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Abstract 
The natural immune system is a robust and powerful information process system that 
demonstrates features such as distributed control, parallel processing and adaptation or 
learning via experience. Artificial Immune Systems (AIS) are machine-learning 
algorithms that embody some of the principles and attempt to take advantages of the 
benefits of natural immune systems for use in tackling complex problem domains. The 
Artificial Immune Recognition System (AIRS), is one such supervised learning AIS that 
has shown significant success on broad range of classification problems. The focus of this 
work is the AIRS algorithm, specifically the techniques history, previous research and 
algorithm function. Competence with the AIRS algorithm is demonstrated in terms of 
theory and application. The AIRS algorithm is analysed from the perspective of 
reasonable design goals for an immune inspired AIS and a number of limitations and 
areas for improvement are identified. A number of original and borrowed augmentations, 
simplifications and changes to the AIRS algorithm are then proposed to addresses the 
identified areas. A professional-level implementation of the AIRS algorithm is produced 
and is provided as a plug-in for the WEKA machine-learning workbench. 
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1.  Introduction 
Artificial immune systems are a technique new to the scene of biological inspired 
computation and artificial intelligence, based on metaphor and abstraction from 
theoretical and empirical knowledge of the mammalian immune system. A robust 
biological process critical to the combating of disease in the body, the immune system is 
known to be distributed in terms of control, parallel in terms of operation, and adaptive in 
terms of function, all of which are features desirable for solving complex or intractable 
problems faced in the field of artificial intelligence. This document describes and reviews 
one implementation of artificial immune systems called AIRS (Artificial Immune 
Recognition System) designed for use with supervised learning (classification) problems. 
 
Section 2. provides an overview of the main AIRS algorithm, focusing on the algorithms 
characteristics and features, and introduces some of the terminology from the field of AIS 
to explain the basic abstraction from the biological immune system that AIRS 
implements. Section 3.  provides a more detailed review of the algorithm, explaining 
elements of the algorithms function and implementation. A detailed summary of the user-
defined parameters used to tune the function of the algorithm is also provided, with a 
focus of known effects and common algorithm configuration. Section 4. reviews the 
history of the AIRS algorithm. This is discussed first from the perspective of precursor 
algorithms from which AIRS borrows or uses similar ideas or algorithm functionality. 
Next, a review of the research and evolution of the AIRS algorithm is provided, 
highlighting interesting findings and extensions to the canonical AIRS algorithm.  
 
Finally, section 5. proposes extensions to the technique. The section starts with a review 
of desirable goals for an AIRS-like immune-inspired supervised learning system. Some 
of the features of AIRS are reiterated and a number of limitations and areas for 
improvement are identified. A set of AIRS-specific statistics are discussed for both the 
training of an AIRS classifier, and the resulting classifier itself. The section concludes 
with the proposal of a number of original and borrowed algorithm simplifications and 
extension that address all of the limitations and areas for improvement raised. The 
culmination is a revised AIRS or new AIRS-like algorithm whose performance is 
speculated to be similar to that of AIRS. 

2.  Overview of AIRS 
An artificial immune system (AIS) is a class of adaptive or learning computer algorithm 
inspired by function of the biological immune system, designed for and applied to 
difficult problems such as intrusion detection, data clustering, classification and search 
problems. It is critical at the outset to stress that although terminology and function of 
AIS are described using biological terms from the field of immunological research, they 
are taken as simplifications and abstractions and not intended to be models or 
representative of immunological response systems.  
 
The field of AIS research has been around for approximately 15 years, and for the 
majority of its history has been concerned with feature extraction (data clustering), and 
change or anomaly identification, such as intrusion detection systems. More recently, AIS 
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has been applied to broader domains such as function optimisation, and in the case of 
AIRS, classification. The recent shift in applicable problem domains has required a 
rethink of the algorithms application and adaptation of existing tried and tested AIS 
elements. This new field of research provides an opportunity for innovation, not only in 
the designing new specialised AIS algorithms, but also in the successful encoding the 
adaptive power of the metaphor. 

2.1 Algorithm Characteristics 
The AIRS algorithm was one of the first AIS technique designed specifically and applied 
to classification problems. It has been shown in [1] to exhibit the following desirable 
algorithmic characteristics: 
 
Self-regulation – A problem common to the field of artificial neural networks is the 
selection of an appropriate topology or neuronal architecture. AIRS does not require the 
user to select an architecture, instead the adaptive process discovers or learns an 
appropriate architecture during training. 
 
Performance – Empirical evaluation of the technique in [2] on standard classification 
problems from the University of California, Irvine [3], when compared to the empirical 
results of the best known classifiers from [4,5] show that AIRS is a competitive 
classification system. Results indicate that AIRS can achieve classification accuracy in 
the top five to top eight when ranked against some of the widely known best 
classification systems, and in the case of [6], is capable of achieving the best 
classification result known for some datasets. 
 
Generalisation – Unlike techniques such as k-Nearest Neighbour that use the entire 
training dataset for classification, AIRS performs generalisation via data reduction. This 
means that the resulting classifier produced by the algorithm represents the training data 
with a reduced or minimum number of exemplars. It is typical for AIRS to produce 
classifiers with half the number of training instances [7]. 
 
Parameter Stability – The algorithm has a number of parameters that allows tuning of 
the technique to a specific problem, with the intent of achieving improved results. A 
feature of the algorithm is that over a wide range of parameter values, the technique is 
capable of achieving results within a few classification accuracy percentage points of the 
results achieved with an optimal parameter set. 

2.2 AIRS and Terminology  
The AIRS algorithm relies on a number of core principles from AIS research, all of 
which are loose abstractions from mammalian immunological research. Provided in this 
section is a description of some of the terminology used in the field of AIS to describe the 
AIRS algorithm. Using an abstraction of immune function, a simplified overview of the 
principle elements of AIRS is described. This section is by no means a complete review 
of immune system function or AIS background. For a in-depth review of AIRS related 
AIS terminology see [7]. For an overview of key AIS terms please see section 10. For a 
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review of AIS, see [8]. For a quick overview of immune function as it pertains to 
classification see [9]. 
 
A simplistic view of the immune system is that of an organ whose job it is to detect 
pathogens (potentially harmful material or antigens), and respond by protecting the 
organism from that material. The system is adaptive in that it improves in terms of 
antigen recognition over time. As more antigens are observed of similar characteristic, 
the more effective the system becomes at recognising and thus responding to that antigen. 
Response to an antigen comes in the form of an antibody whose job it is to neutralise the 
pathogenic material. In this abstraction of immune function, the elements that perform 
anomaly detection are referred to as B-cells and T-cells. The cells are suited to specific 
antigens and perform recognition or matching in shape-space, which is nothing more 
than the features of attributes of the antigen.  
 
The term used to describe the degree of similarity between a recognition cell and an 
antigen is called affinity. The adaptive ability of the immune system is a process called 
affinity maturation. During an immune response the recognition cell will perform 
clonal expansion, which means it will generate many clones of itself in an attempt to 
gain a better match next time the antigen is seen. A process called somatic 
hypermutation mutates the generated clones in proportion to the affinity between the 
recognition cell and the antigen.  
 
The clones produced have different receptors (features) to their parent, some of which are 
likely to be a better match to the antigen observed. Darwinian-like competition and 
selection between the resulting clones then occurs where only those cells with highest 
affinity with the antigen are maintained. This process is called clonal selection. The 
immune system is said to have a form of memory, in that through its interaction with 
antigens in the past, it is capable of remembering what a pathogen “looks like” and can 
better defend the organism in the future. 

3.  AIRS in Detail 
The specification of the AIRS algorithm is reasonably complex at the implementation 
level. For a precise specification of the algorithm in pseudo code see [7]. This section 
provides an overview of the algorithm, focusing the discrete functional components of the 
technique. The review is intended to provide insight into the functional workings of the 
technique without getting too deep into implementation specific issues. Also provided in 
this section is a review of the configurable user parameters of the system and their impact 
on the functioning of the system. For a description of the user configurable parameters 
with an empirical view of their effect on the system, see [2]. 
 
It should be noted that this overview is restricted to the AIRS2 or version two of the 
AIRS algorithm [10]. It has been explained to the author (private communication) that the 
AIRS1 or version one of the technique [1,11] is now deprecated in favour of the second 
revision of the technique. Please see section 4. for a review of the AIRS1 and AIRS2 
algorithms and their specific differences. 
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3.1 The Algorithm 
The function of the AIRS algorithm is to prepare a pool of recognition or memory cells 
(data exemplars) which are representative of the training data the model is exposed to, 
and is suitable for classifying unseen data. The lifecycle of the AIRS system is as 
follows: 
 

 
Figure 1 - L ifecycle overview of the AIRS algor ithm 

 

3.1.1 Initialisation 
This step of the algorithm consists of preparing the data for use in the training process, 
and preparing system variables. The training data is normalised so that the range of each 
numeric attribute is in the range [0,1]. An affinity measure is required for use through the 
training process. The typical measure used is the inverted Euclidean distance. The 
important point here though is that the maximum distance measured between any two 
recognition cells or antigen and recognition cell (both simply data vectors) must also be 
in the range [0,1]. This can be achieved by adding the following step to the data 
normalisation process: 
 

n
ValuenormalisedValuenormalised

1⋅=  

Equation 1 - Calculation for ensuring that the distance between any two vectors is between 0 and 1 

 
where the normalised value is data attribute in the range of [0,1], and n is the number of 
attributes used in the distance evaluation. Another approach to ensuring the resulting 
distance values are in the range of [0,1], without requiring the data to be normalised is to 
simply divide the calculated Euclidean distance by the maximum distance between any 
two vectors. The following shows Euclidean distance, where v1 and v2 represent two 
elements that affinity is measured between and n is the number of attributes. 
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Equation 2 - Euclidean distance measure 

 
The maximum distance between any two data vectors is simply the root of the sum of the 
square ranges, where r  is the known data range for attribute i. 
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Equation 3 - Maximum distance calculation 

 
Affinity is a similarity value, this means that the smaller the affinity value the higher the 
affinity is said to be (closer the vectors are to each other). 
 

)
max

(
Dist

dist
affinity =  

Equation 4 - Affinity measure 

 
It is important to note that Euclidean distance works well for numerical attributes but 
breaks down for nominal attributes especially common in UCI datasets. This can be 
overcome by assuming that difference between nominal attributes is binary (match or no 
match) and the attribute range is one.  
 
The next step is to seed the memory cell pool. The memory cell pool is the collection of 
recognition elements that make up the classifier produced at the end of the training 
scheme. Seeding the memory pool is an optional step and involves randomly selecting a 
number of antigens to become memory cells 
 
The final step during the initialisation is to prepare the affinity threshold (AT) system 
variable. The affinity threshold is the mean affinity between antigens in the training 
dataset. Either it can be calculated from a sample of the training set or the entire training 
set. This calculated value is then used later during the training scheme to determine 
whether candidate memory cells that are prepared, can replace existing memory cells in 
the classifier (explained later). 

3.1.2 Antigen Training 
The AIRS algorithm is a single-shot algorithm in that only one pass over the training data 
is required to prepare a classifier. Each antigen is exposed to the memory pool one at a 
time. The recognition cells in the memory pool are stimulated by the antigen and each 
cell is allocated a stimulation value (inverted affinity). The memory cell with the greatest 
stimulation is then selected as the best match memory cell for use in the affinity 
maturation process. 
 

affinitystim −=1  
Equation 5 - Stimulation equation 
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A number of mutated clones are then created from the selected memory cell and added to 
the ARB pool. An  ARB (Artificial Recognition Ball) is an abstract concept  and 
represents a number similar or identical recognition cells. The ARB pool is a work area 
where the AIRS system refines mutated clones of the best match memory cell for a 
specific antigen. The number of mutated clones created of the best match is calculated as 
follows: 
 

ionRatehypermutatclonalRatestimnumClones ⋅⋅=  
Equation 6 - The number of clones created for the best matching memory cell 

 
where, the stim is the stimulation between the best match memory cell and the antigen. 
Both the clonal rate and the hypermutation rate are user-defined parameters. 

3.1.3 Competition for Limited Resources 
After a number of mutated clones of the best matching memory cell are added to the 
ARB pool, the process of ARB generation and competition begins. This process can be 
described in the following figure. 
 
 

 
Figure 2 - ARB cell refinement through competition for limited resources 

 
The process is quite simple from a high-level. Competition for limited resources is used 
to control the size of the ARB pool and promote those ARBs with greater stimulation 
(and thus affinity) to the antigen being trained on. The stop condition in the middle of the 
loop allows the final step of clone generation to be avoided when the ARB pool reaches a 
desirable state. In this process only ARBs of the same class as the antigen are considered, 
meaning that the class of an ARB is never adjusted in the mutation process. The final step 
sees each ARB in the pool have mutated clones generated using the same clonal 
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expansion and somatic hypermutation steps used previous to generate mutated clones of 
the best match from the memory cell. Here the number of clones generated for each ARB 
in the pool is calculated as the following: 
 

clonalRatestimnumClones ⋅=  
Equation 7 - The number of clones created for an ARB in the ARB pool 

 
In the resource allocation process, the amount of resources allocated to each ARB is as 
follows: 
 

clonalRatenormStimresource ⋅=  
Equation 8 - Equation used for resource allocation 

 
A user defined parameter total resources is defined that specified that maximum number 
of resources that can be allocated. During the resource allocation process the total 
resources allocated is determined and compared against the maximum total resources. 
The ARB pool is then sorted by allocated resources (decending) and resources are 
removed from ARBs starting at the end of the list until the total allocated resources is 
below the total resources allowed. Finally, those ARBs with zero resources are removed 
from the pool. The stop condition for this process of ARB refinement occurs when the 
mean normalised stimulation is more than the user defined stimulation threshold. 

3.1.4 Memory Cell Selection 
Once the stop condition for the ARB refinement process is completed, the ARB with the 
greatest normalised stimulation scoring is selected to become the memory cell candidate. 
The ARB is copied into the memory cell pool if the stimulation value for the candidate is 
better than that of the original best matching memory cell. A check is made to determine 
if the original best matching memory cell should be removed. This occurs if the affinity 
between the candidate memory cell and the best matching cell is less than a cut-off. This 
memory cell replacement cut-off is defined as: 
 

larresholdScaaffinityThresholdaffinityThcutOff ⋅=  
Equation 9 - Cut-off affinity value used to determine if a candidate replaces a memory cell 

where, the affinity threshold is the system variable prepared during the initialisation 
process, and the affinity threshold scalar is a user define parameter. 

3.1.5 Classification 
When the training process is completed, the pool of memory recognition cells becomes 
the core of the AIRS classifier. The data vectors contained within the cells can be de-
normalised or left as is for the classification process. Classification occurs using a k-
Nearest Neighbour approach where the k best matches to a data instances are located and 
the class is determined via majority vote. 
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3.2 Algorithm parameters 
As mentioned, the AIRS algorithm has a number of user configurable parameters for 
fine-tuning the training schedule to specific problem domains. It was shown by Watkins 
[2] that the technique remains reasonably stable (in terms of classification accuracy) over 
a range of parameters on a number of standard machine learning datasets. This section 
provides a brief overview of the nature and specific effect each of the algorithms 
parameters. 
 
Affinity Threshold Scalar (ATS) – To discuss the affinity threshold scalar, it is 
important to understand the affinity threshold. As discussed previously, the affinity 
threshold is the mean affinity between a set of antigens from the training dataset. The 
figure simply represents the average distance known vectors are from each other in the 
problem space. If the training dataset was a uniform representation of the problem space, 
then a vector that had an affinity (distance) less than the mean could be considered 
already represented, and thus replaceable. This is specifically the use of the affinity 
threshold.  
 
The affinity threshold scalar provides a means of adjusting the automatic threshold by 
making it softer (less than the mean) or harder (more than the mean). The effect of 
softening the threshold causes less replacement of best matching memory cells by 
candidate memory cells, and the reverse is true when the threshold is hardened. Common 
values for this user parameter are in the range [0.1, 0.3], which is a significant softening 
of the mean. The effect of having the scalar too close to the mean is that too many 
replacements occur, thus squashing the threshold down by to a factor of 10% or 20% of 
the mean causes less replacements, and thus a larger, more effective classification 
memory pool. 
 
Clonal Rate – The clonal rate is used in three places in the algorithm as has been 
mentioned. Firstly, it is used in conjunction with the hypermutation rate to determine the 
number of clones that a best matching memory cell can create to population the ARB 
pool. Secondly, it is used to determine the number of clones an each ARB can create 
during the ARB refinement stage. Finally, it is multiplied by an ARBs normalised 
stimulation to determine its resource allocation. This means that the number of ARB 
clones created will be in the range of [0,clonalRate]. It also means that allocated 
resources for an ARB will also be in this range, which has an impact on the total number 
of resources that should be allocated. Typical values for the clonal rate are ~10. 
 
Hypermutation Rate – Used with the clonal rate and cell stimulation, the hypermutation 
rate determines the number of mutated clones a best matching memory cell can create. As 
mentioned, the number of clones will be in the range of [0,clonalRate] which is then 
increased by a factor of the hypermutation rate. It is common for the hypermutation rate 
to be two, causing best matching memory cells to produce double the number of mutated 
clones as an ARB. The intent of cloning the best matching memory cell is to seed the 
ARB pool to begin the ARB refinement and competition stage of the algorithm. 
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Total Resources – The total resources places a direct limit on the number of ARBs that 
can coexist in the ARB pool. Given that the amount of resources allocated to each ARB is 
in the range of [0,clonalRate], the total resources is expected to be somewhere around: 
(clonal rate �  the number of desired ARBs in the pool). Common values for this parameter 
are 150-300. 
 
Stimulation Threshold – As mentioned, the stopping criterion to the ARB refinement 
process is when the mean normalised stimulation value is above the stimulation 
threshold. This parameter controls the amount of refinement performed on ARBs for an 
antigen, and thus how closely the ARBs will be to the antigen in question. Stimulation 
values are commonly high, around 0.9. This means that the mean stimulation value must 
be quite high, that is the vast majority of the ARBs in the pool must be similar to the 
antigen. The range for the stimulation threshold must obviously be in the range of [0,1], 
given the mean also will have the same range. 
 
Number of Initialisation Instances – The number of initialisation instance is the number 
of randomly selected training instances used to seed the memory pool. This parameter 
can be in the range [0,total training instances], and is commonly set to low values such as 
zero or one. The flexibility of this parameter, specifically when set to one or zero, allows 
the algorithm to automatically determine the number and nature of memory cell elements 
that makeup the classifier produced.  
 
k-Nearest Neighbours – The kNN parameter is only used during the read-only 
classification stage of the algorithm. As has been mentioned, it determines the number of 
best match memory cells used to vote by majority on the classification of unseen antigens 
(data vectors). When a tie occurs in the majority vote, the class index with the lowest 
number is always selected, making classification deterministic (as opposed to 
probabilistic or stochastic tie breaking strategies). Common values for the kNN are in the 
range of [1,7]. 

4.  Evolution of the AIRS Algorithm 
The AIRS algorithm did not spring into existence, in fact, it is a collection of elements 
and processes developed for other supervised and unsupervised AIS algorithms. This 
section provides an overview of some of the precursor algorithms to AIRS, specifically 
the elements and processes borrowed from said algorithms. Also provided is an overview 
of some of the augmentations and research performed into the AIRS algorithm over the 
past few years of its history. 

4.1 Precursors to AIRS 
This section describes a number of the AIS algorithms that pre-date AIRS. Specifically, 
algorithms that contain elements and processes borrowed by AIRS or similar to those of 
the AIRS algorithm are discussed. This should not be considered and is not intended to be 
a complete review of those AIS algorithms that are discussed. 
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4.1.1 Immunos-81 
The first approach to using immune system metaphor for a supervised learning and 
classification system was called Immunos-81 by Carter [9]. The system was designed 
with the intent of taking advantages of the features of the immune system without 
adhering too closely to the biological aspects and equations. The exceedingly complex 
system used T-cell and B-cell equivalents as well as a library of elements currently in the 
system. It was shown to provide good results in terms of classification accuracy on the 
Cleveland heart disease datasets (known data sets from the field of machine learning). An 
interesting feature of the technique is that it was capable of learning in real time (online), 
meaning it is capable of continuos learning without rebuilding the system, a feature not 
currently implemented or investigated for the AIRS algorithm. 

4.1.2 Immune Network Theory Inspired AIS 
Immune Network Theory (INT) proposes that the immune system maintains a network of 
cells that learn and maintain memory using feedback mechanisms. A feature of this 
theory is that once information is learned by the network, it is then capable of being 
forgotten unless the information is reinforced. Work in [12] proposes an AIS based on 
concepts form INT. The system maintains a population of recognition cells that respond 
with a stimulus when presented with an antigen, and are connected with links that 
represent the similarity between the cells. Here stimulation is borrowed by AIRS, where 
affinity is normalised in the range of [0,1] and stimulation is simply the inverted affinity. 
The difference here is that a stimulus is also received from a recognition cells neighbours.  
 
The system performs clonal expansion and random mutations using a mutation rate, as 
was borrowed for use in the AIRS1 algorithm. Also used in the system was a network 
affinity threshold (NAT) that also borrowed by AIRS (affinity threshold), though here it 
was used to control links between recognition cells. The threshold was calculated as the 
mean affinity associated of all links in the network. Further, the threshold was also scaled 
using an A term (affinity threshold scalar in AIRS). The technique produced some 
interesting results, and was designed for unsupervised clustering and visualisation of data. 
 
The primary problem with the INT based AIS was that it suffered from a population 
explosion. In [13] and [14], the system was extended to support population control 
mechanisms, and was called a Resource Limited Artificial Immune System (RLAIS). 
Also introduced with the RLAIS was the concept of artificial recognition balls (ARBs) 
which represents a number of identical B-cell (recognition cells) in the network. The 
system is configured to allow a certain number of individual B-cells, which are divided 
by and competed for by the ARBs, where the higher the stimulation of the ARB, the more 
B-cell resource it is allocated. When an ARB losses all of its resources, it is considered 
not a useful representation of the training data, and is removed from the system. Finally, 
the last change made was that the NAT was calculated once at the start of the run and 
kept constant, rather than recalculated each algorithm iteration.  

4.1.3 Clonal Selection Inspired AIS 
Clonal selection theory is the idea that those cells that are effective at recognising 
pathogenic material are selected (in a Darwinian sense) to survive and propagate. Work 
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in [15] devised a technique called the clonal selection algorithm (CSA), which was 
revisited in [16] and renamed CLONALG which was based on the clonal selection 
theory. The technique uses elements of the affinity maturation process of the immune 
response to maintain a population of cells capable of learning a desired problem. The 
CLONALG algorithm was shown to be similar to that of evolutionary strategies (ES) 
from the field of evolutionary computation, though CLONALG searched by blind 
cumulative variation and selection by cloning, mutating and advancing best match 
recognition cells. 
 
The process of cell stimulation, clonal expansion, stimulation proportionate somatic 
hypermutation, and recognition cell selection, and replacement are all elements used in 
the functioning of the AIRS algorithm. The CLONALG algorithm was shown to be a 
useful AIS algorithm, successfully applied to a number of machine learning and artificial 
intelligence problems such as binary character recognition, multimodal function 
optimisation and the travelling salesperson problem (TSP). 

4.2 AIRS Research 
The focus of this review of the AIRS algorithm has focused on version 2 (AIRS2). This 
version of the algorithm has been shown [7] to be a simpler, computationally more 
efficient version of the algorithm and is thus the standard AIRS implementation. The first 
version of AIRS (referred to as AIRS1) was very similar, though contained a few minor 
but important differences from the AIRS2 algorithm discussed.  

4.2.1 AIRS1 and AIRS2 
The AIRS algorithm as described in [1,11], and investigated and tested in detail in [2] 
treated the ARB pool as a persistent resource throughout the training scheme, rather than 
a temporary resource for each antigen as in AIRS2. This means that ARBs left over from 
previous ARB refinement passes (for past antigens) are maintained and participate in the 
competition for limited resources. The effect as mentioned in [10] is that the algorithm 
spends more time rewarding and refining ARBs that belong to the same class as the 
antigen in question. To accommodate a similar amount of training focus, the stimulation 
value user parameter is raised in AIRS2 from that used in the AIRS1 algorithm.  
 
AIRS1 also permitted the class of generated clones to be mutated. Given that only clones 
of the same class as the antigen are considered in the ARB pool, the need for class 
mutations was also removed in the AIRS2 algorithm. The ARB pool was transformed 
into a temporary resource, only required to be population when working with an antigen, 
then cleared once training on the antigen is complete making it ready for further training.  
 
Another important difference between AIRS1 and AIRS2 is the manner in which clones 
are mutated. The original AIRS1 algorithm uses a user defined mutate rate parameter to 
determine the degree to mutate a produced clone, and simply replaced attribute values 
with randomly generated values within the attributes normalised range. AIRS2 introduced 
the concept of somatic hypermutation where the amount of mutation a clone receives is 
proportional to its affinity to the antigen in question. This mutation scheme allows tight 
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search when affinity is great and a wider search area when clones are a distance from the 
antigen.  
 
Results between the two algorithms were shown [10] to be quite similar in terms of 
classification accuracy. Besides the benefits of simplification and improved 
computational performance, the AIRS2 algorithm was also shown to provide better 
generalisation capability in terms of improved data reduction of the training dataset. 

4.2.2 Extensions to AIRS 
AIRS had had been shown to be a successful classifier on a broad set of well known 
classification problems with small numbers of classes. A study was undertaken [6] to 
investigate the performance of AIRS on problems with many multiple classes and an 
increased number of features (attributes), compared to the Learning Vector Quantisation 
(LVQ) algorithm. Artificial problem domains with three, five, eight and 12 classes were 
evaluated, as were six common problems from the field of machine learning. In just about 
all cases for the common real-world problems, AIRS out-performed LVQ configured 
with a similar number of elements as AIRS, as well as an optimised version of the LVQ 
algorithm. In the case of one of the datasets (credit card classification problem), AIRS 
achieved results better than the best classification results known at the time for the 
problem (to the authors knowledge).  
 
Work in [17] investigated the effect on AIRS of introducing additional irrelevant features 
to classification datasets. It was speculated that the performance of the technique would 
decrease given its reliance on the Euclidean distance measure. Results were unexpected 
and indicated a small drop classification accuracy on the tested problem domains. A 
comparison of results with LVQ showed that LVQ was capable of out-performing the 
AIRS technique when initialised with the same number of codebook vectors discovered 
by AIRS, though was not capable of doing so when configured independently. 
 
A number of augmentations to the AIRS algorithm have been suggested and tested in 
previous research. Some issues addressed in [18] include the handling of ties during 
classification, the restructuring of the ARB pool, and resource allocation. While focused 
on augmentations of version one of the AIRS algorithm, the results are still interesting. 
Four additional alternative tie handling methods for classification were proposed and 
tested in addition to the standard AIRS tie handling technique: 
 
First labelled first served (traditional AIRS technique) – In the case of a tie, select the 
class with the lowest assigned identification number (first encountered) 
 
Sum of affinities – Select the class with the highest sum affinity  
 
Selection based on class proportions – A probabilistic approach that would use the 
number of instances of each class to determine probabilities 
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Include more memory cells – Continue to add memory cells until the tie was resolved 
(uses a new parameter k-additional which defines the maximum number of additional 
cells to include) 
 
First come first served – Select the class of the highest stimulated cell 
 
Interestingly the probabilistic approach “Selection based on proportions” performed the 
best on the noisy yeast machine learning dataset, and the “sum affinities” approach which 
logically appear the most sensible performed relatively poorly. The alternative ARB pool 
structures were centred around the assumption that the fact that ARBs of different class 
as the antigen in the pool had little impact on training and the resulting classifier.  One 
alternative resource allocation scheme was also tried where resources were allocated 
based on the class proportions in the ARB pool (again for AIRS1). Results were 
inconclusive on the E. coli and yeast machine learning dataset. 
 
The issue of using different distance measures for calculating affinity was addressed in 
[19]. Euclidean distance is traditionally the distance measure used in AIRS algorithm for 
calculating affinity and stimulation scorings. This requires that all attributes be converted 
to numeric (real) values, which has no meaning for nominal and potentially less meaning 
for discrete attributes. Twelve alternative distance measures were proposed for use in 
AIRS and evaluated, each capable of producing values in the require range of [0,1]. The 
measures used specifically catered to the nature of attributes, and were tested on common 
machine learning datasets with a range of numeric, nominal and discrete attribute types. 
Results indicated that by using more natural and arguably useful measure of comparison, 
AIRS can achieve better classification accuracy. 

4.2.3 The Power of AIRS 
At least two studies have been performed into why exactly the AIRS algorithm is so 
successful. In [20], it is hypothesized that the power of AIRS comes from the manner in 
which the  algorithm derives candidate memory cells for the pool that eventually make up 
the resulting classifier. The random process for generating ARBs was replaced with a 
standard elliptical probability distribution function (PDF) and analysed. A Histogram was 
then prepared describing the distances of mutated clones from their parents. These 
histograms were prepared and evaluated for a number of common machine learning 
datasets. 
 
To test the proposed hypothesis, the process of randomly generating ARBs was replaced 
with one of three different distribution functions based on the histograms observed. The 
results showed on the most part that the difference between using the different functions 
was not statistically significant. Further, the results lead to the speculation that the power 
of AIRS does in fact not come from the manner in which samples are generated, but 
rather from the manner in which the system selects, replaces and maintains members of 
the memory cell pool.  
 
This second hypothesis regarding the memory cell selection decision making process 
within AIRS was investigated empirically in [21]. A number of alternative decision 
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making elements were proposed and tested along with the standard technique (previously 
described), these were as follows: 
 

1. Mod0 – The original AIRS1/AIRS2 scheme 
2. Mod1 – Same as Mod0, only memory cells are never delete, only added  
3. Mod2 – Same as Mod0, only when a memory cell is admitted, it always replaces 

the previous best match 
4. Mod3 – The candidate memory cell is always admitted, though never replaces the 

previous best match  
 
The results showed that Mod1 ended up with a single memory cell for each class, 
whereas Mod1 and Mod3 ended up having a memory cell for each antigen it was exposed 
to. In terms of classification accuracy, Mod1 and Mod3 produced results similar to that of 
Mod0, though given the data reduction capability of the original system; it was clearly the 
better approach.  

4.2.4 Parallel AIRS 
The final interesting area of research for the AIRS algorithm is work into exploiting the 
parallelism inherent in the techniques base metaphor. Few AIS algorithms exploit the 
distributed nature and parallel processing attributes exhibited in the mammalian immune 
system. Work in [22] proposed and tested a version of the AIRS algorithm designed for 
distribution across a variable number of processes. The approach to parallelising AIRS 
was simple, involving the following steps in addition to the standard training scheme: 
 

1. Divide the training data set into np number of partitions, where np is the number 
of desired processes running AIRS 

2. Allocate a training partitions to processes and prepare memory pools 
3. Gather the np number of memory pools 
4. Use a merging scheme for creating a master memory pool for classification 

 
Results showed that as long as the dataset was not partitioned too extensively, then a 
speedup could be observed by running AIRS in parallel, whist achieving similar levels of 
classification accuracy. A simple concatenation scheme was used which caused some loss 
in the data reduction benefits of AIRS, so alternative merging strategies were proposed 
and tested. Merging approaches using affinity between memory cells provided results that 
were inconclusive, and was marked as work for future research. It should be noted that 
the parallel version of the technique can be used on multi-processor machines via threads 
(see the WEKA implementation overview in section 9. ). 
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5.  Analysis and Extensions 
The AIRS algorithm is a young (approximately just over three years old), and reasonably 
complex algorithm. Given the excellent results reported for a wide range of classification 
problems, the algorithm both has room for improvement and disserves investigation. This 
section analyses the algorithm from a design goal perspective to reiterate some of the 
strengths and identify some of the limitations of the algorithm. A number of AIRS 
specific statistics are proposed and discussed for use analysing the algorithm. Finally, a 
number of extensions and simplifications to the algorithm based on the identified 
limitations are discussed. 

5.1 Expectations and Limitations of AIRS 
For a list of design goals or expectations of an AIRS or AIRS like immune-based 
supervised learning / classification system, a good place to start is [9] that lists design 
goals used for the development of the Immunos-81 system. They were as follows: 
 

1. Easily understood internal representation 
2. Ability to generalise from input data 
3. Predictable training times 
4. Online learning 
5. Potential to act as an associative memory 
6. Acceptance of continuous and nominal variables 
7. Capacity to learn and recall large numbers of patterns 
8. Experience-based learning 
9. Supervised learning 

5.1.1 AIRS and Design Goals 
The mentioned set of design goal seem reasonable for an AIRS-like supervised learning 
system, therefore it is beneficial to evaluate AIRS against each goal to aid in identifying 
potential limitations.  

5.1.1.1 Easily understood internal representation 
The benefit of having an easily understood representation is that it allows a user to look at 
the classification decisions made by the system and understand directly why a particular 
action was taken. An opaque system creates a situation where the user has little or no 
understanding of how the system arrived at a decision. Some artificial neural network 
architectures suffer from this problem. AIRS uses natural or real vectors to represent data 
in the same manner as data is represented in the domain. AIRS clearly meets this design 
goal, though it is common during the initialisation process in AIRS to normalise the data 
vectors, though (as it will be shown in section 5.3) this may not necessary. 

5.1.1.2 Ability to generalise from input data 
To generalise is to draw a specific case from a more general case. In terms of 
classification, AIRS uses exemplars to represent the general case and determines the 
specific case (classification) based on a best match or majority vote from the top k best 
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matches. Moreover, the exemplars are representative of one or more training instances, 
meaning that the number of exemplars is less than that of training instances. This data 
reduction feature has been observed to be up to approximately 50% or more for a range 
for standard machine learning datasets. The minimum requirement for an AIRS like 
system is to have as many or less exemplars as there are training instances. 

5.1.1.3 Predictable training times 
This design goal is the first design goal for which AIRS may have a problem. Although 
the computational complexity for AIRS has not been described, it can be estimated to be 
of reasonably high complexity given the repeated number of similarity (affinity and 
stimulation) elements involved for each antigen presented during training. Further, the 
algorithm consists of loops within loops within loops (resource allocation and pruning �  
ARB refinement �  antigen presentation), which are dependent on the antigen in relation 
to the memory pool at the time in the training schedule. Even though computational 
improvements have been made on the original AIRS algorithm (AIRS2), this remains an 
area that needs both further investigation and improvement. 

5.1.1.4 Online learning 
Online learning or continuous learning refers to the algorithms ability to improve or 
perform further training after delivery of the classifier. LVQ and many artificial neural 
network algorithms are examples of algorithms that exhibit this feature. This feature has 
not been explored in the AIRS algorithm to date (to the author’s knowledge). Some 
potential concerns with this goal are addressed in section 5.1.2.1.  

5.1.1.5 Potential to act as an associative memory 
A classification system could be viewed as a specific type of associative memory called 
hetro-associative (key �  content). Here the key represents the data vector provided to the 
system, which is then matched onto an exemplar. The content returned is the 
classification value associated with the exemplar. AIRS clearly exhibits this feature. It is 
arguable whether the system can be considered auto-associative (key �  key), because not 
only can more than one exemplar be returned, but the exemplar is rarely if ever the same 
as either the training data vectors or unseen test data vectors. 

5.1.1.6 Acceptance of continuous and nominal var iables 
According to [19], the AIRS algorithm requires that all variables to be converted to 
numeric before being used. Extensions in [19] provide a means for handling any of 
numeric, discrete and nominal attributes. The problem of attribute handling in similarity 
or distance measures is an old problem which has been addressed and solved many times 
for instance based algorithm such as k-Nearest Neighbour and LVQ. This design goal 
should be extended to the following: “Acceptance of any attributes for which a distance 
useful can be devised”. Given this refinement, AIRS can clearly meet this goal. 

5.1.1.7 Capacity to learn and recall large numbers of patterns 
This is an interesting design goal as the term large is relative and undefined. The simple 
answer to whether AIRS can meet this goal is yes, though in practicality it appears 
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problem dependent. It is fair to say that AIRS will find some arrangement of exemplars to 
satisfy the training data it is exposed to. A problem of time complexity may arise when 
the number of exemplars increases beyond a reasonable level. This is addressed in section 
5.3.5. 

5.1.1.8 Exper ience-based lear ning and Supervised Learning 
The last two design goals are quite vague and similar, in fact you can’t have one without 
the other. The first: experience based learning, indicates that the algorithm learn from its 
experience with the problem domain (training data), and the second: supervised learning, 
indicates that the learning it performs is supervised, meaning both input and desired 
output are known at training time. AIRS is a supervised learning algorithm that learns 
from experience.  

5.1.2 Additional Design Goals 
The design goals discussed are reasonably general, and provide a good starting point for 
an AIS based AIRS-like classification system. This section proposes a number of 
additional design goals and attempts to answer the degree to which AIRS addresses them. 

5.1.2.1 Pr ior  Knowledge 
The question of what prior knowledge is required for AIRS is an interesting question. On 
the surface, it may appear that little or no prior knowledge is required to run the AIRS 
algorithm. This assumption comes from the results observed on a broad range of standard 
classification problems with factory or close to factory algorithm parameters.  
 
Firstly, the algorithm indicates that all training data vectors are normalised during 
initialisation. Normalisation requires the bounds of each variable to be known prior to 
training. This is fine, because the training set is finite and known at training time. If the 
resulting memory cells produced by the algorithm in the classifier are kept normalised 
then the bounds of all attributes seen during classification are required prior to training. 
This is commonly not a concern for most if not all toy machine learning classification 
problems where the entire data set is small and known. It becomes a concern when 
working with large real-world dataset and data streams where continuous learning is 
applied. 
 
In the highlighted cases, the bounds of the attributes can be speculated at, but may not be 
known. As will be shown in section 5.3, AIRS can be re-deigned to get away without 
requiring normalisation of training vectors. A problem still arises during ARB generation. 
Here, the degree of mutation a cloned ARB receives is proportional to its stimulation. 
The mutation amount becomes the inverted normalised stimulation proportion of each 
attributes range.  
 
The final place where the bounds of the input space are required is in calculating the 
maximum distance between any two data vectors, which is in turn used to normalise all 
distance values (used for affinity, and stimulation throughput the algorithm). These issues 
are somewhat addressed in section 5.3. 
 



 18

This design goal indicates that the domain specific knowledge should be minimal. The 
question as to whether knowing or intelligently speculating at attribute bounds a priori is 
too much prior knowledge can be considered problem and application dependent, though 
it is desirable to have a version of AIRS where this is less or not even a concern. 

5.1.2.2 Classification Accuracy 
A critical design goal of an AIRS-like classification system is its classification accuracy. 
This accuracy should be measured using a tested testing procedure such as cross-
validation and results need to be averaged over tens, hundreds or even thousands or run 
executions to give somewhat statistically safe results. (It should be mentioned that the 
majority of reported results are mean accuracy values over 3-10 tests, typically in an 
attempt to reproduce previous experiments for comparison) Further, a mean and standard 
deviation of overall classification accuracy is less than meaningful for many machine 
learning datasets given disproportional class distributions. At a minimum a confusion 
matrix should be provided and used to give a more accurate indication of classifier 
usefulness, other than accuracy.  
 
In classification mode, AIRS is used in a similar manner to the k-Nearest Neighbours 
(kNN) algorithm. A suitable design goal is to require that an AIRS-like supervised 
learning algorithm provide equal or better classification performance than kNN. Results 
should also be competitive with those of LVQ, a similar algorithm in classification 
function, which is known to both produce good classification results and is 
computationally efficient.  

5.1.2.3 User Parameters 
Most supervised classification algorithms require one or more user parameters, and 
AIRS2 is no exception with nine parameters (including random number generator seed). 
The AIRS1 algorithm had an additional two parameters, taking the total to 11. User 
parameters are a beneficial feature in that they allow the user to tune the algorithm for a 
specific problem domain. The primary problem is that changes to parameters need to be 
predictable. This problem becomes more of a concern as the number of parameters 
increases.  
 
A consolation is that many of the results reported of the AIRS algorithm have been found 
using AIRS with factory configuration, and the fact that good results have been achieved 
with these settings across a broad range of problems raises an interesting question. How 
many of the parameters are actually critical to the functioning of the AIRS algorithm? 
This problem will be somewhat addressed in section 5.3. It is clear that a suitable design 
goal for an AIRS-like algorithm is to minimise the number of user configurable variables, 
and have the effects of those variables that are left simple and predictable. 

5.2 AIRS Specific Statistics 
From a review of the AIRS literature, one area that has seen little or no attention is the 
topic of user feedback regarding the training process and state of the classifier produced 
from the training process. This section proposes a number of AIRS specific statistics that 
may be useful for both tunning the algorithm for a specific problem domain, as well as 
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providing some insight into classifiers produced by the algorithm. It is important to note 
that all statistics mentioned in this section have been implemented in the WEKA 
implementations of the AIRS algorithms (See section 9. ). 

5.2.1 Training statistics 
Statistics gathered during the algorithm training process can be used to gain insight into 
the functioning of the system and be used to refine algorithm performance either in terms 
of classifier quality or algorithm runtime. Of specific interest during the classification 
preparation process are statistics that provide an indication the effects of user-defined 
parameters.  
 
Number of Clones – The mean number of clones produced by memory cells and ARBs 
during training provides a useful indication of how much local searching is occurring. 
Mean scores closer to the maximum (clonal rate for ARBs and (clonal rate �  
hypermutation rate) for memory cells) indicate that stimulation scores are higher, perhaps 
indicating that the system may be over-learning antigens requiring the total resources to 
be reduced or the stimulation threshold decreased. The reverse could be the case if the 
mean is closer to zero. 
 
Allocated Resources – The mean number of allocated resources provides an indication 
of the amount of ARB pruning that may be occurring during training. A mean closer to 
the total resources may indicate that the total resources may not be high enough, where 
as a mean a distance from the total may indicate more pressure is required – that is a 
lower total resource value. 
 
ARB Pool Size – The mean number of ARBs in the pool provides further insight into the 
resource allocation and competition for limited resources. Smaller pool sizes indicate 
perhaps not enough cloning or too much competition for resources; whereas large pools 
cause the training scheme to run slower and perhaps require a lowering of the clonal rate 
or an increase in the competition for resources. 
 
Refinement I terations – The mean number of ARB refinement iterations provides an 
indication of the amount of local search performed for a given antigen. A large mean 
indicate the step may be too computationally expensive and may result in the system 
over-learning the training set resulting in lower classification accuracy. 

5.2.2 Classifier Statistics 
The classifier is simply a pool of data vectors (memory cells) that represent a 
generalisation of the training dataset. Of interest of this pool of data vectors are measures 
of class breakdowns and vector usefulness. 
 
Class Breakdown – A telly of the number of memory cells that belong to each of the 
known classes. Provides an overview of the coverage of the problem space, and could be 
compared to a similar tally of the training data to gain an indication of usefulness or skew 
in the generalisation that has occurred. 
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Percentage of Data Reduction – The amount of data reduction in the resulting classifier 
could be used in conjunction with classification accuracy as a measure of algorithm 
usefulness. This measure effectively conveys the amount of generalisation that has 
occurred, and when paired with classification accuracy on the training data provides an 
indication of quality of the generalisation. The data reduction could be a percentage 
calculated as: 
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Equation 10 - Calculation for  data reduction measure of resulting classifier 

 
It should be noted that this data reduction measure is not original. It was used in [7,10] as 
a means of comparing AIRS1 and AIRS2. What is suggested here is that the measure 
becomes a standard when reporting results of AIRS. 
 
Memory Cell Usefulness – Calculating a histogram of hits against the training or test 
data set provides an indication of the usefulness of the memory cells in the classifier. The 
hit counts could further be broken down into correct and incorrect classifications and 
perhaps used to allow memory cells to “change sides” or change their classification 
outputs dynamically at runtime / classification-time. Further, a histogram against the 
training data could be taken and all memory cells that have zero hits could be removed 
from the classifier – providing a refinement to the data reduction process. 

5.3 Restructured AIRS 
From reviewing the literature regarding the AIRS algorithm, as well as analysing AIRS 
from the perspective of reasonable design goals, a number of extensions, simplifications 
and restructurings to the AIRS algorithm can be proposed. The propositions vary in detail 
from major changes to the algorithm itself, to simple reinterpretations and 
implementation specific details. The intent of this section is to address a number of raised 
issues regarding the AIRS algorithm in an attempt to better match some or all of the 
proposed design goals to both make the algorithm simpler from a user perspective whilst 
achieving results similar, equal or better than those of the base AIRS (AIRS2) algorithm 
implementation. 
 
To recapitulate the main elements of AIRS that are immune-inspired from the field of 
AIS, the following list is provided: 
 

1. Affinity Maturation – The process used to adapt the system to a presented antigen 
a. Clonal Expansion – The affinity proportionate means of determining the 

amount of local exploration (number of samples) 
b. Somatic Hypermutation – The stimulation proportionate means of 

determining the amount of local search (variation from parental unit) 
c. Clonal Selection – The affinity determined means of selecting a candidate 

recognition cell and integrating it into the pool (selection and potential 
replacement) 
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2. Long lived Recognition units – The ARB representation and maintenance of the 
memory pool itself that ultimately becomes the resulting classifier 

 
At its simplest the algorithms design is to prepare a set of exemplars by generating 
variations of existing best match exemplars and using a selection and replacement policy 
to integrate newly generated exemplars into the managed pool. Obviously, there is more 
to the sample generation process such as refinement and resource allocation for pruning, 
but these elements detract from the algorithms core function. Interestingly, as was 
previously shown, the means of sample generation have little effect on the resulting 
classifier. Replacing the entire sample generation process with a simple function for 
generating exemplars within a constrained radius is attractive for a number of reasons. 
This will be revisited shortly, first it is important to reiterate and understand some 
implementation details of AIRS. 

5.3.1 Normalisation  
As mentioned, the training dataset must be normalised during initialisation. Why must the 
dataset be normalised? From a detailed review of the algorithms pseudo code, it appears 
that the primary reason for this requirement is the mutation process. Data normalisation is 
used in the algorithms design to enforce distances measures to be in the range of [0,1], 
though as was shown can be avoided here by simply dividing the distance by the 
maximum possible distance.  
 
The mutation process is where the inverse stimulation value is used as a proportion of 
mutation for each attribute in a clone, with the clones current attribute value as the centre, 
and the inverse stimulation value as the range for the new mutated attribute value. It 
could be argued that normalising for this reason alone is insufficient. The same mutation 
effect can be achieved by knowing the attribute range in the normalisation set and setting 
the mutation range as (attribute range �  inverse stimulation value). This removes one of 
the elements of prior knowledge identified in AIRS. 

5.3.2 Normalised Distance 
All distance measures calculated during the training scheme (not classification) are 
normalised, and are then used as affinity or inverted for stimulation. Why is it necessary 
to normalise distance measures? The following lists all the elements of the algorithm 
dependent on normalised distance measures: 
 

1. Affinity Threshold calculation – used with the user defined affinity threshold 
scalar to determine when a candidate memory cell can replace the previous best 
match memory cell 

2. Affinity for memory cell selection replacement – required because of affinity 
threshold (circular argument)  

3. Stimulation – for memory cell generation (number of clones) and mutation 
(mutation range) after best match memory cell is selected 
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Interestingly all resource allocation, stopping criterion and ARB generation and mutation 
during the ARB refinement uses stimulation values that are normalised against all other 
ARB stimulation values. Although the pre-normalised stimulation values are calculated 
using normalised distance values, distance normalisation at this point is clearly not 
required.  
 
The clonal selection element of the algorithm has a circular argument requiring 
normalised distance values. By calculating the affinity threshold using un-normalised 
distances measures and calculating affinity in this process in the same manner, 
normalised distance measures are no longer required at this point. Regarding the affinity 
threshold scalar parameter, as mentioned it is simply a squashing term and normalised 
distance scorings have no bearing on the resulting memory cell replacement decision-
making process. 
 
This leaves the seed ARBs generated from the best matching memory cell. In the AIRS 
algorithm, the number of clones generated at this point is calculated using Equation 6, 
which requires two user parameters. An easy solution is to simply require the user to 
indicate the number of seed ARB clones for the ARB pool each iteration which replaces 
two scale parameters with one simple numeric parameter (easier to understand). 
Regarding mutation, the degree of variation could be determined by the number of seed 
ARBs specified. More ARBs naturally means more room for exploration, and thus 
mutation range could take advantage of this.  
 
This is an arbitrary solution, and it is clear more thought is required in a more effective 
mutation scheme. What is clear is that it is possible to further remove distance 
normalisation from the algorithm, another element of complexity that requires prior 
knowledge of the problem domain. This change becomes more attractive when the 
mutation scheme is replaced. 

5.3.3 Removing Unnecessary Parameters 
One of the strengths of AIRS is its ability to discover or determine the architecture 
(number of exemplars) automatically. A review of the literature revealed that the number 
of seed memory cells is commonly one or zero. Give these two points, it seems logical to 
remove the parameter from the algorithm, or at the very least leave it an optional, but 
non-required parameter. 
 
The resulting effect of this change is that the first antigen encounter from each class will 
automatically become a member of the memory pool, at least until it is potentially 
replaced. A minor flaw in the original pseudo-code for the algorithm is that even when a 
best match memory cell is identical to the antigen (as in this case), the ARB refinement 
process continues. The effect is that the affinity is zero and the stimulation is one. This 
means that one clone is produced (the original best match becomes an ARB), the clone is 
not mutated, and the stopping condition for ARB refinement is met the first time it is 
checked. Finally, the single ARB clone is selected and ends up replacing the original 
antigen cloned memory cell. A small change with an impact on computational complexity 
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is to simply not run the ARB refinement loop when an antigen becomes a memory cell, or 
when affinity is zero between a memory cell and an antigen.  
 
Another small change along the same lines is to change the algorithms response when the 
best matching memory cell belongs to another class. In this case it means that the system 
is miss-classifying the instance to begin with. To then generate, mutate and refine clones 
of the misclassification makes little sense. In this case the antigen could be simply 
directly added to the memory pool, or the seed used to start the ARB refinement process 
could be a version of the best matching memory cell with its class adjusted to that of the 
antigen in question. 
 
A second parameter that can be removed with little consequence is the number of 
antigens to use when calculating the affinity threshold. For small problems, it is 
reasonable to simply calculate the mean distance between all instances in the training 
dataset. In larger problems or in online learning where this is not feasible, the affinity 
threshold can be calculated as a running mean, potentially initialised from a reasonably 
sized sample from the domain.  
 
The affinity threshold is, as has been mentioned, the control over when candidate 
memory cells replace best match memory cells. Little research has been performed into 
this simple yet critical element of the AIRS algorithm. It would be useful to investigate 
the effect of using dynamic (running mean), and class-based affinity threshold measures 
in the algorithm. Further, would also be useful to evaluate alternative replacement 
decision making strategies and their impact both on data reduction and classification 
accuracy. 

5.3.4 Sample Generation 
As has been shown in previous work, the source of power of AIRS appears to be the 
memory cell selection and management process, rather than the cell (sample) generation 
process. This is great news, given that the majority of the computational complexity of 
the AIRS algorithm pertains to sample generation. The first simple step is to replace 
sample generation with a random sample generation function constrained both in the 
number of samples and distance of samples from parent to child. This constraint could be 
(not does not have to be) imposed in some way by the affinity or stimulation between the 
ARB and antigen.  
 
Regardless of the ARB generation process, it is logical to remain consistent with the basic 
function of AIRS. That is, to first generate a seed batch from the original best match 
memory cell, and then to refine the ARBs to some degree. A basic implementation is to 
simply run one ARB refinement iteration, ensuring that the number of clones for each 
ARB is approximately half that of the number of clones generated from the best match 
memory cell to seed the ARB pool (standard AIRS parameters). It is speculated that this 
simple approach would be enough to provide sufficient variation of the original best 
match memory cell to allow AIRS to achieve similar levels of classification accuracy and 
data reduction. This conjecture is based on the results from [20], and the fact that this 
version of the process provides a more AIRS-like sample generation scheme. 
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5.3.5 Classifier Structure 
In the standard AIRS implementation, the computational complexity for classification 
(assuming a k of one) is O(n), where n is the number of exemplars. In the case of both a 
very large classifier and continuos learning system, this is less than desirable, especially 
if the exemplars are managed externally from the system (a database for example). It is 
possible to restructure both the pools used during training (ARB pool and memory cell 
pool), as well as the final classifier to use a more attractive data structure, such as a tree 
of some description. Again, as with vector distance measures, this is an area of research 
that has seen a lot of attention both in terms of the kNN and LVQ algorithms. A simple 
change is to implement a known more efficient data structure to speedup all matching 
processes in AIRS. 

6.  Further Work 
The AIRS technique has been shown to be a powerful and successful machine learning 
algorithm, though a technique with perhaps an unnecessary amount of complexity. A 
number of extensions, simplifications and changes to the standard AIRS (AIRS2) 
algorithm were proposed based on an analytical and theoretical understanding of the 
technique. What is clearly required is an investigation into the effects on classification 
accuracy and data reduction capability of the technique with some or all of the proposed 
changes implemented. It should be noted, that work on this investigation has already 
begin, using the WEKA implementation (discussed in section 9. ) as the foundation.  
 
Analysing and researching the history of a technique is a beneficial exercise for gaining a 
strong grounding in the technique being investigated as has been demonstrated by this 
work. To this end, it would be a useful exercise to perform a similar investigation and 
analysis on other successful AIS based algorithms, specifically those techniques which 
have already been or can easily be converted to the primary interest of the author, that is 
supervised learning for classification. Some suggestions include Immunos-81, 
CLONALG, AINE and the ai-NET algorithms. Further, it may be beneficial to 
investigate the main themes and theories of the biological immune system for both a 
stronger grounding in AIS terminology, as well as inspiration for further developments in 
the field of artificial immune systems. 
 
It should be noted, that at least two areas of research regarding AIRS were not 
investigated fully in the production of this work. The first relates to parallel AIRS, 
specifically work by Andrew Watkins [23] (unpublished dissertation). The second is the 
use of AIRS for document classification by Julie Greensmith [24,25]. The reason for 
these omissions was the inability to get a hold of the related works within a reasonable 
time period before this work on investigating the AIRS algorithm was to be completed. It 
is expected that a review of this mentioned work would provide further insight into the 
AIRS algorithm in terms of both function and application. 

7.  Conclusions 
This work represents an entry point for the author into the field of artificial immune 
systems, and specifically the AIRS algorithm. The intent of this work was to demonstrate 
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competence with the AIRS technique both in terms of history, algorithmic function and 
application. Further, given some competence, the intent included proposing potential 
extensions to the technique. These intentions of this work were achieved successfully. A 
complete (as the author knows it) history of the AIRS algorithm was provided with a 
focus on research that was of fundamental or of interest. Not only were the technical 
elements of the technique discussed, but in addition, a professional-level, tested 
implementation of the main technique was provided as a plug-in for the widely used and 
known WEKA machine learning work bench application and application programming 
interface.  
 
Finally, a number of potential limitations and areas for improvement regarding the AIRS 
algorithm were identified. These limitations were then addressed through the proposition 
of a number of algorithm simplifications and extensions both original and borrowed from 
other research. Although the effect of said extensions was speculation and conjecture, it is 
expected that the implementation of one or more may produce a variant of the AIRS 
technique or a new technique entirely that is not only more usable (in terms of application 
and or implementation), but is likely to provide as good or better classification accuracy.  
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8.  Appendix – Reported Results 
This section provides a summary of results reported with the various AIRS version for 
common machine learning datasets. The results reported here should not be considered 
complete, rather the intent of this section is to provide both a summary of potentially 
good algorithm parameters and an expectation of results for the technique that can be 
used as a measure of comparison. 

8.1 AIRS1 
The following results were reported in [2] for the AIRS1 algorithm. 
 

Dataset Cross-
validation 

Total 
Tests Seeds Res. Stim. Mut. ATS kNN Test 

Accuracy 
Iris Plants 5 3 1 200 0.9 0.1 0.2 7 96.67% 

Ionosphere 
First 200 
train 
Last 151 test 

10 1 500 0.8 0.1 0.2 3 94.92% 

Pima 
Diabetes 10 3 1 200 0.9 0.1 0.2 9 74.09% 

Sonar 13 10 1 200 0.9 0.1 0.2 1 83.99% 
Table 1 - AIRS1 parameters and results for four  common datasets 

 
The following results were reported in [6] for the AIRS1 algorithm. Algorithm settings 
for the results were not provided, though were indicated to be “as shipped”. All tests were 
reportedly executed using 10 fold cross-validation and were taken as the average result 
over three tests.  
 

Dataset Test Accuracy 
Balance-scale 96.7% 
Pima diabetes 74.1% 
Wisconsin breast cancer 97.2% 
Credit.crx 85.7% 
Ionosphere 94.9% 
Arrhythmia 59.5% 

Table 2 - AIRS1 results for  six common datasets 

8.2 AIRS2 
The following results were reported in [10] and were reportedly arrived at by using the 
same configuration and setup as was used in [2]. The results were provided as a 
comparison between AIRS1 and the newly proposed AIRS2 technique. 
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Dataset Test Accuracy 

Iris Plants 96.0% 
Ionosphere 95.6% 
Pima Diabetes 74.2% 
Sonar 84.9% 

Table 3 – AIRS2 results for  four  common datasets 
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9.  Appendix – Overview of WEKA implementation 
WEKA is a machine learning workbench [26] written in the Java programming language. 
It provides a large number of common classification, clustering, attribute selection 
algorithms as well as visualisation tools, algorithm test schemes and data filtering tools. 
WEKA provides a number of interfaces for making use of the tools and algorithms 
provided such as a command line interface, a data exploration interface, an algorithm test 
and comparison interface, a workflow interface, and finally a programmer level 
application programming interface for integrating WEKA functionalities into standalone 
allocations. WEKA has been made open source, allowing academics and industry to 
extend the platform by adding algorithm and tool plug-ins for the platform. 
 
The AIRS algorithm has been shown to be a successful classification algorithm for a 
broad range of machine learning problems. As apart of this work investigating the AIRS 
algorithm, an implementation of AIRS was prepared and tested for WEKA. As far as the 
author knows, there does not exist an implementation of the AIRS algorithm for 
professional and academic level application that is both documented and open source.  
 
The provided implementation of AIRS for WEKA offers the following advantages: 
 

1. Standardised programmatic and user interface  
2. Java implementation (platform independent) 
3. Open-source, taking advantage of refinements and improvements from 

contributors 
4. Allows AIRS to be made available to the wider user base of WEKA users (both 

academic and industrial) 
5. Provides a convenient, consistent, proven and tested platform for algorithm 

benchmarking, testing and comparison  
6. Take advantage of the wide array of classifier-specific performance measures, 

visualisation tools, standard datasets and data filtering and preparation tools 
7. Prepared models (including classification models), as well as algorithm 

configurations can be saved externally, reused and distributed 
 
The WEKA implementation provides three variants (at the time of writing) of the AIRS 
algorithm. These include AIRS1, AIRS2 (canonical AIRS) and parallel AIRS. All AIRS 
implementations are located in the package “weka.classifiers.immune” and are accessed 
as such in the WEKA user interfaces from the algorithm selection drop-down. 

9.1 Common Features 
The implementation provides statistics mentioned in 5.2, as well as some additional 
useful statistics. Both sets of statistics, namely the training summary statistics and the 
classifier statistics are provided in the WEKA interface automatically, or can be retrieved 
programmatically by executing the toString() method on a prepared algorithm instance. 
The following provides an overview of the provided statistical information: 
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1. Training Statistics 

a. Affinity Threshold – The system calculated affinity threshold value 
b. Total Training Instances – Total data instances used for the training 

process 
c. Total memory cell replacements – The total number of times a candidate 

memory cell replaced the previous best matching memory cell 
d. Mean ARB clones per refinement iteration – The average number of ARB 

clones produced each ARB refinement iteration 
e. Mean total resources per refinement iteration – The total number of 

allocated resources (after pruning) allocated per ARB refinement iteration. 
For AIRS1, this is the sum of allocated resources for all classes 

f. Mean pool size per refinement iteration – The average ARB pool size for 
each ARB refinement iteration 

g. Mean memory cell clones per antigen – The average number of memory 
cell clones made of the best match memory cell to seed the ARB pool for 
each training data instance 

h. Mean ARB refinement iterations per antigen – The average number of 
ARB refinement iterations per presented training data instance 

i. Mean ARB prunings per refinement iteration – The average number of 
ARBs pruned from the ARB pool per ARB refinement iteration 

2. Classifier Statistics 
a. Data Reduction Percentage – The percentage reduction in the number of 

memory cells compared to the number of training data instances 
b. Classifier Memory Cells – A breakdown of the number of memory cells 

that belong to each class 
 
All AIRS implementations are provided with the following features and augmentations 

- Data instances with missing values are removed from the training data set, though 
are supported when performing classification with the resulting model. This is 
achieved by ignoring attributes with missing values when calculating the affinity 
measure 

- Both numeric (real) and nominal (unordered discrete) data instances are treated 
correctly when calculating the affinity measure. In the case of nominal values, a 
binary matching process is used for equal (zero) and not equal (one). 

- During the training scheme, all cases when either a data instance is converted to a 
memory cell or when the best matching memory cell is selected and has a 
stimulation of one, then the normal ARB refinement process is not executed. The 
reason for this is as described in section 5.  

9.2 Test Results 
For reference purposes, the implemented version of AIRS were tested on a number of 
standard machine learning datasets from [3]. All tested were executed with the algorithms 
default parameters, cross-validated with 10 folds and test results were averaged over 10 
iterations. Although the results are somewhat similar to those results reported in AIRS 
literature, it is expected that through parameter tuning that improved results can be 
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achieved. The following table provides the mean classification accuracy scores and 
standard deviations. 
 

Dataset AIRS1 AIRS2 Parallel AIRS 
Iris Plants 95.267% (1.281) 95.0% (1.0) 95.6% (0.533) 
Pima Indians Diabetes 69.701% (1.215) 70.872% (1.348) 70.964% (0.79) 
Sonar 69.808% (2.666) 66.01% (2.172) 64.712% (3.276) 

Balance Scale 81.552% (1.127) 81.024% (0.877) 82.976% (0.687) 
Wisconsin Breast Cancer 96.838% (0.289) 96.166% (0.372) 96.466% (0.203) 

Cleveland Heart Disease 80.792% (1.01) 79.142% (1.452) 79.571% (1.119) 
Ionosphere 87.037% (1.454) 85.128% (1.335) 84.444% (1.21) 

Table 4 - Shows test results of implemented AIRS algorithms for  the WEKA platform 

9.3 AIRS1 
Although AIRS version 1 is now deprecated, (superseded by AIRS version 2), it is 
provided for historical reasons primarily because of the successful results reported 
initially in [1,2,10]. The algorithm is a pure implementation as defined in [2] and allows 
the user to specify the full array of parameters. The following provides an example 
screenshot of the WEKA user interface configuration panel for AIRS1. All parameters 
are initialised with sensible default values from AIRS literature. 
 

 
Figure 3 - Shows the AIRS1 configuration panel from the WEKA interface 
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9.4 AIRS2 (Canonical AIRS) 
AIRS version 2 is the standard version of the algorithm, and is simply referred to as AIRS 
in this work. The implementation takes advantage of the reduction in computational 
complexity suggested in [10] and matches the description from [10] and pseudo code 
from [7]. The following provides an example of the configuration panel for AIRS2 in the 
WEKA user interface. 
 

 
Figure 4 - Shows the AIRS2 configuration panel from the WEKA interface 

9.5 Parallel AIRS 
The final implementation of AIRS is the parallel version defined in [22]. Here, instead of 
being distributed across multiple processes, this implementation allows AIRS to be 
executed by multiple threads. The number of partitions can be specified, and the AIRS 
algorithm executed by each partition is version 2 (canonical AIRS). The parallel version 
of AIRS can be executed on single or multiple CPU machines; though no speed benefit is 
expected unless the number of specified partitions matches or is less than the number of 
CPUs on a multi-CPU system the system. Two means of partition merging are provided, 
specifically a standard concatenate, and a concatenate and prune scheme. The prune 
scheme first creates a master memory pool, and then applies the training data one last 
time. All memory cells that are not used for this final pass of best matching are removed 
from the pool. The following provides an example of the Parallel AIRS algorithm 
configuration panel from the WEKA user interface. 
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Figure 5 - Shows the AIRS2 Parallel configuration panel from the WEKA interface 

9.6 Algorithm Usage 
As mentioned, the AIRS implementations can be used directly from the WEKA Explorer 
WEKA Work Flow, and WEKA Experimenter interfaces. For the AIRS implementations 
to be recognised by WEKA, the AIRSWeka.jar file must be in the Java class path. The 
implementation was prepared with Java 5.0 (1.5), and thus the installed Java Runtime 
Environment (JRE) must be also be this version. Finally, the version of WEKA that the 
algorithm was prepared for and tested with is 3.4.3.   
 
The following provides examples of using the three AIRS implementations from the 
command line on the Iris Plants dataset with 10-fold cross-validation. 
 
j ava –cp weka. j ar ; AI RSWeka. j ar  weka. cl assi f i er s. i mmune. AI RS1 
- S 1 - F 0. 2 - C 10. 0 - H 2. 0 - M 0. 1 - R 150. 0 - V 0. 9 - A - 1 - B 1 
- E 1 - K 3 - t  dat a/ i r i s. ar f f  
 
j ava –cp weka. j ar ; AI RSWeka. j ar  weka. cl assi f i er s. i mmune. AI RS2 
- S 1 - F 0. 2 - C 10. 0 - H 2. 0 - R 150. 0 - V 0. 9 - A - 1 - E 1 - K 3 -
t  dat a/ i r i s. ar f f  
 
j ava –cp weka. j ar ; AI RSWeka. j ar  
weka. cl assi f i er s. i mmune. AI RS2Par al l el  - S 1 - F 0. 2 - C 10. 0 - H 



 33

2. 0 - R 150. 0 - V 0. 9 - A - 1 - E 1 - K 3 - N 2 - M 1 - t  
dat a/ i r i s. ar f f  

Figure 6 - Shows examples of executing the three AIRS WEKA implementations from the command 
line 

 
The following code sample provides an example application of using the AIRS2 
algorithm in standalone mode. The program loads the Iris Plants dataset and performs a 
10-fold cross-validation test. 
 
publ i c c l ass Sampl eAI RSUsage 
{  
 
 publ i c s t at i c  voi d mai n( St r i ng[ ]  ar gs)  
 {  
  t r y  
  {  
    / /  pr epar e dat aset  
            I nst ances dat aset  = new I nst ances(  
              new Fi l eReader ( " dat a/ i r i s. ar f f " ) ) ;  
            dat aset . set Cl ass I ndex( dat aset . numAt t r i but es( ) -
1) ;  
            AI RS2 al gor i t hm = new AI RS2( ) ;     
           / /  evaul at e 
            Eval uat i on eval uat i on = new Eval uat i on( dat aset ) ;  
            eval uat i on. cr ossVal i dat eModel ( al gor i t hm,       
              dat aset ,  10,  new Random( 1) ) ;              
            / /  pr i nt  al gor i t hm det ai l s  
            Syst em. out . pr i nt l n( al gor i t hm. t oSt r i ng( ) ) ;  
            / /  pr i nt  st at s                     
            Syst em. out . pr i nt l n(  
              eval uat i on. t oSummar ySt r i ng( ) ) ;  
  }  
  cat ch( Except i on e)  
  {  
   e. pr i nt St ackTr ace( ) ;  
  }  
 }  
}  

Figure 7 - Shows Java code implementation of an application using AIRS2 to classify the Ir is plants 
dataset 
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10.  Glossary 
 
Terms Descr iptions 
Affinity A measure between recognition cells or between a recognition 

cell and an antigen. Commonly implemented as a Euclidean 
distance measure so that the smaller the distance the greater the 
affinity. 

Affinity Maturation The process of a recognition cell responding to an antigen, 
performing clonal expansion and finally clonal selection. 

Affinity Threshold A system variable calculated during the initialisation stages of 
the AIRS algorithm as the mean affinity between a set of 
antigens from the training set. 

AIN Artificial Immune Network 
An AIS based on abstractions and principles from the INT of 
immune function. Typically AIN algorithms are unsupervised 
and consist of a number of recognition cells connected with links 
based on affinity. Examples include the AINE algorithm. 

AIRS Artificial Immune Recognition System 
AIS Artificial Immune System 

A class of artificial intelligence algorithm, inspired by elements 
of theoretical and empiric knowledge of the biological 
mammalian immune system. AIS algorithms are suited to 
difficult or intractable problem domains were more conventional 
techniques perform poorly. 

Antibody A feature of the immune system, produced by a recognition cell 
to neutralise an antigen. 

Antigen In the AIRS algorithm, represents a single training instance. 
ARB Artificial Recognition Ball 

In the AIRS algorithm, represents a collection of similar or 
identical recognition cells. 

B-cell A pathogen recognition cell of the natural immune system 
Clonal Expansion Apart of affinity maturation, where a number of clones of a 

recognition cell are produced to better fit an antigen. 
Clonal Selection Apart of affinity maturation, where a reduced set of mutated 

clones are selected for survival that have higher affinity with the 
antigen in question. 

CLONALG A AIS algorithm based on the clonal selection immune theory. 
Successfully applied to a range of problem domains such as 
travelling salesperson (TSP), multimodal function optimisation 
and character recognition. 

Immunos-81 First immune system inspired supervised learning algorithm. 
INT Immune Network Theory 

A theory of immune function that assumes a network of 
connected recognition cells that learn using feedback 
mechanisms. 
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kNN k-Nearest Neighbour. A naïve classification algorithm that uses 
the entire training dataset to determine the class of unseen data. 
AIRS uses a similar approach for classification where the best k 
matches determine the class of unseen data 

LVQ Learning Vector Quantisation 
A supervised learning algorithm that manipulates a fixed size 
pool of exemplar vectors to represent a training dataset, for 
classification of unseen data vectors. Devised by T. Kohonen. 

NAT Network Affinity Threshold 
A threshold used in AIN inspired algorithm to determine when 
links between recognition cells can and cannot be made. 
Calculated as the mean affinity between all known recognition 
cells. This was the basis for the affinity threshold used in AIRS. 

Pathogen A foreign l in side an organism that is potentially harmful to the 
organism. The goal of the immune system is to detect and 
neutralise pathogens. 

RLAIS Resource Limited Artificial Immune System 
An AIS that introduces a population control mechanism using 
ARBs that are allocated a B-cells based on affinity with an 
antigen. ARBs that are then determined to have an insufficient 
number of resources are removed from the system. 

Somatic Hypermutation In the AIRS algorithm, a mutation process of ARB clones where 
the degree of mutation is proportional to the degree of affinity 
between the ARB and the antigen 

T-cell A recognition cell in the natural immune system 
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12.  Additional Resources 
This section contains a number of additional web resources related to the field of AIS, 
AIRS and the WEKA machine-learning workbench. 

12.1 Homepages of researches involved in the history of AIRS  
- Andrew Watkins Home Page  

o http://www.cs.kent.ac.uk/people/rpg/abw5/home.html  
- Jonathan Timmis Home Page  

o http://www.cs.kent.ac.uk/people/staff/jt6/ 
- Donald Goodman Home Page 

o http://artificial-science.org/ 
- Julie Greensmith Home Page 

o http://www.cs.nott.ac.uk/~jqg 
- Leandro N. de Castro Home Page 

o http://www.dca.fee.unicamp.br/~lnunes/ 
- Jonathan Timmis Home Page 

o http://www.cs.kent.ac.uk/people/staff/jt6/  
- Mark Neal Home Page 

o http://users.aber.ac.uk/mjn/ 

12.2 Artificial Immune System Groups and Organisations 
- International Conferences on Artificial Immune Systems  

o http://www.artificial-immune-systems.org/ 
- AIS at Institute of Computer Science Polish Academy of Sciences Poland  

o http://www.ipipan.waw.pl/~stw/ais/index.html 
- The ISYS Project 

o http://www.aber.ac.uk/~dcswww/ISYS/ 
- Artificial Immune Systems and their Applications:  

o http://ais.cs.memphis.edu/home/ 

12.3 Weka Resources 
- WEKA Home Page 

o http://www.cs.waikato.ac.nz/~ml  
- WEKA Sourceforge Project 

o http://sourceforge.net/projects/weka/ 
- WEKA LVQ implementation (also by this author) 

o http://www.users.on.net/~nbcraven/jasonbrownlee/ 
 


