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Review

Evidence that amyloid beta-peptide-induced lipid peroxidation
and its sequelae in Alzheimer’s disease brain

contribute to neuronal death�
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Abstract

Amyloid �-peptide [A�(1–42)] is central to the pathogenesis of Alzheimer’s disease (AD), and the AD brain is under intense oxidative
stress, including membrane lipid peroxidation. A�(1–42) causes oxidative stress in and neurotoxicity to neurons in mechanisms that are
inhibited by Vitamin E and involve the single methionine residue of this peptide. In particular, A� induces lipid peroxidation in ways
that are inhibited by free radical antioxidants. Two reactive products of lipid peroxidation are the alkenals, 4-hydroxynonenal (HNE) and
2-propenal (acrolein). These alkenals covalently bind to synaptosomal protein cysteine, histidine, and lysine residues by Michael addition
to change protein conformation and function. HNE or acrolein binding to proteins introduces a carbonyl to the protein, making the protein
oxidatively modified as a consequence of lipid peroxidation. Immunoprecipitation of proteins from AD and control brain, obtained no
longer than 4 h PMI, showed selective proteins are oxidatively modified in the AD brain. Creatine kinase (CK) and�-actin have increased
carbonyl groups, and Glt-1, a glutamate transporter, has increased binding of HNE in AD. A�(1–42) addition to synaptosomes also results
in HNE binding to Glt-1, thereby coupling increased A�(1–42) in AD brain to increased lipid peroxidation and its sequelae and possibly
explaining the mechanism of glutatmate transport inhibition known in AD brain. A� also inhibits CK. Implications of these findings relate
to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported
for AD. The epsilon-4 allele of the lipid carrier protein apolipoprotein E (APOE) allele is a risk factor for AD. Synaptosomes from APOE
knock-out mice are more vulnerable to A�-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are
those from wild-type mice. Further, synaptosomes from allele-specific APOEknock-in mice have tiered vulnerability to A�(1–42)-induced
oxidative stress, with APOE4 more vulnerable to A�(1–42) than are those from APOE2 or APOE3 mice. These results are consistent
with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Taken together, the
findings from in-vitro studies of lipid peroxidation induced by A�(1–42) and postmortem studies of lipid peroxidation (and its sequelae) in
AD brain may help explain the APOE allele-related risk for AD, some of the functional and structural alterations in AD brain, and strongly
support a causative role of A�(1–42)-induced oxidative stress in AD neurodegeneration.
Published by Elsevier Science Inc.
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1. Introduction

Alzheimer’s disease (AD), the major dementing disor-
der of the elderly, affects more than four million persons in
the United States of America. Aging is the chief risk factor
for AD. Major pathological hallmarks of AD include loss
of synapses and the presence of senile plaques (SP) and
neurofibrillary tangles (NFT). SP consist of a highly dense
core of the 39–43 amino acid peptide, amyloid�-peptide
[A�(1–42)], surrounded by dystrophic neurites[35]. Based
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primarily on genetic evidence, A� likely is central to the
pathogenesis of AD (reviewed in[87]). Further, the AD brain
is under extensive oxidative stress indexed by protein oxida-
tion, lipid peroxidation, DNA and RNA oxidation, advanced
glycation endproducts, protein nitration, mitochondrial ab-
normalities, reactive oxygen species (ROS) formation, and
other markers (reviewed in[13,14,58]).

The centrality of the 42-amino acid form of this peptide,
A�(1–42), to the pathogenesis of AD was coupled to the
extensive oxidative stress under which the AD brain exists
in the A�-associated free radical oxidative stress model
for neurodegeneration in AD brain[14,96]. In this model,
A�-associated free radicals cause oxidative stress, includ-
ing lipid peroxidation, in ways that are inhibited by free
radical scavengers. In this review, free radical induced lipid
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peroxidation and its sequelae in AD brain will be discussed.
Following a description of lipid peroxidation and its con-
sequences, evidence that A�-associated free radicals cause
lipid peroxidation will be outlined, and interspersed within
the discussion of lipid peroxidation in AD brain, the last
part of this review.

2. Lipid peroxidation and its consequences

Lipids are especially vulnerable to oxidative stress be-
cause of the unsaturated bonds in the fatty acid�-chain
and high solubility of nonpolar, paramagnetic oxygen in
bilayers [22]. Lipid peroxidation is initiated by a radical
(X•) abstracting a hydrogen from an unsaturated carbon on
a lipid acyl chain (Eq. (1)), resulting in a carbon-centered
lipid radical (L•), the rate-limiting step. This lipid radical
will then rapidly react with nonpolar, paramagnetic O2,
forming a peroxyl radical (LOO•) (Eq. (2)). The peroxyl
radical can react with other nearby lipids and form a lipid
hydroperoxide and another carbon-centered lipid radical
(Eq. (3)), perpetuating the chain reaction. Lipid peroxida-
tion is terminated by two of the peroxyl radicals quenching
each other to form a nonradical and oxygen (Eq. (4)).

LH + X• → L• + XH (1)

L• + O2 → LOO• (2)

LOO• + LH → LOOH + L• (3)

Fig. 1. Michael addition of an alkenal [HNE or acrolein] to protein lysine [P-Lys], histidine [P-His], or cysteine [P-Cys] residues resulting in the covalent
oxidative modification of proteins following lipid peroxidation. Note that carbonyl groups are introduced to the protein as a consequence of this reaction.

LOO• + LOO• → nonradical+ O2 (4)

The number of lipids that are oxidized can be decreased by
use of antioxidants such as the lipid soluble�-tocopherol
(Vitamin E, TOH). A hydrogen on the�-tocopherol can
actually be abstracted, forming the lipid hydroperoxide and
a tocopheroxyl radical (Eq. (5)). The tocopheroxyl radical
is relatively stable and does not cause further lipid per-
oxidation, i.e. Vitamin E is a chain-breaking antioxidant.
Ascorbate (Vitamin C) can recycle the tocopheroxyl radical
back to the tocopherol.

LOO• + TOH → LOOH + TO• (5)

(adapted from[22]).
Some lipid peroxidation products that are formed follow-

ing free radical attack on the acyl chains are species with
increased carbonyls, alcohols with conjugated double bonds
(dienes), or free fatty acids. The lipid hydroperoxides can
undergo various reactions and rearrangements forming alde-
hydes, specifically malondialdehyde, 4-hydroxynonenal, or
acrolein[27]. The latter alkenal (2-propenal) can be formed
by the incomplete combustion of plastics[22] and by the
enzymatic action of alcohol dehydrogenase to oxidize allyl
alcohol [2]. However, acrolein is more likely formed in
vivo as a product of lipid peroxidation[22,23,93]. These
unsaturated aldehydes (HNE and acrolein) are toxic and
can act by modifying proteins by Michael addition to form
a covalent adduct with cysteine, lysine, or histidine (Fig. 1)
[17,23]. The adduct can cause conformational and structural
changes to proteins, resulting in dysfunctional proteins and
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neuronal death[76,91] and altering the membrane bilayer
fluidity, causing increased rigidity.

The endogenous antioxidant, glutathione, blocks the dam-
aging effects of these alkenals on synaptosomal proteins
[76,77,91]. Both HNE and acrolein can diffuse from their
point of production to cause oxidative modification of dis-
tant proteins[17].

Lipid peroxidation stimulates phospholipid lipase A2
activity [72] releasing free fatty acids from the membrane
bilayer. Recent studies suggest that such free fatty acids or
other molecules, e.g. HNE, may cause polymerization of
tau, a cytoskeletal protein that is the principal component
of NFT [24].

Nonenzymatic, free radical-induced oxidation of arachi-
donic acid results in formation of F2- and D2/E2-isoprostanes
(IP), whereas analogous oxidation of docosohexanoic acid
leads to F4- and D4/E4-IP or neuroprostanes (NP). Both IP
and NP are nonreactive, but serve as excellent markers of
lipid peroxidation.

3. A�-induced lipid peroxidation

There is a growing body of evidence showing that A�
peptide toxicity is mediated by free radical damage to cell
membranes[8,13,14,56,83]. The concept that A� induces
lipid peroxidation is a key component of the A�-associated
free radical model for neurodegeneration in AD[10,13,96].
Consistent with a free radical process, A� causes lipid per-
oxidation in brain cell membranes that is inhibited by free
radical antioxidants[3,8,10,13,16,37,44,55,56]. Moreover,
the reactive alkenals, HNE and acrolein, are formed after
A� addition to neurons[55], and these alkenals alter the
conformation of membrane proteins[76,91]and are toxic to
neurons[48,55,91]. Since A� aggregation likely is critical
to the pathogenesis of AD, these results are consonant with
the notion that A�-induced lipid peroxidation may in part
account for neurodegeneration in AD brain.

Among the methods employed in our laboratory to
monitor A�-induced lipid peroxidation is electron para-
magnetic resonance (EPR) coupled with lipid soluble
stearic acid spin labels[16]. The principle of the method
is free radical-induced loss of EPR signal intensity from
lipid-specific nitroxyl stearate spin labels (5- and 12-NS)
in synaptosomal membranes due to interaction with
A�-associated free radicals. The EPR signal of 12-NS,
the nitroxide moiety of which is located deep in the lipid
bilayer, was strongly decreased following addition of A�
[8,16,18,37]. These findings, which support the hypothe-
sis of A�-induced lipid peroxidation, are consistent with
low-angle X-ray studies on A� [25–35] [61]or NMR stud-
ies on A�(1–42)[21], showing that the peptide is soluble in
lipid bilayers with such orientation that the methionine-35
residue is deeply inserted into it. This amino acid residue
presents a rich and interesting reactivity[86], and its involve-
ment might account for the generation of A�-associated free

radicals[11,21,96–98]. In addition, the lipophilic antioxi-
dant, Vitamin E, was capable of inhibiting the A�-induced
reduction of the 12-NS signal[37], confirming the radical
nature of the process. Findings that A� [25–35], added to
plasma or mitochondrial membranes of PC-12 cells over
expressing Bc1–2, the gene product of which is thought
to have antioxidant properties[32], did not lead to EPR
stearic acid spin label signal reduction[8], additionally
is consistent with the hypothesis of A�-induced lipid
peroxidation.

The oxidative stress and neurotoxic properties of
A�(1–42) likely derive from the single methionine residue
at position 35 of this 42-mer[11,100]. Substitution of a car-
bon atom for the S atom of methionine, the only change in
the approximately 4000-Da peptide, completely abrogates
both properties of A�(1–42) [11,100]. Likewise, substitu-
tion of the already oxidized methionine sulfoxide for the
S atom in the methionine residue of A�(1–42), again the
only change in this peptide, also abrogates the ability of the
resulting peptide to induce protein oxidation or neuronal
death [97]. In A�(1–28) that contains the likely binding
sites for redox metal ions (His 6,13,14), no ability to reduce
these metal ions was found unless exogenous methionine
was added[21]. This result suggests that Cu(II) bound to
A�(1–42) interacts with methionine-35 residue to produce
the free radicals associated with this peptide; however, the
results also suggest, consistent with other studies[96], that
in the absence of methionine in A�(1–42), redox metal
ions play no role in the oxidative stress and neurotoxic
properties of the peptide[11,21,96,100]. The methionine
residue of A�(1–42) inserted into the neuronal lipid bi-
layer lies near the sites of unsaturation of lipid acyl chains
[11,21]. Thus, formation of a sulfuramyl free radical in
the methionine S atom[11,97] (X• in Eq. (1) above) pro-
vides a means for H atom abstraction from unsaturated
carbons in acyl chains of the phospholipids, with subse-
quent free radical formation on the lipids (seeEqs. (1)–(4)
above).

3.1. Aβ(1–42) and brain aging

Senescence accelerated mice (SAMP8), whose life span
is approximately 50% that of senescence resistant mice
(SAMR1), has increased markers of oxidative stress in
brain that are modulated by the brain-accessible spin trap,
N-tertbutyl-�-phenylnitrone[17]. SAMP8 mice are known
to deposit amyloid�-peptide [5], potentially coupling
A�(1–42)-induced oxidative stress to brain aging in this
rodent model of aging. More experimentation will be nec-
essary to determine if this will turn out to be the case.

4. Lipid peroxidation in AD brain

Lipid peroxidation is widespread in AD brain and is
detected with many markers.
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4.1. Thiobarbituric acid reactive substances

Thiobarbituric acid reactive substances (TBARS) are one
index of lipid peroxidation. However, TBARS is a nonspe-
cific marker of membrane lipid peroxidation, likely due to
reaction of thiobarbituric acid with nonlipid moieties. This
may be the basis for disagreements in TBARS levels in
different brain regions in AD. Increased in TBARS in AD
frontal lobe but not in the cerebellum was reported[90], and
a significant TBARS increase in sensory and occipital cor-
tices was found in AD[4]. The inferior parietal lobe seemed
to be affected by lipoxidation in one study[74], while a
different study[46,47] showed statistically significant in-
creased TBARS in hippocampus and cortex. A still different
study [52] reported TBARS increase in all the regions of
AD brain. A�(1–42) or A�(1–40) addition to synaptosomes
were recently shown to increase TBARS[44,45].

4.2. Analysis of brain phospholipids

Compositional alterations in brain phospholipids in AD
brain were reported. Polyunsaturated fatty acids (PUFA), in-
cluding arachidonic and docosohexanoic acid, are abundant
in brain and highly oxidizable. Therefore, arachidonic acid
and docosohexanoic acid are vulnerable to free radical at-
tack, and PUFA are predicted to decrease in AD brain, if
lipid peroxidation were increased. In agreement with this
prediction, several studies show a decrease in these fatty
acids in AD[64,73]. The levels of phosphatidylinositol (PI)
and phosphatidylethanolamine (PE), rich in easily oxidiz-
able PUFA, were reportedly lowered in AD brain[79] as
was PE-plasmalogen in AD brain[25]. A� added to synap-
tosomes led to free fatty acid release, primarily in the PE
fraction, an effect blocked by the free radical scavenger Vita-
min E [37], providing one possible mechanism for oxidative
stress induced phospholipase A2 activation in AD brain.

4.3. Formation of reactive aldehydes

Free radical attack on PUFA of phospholipids leads to
multiple aldehydes with different carbon chain lengths, in-
cluding acrolein and HNE[23]. These alkenals, though reac-
tive, are longer lived than free radicals. Consequently, HNE
is able to diffuse to sites distant from that of its formation
[17]. HNE, an�,�-unsaturated aldehyde, is one of the ma-
jor products of lipid peroxidation. The concentration of free
HNE is elevated in multiple brain regions and in ventric-
ular cerebrospinal fluid (CSF) in AD[57]. Protein-bound
HNE also is elevated in AD[67,68,85], and may relate to
apolipoprotein E (APOE) allele type[69,92]. The APOE e4
allele is a risk factor for AD, suggesting that the degree of
expression of the lipid transporter APOE in brain might be
associated with HNE production in AD.

Glutathione S-transferases (GST), which has high detox-
ifying activity against HNE[9], is significantly decreased
in AD brain [47], consistent with the notion that a loss

of protection against HNE might be correlated with sub-
sequent protein modifications that lead to neuronal death.
Glutathione is able to detoxify HNE[23,91]. HNE reacts
with proteins, forming stable covalent adducts to histidine,
lysine, and cysteine residues through Michael addition. Car-
bonyl groups are thereby introduced into proteins following
oxidative damage, e.g. lipid peroxidation[23,91,94](Fig. 1).
In addition, HNE can inhibit synthesis of DNA, RNA, and
proteins and alter activity of glycolytic, degradative, and
transport proteins[23]. By disrupting Ca2+ homeostasis
[55], reducing Na+/K+-ATPase activity[53,55], and impar-
ing glucose transport[56], HNE is neurotoxic to rat hip-
pocampal neurons. A�-associated oxidative stress leads to
increased HNE[13,44,55], and given the increased depo-
sition of this peptide in AD brain may be related to the
mechanism by which HNE is increased in AD. Apoptosis in
PC12 cells or neurons is induced by HNE[40,88], conso-
nant with the concept that, in addition to direct ROS damage
to neuronal membranes from A�, A�-induced HNE produc-
tion may provide a secondary mechanism for A�-associated
neuronal death.

Injection of HNE in rat forebrain selectively inhibited
cholineacetyltransferase (ChAT)[7], the activity of which
is greatly diminished in AD[35]. Consistent with this re-
port, HNE is bound to ChAT in synaptosomes treated with
A�(1–42),[13]. Conceivably, similar effects could account
for the markedly decreased ChAT activity in AD brain.

HNE also may play a role in glutamate-induced neuro-
toxicity in AD. Glutamate is an excitotoxin that stimulates
N-methyl-d-aspartate (NMDA) receptors resulting in in-
creased intracellular Ca2+ and intracellular free radicals
[41]. Normally glutamate is removed from outside the neu-
ron by glutatmate transporters, particularly, the glial glu-
tamate transporter, Glt-1[51]. Conversion of glutamate to
glutamine in a reaction catalyzed by glutamine synthetase
(GS) is another means of removing this excitotoxic amino
acid from outside neurons[17]. A� inhibits both glutamate
uptake[28,29] and GS activity[1], and both processes are
decreased in AD brain[12,13,60]. Based on blockage of
A�-induced Glt-1 and GS inhibition by antioxidants or
stress response proteins[1,26,28,29], A� effects on these
glutamate systems likely involve free radicals. In the case
of Glt-1, A� inhibition may occur by a mechanism that in-
volves A�-induced lipid peroxidation and subsequent HNE
modification to glutamate transporters[36,44]. Immunopre-
cipitation studies of HNE-modified proteins from AD and
control brain suggested that glutamate-induced neurotoxi-
city in AD may be related to Glt-1 inactivation following
HNE modification: AD Glt-1 had significantly more HNE
bound to it than did this transporter in aged-matched neuro-
logically normal controls (Fig. 2) [44]. Further, A�(1–42)
addition to rodent synaptosomes induced HNE binding to
Glt-1 (Fig. 2) [44], suggesting the possibility that these
two observations are correlated. As noted above, GS pro-
vides a different mechanism for decreasing extraneural
glutamate concentrations, and this enzyme is also inhibited
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Fig. 2. HNE modifies Glt-1 after treatment of synaptosomes with A�(1–42) (left) and in the inferior parietal lobule of the AD brain relative to the
respective control (C) (right). HNE-reactive proteins were immunoprecipitated with an anti-HNE antibody. The resulting immunoprecipitates wereprobed
for Glt-1 by western blotting. For the A�(1–42) studies,n = 3, P < 0.03. For the AD studies,n = 7 for AD andn = 4 for control,P < 0.03, ANOVA.
Data shown are mean± S.E.M. Adapted from[44].

by A� in reactions that can be blocked by antioxidants
[1,15,31]. Highly purified GS from AD brain is oxidized
[15]. Predictably, GS has decreased activity in AD brain
[30].

Due to its electrophilic characteristics and propensity to
undergo Michael addition with cysteine, histidine, and ly-
sine, acrolein is the most reactive of the�,�-unsaturated
aldehydes produced by lipid peroxidation[23,93]. Acrolein
alters the conformation of transmembrane and cytoskeletal
synaptosomal proteins even at very low concentrations[76].
In AD brain, increased protein-bound acrolein and increased
NFT-resident acrolein adducts were reported[20,48], and
acrolein is toxic to primary hippocampal cultures[48]. The
levels of acrolein found in AD brain were sufficient to cause
increased protein carbonyl levels, when added to rodent
synaptosomal membranes; however, if in vivo glutathione
were elevated, complete protection against this concentration
of acrolein-induced protein carbonyls resulted[76]. Other
studies showed increased glutathione levels protected synap-
tosomal membranes against the oxidative stress induced by
hydroxyl free radicals[77], peroxynitrite[38,39], HNE[91],
and 3-nitropropionic acid[42]. Noting the decreased activ-
ity of glutathione S-transferase mentioned above, these find-
ings may couple the observation that elevated glutathione
protects synaptosomes against HNE and acrolein to the no-
tion that increasing glutathione levels may be a potentially
important therapeutic strategy in AD[101].

4.4. Isoprostanes

In agreement with other studies showing lipid peroxida-
tion in AD brain, levels of IP are increased in AD CSF[71].
The levels of F2-IP in AD lateral ventricular fluid were also
significantly elevated, and the increase was related with the
extent of degeneration and APOE4 genotype, but indepen-
dent of the distribution of NFT[66]. In AD brain, IP and
NP levels in vivo were quantified, showing an increase in

total NP level, but not in total IP level[83]. Consistent with
A�-associated free radical-induced lipid peroxidation[16],
addition of this peptide to hippocampal neuronal culture
significantly elevated IP[54].

4.5. APOE and oxidative stress

APOE is the predominant lipoprotein in the central ner-
vous system[49] and has three major human isoforms
designated e2, e3, and e4. Inheritance of the e4 allele of
APOE is associated with an increased risk of the develop-
ment of AD[84]. As noted above, increased oxidative stress
is important in the pathogenesis of AD and may be APOE
allele dependent: increased lipid oxidation in AD brain is
associated with the presence of the e4 allele[66–68,81,82].

Knock-out (KO) mice lacking APOE have increased
markers of oxidative stress[45,59], including greater
basal levels of tyrosine nitration and isoprostane formation
[50,62,70,80]. Genetically altered mice that express only the
human APOE e3 or e4 alleles, coupled with oxidative chal-
lenge[19,89], suggest allele-specific (e3> e4) antioxidant
and HNE scavenging abilities[63,65,75,95].

APOE is associated with synaptosomes, and APOE-
deficient synaptosomes are more susceptible to A�–
induced oxidation[45,65], suggesting an antioxidant role
for APOE. To investigate allele-specific vulnerability to
A�(1–42)-induced oxidative stress, synaptosomes from
knock-in mice expressing human APOE2, APOE3, or
APOE4, with no mouse background APOE, were studied
[43]. All markers of oxidative stress examined in synap-
tosomes, including those for ROS generation, lipid per-
oxidation, and protein oxidation, were significantly more
elevated after A�(1–42) addition in samples from APOE4
knock-in mice relative to those from APOE2 or APOE3 mice
(Fig. 3). The e4 allele of APOE is a risk factor for AD
[84] and correlates with increased oxidative damage in AD
brain. A� is deposited extensively in AD. These findings
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Fig. 3. APOE modulates A�-induced oxidative stress in an allele-dependent manner. Synaptosomes were loaded with nonfluorescent dichlorofluoroscein
diacetate (DCFH-DA) (top left). Intracellular esterases produce the dianion, DCFH, that is unable to exit the cell. DCFH becomes fluorescent dichlo-
rofluoroscein (DCF) after oxidation. Upon treatment of synaptosomes with A�(1–42), ROS increase significantly in all samples; however, ROS are
significantly elevated in APOE4 synaptosomes when compared to APOE3 and APOE2 synaptosomes. Data are the mean± S.E.M. (n = 4–6; ∗P < 0.05
vs. e2 and e3, pairedt-test). A�(1–42)-induced protein carbonyl formation in synaptosomal membranes is modulated by APOE in an allele-dependent
manner (bottom left). Protein carbonyls are markers for protein oxidation and increase in synaptosomes upon treatment with A�-peptides. Allele-specific
increases in protein oxidation correlate with increases in ROS and lipid oxidation and suggest that the e4 allele is more vulnerable than e2 or e3 to
A�-induced protein oxidation. Data are the mean± S.E.M. (n = 4–6; ∗P < 0.05 vs. untreated synaptosomes, pairedt-test). TBARS are markers for
general lipid oxidation and increase in synaptosomes upon treatment with A�(1–42) (middle). Between each APOE allele, there are significant differences
in TBARS with the e4 allele being most vulnerable to A�-induced lipid oxidation. Data are the mean± S.E.M. (n = 3–5; ∗P < 0.05, ∗∗P < 0.05,
paired t-test). A�(1–42) induces protein conformational changes in APOE4, but not APOE3, synaptosomal membranes (right). Changes in the motion
of the protein specific spin label MAL-6 covalently bound to proteins are due to protein conformational changes and are manifested as changes in the
W/S ratio. Because decreasedW/S ratios correlate with increased protein oxidation[18], decreases in theW/S ratio are an indirect measure of protein
oxidation. After a 2 h incubation at 37◦C with 10�M A�(1–42), a decrease in theW/S ratio occurs in APOE4 synaptosomal proteins that is not observed
in APOE3 synaptosomes, suggesting that APOE4 synaptosomes have an increased susceptibility to A�(1–42)-induced protein oxidation. Data are the
mean± S.E.M. (n = 3; ∗P < 0.05, pairedt-test). Adapted from[43].

may be related, i.e. A�(1–42)-induced oxidative stress is
consistently greatest in synaptosomes containing the e4 al-
lele of APOE (Fig. 3) [43]. Others showed that APOE e2
and APOE e3 bind HNE, whereas APOE e4, lacking cys-
teines at key resides, does not[65,75]. These ideas support
the notion that the e4 allele of APOE may be less effec-
tive than either the e2 or e3 alleles in the modulation of
A�-induced oxidative damage.

Alternatively, the APOE allele-specific modulation of
A�(1–42)-induced oxidation in synaptosomes may be re-
lated to APOE-associated clearance and catabolism of A�.
APOE binds A� in an allele-specific fashion[33], and
the clearance of APOE/A� complexes is allele-dependent,
based upon their respective affinities for the LRP recep-

tor [6,34,78,99]. An inverse relationship between levels
of A� and levels of APOE in the AD brain exists in an
allele-dependent fashion. This is consistent with the con-
cept that in the absence of APOE, A� would accumulate in
the brain[84]. Competitive inhibitors of LRP enhance A�
toxicity and abrogate protective effects of the e3 allele of
APOE, likely by modulating the clearance of A� [33,95].
Thus, removal of extracellular A� by an LRP-mediated
pathway may be a mechanism to prevent protein and lipid
oxidation induced by A�, and may explain the differential
increases in oxidative markers among the major alleles of
APOE. The results from our laboratory and others are con-
sistent with this hypothesis in that increased markers for
protein and lipid oxidation correlate with APOE-mediated
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uptake of A�, i.e. delaying the removal of A� results in
increased oxidative damage.

Whether APOE can modulate A�(1–42)-induced oxida-
tive damage in synaptic terminals by an antioxidant-related
or A� clearance-related mechanism, APOE is important in
maintaining synaptic integrity by modulating oxidative dam-
age. Allele-dependent (e2< e3 < e4) increases of several
oxidative indices in synaptosomes suggest that the e4 allele
of APOE is less effective in modulating this damage. These
findings are particularly relevant to Alzheimer’s disease
where A� is overproduced, oxidative damage is evident,
synapses are lost, and for which APOE e4 is a risk factor.

5. Conclusions

In aggregate, the studies summarized in this review sug-
gest that A�(1–42)-induced lipid peroxidation, resulting in
neurotoxic free radicals and reactive aldehydes, may be im-
portant in the neurodegeneration observed in AD brain. Fur-
ther, the extensive lipid peroxidation in AD brain suggests
that brain-accessible, lipid-resident endogenous and exoge-
nous antioxidants that can block free radical-induced lipid
peroxidation may be a promising therapeutic strategy in AD.
In concert with this approach, raising the in vivo level of
glutathione, that is able to protect neurons from HNE and
acrolein[76,91], also may be a productive therapeutic route
for this disorder[101]. Studies to test these ideas in animal
models of AD are in progress.

The Baby Boomer cohort (many millions of people) mov-
ing through the population of the United States suggests
that, in the absence of effective intervention, age-related neu-
rodegenerative disorders, perhaps most especially AD, will
become a major public health crisis in the not-too-distant
future. Greater insight into the molecular basis of AD and
how aging serves as a risk factor for this dementing dis-
order will be necessary to develop appropriate therapeutic
strategies necessary to slow this inevitable outcome. Con-
tinued efforts to find the “accelerators and brakes” for AD
will prove helpful. It is our view that the principal accelera-
tor for AD is the excessive production of A�(1–42) with its
consequent oxidative stress-induced neurotoxicity.

6. Note in Proof

Additional evidence for the role of Met-35 of A�(1–42)
in the oxidative stress and neurotoxic properties of the pep-
tide have been obtained[102]. Consistent with the thesis of
this review, i.e., lipid peroxidation is an early event in the
oxidative stress and neurotoxic properties of A� (1–42), sub-
stitution of negatively-charged Asp for Gly-37 in A�(1–42)
completely abrogates these properties[103]. This result,
in marked contrast to these properties induced by native
A� (1–42) [13], is likely due to removal of then nearby
Met-35 from the bilayer as a consequence of the negative

charge on Asp-37, i.e., even though all the chemistry for
Met-35-induced lipid peroxidation is present, there is no tar-
get for the free radical due to the putative removal of the
Met from the bilayer.

Proteomics has been used for the first time to identify
specifically oxidized proteins in AD brain[104,105]. Some
of the excess carbonyl residues on these proteins conceivably
may emanate from HNE or acrolein.
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