created the velocity stays at a (near) constant 20m/s. For butane
and propane the cavitation also starts at x > 0 but this time the velocity that is obtained at
the throat (around 20m/s) is increased by the (non-negligible) momentum contribution of the
vapor phase, increasing the velocity obtained, which is now higher than the velocity obtained
at the throat. This effect appears to be stronger for lower liquid-vapor density ratios, which
makes sense from the perspective of the momentum balance that exists between the phases
and the relative contribution of the vapor phase.

The pressure oscillations that occur when the cavity is closed (for instance the pressure plot
in figure 5-4) also seem to depend on the liquid-vapor density ratio of the fluid, since these
oscillations are clearly present for water, less pronounced for butane, but almost invisible
for propane. Which can be explained by the fact that, if for each liquid equal amounts of
volume are fully evaporated through cavitation at 293K, water will increase its volume by a
factor of 57655, while butane will only increase its volume by a factor of 28. The cause of
these oscillations is numerical instead of physical, the numerical scheme can compensate for
large changes in density but when the order of the change becomes too large, the scheme can
no longer facilitate a smooth transition and this will result in an overshoot of the solution.
The oscillations can be weakened by adjusting constant K of Venkatakrishnan’s limiter as
discussed in chapter 4.1.4. If constant K is chosen large enough (K = 15) the oscillations
will almost disappear but this will also heavily influence the steady state solutions, since
monotonicity is no longer guaranteed (also see figure 4-4 and 4-3). In summary, it is clear
that the severity of the pressure oscillations is dictated by the liquid-vapor density ratio,
but that it is the limiting procedure that introduces the oscillations into the solution. The
solution to increase constant K is not an option because it will heavily influence the steady
state solution.

Finally, some observations concerning the actual differences in the density profile
development for equal values of cavitation number σ are discussed. The most important
observation is related to the cavitation length for each fluid. This is the axial distance between
the x-coordinate at which the cavitation begins and the x-coordinate at which the cavitation
disappears. In general the cavitation length of water is the longest, followed by butane and
propane has the shortest cavitation length. This is contrasted by the lowest density obtained
in the cavitation zone, the density of propane is lowered to about 40% of its liquid saturated
density. Butane is lowered to about 48% and water is lowered to about 50% of its liquid
saturated density. From these observations it may be stated that propane has a shorter
cavity length than water, but the intensity or density reduction is larger. One may even
speculate that the mass involved in each fluid is about equal but there is a certain trade-off
between the intensity and the cavitation length for each fluid. However for 1D models this
remains speculation. Also the choice for a void fraction that represents the actual cavitation
region is rather arbitrary. For instance, is it reasonable to call a region with a void fraction
of only 1% cavitation? The vapor transport models, as described in chapter 2.2.4, assume a
certain threshold for the void fraction (50% or 80%) below which the fluid is considered to
cavitate. It is important to be aware of the value of this threshold because the same threshold
is used to calibrate the empirical coefficient of these models. A more detailed 2D picture is
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required to actually see the cavitation shape and the density profile differences from the edge
of the sheet down to the wall.
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1D cavitating nozzle − water − K = 3.0575
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Figure 5-2: 1D cavitating nozzle - water - σ = 3.0575, plots of density, velocity, pressure and
Mach number versus the axial coordinate x
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1D cavitating nozzle − water − K = 2.4158
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Figure 5-3: 1D cavitating nozzle - water - σ = 2.4158, plots of density, velocity, pressure and
Mach number versus the axial coordinate x
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1D cavitating nozzle − water − K = 1.9568
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Figure 5-4: 1D cavitating nozzle - water - σ = 1.9568, plots of density, velocity, pressure and
Mach number versus the axial coordinate x
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1D cavitating nozzle − butane − K = 3.0575
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Figure 5-5: 1D cavitating nozzle - butane - σ = 3.0575, plots of density, velocity, pressure and
Mach number versus the axial coordinate x
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1D cavitating nozzle − butane − K = 2.4158
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Figure 5-6: 1D cavitating nozzle - butane - σ = 2.4158, plots of density, velocity, pressure and
Mach number versus the axial coordinate x

Master of Science Thesis Gert-Jan Meijn



76 1D modeling results

1D cavitating nozzle − butane − K = 1.9568
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Figure 5-7: 1D cavitating nozzle - butane - σ = 1.9568, plots of density, velocity, pressure and
Mach number versus the axial coordinate x
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1D cavitating nozzle − propane − K = 3.0575
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Figure 5-8: 1D cavitating nozzle - propane - σ = 3.0575, plots of density, velocity, pressure and
Mach number versus the axial coordinate x
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1D cavitating nozzle − propane − K = 2.4158
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Figure 5-9: 1D cavitating nozzle - propane - σ = 2.4158, plots of density, velocity, pressure and
Mach number versus the axial coordinate x (note the discontinuity at x = −0.05 as discussed in
the third paragraph of chapter 5.4)
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1D cavitating nozzle − propane − K = 1.9568
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Figure 5-10: 1D cavitating nozzle - propane - σ = 1.9568, plots of density, velocity, pressure and
Mach number versus the axial coordinate x (note the discontinuity at x = −0.05 as discussed in
the third paragraph of chapter 5.4)
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Chapter 6

2D modelling results

The purpose of this chapter is to present and review the results obtained with the 2D-models,
pointing out key observations derived from the results. Firstly an overview of the input of
the model is presented, listing all fluid properties and boundary values that are imposed on
the model. Secondly the output of the model is studied, making general observations on the
functioning of the model. Also the output of water simulation is processed to obtain a pressure
profile and is compared with the experimental results by Rouse & McNown [9], resulting in a
simple quantitative validation of the model.

6.1 Setup and boundary conditions

The second step in the process to validate the models as presented in chapters 3 and 4 is to
implement the models in a full 2D situation. The objective of this step is simple quantitative
validation by comparing the obtained pressure profile with experimental data by Rouse &
McNown [9]. The details describing the 2D-implementation can be found in chapter 4.3. The
maximum allowable time step for each iteration is calculated based on the compressible CFL
number (equation 4-12). The compressible CFL number is taken equal to 0.1.

The geometry of interest is a round rod with a hemispherical head at the tip. When a fluid is
flowing over the shape at the correct conditions, cavitation will form as depicted in figure 6-1.
The rod has a cross-section with a radius r which is also the radius of the hemispherical head.
In the experiments of Rouse & McNown [9] the rod has a diameter of exactly 1.00 inch, thus
radius r is equal to 12.7 mm. All other dimensions of the calculation domain are based on
radius r. The domain extends 50 radii behind the hemispherical head and the circular zone
surrounding the hemispherical head extends 30 radii outwards. A sketch of the geometry is
given by figure 6-2. Due to the extremely small time step (O(10−8)) that has to be taken to
keep the solution stable, based on the compressible CFL number (as explained in chapter 4.1),
the total number of time steps that has to be taken in order to model only a few milliseconds
is in the order of millions. Thus it is a priority to keep the cell count of the 2D model as
low as possible or the total execution time will go towards an impracticable range. Due to
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the symmetrical nature of the head shape and rod it is possible to reduce the 3D geometry
to a 2D axisymmetric geometry. By taking a small pie-shaped wedge of the geometry, with
the width of only 1 cell, the total number of cells is limited to 16,800. There are 80 cells
along the curve of the nose, 200 cells from the end of the nose to the end of the domain and
between the wall of the head shape and the edge of the domain are 60 cells. The cell count
in each direction is given by the bracketed numbers in figure 6-2. The resulting structured
mesh can be seen in figure 6-3. Note that the mesh is refined towards the nose, resulting in
a more dense mesh in the region where cavitation is to be expected.

Figure 6-1: Image of cavitation experiment with the head shape geometry (red outline) for
cavitation number σ = 0.20 (σ is denoted by K in the picture), the flow in the picture is from
left to right

The boundary conditions are implemented as non-reflecting boundaries, as described in
chapter 4.2.1. At the inlet the velocity is prescribed and at the outlet the pressure is
prescribed. The red line in figure 6-2 signifies the inlet surface and that the blue line signifies
the outlet surface. The green line signifies the wall of the head shape and will be treated as
a no-slip wall in the CFD simulations.

From the work of Rouse & McNown [9] it is known that the experiments were performed
using water at a Reynolds number, Re = U ·d

ν , of 210,000. Using the Reynolds number and
fluid properties of water, taking the characteristic length equal to two times the radius of
the head shape (d = 2r), a inlet velocity of 8.2966 m/s was obtained for water. The inlet
velocity for butane and propane is equal to the inlet velocity of water, being 8.2966 m/s. The
inlet velocities are not scaled with the Reynolds number because it is assumed that, when
different fluids are flowing through an identical pump, the flow rate through the pump is kept
the same in accordance with an operating point specified by the manufacturer. Thus the
resulting (higher) Reynolds number for butane is equal to 733,800 and the resulting (higher)
Reynolds number for propane is equal to 1,030,000. The outlet pressure of each simulation
is based on the cavitation number chosen for the simulation. The results obtained for a
hemispherical head shape (r = d/2) by Rouse & McNown are shown in figure 6-4. The
experiments by Rouse & McNown were performed over a wide range of cavitation numbers,
from barely visible cavitation at σ = 0.7 till a cavitation length of several head diameters
at σ = 0.2 (figure 6-1). For the purpose of this validation the cavitation numbers σ = 0.3,
σ = 0.4 and σ = 0.5 from the experiments of Rouse & McNown are chosen. Choosing a higher
cavitation number will result in a cavitation region that covers only a few cells, making the
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mesh to coarse to properly capture that level of cavitation. Choosing a lower cavitation
number will produce amounts of cavitation that will further impede the convergence of the
solver as will be discussed later in this chapter.

For a given cavitation number (σ = 0.5) and saturated liquid density, ρl, saturation pressure,
psat, and free stream velocity, v∞, the outlet pressure of the domain can be calculated using
the definition of the cavitation number given by equation 2-7. The free stream velocity is taken
equal to the inlet velocity that was calculated using the Reynolds number. The values for Ek
and ω are calculated using the formulas presented in chapter 4.3.3, respectively equation 4-87
and 4-88. A value of 1% is assumed for the intensity, I, of the turbulence. The choice to
assume a value of 100 for the turbulent viscosity ratio, β, when considering external flow is
extremely high. Generally the values for turbulent external flow are at least 10 times smaller
than the current assumed value of 100. The motivation behind this choice and the influence of
the turbulent viscosity ratio on the cavitation development are discussed later in this chapter.

The Venkatakrishnan-limiter contains a tunable parameter K that has to be set in order to
limit the solution without influencing the final answer. After a process of trial and error the
parameter K was set to a value of 5 to obtain the best results in the 2D cavitating nozzle.
Note that for the 1D situation the value of K was equal to 0.3. At this point it is not clear if
this difference is caused by the switch from 1D to 2D or switching from an internal geometry
to an external geometry. Regardless, there is no clear procedure to determine K or estimate
what the value will be based on known situations.

To prevent confusion, the output of all 5 scenarios: water for σ = 0.5, water for σ = 0.4,
water for σ = 0.3, butane for σ = 0.3, and propane for σ = 0.3, is printed at the end of this
chapter, figure 6-5 through 6-24. For the scenarios involving water, the pressure coefficient
from the CFD simulation is compared with the experimental data of Rouse & McNown [9],
presented in a similar way to figure 6-4. For the scenarios involving butane and propane,
only the pressure coefficient from the CFD simulation is shown, since it cannot be compared
with experimental data. Also the pressure, velocity and void fraction fields are shown for the
solution of each scenario.

The conclusions that can be drawn from the results are split into two parts, one part
commenting on the simulations with water, that are also used for the qualitative validation
(chapter 6.3) and a second part commenting on the simulations with butane and propane
(chapter 6.4). The reason that the simulations using butane and propane are split from the
simulation using water, is that the simulations for butane and propane are predictions based
on the current model. No validation data has been found on the exact pressure distribution
for any liquid other than water.

6.2 Fluid properties used in the simulations

To avoid ambiguity surrounding the fluid properties, table 6-1 provides an full overview of
all the fluid properties used. All three fluids are evaluated at a temperature of 293K, using
the Fluidprop [5] software that relies on the Refprop [60] library for butane and propane and
relies on the IF97-library [61] for the properties of water. The constants and coefficients used
for the equations of state are fitted according to the methods described in chapter 3.4. Near
the end of the table all the inlet and outlet boundary conditions can be found, as calculated

Master of Science Thesis Gert-Jan Meijn



84 2D modelling results

Uinlet 

poutlet 

wall 

r 

50r 

30r 

x 

y 

z 

[200] 

[80] 

[60] 

Figure 6-2: Head shape geometry, the rod has a radius r which is also the radius of the
hemispherical head

Figure 6-3: Mesh for the 2D model

Gert-Jan Meijn Master of Science Thesis



6.2 Fluid properties used in the simulations 85

Figure 6-4: Pressure coefficient as a function of dimensionless edge length, for various cavitation
numbers, ranging from σ ≥ 0.8 till σ = 0.2 (σ is denoted by K in the picture); taken from Rouse
& McNown [9]
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using the cavitation number and Reynolds number to scale the outlet pressures and calculate
the inlet velocity for each fluid. At the bottom of the table the boundary conditions for the
turbulence model are presented.

6.3 Cavitation over a caliber headshape: water

The result of the quantitative results as shown in figure 6-5 through 6-7 and figure 6-10
through 6-18 are open for mixed interpretation. In general the model shows cavitation
developing at the right location with a shape and size that are very comparable to the
experiments of Rouse & McNown [9] (figure 6-1). On the other hand the oscillations in
the pressure field never seem to fully disappear, stalling the convergence towards a stable
cavitation region and a smooth pressure profile.

The cavitation lengths founds for σ = 0.5, σ = 0.4 and σ = 0.3 are 10.5 mm, 17.3 mm
and 30.4 mm respectively. Note that the cavitation length is defined by the section of the
head shape where the void fraction (at the surface) is above a certain arbitrary threshold,
as discussed in chapter 5.4. For the determination of the previously mentioned cavitation
lengths, this void fraction threshold was set at 10% (α > 0.10). The sudden closure of the
cavitation region, as observed in the 1D simulations, is also found in the 2D simulation.
Note that the pressure is not fully representative for the cavitation region. For example in
figure 6-7, the cavitation region is closed at s/d = 1.8 looking at the void fraction, while the
pressure is slightly lagging behind, remaining below the vapor pressure until s/d = 2.0.

Comparing the pressure profiles from the CFD simulation with the experiments from Rouse &
McNown [9] it is clear that the isenthalpic approach can be considered a satisfactory approach
for modeling cavitation. The pressure profiles do not match perfectly with the measurements
done by Rouse & McNown, which is likely caused by the relatively coarse grid. Also the
fact that interactions between some of the sub-models and the local void fraction are not yet
taken into account, is influencing the accuracy. For instance, the turbulence models or the
viscosity of the liquid-vapor mixture. The general accuracy of the pressure profiles shown
in figures 6-5, 6-6, and 6-7, is surprisingly high when considering that the mesh is relatively
coarse. In each of the three cases involving water as the working fluid, the solver completed
somewhere between 1 and 2 million time steps before the pressure field stabilized sufficiently
to extract a relatively smooth and accurate pressure profile. As stated previously, the high
amount of time steps requires that the cell count of the mesh is kept as low as possible in
order to keep the total calculation time within a practicable range.

In figures 6-12, 6-15, and 6-18, it can be observed that the pressure field is not perfectly
stable, especially near the start and closure regions of the cavitation. Also for water the
liquid-vapor density ratio is the largest, meaning that numerically very big steps are made
when vapor is formed or when the cavity is closed. Since density and pressure are coupled per
definition through the barotropic model, any large step in density that is not fully resolved
by the numerics of the solver, will result in local pressure oscillations. Barotropic modeling
also implies that the lowest obtained density corresponds with the lowest obtained pressure.
Due to the asymptotic behavior of the isenthalpic equation of state (figure 3-6) it is generally
unlikely that the lowest density obtained in the domain is equal to the vapor density of the
working fluid. For example, the lowest density obtained for water in the simulations is equal
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Table 6-1: Overview of all parameters, coefficients and constants as used in the 2D cases

fluid name water butane propane unit

library IF97 RefProp, butane RefProp, propane -
temperature - T 293.15 293.15 293.15 K

density - liquid - ρl 998.1608 578.5912 500.0569 kg/m3

density - vapor - ρv 0.0173 5.3126 18.0823 kg/m3

ratio 57655 109 28 -

dynamic viscosity - liquid - µl 1.0016 · 10−3 1.6615 · 10−4 1.0229 · 10−4 Pa · s
kinematic viscosity - liquid - νl 1.0035 · 10−6 2.8717 · 10−7 2.0455 · 10−7 m2/s
dynamic viscosity - vapor - µv 9.7272 · 10−6 7.2617 · 10−6 8.0891 · 10−6 Pa · s
kinematic viscosity - vapor - νv 5.6186 · 10−4 1.3669 · 10−6 4.4735 · 10−7 m2/s

saturation pressure - psat 2.3392 · 103 2.0765 · 105 8.3646 · 105 Pa
critical pressure - pcrit 2.2064 · 107 3.7960 · 106 4.2512 · 106 Pa

Tait equation - K0 3.6904 · 108 4.7779 · 107 2.5835 · 107 Pa
Tait equation - N 5.9496 10.4209 10.9740 -

CEV model - coefficient a 0.01262 0.01726 0.01747 -
CEV model - coefficient b -0.6014 -0.5168 -0.5136 -
CEV model - coefficient c 0.8241 1.4654 1.2094 -

CEV model - parameter gV 0.887 0.9424 0.9084 -

Reynolds number - Re 210000 210000 210000 -
hydraulic diameter - dh 0.0254 0.0254 0.0254 m

cavitation number 0.5 0.5 0.5 -

inlet velocity 8.2966 2.3742 1.6912 m/s
outlet pressure 19516.0 208465.2 836818.5 Pa

Turbulent intensity - I 0.010 0.010 0.010 -
Turbulent viscosity ratio - β 100.0 100.0 100.0 -

kinetic energy - Ek 1.0325 · 10−2 8.4552 · 10−4 4.2902 · 10−4 J
specific turbulence dissipation - ω 102.891 29.444 20.974 1/s
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to 4.41kg/m3 (or α = 0.9956), which is still 260 times larger than the saturated vapor density
of 0.017kg/m3 at 293K.

The velocity field clearly indicates the complexity of the closure region of the cavitation, as
seen in figures 6-11, 6-14 and 6-17. The flow locally becomes stationary, raising the local
pressure, which will eventually suppress the formation of cavitation. A more detailed analysis
of the flow field revealed that the x-component of the velocity field can become negative in
the closure region, suggesting some kind of recirculation in the wake of the cavitation zone.
Various authors, like Senocak and Shyy [64] and Bouziad [16], provide background on the
complex flow fields that form in the closure region. The fact that the recirculation in the
cavitation zone is also observed in the current model strengthens the fact that the model is
providing a physically accurate representation of cavitation. Do note, that with the choice of
barotropic modeling it is automatically assumed that the flows cannot contain any baroclinical
component. Gopalan and Katz [37] show in their work that baroclinical torque can play a
very prominent role in the correct modeling of the closure region. Thus barotropic modeling
may not be the preferred choice if a large interest is taken in the detailed modeling of the
closure region.

6.4 Cavitation over a caliber headshape: butane and propane

Before discussing the differences between water, butane, and propane, which are only compared
for σ = 0.3, it is again stressed the simulations for butane and propane are predictions based
on the current model, thus are unvalidated at this time.

The biggest difference in the cavitation development of water, butane and propane is found
in the size of the cavitation region and the maximum void fraction obtained in this region.
The cavitation length of water is 30.4 mm, while the cavitation length of butane is only
9.9 mm (counting only the first vapor pocket) and the cavitation length of propane is a mere
8.8 mm. Also the maximum void fraction obtained by water is in the order of 99%, coming
relatively close to the density of the pure vapor phase. Butane reaches a maximum void
fraction of 45% and propane reaches a maximum void fraction of 12%. Since the current
model assumes a homogeneous mixture of the two phases, one could state the lower void
fraction translates to less or smaller bubbles occupying the zone in which cavitation is taking
place. It is hypothesized that the cavitation zones of butane and propane are more like a
bubbly mixture of the two phases, while the cavitation zone of water is almost a pure pocket
of vapor.

The 2D results are quite comparable with the 1D results as discussed in chapter 5. The
influence of the liquid-vapor density ratio as discussed in chapter 5.4 is again seen in the 2D
results. For example pressure profile for water (figure 6-7) is almost flat in the region that is
cavitating, staying relatively close the saturation pressure. Propane and butane (figure 6-8
and 6-22) go well below the saturation pressure in the cavitating region, resulting in pressure
profiles that are quite similar to pressure profiles in figure 5-7 and figure 5-10. The velocity
fields on the other hand are completely different when comparing the 1D scenario (figure 5-4)
with the 2D scenario (figure 6-17). As was already stated in chapter 5.4, one dimension is
simply not enough to capture the complex flow patterns and circulation that occur in the
closure region of the cavitation zone.
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The velocity fields of butane and propane, when compared with water, are very similar in
magnitude and are only slightly influenced by the changes in fluid properties. The general
magnitude of the velocity field hardly changes. The recirculation in the closure region, as
seen with water (figure 6-17), is not found back in the velocity fields of butane (figure 6-20)
and propane (figure 6-23). The pressure field varies significantly between each of the fluids,
in which the ratio between the free stream pressure and the saturation pressure plays an
important role. For water the free stream pressure is in the order of 0.1-0.2 bar and the
saturation pressure of water is 0.023339 bar, meaning that the free stream pressure is several
times the value of the saturation pressure. For propane the free stream pressure is almost
equal to the saturation pressure. The balance of the pressure forces is much more delicate
in propane, a good initial field has to be provided to prevent large parts of the domain
turning into vapor, which will destabilize the entire solution. Although the spurious pressure
oscillations for water are much more intense due to the large pressure and liquid-vapor density
ratios, the general solution tends to be more stable than the solution of propane, that cannot
cope with a badly formulated initial guess.

The fact that it is very hard to develop a method that numerically treats every fluid equally,
has also been noted in the previous chapter (chapter 5.4). The results for butane for σ = 0.3,
as shown in figure 6-19 through 6-21, shows the consequence of choosing a single setting for
the numerics of the solver. The cavitation zone stops abruptly at s/d = 0.9 and reforms itself
at s/d = 1.15, resulting in very strange gap in between two separated parts of cavitation.
The value of K in Venkatakrishnan’s limiters is not adjusted individually for each fluid.
The choice for K = 5 is based on the performance of the solver using water as the working
fluid. A possible explanation for the gap found in the cavitation zone of butane could be
that Venkatakrishnan’s limiter is only triggered in a small section of the cavitation region,
resulting in the gap that can be clearly observed in figure 6-19.

When the damage caused by cavitation needs to be predicted, water is used for the CFD
simulations even when the actual working fluid is a hydrocarbon like butane or propane. The
reasoning behind this method is that water, for a similar situation, will always cavitate more
and will collapse with more energy. Thus predicting cavitation damage with water will result
in a ’worst case’ scenario. If the design is correctly adjusted so that the cavitation damage is
within the required bounds, assuming water as the working fluid in the CFD calculations, the
actual working fluid (some hydrocarbon) will never be able to cause more damage than the
scenario based on water. A similar strategy could be applied to head drop curves, but when
comparing figures 6-7, 6-19, and 6-22, it becomes clear that water cannot always be taken as
the reference for the ’worst case’ scenario, assuming that the head lost due to cavitation is
always less than the head drop predicted with water as the working fluid. This is the main
reason for developing this model. In order to predict head drop curves, and ’NPSH3’ curves
by extension, the shape and size of the cavitation region has to be predicted using the same
fluid properties as the working fluid that will be used in the field. Calculating ’NPSH3’ curves
for hydrocarbons, but still basing the calculation on water, is simply not sufficient.
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Figure 6-5: 2D cavitating head shape - water - σ = 0.5, plot of pressure coefficent as a function
of dimensionless edge length, comparing the CFD simulation with data from Rouse & McNown [9]
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Figure 6-6: 2D cavitating head shape - water - σ = 0.4, plot of pressure coefficent as a function
of dimensionless edge length, comparing the CFD simulation with data from Rouse & McNown [9]
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Figure 6-7: 2D cavitating head shape - water - σ = 0.3, plot of pressure coefficent as a function
of dimensionless edge length,comparing the CFD simulation with data from Rouse & McNown [9]
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Figure 6-8: 2D cavitating head shape - butane - σ = 0.3, plot of pressure coefficent as a function
of dimensionless edge length, CFD results only
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Figure 6-9: 2D cavitating head shape - propane - σ = 0.3, plot of pressure coefficent as a
function of dimensionless edge length, CFD results only
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Figure 6-10: 2D cavitating head shape - water - σ = 0.5, plot of void fraction field

Figure 6-11: 2D cavitating head shape - water - σ = 0.5, plot of velocity field

Figure 6-12: 2D cavitating head shape - water - σ = 0.5, plot of pressure field
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Figure 6-13: 2D cavitating head shape - water - σ = 0.4, plot of void fraction field

Figure 6-14: 2D cavitating head shape - water - σ = 0.4, plot of velocity field

Figure 6-15: 2D cavitating head shape - water - σ = 0.4, plot of pressure field
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Figure 6-16: 2D cavitating head shape - water - σ = 0.3, plot of void fraction field

Figure 6-17: 2D cavitating head shape - water - σ = 0.3, plot of velocity field

Figure 6-18: 2D cavitating head shape - water - σ = 0.3, plot of pressure field
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Figure 6-19: 2D cavitating head shape - butane - σ = 0.3, plot of void fraction field

Figure 6-20: 2D cavitating head shape - butane - σ = 0.3, plot of velocity field

Figure 6-21: 2D cavitating head shape - butane - σ = 0.3, plot of pressure field
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Figure 6-22: 2D cavitating head shape - propane - σ = 0.3, plot of void fraction field

Figure 6-23: 2D cavitating head shape - propane - σ = 0.3, plot of velocity field

Figure 6-24: 2D cavitating head shape - propane - σ = 0.3, plot of pressure field
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Chapter 7

Discussion and review

The purpose of this chapter is to discuss and review the results obtained with the 1D models
and 2D models, pointing out key observations derived from the results. This is followed by a
discussion of possible application of the model. The chapter is concluded by identifying the
current limits of the model and suggesting possible recommendations for future work on the
subject.

7.1 Discussion of 1D results

In general it can be concluded that the main goals as stated in the introduction (chapter 1.2)
have been achieved, as was the intention in order to consider the final result a successful
approach in modeling cavitation. The construction of a barotropic isenthalpic model was
successful and the resulting model was validated using thermodynamic data. The cavitation
development of water, butane and propane was demonstrated in the 1D implementation and
all the input needed by the model consisted of fluid properties or fitting functions taken
from fluid properties. The goal to have no empirical relations inside the model has been
fully achieved, providing the possibility to model cavitation for any fluid as long as sufficient
thermodynamic data is available. From the beginning it was known that the assumption to
evaluate all fluid properties at free-stream temperature may not be valid for each fluid, since
the thermal properties of each fluid are different, causing the fluid to be more susceptible to
local changes in temperature. After analyzing the local thermodynamics of cavitation, the
thermal susceptibility of each fluid was evaluated using Brennen’s thermal parameter. The
conclusion is that, although butane and propane are considered to be more susceptible to
local temperature changes than water, the barotropic model is not significantly influenced by
the assumption to evaluate at free-stream temperature. The actual influence of updating the
temperature dependent fluid properties on the barotropic relation is low enough to consider
it a second-order effect.

The numerics involved with the accurate description of cavitation are equally important
compared to the physical modeling of cavitation and may be even considered more difficult
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when modeling the fluids as fully compressible. The main challenge lies in the fact that two
extremes need to be combined in the same solver and interact in a stable manner. On one
side the vapor has a low density and is also very compressible, on the other side the liquid has
a high density and is weakly compressible at best. When the fluid starts to cavitate the solver
needs to facilitate a crossing from the (almost) incompressible liquid to the fully compressible
vapor, while maintaining conservation for mass and momentum.

It has been repeatedly shown in this thesis that the ratio between the liquid density and the
vapor density is not only a property of the fluid and thus influences the barotropic behavior,
but also plays a very large role in the overall stability of the numerics. The bigger the
ratio is between the liquid and the vapor density, the more aggressive the behavior of the
numerics become to keep the solution stable. Larger vapor liquid density ratios are more
difficult to handle in obtaining a stable solution and many of the numerical issues found in
the current method are more present at these higher ratios. Interestingly enough, water is
almost always the fluid of interest in cavitation research and hardly considered to be ’exotic’
from the perspective of process liquids. But the fact that the density drops by a factor of
57655, makes cold water one of the hardest fluids to describe. If a compressible solver can
accurately handle the cavitation development of water with the full jump in density, it should
have no difficulties with butane or propane that have liquid to vapor density ratios several
orders of magnitude lower than water.

7.2 Discussion of 2D results

The transition from 1D to 2D proved to be much more difficult than expected. For reasons not
yet fully understood, the model becomes much more sensitive and unstable for calculations
in 2-dimensional domains. One of the main issues with the current method is the amount of
parameters that can be changed to influence the numerics. Venkatakrishnan’s limiters has a
parameter K that determines the threshold that needs to be crossed before the limiter will
act. The compressible solver also needs a very small time step in order to keep the solution
stable. OpenFOAM has a library containing many different discretization schemes to calculate
local derivatives and laplacians, this is another uncertainty that can be manipulated and will
influence the overall numerical behavior of the solver. Taking all these variables into account,
it is likely that the ideal stable setting for the solver is an optimization of the previously
mentioned parameters. But due to long calculation times, it is practically unworkable to go
through these combinations of parameters in a process of trial and error.

Also the influence of the turbulence models, although not discussed in great detail in the
current work, are important for capturing the correct shape of the cavitation zone. The
viscosity that is added locally by the RANS-type turbulence models is needed to force the
cavitation region into a stable shape. When generally accepted values are chosen for the
turbulent viscosity ratio, β, which should be in the order of 1 to 5 for external flow or 10
at most for very turbulent external flows, resulted in unstable cavitation that fluttered away
from the wall in a unphysical way. By increasing the turbulent viscosity ratio β to 100, which
is closer to values found in extremely turbulent pipe flow, the cavitation region became stable
and fixed, with a clear starting point and a clear closure point as is to be expected for attached
or sheet cavitation.
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Granted that the model does not yet perform as expected, needing measures like the extreme
turbulence to close the cavitation region, it did show promising results. The general shape
of the cavitation region for water looked very similar to pictures taken by Rouse & McNown.
Even the cavitation length and pressure profile are predicted quite well by the model, which
offers possibilities for practical applications of the model. The mesh used in the calculation
is relatively rough, containing only 16,800 cells to span a relatively large domain, but the
accuracy shown in the calculation of the pressure profile (figure 6-5 through 6-9) is more
than adequate. This confirms that the model is able to capture the cavitation development
of water, even on a relatively coarse grid. The predictions for butane and propane, though
hard to judge without reference material, looked plausible. The model took the different fluid
properties into account and showed differences in cavitation development that are very similar
to the differences observed between the fluids in the 1D implementation. The numerics are
the biggest downfall of the model in its current state and need much more attention than
received in this thesis.

7.3 Application possibilities of the model

The longterm goal of the model developed in this thesis is to apply it to actual engineering
problems when considering pump performance and lifetime. The current version of the model
is likely too inefficient to be of any practical use, meaning that the model would simply take
too much time for a practical grid (1M cells) during a short simulation of 0.2s (10 revolutions
of a pump driven at 50Hz). Although the current version of the model is not fully ready for
practical day-to-day use, an overview of possible future applications is presented to emphasize
the model’s strengths.

Correct prediction of the cavity length can be very interesting due to damage models used
by Flowserve according to the book of Gülich [65]. According to Gülich the erosion rate for
attached or sheet cavitation, φc, in [mm/h] scales with the cavitation length:

φc ∝
(

Lcav
Lcav,10

)N
(7-1)

In this equation Lcav,10 is the reference cavitation length of 10mm as used by Gülich in the
experiments to calibrate the model. Coefficient N is equal to 2.83 for cavitation on the suction
side of the impeller blade and equal to 2.60 for cavitation on the pressure side of the impeller
blade. Also the paper by Schiavello & Visser [66] emphasizes that this relation can be very
useful in predicting long term damage based on visual assessment of cavitation. If this visual
assessment is obtained from actual experiment using a test loop or taken from a good quality
CFD simulation should not matter. In the past good results have been obtained predicting
cavitation damage based on cavitation lengths taken from CFD simulations.

Due to the barotropic modeling of the cavitation, it is mandatory for the pressure to go below
saturation pressure in order to reach lower densities. In some other cavitation models, like
in the cavitation model of Koop [26] the pressure is cut off at saturation pressure, meaning
that the cavitation zone itself is at a constant pressure equal to the saturation pressure and
cannot go below saturation pressure. In order to predict the energy that is released when a
cavitation bubble implodes, an accurate description of the pressure inside the cavitation zone
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is required. The barotropic model cannot only describe the shape and length of the cavity
but could also be used to estimate the energy that is released by the cavitation bubble when
it implodes.

The last possible application is the calculation of head drop curves in order to specify
quantities like ’NPSH3’ (NPSH required at the point where the pump loses 3% head).
Previously this was a task performed by CFX-Tascflow and since one of the main goals
of this thesis project is to develop a model that can fill the position left by Tascflow, it is only
logical that at some point this model will be used to calculate head drop curves. However,
a lot of additions and modifications are required before this model is ready to be used in
combination with centrifugal pumps. For example, the model is only tested for stationary
grids in the current work, the rotating domain of an impeller is not yet supported.

7.4 Limitations the model

Due to choices made during the development of the current cavitation model, the model
has certain limits in its performance and abilities to model the development of cavitation.
The aim of this section is to inform a possible user about the limitations of the model.
Do note that the analysis of these limitations is not equal to a recommendation to remove
these shortcomings in future work. Most of these limitations are very fundamental in nature,
meaning that these cannot be resolved by improving the current methods. To solve these
shortcomings the overall model needs to be re-evaluated and key components of the model
need to be rewritten. Chapter 7.5 provides actual recommendations for the model, which are
deemed to be realizable using the current state of the model and solver as a starting point.

The current method to advance the problem in time is the explicit 4th order Runge-Kutta
scheme. The explicit nature of the scheme is closely tied to the CFL number, which per
definition should not become larger than 1 for explicit schemes. If the solver is made with
an implicit method instead of an explicit method, this should not only benefit the maximum
time step that can be taken, but can also take away the conditional stability requirements
of an explicit method. The main downside of an implicit method is that these methods
rarely provide an analytical solution, thus needing some kind of a root-finding algorithm (for
example Newton’s method) to obtain a solution. This will be much more complex to program
and will take more time to solve for each time step. However, it can be argued that the
additional time needed to solve each time step is compensated by larger maximum time step
that can be taken.

Although this model was developed with a fully compressible solver in mind, it is a fact that
most commercial CFD suites use an incompressible solver and only a limited number of these
suites have included a fully compressible solver. An interesting future project could be to
take the foundation for an isenthalpic expansion from this thesis but make it suitable for an
incompressible solver. One could for instance develop new source terms for equations 2-32
and 2-33 that adhere to the principle of an isenthalpic expansion. Another possibility would
be to stay much closer to the original principle of the CEV model as illustrated by figure 3-1,
requiring the full solution of mass, momentum and energy. The solution of the energy equation
can then be combined with tabulated enthalpy data of the relevant fluid to obtain a description
of the density field.
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One of the main disadvantages of a barotropic model is that it implies that the model is
independent of temperature. In chapter 3.2.5 it is discussed how the local temperature
decrease (due to cavitation) influences the local fluid properties and suppresses the development
of cavitation. The validation of the model for propane and butane, which are deemed
thermally sensitive according to Brennen’s parameter Σ (chapter 2.1.7), showed that the
influence of adjusting the fluid properties to the local temperature is minimal. To fully close
this gap, the barotropic model has to be abandoned in favor of a full equation of state like the
Peng-Robinson-Stryjek-Vera or Redlich-Kwong equation of state. In order to include a full
equation of state, replacing the current barotropic relation, the energy conservation equation
(equation 4-15) needs to be brought back into the Euler equations. The cavitation model
written by Koop [26] followed a very similar approach.

7.5 Future recommendations

The general outcome of this thesis is deemed satisfactory since a number of important steps
are taken in the development of modeling cavitation as a isenthalpic barotropic fluid. But
there is still much room for improvement (also see chapter 7.4). In the opinion of the author
of this thesis the following points are interesting and relevant topics for future work.

In its current state the stability of the solver leaves a lot to be desired. Looking back at both
the 1D validation and the 2D validation it is clear that the current numerical methods are not
always stable and can struggle with convergence to a steady state. The 1D implementation
showed that the numerical schemes, as they are currently implemented, can lead to stable
solutions. But the observations made in chapter 5 showed that the numerics are influenced
by both the fluid properties and the numerical parameter settings: for example, parameter K
of Venkatakrishnan’s limiter. In the 2D implementation the numerical issues are much more
present and harder to overcome than in the 1D implementation. Especially the convergence of
the pressure field is very slow (or stalls) and is extremely sensitive to external influences. The
method has to be tuned for different geometries and a combination of parameters is required
to obtain a stable solution. In the timespan of this thesis the author was not able to find an
ideal combination for those parameters, leading to a very time consuming process of trial and
error for each simulation. A good topic for future study would be a full numerical study of
the current work, identifying sensitivities and stability limits for the current methods.

Much effort was taken to factor in the complex numerics associated with the description of
cavitation. In the end, the main downfall of this model can be found in those numerics.
One of the main differences between the incompressible cavitation models using the Rayleigh
term (chapter 2.2.4) and the fully compressible cavitation model, as developed in this thesis,
is that the mass transfer for the fully compressible model happens instantaneously. To
counter this effect, one has no choice to introduce complex numerics to limit and stabilize the
solution. A possible improvement could be to no longer assume instantaneous thermodynamic
equilibrium, but allow for a certain ’relaxation time’ to transfer from non-equilibrium to
equilibrium. This will limit the mass transfer between phases and should reduce the need
for advanced numerics to stabilize the solution. Both of these recommendations will lead to
improved performance and more stable numerics when applying the current model and solver
to future test cases involving different fluids.
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Appendix A

Appendix A: 1D Matlab code

A.1 EulerSolver_1D_CEV.m (main application)

1 clear all
2 close all
3 clc
4
5 %data_WATER_10ms % run on: 08-08
6 %data_WATER_9ms % run on: 08-08
7 %data_WATER_8ms % run on: 08-08
8 %data_BUTANE_10ms % run on: 08-08
9 %data_BUTANE_9ms % run on: 08-08

10 %data_BUTANE_8ms % run on: 08-08
11 data_PROPANE_10ms % run on: 09-08
12 %data_PROPANE_9ms % run on: 09-08
13 %data_PROPANE_8ms % run on: 09-08
14
15 %% fluidprop calls
16
17 Init_FluidProp
18
19 ErrorMsg = invoke (FP , ’SetFluid_M’ , Model , nCmp , Cmp , Cnc )
20 FP . SetUnits (’SI’ ,’’ ,’’ ,’’ )
21
22 psat = invoke (FP , ’Pressure’ ,’Tq’ ,Tinf , 0 ) ;
23 pc = invoke (FP , ’Pcrit’ ) ;
24 rhol = invoke (FP , ’Density’ ,’Tq’ ,Tinf , 0 ) ;
25 rhov = invoke (FP , ’Density’ ,’Tq’ ,Tinf , 1 ) ;
26
27 % cl = invoke(FP,’SoundSpeed ’,’Tq’,Tinf ,0);
28 % cv = invoke(FP,’SoundSpeed ’,’Tq’,Tinf ,1);
29
30 %% grid setup - 2D grids possible but calc. will only span x-cells
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31
32 tnx = nx + 2∗gp ;
33 tny = ny + 2∗gp ;
34
35 xstart = −1;
36 xend = 1 ;
37 ystart = 0 ;
38 yend = 1 ;
39
40 Lx = xend−xstart ;
41 Ly = yend−ystart ;
42
43 dx = Lx/nx ;
44 dy = Ly/ny ;
45
46 % Definition of grid numbering
47 % x=0 x=1
48 % grid |---o---|---o---|---o--- ... --|---o---|
49 % 1 1 2 2 3 nx-1 nx
50
51 if nx == 1
52 xc = 0.5∗ Lx ;
53 yc = ystart+(dy . ∗ ( 1 : ( ny+2∗gp ) ) − (dy/2+(gp∗dy ) ) ) ;
54 elseif ny ==1
55 xc = xstart+(dx . ∗ ( 1 : ( nx+2∗gp ) ) − (dx/2+(gp∗dx ) ) ) ;
56 yc = 0.5∗ Ly ;
57 else
58 xc = xstart+(dx . ∗ ( 1 : ( nx+2∗gp ) ) − (dx/2+(gp∗dx ) ) ) ;
59 yc = ystart+(dy . ∗ ( 1 : ( ny+2∗gp ) ) − (dy/2+(gp∗dy ) ) ) ;
60 end
61
62 xw = linspace ( xstart , xend , nx+1) ;
63 yw = linspace ( ystart , yend , ny+1) ;
64
65 if viewgrid == 1
66 gridplot (nx , ny , Lx , Ly , xw , yw , xc , yc ) ;
67 end
68
69 %% setup matrices
70
71 [ X , Y ] = meshgrid (xc , yc ) ;
72 X = X ’ ;
73 Y = Y ’ ;
74
75 F = zeros (tnx−1 ,2) ;
76 Ustar = zeros (tnx , 2 ) ;
77 U = zeros (tnx , 2 ) ;
78 UL = zeros (tnx−1 ,2) ;
79 UR = zeros (tnx−1 ,2) ;
80
81 %% initialize matrices - according to init. cond. from Sod Shock tube
82
83 rho_init = ( ( ( ( p_init−psat ) /K0 )+1)^(1/N ) ) ∗rhol ;
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84
85 for i = 1 : tnx
86 U (i , 1 ) = rho_init ;
87 U (i , 2 ) = rho_init∗u_init ;
88 end
89
90 %% setup interpolation of Pcev
91
92 p_CEVinterp = linspace (psat , 0 . 0 1∗ psat , 2 e3 ) ;
93 rho_CEVinterp = CEV_interp ( p_CEVinterp , psat , pc , rhol , rhov , . . .
94 CEV_a , CEV_b , CEV_c , CEV_gV ) ;
95
96 %% time loop
97 t = 0 ;
98 count = 0 ;
99 rescount = 1 ;

100
101 wbstring = [ ’calculating: end time = ’ , num2str ( tend ) , . . .
102 ’ - grid cells = ’ , num2str (nx∗ny ) ] ;
103 h = waitbar (0 , wbstring ) ;
104
105 makeplot
106 makeplot2
107
108 while t < tend
109
110 i = 2 : tnx−1;
111 im1 = 1 : tnx−2;
112
113 % initialize/update vector
114 Ustar = U ;
115 [ rho , u , p , c ] = CEV_calc ( Ustar , psat , pc , rhol , rhov , K0 , N , . . .
116 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
117 dt = calc_dt ( Ustar , c , CFL , dx ) ;
118
119 % Runge Kutta - step 1
120 [ UL , UR ] = MUSCL ( Ustar , dx ) ;
121 [ rhoL , vL , pL , cL ] = CEV_calc (UL , psat , pc , rhol , rhov , K0 , N , . . .
122 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
123 [ rhoR , vR , pR , cR ] = CEV_calc (UR , psat , pc , rhol , rhov , K0 , N , . . .
124 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
125 F = AUSM_HLLC (rhoL , rhoR , vL , vR , pL , pR , cL , cR , tnx ) ;
126 RHS = calc_RHS ( Ustar , X ) ;
127
128 Ustar (i , : )= U (i , : ) − (1/4) ∗(dt/dx ) ∗(F (i , : ) − F (im1 , : ) ) − (1/4) ∗dt∗RHS (i , : ) ;
129
130 [ rho , u , p , c ] = CEV_calc ( Ustar , psat , pc , rhol , rhov , K0 , N , . . .
131 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
132 Ustar = apply_BC ( Ustar , rho , u , p , c , u_inlet , p_outlet , psat , rhol , K0 , N , dt , dx , tnx ) ;
133
134 % Runge Kutta - step 2
135 [ UL , UR ] = MUSCL ( Ustar , dx ) ;
136 [ rhoL , vL , pL , cL ] = CEV_calc (UL , psat , pc , rhol , rhov , K0 , N , . . .
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137 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
138 [ rhoR , vR , pR , cR ] = CEV_calc (UR , psat , pc , rhol , rhov , K0 , N , . . .
139 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
140 F = AUSM_HLLC (rhoL , rhoR , vL , vR , pL , pR , cL , cR , tnx ) ;
141 RHS = calc_RHS ( Ustar , X ) ;
142
143 Ustar (i , : )= U (i , : ) − (1/3) ∗(dt/dx ) ∗(F (i , : ) − F (im1 , : ) ) − (1/3) ∗dt∗RHS (i , : ) ;
144
145 [ rho , u , p , c ] = CEV_calc ( Ustar , psat , pc , rhol , rhov , K0 , N , . . .
146 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
147 Ustar = apply_BC ( Ustar , rho , u , p , c , u_inlet , p_outlet , psat , rhol , K0 , N , dt , dx , tnx ) ;
148
149 % Runge Kutta - step 3
150 [ UL , UR ] = MUSCL ( Ustar , dx ) ;
151 [ rhoL , vL , pL , cL ] = CEV_calc (UL , psat , pc , rhol , rhov , K0 , N , . . .
152 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
153 [ rhoR , vR , pR , cR ] = CEV_calc (UR , psat , pc , rhol , rhov , K0 , N , . . .
154 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
155 F = AUSM_HLLC (rhoL , rhoR , vL , vR , pL , pR , cL , cR , tnx ) ;
156 RHS = calc_RHS ( Ustar , X ) ;
157
158 Ustar (i , : )= U (i , : ) − (1/2) ∗(dt/dx ) ∗(F (i , : ) − F (im1 , : ) ) − (1/2) ∗dt∗RHS (i , : ) ;
159
160 [ rho , u , p , c ] = CEV_calc ( Ustar , psat , pc , rhol , rhov , K0 , N , . . .
161 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
162 Ustar = apply_BC ( Ustar , rho , u , p , c , u_inlet , p_outlet , psat , . . .
163 rhol , K0 , N , dt , dx , tnx ) ;
164
165 % Runge Kutta - step 4
166 [ UL , UR ] = MUSCL ( Ustar , dx ) ;
167 [ rhoL , vL , pL , cL ] = CEV_calc (UL , psat , pc , rhol , rhov , K0 , N , . . .
168 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
169 [ rhoR , vR , pR , cR ] = CEV_calc (UR , psat , pc , rhol , rhov , K0 , N , . . .
170 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
171 F = AUSM_HLLC (rhoL , rhoR , vL , vR , pL , pR , cL , cR , tnx ) ;
172 RHS = calc_RHS ( Ustar , X ) ;
173
174 Ustar (i , : )= U (i , : ) − (1/1) ∗(dt/dx ) ∗(F (i , : ) − F (im1 , : ) ) − (1/1) ∗dt∗RHS (i , : ) ;
175
176 [ rho , u , p , c ] = CEV_calc ( Ustar , psat , pc , rhol , rhov , K0 , N , . . .
177 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
178 Ustar = apply_BC ( Ustar , rho , u , p , c , u_inlet , p_outlet , psat , rhol , K0 , N , dt , dx , tnx ) ;
179
180 % final update vector
181 [ UL , UR ] = MUSCL ( Ustar , dx ) ;
182 [ rhoL , vL , pL , cL ] = CEV_calc (UL , psat , pc , rhol , rhov , K0 , N , . . .
183 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
184 [ rhoR , vR , pR , cR ] = CEV_calc (UR , psat , pc , rhol , rhov , K0 , N , . . .
185 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
186
187 F = AUSM_HLLC (rhoL , rhoR , vL , vR , pL , pR , cL , cR , tnx ) ;
188 [ rho , u , p , c ] = CEV_calc ( Ustar , psat , pc , rhol , rhov , K0 , N , . . .
189 rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV ) ;
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190 Ustar = apply_BC ( Ustar , rho , u , p , c , u_inlet , p_outlet , psat , rhol , K0 , N , dt , dx , tnx ) ;
191
192 U = Ustar ;
193
194 waitbar (t/tend , h ) ;
195
196 % creating ’garbage ’, break if needed
197 if ( any ( isnan (U ( : , 2 ) ) ) )
198 errordlg (’NaN values in m’ )
199 break
200 end
201
202 if mod ( count , 2 00 ) == 0
203 for i = 1 : size (F , 1 )−1
204 diff (i , : ) = F (i , : )−F (i+1 , :) ;
205 end
206 tres ( rescount ) = t ;
207 res1 ( rescount ) = log10 ( abs ( sum ( diff ( : , 1 ) ) ) ) ;
208 res2 ( rescount ) = log10 ( abs ( sum ( diff ( : , 2 ) ) ) ) ;
209 updateplot
210 updateplot2
211 rescount = rescount+1;
212 end
213
214 t = t + dt ;
215 count = count + 1 ;
216 end
217
218 U = Ustar ;
219
220 delete (h )

A.2 Apply_BC.m (subfunction)

1 function [ U ] = apply_BC (U , rho , u , p , c , u_inlet , p_outlet , psat , rhol , K0 , N , dt , dx , tnx )
2 %% first order - 1 ghost point
3
4 c_avg = mean ( [ c (1 ) c (2 ) c (tnx−1) c ( tnx ) ] ) ;
5 NDT = ( c_avg∗dt ) /dx ;
6
7 p_ghost_inlet = (p (1 ) +0.5∗NDT ∗(p (2 )+p (1 )+rho (1 ) ∗c (1 ) ∗( u_inlet−u (2 ) ) ) ) /(1+NDT ) ;
8 u_ghost_inlet = (u (1 ) +0.5∗NDT ∗ ( ( ( p (1 )−p (2 ) ) /( rho (1 ) ∗c (1 ) ) )+u_inlet+u (2 ) ) ) /(1+NDT ) ;
9

10 p_ghost_outlet = (p ( tnx ) +0.5∗NDT ∗(p (tnx−1)+p_outlet . . .
11 +rho ( tnx ) ∗c ( tnx ) ∗(u (tnx−1)−u ( tnx ) ) ) ) /(1+NDT ) ;
12 u_ghost_outlet = (u ( tnx ) +0.5∗NDT ∗ ( ( ( p (tnx−1)−p_outlet ) . . .
13 /( rho ( tnx ) ∗c ( tnx ) ) )+u ( tnx )+u (tnx−1) ) ) /(1+NDT ) ;
14
15 rho_ghost_inlet = ( ( ( ( p_ghost_inlet−psat ) /K0 )+1)^(1/N ) ) ∗rhol ;
16 rho_ghost_outlet = ( ( ( ( p_ghost_outlet−psat ) /K0 )+1)^(1/N ) ) ∗rhol ;
17
18 % inlet
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19
20 U ( 1 , 1 ) = rho_ghost_inlet ;
21 U ( 1 , 2 ) = rho_ghost_inlet∗u_ghost_inlet ;
22
23 % outlet
24
25 U (tnx , 1 ) = rho_ghost_outlet ;
26 U (tnx , 2 ) = rho_ghost_outlet∗u_ghost_outlet ;
27
28 % % inlet
29 %
30 % U(1,1) = U(2,1);
31 % U(1,2) = U(2,1)*u_inlet;
32 %
33 % % outlet
34 %
35 % U(tnx ,1) = ((((p_outlet -psat)/K0)+1)^(1/N))*rhol;
36 % U(tnx ,2) = U(tnx -1,2);

A.3 AUSM_HLLC.m (subfunction)

1 function [ F ] = AUSM_HLLC ( rhoL_ , rhoR_ , uL_ , uR_ , pL_ , pR_ , cL_ , cR_ , tnx )
2
3 i = 1 : tnx−1;
4 ip1 = 2 : tnx ;
5
6 rhoL = rhoR_ (i ) ;
7 rhoR = rhoL_ ( ip1 ) ;
8 uL = uR_ (i ) ;
9 uR = uL_ ( ip1 ) ;

10 pL = pR_ (i ) ;
11 pR = pL_ ( ip1 ) ;
12 cL = cR_ (i ) ;
13 cR = cL_ ( ip1 ) ;
14
15 cbar = 0 .5∗ ( cL+cR ) ;
16 rhobar = 0 .5∗ ( rhoL+rhoR ) ;
17 ML = uL . / cbar ;
18 MR = uR . / cbar ;
19 Mbar = 0 .5∗ ( ML .^2+MR . ^2 ) ;
20
21 phalf = zeros (tnx−1 ,1) ;
22 mdot = zeros (tnx−1 ,1) ;
23
24 Ku = 3/4 ;
25 Minf = 0 ;
26 M0 = sqrt ( min (1 , max ( Mbar (i ) , Minf ) ) ) ;
27 fa = M0 .∗(2−M0 ) ;
28 alpha = (3/16)∗(−4+5∗fa . ^2 ) ;
29
30 pU = −2∗Ku .∗ fa .∗ rhobar (i ) .∗ cbar (i ) . ^ 2 .∗ pPlus (ML (i ) , alpha ) . . .
31 .∗ pMin (MR (i ) , alpha ) . ∗ ( MR (i )−ML (i ) ) ;
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32
33 phalf (i ) = pL (i ) .∗ pPlus (ML (i ) , alpha ) + pR (i ) .∗ pMin (MR (i ) , alpha ) + pU ;
34
35 SL = min (uL (i )−cL (i ) , uR (i )−cR (i ) ) ;
36 SR = max (uL (i )+cL (i ) , uR (i )+cR (i ) ) ;
37 SM = (pR (i )−pL (i )+rhoL (i ) .∗ uL (i ) . ∗ ( SL−uL (i ) )−rhoR (i ) .∗ uR (i ) . ∗ ( SR−uR (i ) ) ) . / . . .
38 ( rhoL (i ) . ∗ ( SL−uL (i ) )−rhoR (i ) . ∗ ( SR−uR (i ) ) ) ;
39
40 mdot (SL >= 0) = rhoL (SL >= 0) .∗ uL (SL >= 0) ;
41
42
43 mdot (SL < 0 & SM >= 0) = rhoL (SL < 0 & SM >= 0) .∗ uL (SL < 0 & SM >= 0) . . .
44 +SL (SL < 0 & SM >= 0) . . .
45 . ∗ ( rhoL (SL < 0 & SM >= 0) . ∗ ( ( SL (SL < 0 & SM >= 0) . . .
46 −uL (SL < 0 & SM >= 0) ) . . .
47 . / ( SL (SL < 0 & SM >= 0)−SM (SL < 0 & SM >= 0) ) ) . . .
48 −rhoL (SL < 0 & SM >= 0) ) ;
49 mdot (SM < 0 & SR >= 0) = rhoR (SM < 0 & SR >= 0) .∗ uR (SM < 0 & SR >= 0) . . .
50 +SR (SM < 0 & SR >= 0) . . .
51 . ∗ ( rhoR (SM < 0 & SR >= 0) . ∗ ( ( SR (SM < 0 & SR >= 0) . . .
52 −uR (SM < 0 & SR >= 0) ) . . .
53 . / ( SR (SM < 0 & SR >= 0)−SM (SM < 0 & SR >= 0) ) ) . . .
54 −rhoR (SM < 0 & SR >= 0) ) ;
55 mdot (SR < 0) = rhoR (SR < 0) .∗ uR (SR < 0) ;
56
57 F ( : , 1 ) = mdot ;
58 F ( : , 2 ) = 0 .5∗ mdot . ∗ ( uL + uR ) − 0 . 5 . ∗ abs ( mdot ) . ∗ ( uR−uL ) + phalf ;
59
60 clear i

A.4 calc_dt.m (subfunction)

1 function [ dt ] = calc_dt (U , c , CFL , dx )
2
3 v_max = max ( abs (U ( : , 2 ) . / U ( : , 1 ) ) ) ;
4 c_max = max (c ) ;
5 dt = ( CFL∗dx ) /( v_max+c_max ) ;
6
7 end

A.5 calc_RHS.m (subfunction)

1 function [ out ] = calc_RHS (U , X )
2
3 dA = zeros ( size (X ) ) ;
4 A = zeros ( size (X ) ) ;
5
6 A (X<−0.5) = 2 ;
7 A (X>=−0.5 & X<=0.5) = 1+sin (pi∗X (X>=−0.5 & X<=0.5) ) . ^ 2 ;
8 A (X>0.5) = 2 ;
9

Master of Science Thesis Gert-Jan Meijn



112 Appendix A: 1D Matlab code

10 dA (X<−0.5) = 0 ;
11 dA (X>=−0.5 & X<=0.5) = pi∗sin (2∗pi∗X (X>=−0.5 & X<=0.5) ) ;
12 dA (X>0.5) = 0 ;
13
14 out ( : , 1 ) = ( ( U ( : , 2 ) ) . / A ) .∗ dA ;
15 out ( : , 2 ) = ( ( U ( : , 2 ) . ∗ ( U ( : , 2 ) . / U ( : , 1 ) ) ) . / A ) .∗ dA ;
16
17 end

A.6 CEV_calc.m (subfunction)

1 function [ rho , v , p , c ] = CEV_calc (U , psat , pc , rhol , rhov , K0 , N . . .
2 , rho_CEVinterp , p_CEVinterp , CEV_a , CEV_b , CEV_c , CEV_gV )
3
4 % IMPORTANT!
5 % different nomenclature possibe --> LEFT = PLUS / RIGHT = MINUS
6 rho = U ( : , 1 ) ;
7 v = U ( : , 2 ) . / U ( : , 1 ) ;
8
9 p = zeros ( size ( rho ) ) ;

10 c = zeros ( size ( rho ) ) ;
11
12 %% split density over two EoS
13
14 rho_Tait = rho ( rho >= rhol ) ;
15 rho_CEV = rho ( rho < rhol ) ;
16
17 %% Tait EoS
18
19 p_Tait = K0 ∗ ( ( rho_Tait . / rhol ) .^ N −1) + psat ;
20
21 c_Tait = sqrt ( ( N∗K0 ∗( rho_Tait . / rhol ) . ^ ( N−1) ) . / rhol ) ;
22
23 c ( rho >= rhol ) = c_Tait ;
24 p ( rho >= rhol ) = p_Tait ;
25
26 %% CEV model
27
28 p_CEV = interp1 ( rho_CEVinterp , p_CEVinterp , rho_CEV ) ;
29
30 alpha = ( rho_CEV − rhol ) /( rhov − rhol ) ;
31 gL = exp ( CEV_a .∗ log ( p_CEV . / pc ) .^2+CEV_b .∗ log ( p_CEV . / pc )+CEV_c ) ;
32 c_CEV = sqrt ( 1 . / ( rho_CEV . ∗ ( ( alpha . / p_CEV ) .∗ CEV_gV . . .
33 + ((1−alpha ) . / p_CEV ) .∗ gL ) ) ) ;
34
35 p ( rho < rhol ) = p_CEV ;
36 c ( rho < rhol ) = c_CEV ;

A.7 CEV_interp.m (subfunction)
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1 function [ rho ] = CEV_interp (P , Psat , Pc , rhoL , rhoV , CEV_a , CEV_b , CEV_c , gV )
2
3 gL = exp ( CEV_a .∗ log (P . / Pc ) .^2+CEV_b .∗ log (P . / Pc )+CEV_c ) ;
4
5 A = 2.∗ gL + 2.∗ gV ;
6 B = (gL∗rhoV ) . /2 + (gV∗rhoL ) . / 2 ;
7 C = rhoL − rhoV ;
8
9 X1 = atanh ( ( rhoL .∗ A ) . / ( 2 . ∗ B ) ) ;

10 X2 = log (P . / Psat ) . ∗ ( B . / C ) ;
11 X3 = −(2∗B . / A ) . ∗ ( tanh (X2−X1 ) −1) ;
12
13 rho = abs (X3 ) ;
14
15 end

A.8 fluxlim.m (subfunction)

1 function phi = fluxlim (nom , denom , limtype )
2
3 % % very small nominator = 0/1 = 0
4 nom ( abs ( nom )<1e−14) = 0 ;
5 denom ( abs ( nom )<1e−14) = 1 ;
6
7 % very small denominator = inf/1 = inf
8 nom ( ( nom>1e−14)&(abs ( denom )<1e−14) ) = 1e14 ;
9 denom ( ( nom>1e−14)&(abs ( denom )<1e−14) ) = 1 ;

10
11 % very small negative denominator = -inf/1 = -inf
12 nom ( ( nom<−1e−14)&(abs ( denom )<1e−14) ) = −1e14 ;
13 denom ( ( nom<−1e−14)&(abs ( denom )<1e−14) ) = 1 ;
14
15 r = nom . / denom ;
16
17 phi = zeros ( size ( nom ) ) ;
18
19 if limtype == 0 % No limiting , no MUSCL
20 phi = 0 ;
21 phi = max (0 , phi ) ;
22
23 elseif limtype == 1 % No limiting
24 phi = 1 ;
25 phi = max (0 , phi ) ;
26
27 elseif limtype == 2 % Minmod
28 phi = max (0 , min (r , 1 ) ) ;
29 phi = max (0 , phi ) ;
30
31 elseif limtype == 3 % Barth Jespersen
32 phi = min (1 , min ( 4 . / ( r+1) , ( 4 . ∗ r ) . / ( r+1) ) ) ;
33 phi = max (0 , phi ) ;
34
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35 else
36 error (’unknown lim type’ )
37
38 end
39
40 end

A.9 MUSCL.m (subfunction)

1 function [ ULlim , URlim ] = MUSCL (U , dx )
2
3 Lx = size (U , 1 ) ;
4 phiL = zeros (Lx , 2 ) ;
5 phiR = zeros (Lx , 2 ) ;
6
7 i = 2 : Lx−1;
8 ip1 = 3 : Lx ;
9 im1 = 1 : Lx−2;

10
11 gradU = [0 0 ;
12 U (ip1 , : )−U (im1 , : ) ;
13 0 0 ] ;
14
15 UL = U − 0 . 2 5 .∗ gradU ;
16 UR = U + 0 . 2 5 .∗ gradU ;
17
18 Umax (i , : ) = max (U (i , : ) , max (U (ip1 , : ) ,U (im1 , : ) ) ) ;
19 Umin (i , : ) = min (U (i , : ) , min (U (ip1 , : ) ,U (im1 , : ) ) ) ;
20 % different maximum for the edges , only 1 neighbour
21 Umax ( 1 , : ) = max (U ( 1 , : ) ,U ( 2 , : ) ) ;
22 Umin ( 1 , : ) = min (U ( 1 , : ) ,U ( 2 , : ) ) ;
23 Umax (Lx , : ) = max (U (Lx , : ) ,U (Lx−1 , : ) ) ;
24 Umin (Lx , : ) = min (U (Lx , : ) ,U (Lx−1 , : ) ) ;
25
26 rmaxL = (Umax−U ) . / ( UL−U ) ;
27 rminL = (Umin−U ) . / ( UL−U ) ;
28 rmaxR = (Umax−U ) . / ( UR−U ) ;
29 rminR = (Umin−U ) . / ( UR−U ) ;
30
31 K = 0 . 3 ;
32 epsq = (K∗dx ) ^3 ;
33
34 VmaxL = ( rmaxL .^2+2.∗ rmaxL+epsq ) . / ( rmaxL .^2+rmaxL+2+epsq ) ;
35 VminL = ( rminL .^2+2.∗ rminL+epsq ) . / ( rminL .^2+rminL+2+epsq ) ;
36 VmaxR = ( rmaxR .^2+2.∗ rmaxR+epsq ) . / ( rmaxR .^2+rmaxR+2+epsq ) ;
37 VminR = ( rminR .^2+2.∗ rminR+epsq ) . / ( rminR .^2+rminR+2+epsq ) ;
38
39 phiL (UL>U ) = VmaxL (UL>U ) ;
40 phiL (UL<U ) = VminL (UL<U ) ;
41 phiL (UL==U ) = 1 ;
42
43 phiR (UR>U ) = VmaxR (UR>U ) ;
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44 phiR (UR<U ) = VminR (UR<U ) ;
45 phiR (UR==U ) = 1 ;
46
47 phi = min (phiL , phiR ) ;
48
49 ULlim = U − 0 .25∗ phi .∗ gradU ;
50 URlim = U + 0.25∗ phi .∗ gradU ;

A.10 pMin.m (subfunction)

1 function [ pMin ] = pMin (M , alpha )
2
3 MaM1 = 0 .5∗ ( M−abs (M ) ) ;
4 MaP2 = 0.25∗ ( M+1) . ^ 2 ;
5 MaM2 = −0.25∗(M−1) . ^ 2 ;
6
7 pMin = zeros ( size (M ) ) ;
8
9 pMin ( abs (M ) >= 1) = (1 . / M ( abs (M ) >= 1) ) .∗ MaM1 ( abs (M ) >= 1) ;

10 pMin ( abs (M ) < 1) = MaM2 ( abs (M ) < 1) .∗((−2−M ( abs (M ) < 1) ) . . .
11 +16.∗alpha ( abs (M ) < 1) .∗ M ( abs (M ) < 1) .∗ MaP2 ( abs (M ) < 1) ) ;
12
13 end

A.11 pPlus.m (subfunction)

1 function [ pPlus ] = pPlus (M , alpha )
2
3 MaP1 = 0 .5∗ ( M+abs (M ) ) ;
4 MaP2 = 0.25∗ ( M+1) . ^ 2 ;
5 MaM2 = −0.25∗(M−1) . ^ 2 ;
6
7 pPlus = zeros ( size (M ) ) ;
8
9 pPlus ( abs (M ) >= 1) = (1 . / M ( abs (M ) >= 1) ) .∗ MaP1 ( abs (M ) >= 1) ;

10 pPlus ( abs (M ) < 1) = MaP2 ( abs (M ) < 1) .∗((2−M ( abs (M ) < 1) ) . . .
11 −16.∗alpha ( abs (M ) < 1) .∗ M ( abs (M ) < 1) .∗ MaM2 ( abs (M ) < 1) ) ;
12
13 end

A.12 data_WATER_10ms.m (example input file)

1 %% fluid parameters
2
3 nCmp = 1 ;
4 Cnc = [ 1 , 0 ] ;
5 Model = ’IF97’ ;
6 Cmp = ’water’ ;
7
8 Tinf = 293 . 1 5 ;
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9
10 K0 = 3.6904 e8 ;
11 N = 5 .9496 ;
12
13 CEV_a = 0 .01262 ;
14 CEV_b = −0.6014;
15 CEV_c = 0 .8241 ;
16 CEV_gV = 0 .8870 ;
17
18 %% BC/IC
19 CFL = 0 . 9 ;
20 tend = 30 ;
21
22 p_outlet = 1.0000 e5 ;
23 u_inlet = 10 ;
24 p_init = 1.0000 e5 ;
25 u_init = 10 ;
26
27 nx = 250 ;
28 ny = 1 ;
29 gp = 1 ;
30
31 %% numerical parameters
32 % No MUSCL = 0 (works)
33 % MUSCL , no limiter = 1 (heavy oscillations)
34 % MinMod = 2 (works)
35 % Barth Jespersen = 3 (works)
36 limtype = 3 ;
37
38 viewgrid = 0 ;
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Appendix B: 2D OpenFOAM
application

B.1 Mydbns_water.c (main application)

1 /*---------------------------------------------------------------------------*\
2 ========= |
3 \\ / F ield | foam-extend: Open Source CFD
4 \\ / O peration |
5 \\ / A nd | For copyright notice see file Copyright
6 \\/ M anipulation |
7 -------------------------------------------------------------------------------
8 License
9 This file is part of foam-extend.

10
11 foam-extend is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation , either version 3 of the License , or (at your
14 option) any later version.
15
16 foam-extend is distributed in the hope that it will be useful , but
17 WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
23
24 Application
25 dbnsTurbFoamHEqn
26
27 Description
28 Density -based compressible explicit time-marching flow solver
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29 using enthalpy -based thermo packages
30
31 Author
32 Hrvoje Jasak
33
34 \*---------------------------------------------------------------------------*/
35
36 #include "fvCFD.H"
37 #include "basicPsiThermo.H"
38 #include "basicRhoThermo.H"
39 #include "MyturbulenceModel.H"
40 #include "bound.H"
41 #include "AUSMHLLCFlux.H"
42 #include "MDLimiter.H"
43 #include "BarthJespersenLimiter.H"
44 #include "VenkatakrishnanLimiter.H"
45 #include "numericFlux.H"
46 #include "IFstream.H"
47 #include "graph.H"
48 #include "interpolateXY.H"
49 #include "localTimeStep.H"
50
51 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
52
53 int main ( int argc , char ∗argv [ ] )
54 {
55 # include "setRootCase.H"
56 # include "createTime.H"
57 # include "createMesh.H"
58 # include "createFields.H"
59
60 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
61
62 Info<< "\nStarting time loop\n" << endl ;
63
64 // Runge -Kutta coefficient
65 scalarList beta (4 ) ;
66 beta [ 0 ] = 0 . 1 100 ;
67 beta [ 1 ] = 0 . 2 766 ;
68 beta [ 2 ] = 0 . 5 000 ;
69 beta [ 3 ] = 1 . 0 000 ;
70
71 while ( runTime . run ( ) )
72 {
73 # include "readTimeControls.H"
74 # include "readFieldBounds.H"
75 //# include "compressibleCourantNo.H"
76 //# include "setDeltaT.H"
77
78 runTime++;
79
80 Info<< "\n Time = " << runTime . value ( ) << endl ;
81
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82 // Switch off solver messages for diagonal solver RK
83 lduMatrix : : debug = 0 ;
84
85 localTimeStep . update ( maxCo , adjustTimeStep ) ;
86
87 // Low storage Runge -Kutta time integration
88 forAll (beta , i )
89 {
90 // Solve the approximate Riemann problem for this time step
91 dbnsFlux . computeFlux ( ) ;
92
93 physDeltaT [ 0 ] = beta [ i ] ;
94
95 // Time integration
96 solve
97 (
98 1 .0/ beta [ i ]∗ fvm : : ddt ( rho )
99 + fvc : : div ( dbnsFlux . rhoFlux ( ) )

100 ) ;
101
102 solve
103 (
104 1 .0/ beta [ i ]∗ fvm : : ddt ( rhoU )
105 + fvc : : div ( dbnsFlux . rhoUFlux ( ) )
106 + fvc : : div ( turbulence−>devRhoReff ( ) )
107 ) ;
108
109 # include "updateVelocity.H"
110 # include "updatePressure.H"
111 # include "updateThermo.H"
112 }
113
114 // Switch on solver messages for turbulence
115 lduMatrix : : debug = 1 ;
116
117 turbulence−>correct ( ) ;
118
119 # include "Eulerresiduals.H"
120
121 Info << "rho residual: "
122 << max ( L2NormRho , SMALL ) << endl
123 << "rhoUX residual: "
124 << max ( L2NormRhoUX , SMALL ) << endl
125 << "rhoUY residual: "
126 << max ( L2NormRhoUY , SMALL ) << endl
127 << "rhoUZ residual: "
128 << max ( L2NormRhoUZ , SMALL ) << endl << endl ;
129
130 runTime . write ( ) ;
131
132 Info<< " ExecutionTime = "
133 << runTime . elapsedCpuTime ( )
134 << " s\n" << endl ;
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135 }
136
137 Info<< "\n end \n" ;
138
139 return (0 ) ;
140 }
141
142
143 // ************************************************************************* //
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