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This paper is about fitting multivariate normal mixture distributions subject to structural
equation modeling. The general model comprises common factor and structural regression models.
The introduction of covariance and mean structure models reduces the number of parameters to
be estimated in fitting the mixture and enables one to investigate a variety of substantive hypotheses
concerning the differences between the components in the mixture. Within the general model,
individual parameters can be subjected to equality, nonlinear and simple bounds constraints.
Confidence intervals are based on the inverse of the Hessian and on the likelihood profile. Several
illustrations are given and results of a simulation study concerning the confidence intervals are
reported.
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Introduction

A finite mixture distribution is one that consists of a number of distinct components
(Everitt & Hand, 1981; Titterington, Smith, & Makov, 1985). Each case, drawn from such
a distribution, .belongs to one of the component distributions, but to which one it belongs
is unknown. In addition to the unknown component membership of the cases, the number
and the type of the component distributions may be unknown. In so-called direct applica-
tions of finite mixture modeling (Titterington, et al., 1985, chap. 2), the aim is to determine
the number and the type of components in the mixture, to estimate the unknown param-
eters, and to assign the cases to their respective components. In indirect applications the
finite mixture model is employed as a mathematical device, for example, to approximate
intractable heavy-tailed distributions. In such applications, the underlying components do
not necessarily have a physical interpretation.

Here we are concerned with fitting multivariate normal finite mixtures in direct ap-

Requests for reprints should be sent to Han L. J. van der Maas, Developmental Psychology, Psychology
Faculty, University of Amsterdam, Roetersstraat 15, 1018WB Amsterdam, THE NETHERLANDS.

We thank Harrie Vorst for his generous support. We thank Yiu-Fai Yung for kindly making available his
thesis (Yung, 1994), and a copy of his, at the time of revising the present paper, unpublished Psychometrika
article (Yung, 1997). We thank Petra Stein for making available her paper with Gerhard Arminger (Arminger 
Stein, 1997). A total of five reviews provided by anonymous referees, and additional comments by the editors
resulted in a good number of improvements. Finally, we thank Peter Molenaar for his critical comments.

This paper was first submitted to Psychometrika in May of 1996, after a period of about 6 months in which
we developed and tested our FORTRAN routines. In two rounds of highly constructive reviews, two dissertations
(Stein, 1997; Yung, 1994), and several articles were brought to our attention, that were either submitted (Arm-
inger & Stein), or in press (Yung, Jedidi et al.). In the mean time, a number of these papers have appeared (Jedidi
et al. 1997a, 1997b), and more are sure to follow (Yung, 1997; Arminger & Stein, 1997). It is clear that the subject
of structural equation modeling within normal mixtures has taken off over the past few years (though Bl~tfield’s
pioneering thesis appeared in 1980). Although we were unaware of the work that was on-going, or indeed
completed, when we embarked on this project, it is with pleasure that we acknowledge the precedence of those,
whose work, in press, submitted, or otherwise, has come to our attention since first submitting this paper to
Psychometrika.

0033-3123/98/0900-96483500.75/0
© 1998 The Psychometric Society

227



228 PSYCHOMETRIKA

plications subject to structural equation modeling (SEM) of the mean vectors and covari-
ance matrices within each component. The model we employ is a LISREL submodel
(J6reskog & S6rbom, 1993) that includes confirmatory factor and structural equation
models. Restrictions on the parameters in normal mixtures fall into two categories. In the
first category, restrictions are imposed to avoid local maxima and singularities in the
likelihood surface in maximum likelihood estimation (e.g., Everitt & Hand, 1981, p. 39;
Titterington, et al., 1985, sec. 4.3.3). These restrictions, which include equality and pro-
portionality constraints on variances (Hathaway, 1985), are based primarily on computa-
tional, not substantive, considerations. In the other category, the restrictions are aimed at
testing substantive hypotheses concerning the relationship among the variables within the
components. These categories are not mutually exclusive: substantively motivated restric-
tions may be computationally beneficial.

The restrictions in the second category are inspired by substantive hypotheses con-
cerning the relationship between the variables in the mixture distribution. Because of
much recent interest, there is at present a considerable body of work concerned with
statistical modeling within mixtures. A large part of this work is based on so-called con-
ditional mixture models (Wedel & DeSarbo, 1994, 1995). In conditional mixture models,
the mixture is fitted to the conditional distribution of a dependent variable given one or
more independent variables. Within each component the parameters that characterize the
relationship between the independent and dependent variables assume distinct values.
Early studies concerned normal conditional mixtures incorporating the linear regression
model (Hosmer, 1974). Extensions and generalizations of this work include time-series
models (Hamilton, 1990), binomial and multinomial probit and logit regression models,
poisson regression models, and multivariate normal regression models. The reader is
referred to Wedel and DeSarbo (1994) for a review of these developments. Wedel and
DeSarbo (1995) present a generalized linear regression mixture model, which includes
many of the models mentioned as special cases. The conditional distributions that make up
the mixture include the common distributions of the exponential family (see Wedel 
DeSarbo, 1995, Table 1). A computer program is available to fit Wedel and DeSarbo’s
conditional mixtures (Wedel, 1995).

Whereas the work mentioned so far concerns conditional mixtures, a growing amount
of work has been devoted to covariance and mean structure modeling in unconditional
normal multivariate mixtures. In contrast to the conditional mixture models, the emphasis
here is on regression between observed and latent variables, and on regression among
latent variables.

Bl~field (1980) presents an unconditional multivariate normal mixture model incor-
porating first and second order confirmatory factor models, but does not include a model
for the means. Bl~field relies on a quasi-Newton routine to obtain maximum likelihood
parameter estimates. Yung (1994, 1997) presents multivariate normal mixture model in-
corporating the confirmatory factor model with structured means (SOrbom, 1974). Yung
takes into account complex sampling schemes and presents three approaches to the prob-
lem of estimation. Arminger and Stein (1997; Stein, 1997) present a mixture model that
includes confirmatory factor models and structural regression models among latent vari-
ables. Their model includes the possibility to introduce fixed observed regressors (e.g.,
gender or income; see Stein, 1997; and Arminger & Stein, 1997, for an illustration). The
inclusion of such fixed observed regressors allows one to replace the requirement of
unconditional normality by the requirement of conditional normality within each compo-
nent of the mixture. This approach then allows one to specify both conditional and un-
conditional normal mixtures subject to structural equation modeling. Arminger and Stein
adopt a two stage procedure to estimation consisting of the EM algorithm and a weighted
least squares (minimal distance) loss function. Jedidi, Jagpal and DeSarbo (1997a, 1997b),
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finally, present an unconditional normal mixture model that includes confirmatory factors
models and a full structural equation model (the full LISREL model). They rely on the
EM algorithm, with a iterative procedure in the M phase, to obtain maximum likelihood
estimates.

The aim of this paper is to present an approach to covariance and mean structure
modeling within unconditional multivariate normal mixtures that includes the models
presented by Bl~field (1980) and Yung (1994, 1997) as special cases, and offers the 
possibilities as Jedidi et al. to fit more elaborate (unconditional) models. In addition, linear
and nonlinear may be imposed on the parameters in the model. As we demonstrate, such
constraints are useful to express prior information. We limit our attention to the sampling
scheme where the component membership of the cases is unknown. We consider two
approaches to maximum likelihood estimation. On the one hand, we use the quasi-Newton
algorithm, which incorporate exact gradients, but avoids the calculation of second order
partial derivatives. On other hand, we implement a more simple procedure due to Yung
(1994, 1997). The latter method is used to generate starting values for the former method.
We present three illustrations based on real and simulated data.

In addition, we report results of a simulation study. It is well established that confi-
dence intervals and standard errors are unreliable when components in a normal mixture
are poorly separated (Yung, 1994, 1997). The aim of the simulation study is to compare
confidence intervals based on the observed information and confidence intervals based on
the likelihood profile (Azzalini, 1996; Neale & Miller, in press; Venzon & Moolgavkar,
1988) given two level of separation and varying sample sizes.

Multivariate Normal Mixture Subject to Structural Equation Modeling

Consider the P-dimensional random vectora Yi of subject i (i = 1 .... , N), which is
characterized by the following density function:

R

f(Yi; P, ~E, /x) = ~ P~gk(Yi; ~k, /~), (1)
k=l

where the (P × R * P) matrix Z equals [~1, ~2 .... , ~n], the (P × R) matrix/x equals [/t1,
/.t2 .... , /tn], and the R dimensional vector pr equals [Pl, P2 ..... PR]. The mixing pro-
portions in p determine the proportion of subjects in each component of the mixture.
These proportions are subject to the following constraints: l k - pk -< u~, where 0 < l~ <
uk < 1 and E p~ = 1. The distribution of Yi, shown in (1), is a mixture of R multivariate
normals. The density within each component is (k = 1 .... , R):

ffk(yi; ~k, ~k) = (27r)-’~/2[E~[ -1/2 exp [-1/2(y~ - /~k)T~/l(yi -- /.tk)], (2)

where I kl denotes the determinant of the (P × P) covariance matrix Zk, and ~g repre-
sents the P-dimensional mean vector. Within each component of the mixture, we specify
the following LISREL submodel for the observations (J6reskog & S6rbom, 1993):

Yi = 1"~I~ + Ai¢~i,~ + I~.ik (3)

~l~ik = Olk "~- Ukllik q- ~ik, (4)

where k = 1,..., R and i = 1 ..... N. The components of the Q~-dimensional random
vector, ~li~, are the common factors scores of the i-th case within the k-th component of
the mixture. The components of the P-dimensional random vector elk ideally represent

All vectors are column vectors. Superscripted capital T denotes transposition.
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measurement error terms that are distributed as zero-mean multivariate normals. The
(P x Qk) matrix Ah contains the loadings (i.e., regression coefficients) of the observed
variables, Yi, on the common factors, ~lik. In (4), linear regressions are specified among the
common factors. The (Qk x Qk) matrix Bk contains the (structural) regression coefficients.
The components of the Qh-dimensional vector gik, residual terms in these structural re-
gressions, are zero mean multivariate normals. The components of the Qk and P-dimen-
sional vectors, ak and vh, finally, are means and intercepts, respectively.

The model for the observations implies the following model for the covariance and
mean structures. The covariance matrix and mean vectors of the common factors are:

E[ ( ~ik - E[11~ik])( lllik -- E[ llik]) T] ---- (I -- Bk)-IxI~k(I -- Bkr)-1

E[~ik ] = (I - Bk)-lak,

where ~k is the (Qh X Qh) covariance matrix of the residuals gik, and I is the (Qk X Qh)

identity matrix. The covariance matrix and mean vectors of the observed variables are:

~k = Ak(I -- Bk)-lxltk(I -- B~-’A~ + (5)

/.tk = Vk + Ak(I - Bk)-l~k, (6)

where Oh is the (P × P) covariance matrix of the error terms eik. Neither Ok nor ~k is
necessarily diagonal.

Let ~’k represent the vector of free (to be estimated) parameters in k, Bk, air h, Oh,
vh, and t~k. We indicate the parametrization of the covariance matrix and mean vector
shown in Eqs. 5 and 6 by ~h(~’h} and tth(’rh}, respectively. We denote the mixture density
subject to the parametrization within each component of the mixture as’.

R
f(yi; p, ~{~’}, ~{’r}) = Pkgk(Yi; ~/~{’rk}, /J ,~{~’k}), (7)

k=l

where "rT = [’rT11, ~2, ̄  ¯ ̄ , ~R], ~{’r} = [~1{’rl}, ~2{~-2},..., ~R{’rR}] and/x{-r} = [/Xl{~’l},
/t2{~’2},..., /tR{~’R}]. And so, we have

tTk(Yi; ~,k{’rk}, /t~{~’k}) 

¯ exp [- 1/2(y~ - IZk{’rg})T~k{’tk}-l(y~ -- /Xk{~’g})]- (8)

The LISREL submodel shown in (5) and (6) encompasses a large number of models.2

These include the confirmatory factor models presented by Yung (1994, 1997), the second
order confirmatory factor models presented by Bl~field, (1980), multiple regression models
and simultaneous equation models for observed variables (Jedidi, et al. 1996). As in Jedidi
et al. (1997a, 1997b; Arminger & Stein, 1997, the present model includes multiple regres-
sion models and simultaneous equation models at the level of the latent variables. Yung
(1994, 1997) fits confirmatory factor models subject to form invariance. This means that the
confirmatory factor models in each component has the same set of parameter matrices
with the same dimensions and the same location of fixed, free, and constrained parameters.
In addition, Yung requires the number of common factors to be equal over the compo-
nents. We impose neither of these conditions.

Given the parameters estimates, it is possible to assign the cases to the components

2 The full LISREL model, which includes 8 parameters matrices and 4 parameter vectors (see J6reskog 
S6rbom, 1993) incorporates endogenous and exogenous latent variables. We sacrificed this conceptual distinction
in favor of a reduction in programming burden. However, any model that can be fitted using the full model can
also be fitted using the present submodel. See Jedidi, Jagpal & DeSarbo (1997a, 1997b) for a mixture approach
incorporating the full LISREL model.
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by calculating the posterior probability that a given case i belongs to a given class k.
(Everitt & Hand, 1981, p. 10). By Bayes’ theorem, this posterior probability equals:

p~,g(y~; ~k{’r~},

OJki : f(yi; p, ~{~’}, /t{~’}) (9)

Estimation

Methods of estimation in fitting mixtures are discussed extensively by Titterington, et
al. (1985, chap. 4; see also Everitt & Hand, 1981, sec. 2.3). These include method 
moments, graphical methods, and maximum likelihood estimation. In the presentation and
development of methods for normal mixtures the focus has mainly been on estimation in
the unconstrained case (i.e., without further modeling of covariance and mean structures).
Maximum Likelihood (ML) estimation is the dominant method of estimation in fitting
mixtures. Here we rely solely on ML estimation (e.g., see Azzalini, 1996).

ML estimates of p and ~- are obtained by maximizing the loglikelihood function within
the admissible range of the parameter values, given the observed data, Y, and the number
of components, R:

N

L(p, ~’; Y, R) = ~ In [f(yi; p, ~{,t},/t{-r})], (10)
i=1

where Y is the (N x P) data matrix, yT = [Yl, Y2 .... , YN]-
The likelihood eqt/ations associated with (10) cannot be solved in closed form so that

some iterative scheme has to be invoked. The most popular methods of maximizing the
loglikelihood function in the unconstrained case are the Expectation-Maximization (EM)
algorithm and the Newton-Raphson (NR) algorithm (Titterington, et al., 1981, p. 84). 
EM algorithm is easy to program (e.g., Everitt & Hand, 1981, p. 37) and has the advantage
that it is sure to produce a monotone increase in loglikelihood (Everitt & Hand, 1981;
Titterington, et al., 1985). The NR algorithm is more difficult to implement, because it
requires the gradients and the Hessian. The Hessian can be replaced by the Fisher Infor-
mation matrix, or an approximation thereof (Wolfe, 1970; Yung, 1994, 1997), or by 
approximation based on an updating algorithm (Gill, Murray & Wright, 1981). In the first
case the resulting algorithm is referred to as the Method of Scoring, in the latter case, the
generic term quasi-Newton algorithm is used. Although these methods are generally faster
than the EM algorithm, they are more sensitive to starting values in that they diverge and
break-down when started at an infelicitous point.

In contrast to regular multigroup covariance structure analysis, the log-likelihood
surface in normal mixtures is known to be "littered with singularities" (Titterington, et al.,
1985, p. 83; Yung, 1994, p. 7). As mentioned in the Introduction, appropriate constraints
greatly alleviate this problem (Hathaway, 1985). In addition, local maxima (e.g., see Everitt
& Hand, 1981, p. 43; Jedidi, Jagpal & DeSarbo, 1997b), to which the EM algorithm and
Newton-type algorithms are equally susceptible, may make the generation of starting
values and the checking of solutions a tedious business.

In fitting normal mixtures subject to structural equation modeling, the accepted view
of the EM algorithm as a simple way of maximizing the loglikelihood requires qualifica-
tion. Yung (1994, 1997) presents EM algorithms to maximize the log-likelihood subject 
confirmatory factor modeling within each component. In this evaluation of the EM algo-
rithm (¥ung, 1994, p. 37), he indicates that (a) the preparation required to implement 
EM algorithm of a given model requires is great, and 2) slight changes to the specified
model (e.g., the introduction of an equality constraint) may require nontrivial modifica-
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tions of the EM algorithm. Yung’s evaluation renders the EM algorithm less than ideal in
fitting normal mixtures subject to structural equation modeling. Jedidi, Jagpal and De-
Sarbo (1997b; Wedel & DeSarbo, 1994, 1995) employ an EM algorithm which incorpo-
rates a iterative (conjugate gradient) method in the M step to obtain estimates of the
parameters that feature in the structural equation model. This approach avoids the diffi-
culties noted by Yung. Arminger and Stein (1997) employ a two step procedure which
consists of the EM algorithm to obtain unconstrained estimates of the covariance matrices
and mean vectors followed by a Newton-type algorithm to minimize a weighted least
squares loss function.

When relying solely on the Newton-Raphson or related approaches to fit multivariate
normals certain problems arise that are absent in ordinary multigroup SEM. The Method
of Scoring requires the evaluation of the Fisher information matrix at each iteration.
Because this matrix is difficult to obtain analytically (Everitt & Hand, 1981, p. 40; Titter-
ington, et al., 1985, p. 88; Wolfe, 1971), Yung (1994, 1997) employs the Method of Scoring
with a simplification of the Information matrix due to Wolfe. This simplification involves
setting the posterior probabilities of case i equal to 1.0 in the component where the
posterior probability, tOki (k = 1, ..., R), is maximal and to zero .elsewhere. This simpli-
fication results in a tractable expression for the Information matrix. Yung refers to this
method as the Method of Approximate Scoring.

Besides his EM algorithms for constrained mixtures and the Method of Approximate
Scoring, Yung (1994, pp. 35-36) presents a two-stage procedure called 2 stage GLS. In this
approach, the unconstrained means and covariance matrices are estimated using the EM
algorithm or the Method of Approximate Scoring. Subsequently, these summary statistics
are used as input in a standard multigroup covariance structure modeling program such as
LISREL 8 (J6reskog & S6rbom, 1993), or Mx (Neale, 1995), and are analyzed by mini-
mizing the normal theory generalized least squares, or likelihood ratio function (J6reskog
& S6rbom). The specified sample size depends on the estimated mixing proportions. This
two stage procedure is very simple to implement and very flexible, because one can specify
any model available in the programs mentioned. As discussed by Yung (1997, p. 37), the
disadvantages of the two stage procedure are that it does not produce ML estimates, and
that standard errors and X2 goodness of fit index produced by the standard programs are
not correct. These have to be evaluated using separate programs. When the components
in the mixture are well separated, however, the results are similar to those obtained in
regular multigroup structural equation modeling. It should be emphasized that Arminger
and Stein’s two stage procedure does produce correct results. They do not treat the
components are independent groups, following the first (EM) stage of their estimation
procedure. Rather they calculate a weight matrix for the second part of their procedure
(WLS), that takes into account the intercorrelation of the parameters estimated in the
various components.

Bl~tfield (1980)is not concerned with second order partial derivatives. Rather, 
employs the Davidon-Fletcher-Powell update within a quasi-Newton algorithm to maxi-
mize the loglikelihood using exact gradients. The advantage of this approach is that it is
easy to implement. In addition, it produces, as a by-product of the optimization process,
an approximation to the Hessian.

Our present approach to maximizing the log-likelihood ratio function is based on both
Yung (1997, 1994) and Bl~field (1980). We employ two methods to maximize the loglike-
lihood function. We use the NAG FORTRAN library routine E04VDF (NAG, 1990) 
maximize the loglikelihood function using exact gradients (see Appendix 1). This quasi-
Newton approach is closely related to Bl~field’s. In addition, we use a method closely
related to Yung’s two-stage procedure to obtain starting values. We first fit unconstrained
multivariate normal mixtures using the EM algorithm. The estimates of mean vectors and
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covariance matrices of each component are subsequently treated as independent in a
regular multi-group covariance structure analysis (J6reskog, 1971). Here we obtain esti-
mates by minimizing the multi-group likelihood ratio function, again using E04VDF with
exact gradients. Estimates so obtained are identical to those produced by Yung’s two-stage
procedure. These estimates are then used as starting values in maximizing the log-likeli-
hood function, (10), using E04VDF.

An advantage of the routine E04VDF is that it offers the possibility of imposing
non-linear and simple bounds on the parameters in ,r and p. In E04VDF, these constraints
are accommodated using Lagrange multipliers (Gill, Murray & Wright, 1981). In addition,
the extension to multi-groups (i.e., multigroup normal mixtures subject to SEM) are quite
easy to program using the present approach. Further facilities available in E04VDF to
impose equality constraints are not exploited. It is more efficient to accommodate equality
constraints by concentrating the loglikelihood function. In the present case this means that
we specify an equality constraint by inserting a given parameter in two or more positions
in the parameter matrices in (5) and (6).

Standard Errors and Confidence Intervals

We calculate standard errors by approximating the Hessian using central differences
and exact gradients. This approximation, which is very simple to program, is known to be
good in regular multi-group structural equation modeling (Dolan & Molenaar, 1991).
These standard errors are based on the observed information instead of the expected
information, but these are asymptotically equivalent (Azzalini, 1996, p. 91). We use these
standard errors to obtain a rough indication of the precision of the ML estimates. Subse-
quently we calculate likelihood-based confidence intervals (Azzalini, 1996, sec. 4.5.3; Ven-
zon & Moolgavkar, 1988) for the subset of parameters of special interest using a method
suggested by Neale and Miller (1997). Let L* denote the maximum of the log-likelihood
function, (10), for a given model and let r* denote a parameter of special interest. Fol-
lowing Neale and Miller (1997), we minimize the following functions to obtain the upper
(fu) and lower (fl) endpoints of the confidence interval (CI) of ~*:

ft(r, p) w[L* - L(p, "r ; Y, R) + . 5c2 + r* , (11)

L(~, p) - w[L* - z~(p, ~; ¥, R) + .5c32 - ~*. (12)

In these equations, the parameter of interest features twice: once as a component of
parameter vector p or ~’, and one as ~’*. At the minimum of these functions, ~-* assumes the
minimum (maximum) value for which minus twice the log-likelihood (-2[L* - L(p, ~’; 
R)]) equals c + 1/[w(8"~*/cgL(p; "r;, Y, R))]. Now, the desired width of the CI can be
obtained by setting c to equal X2~,1, the value of the cumulative chi-square distribution,
given 1 degree of freedom and the significance level, a. For instance, if o~ equals 0.05, c
equals 3.84, that is, the values of ~-* obtained are the approximate endpoints of the 95%
confidence intervals of the parameter of interest. These are not the exact endpoint, be-
cause the term 8"r*/~L(p, ~ Y, R) will not generally equal zero. As pointed out by Neale
and Miller (1997), this bias can be evaluated easily and can be reduced by setting w 
equal a positive number. In practice, with w = 1, we find that the bias is quite negligible.
When we do desire an improvement, we set w = 5. We refer to these CI’s as likelihood-
based CI’s. Asymptotic 100(1 - a)% CI’s may also be calculated using the standard errors:
~’* +- se(r*) ~b(a/2), where ~b(c~) isthevalue of t he standard normal dist ribution func
associated with the significance level cc We refer to these CI’s as Hessian-based CI’s.

Hessian-based CI’s are expected to be inferior to likelihood-based CI’s, because the
former are based on a quadratic approximation of curvature of the loglikelihood function
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at its maximum. As the likelihood-based CI’s do not depend on such an approximation,
they are more accurate. For instance, likelihood-based CI’s are not necessarily symmetric
about the ML estimate. In addition Hessian based CI’s may assume nonsensical upper or
lower bounds. Multidimensional CI’s can also be based on the loglikelihood instead of the
Hessian (Venzon & Moolgavkar, 1988), but we do not consider these here.

In the presence of non-linear constraints, standard errors of the parameter estimates
can be obtained by inverting the Hessian after it has augmented with the Jacobian matrix
of the constraints (Aitchison & Silvey, 1958). The presence of nonlinear constraints does
not complicate the calculation of likelihood-based CI’s (Neale & Miller, 1997).

Hypothesis Testing and Identification

We distinguish hypotheses relating to the number of components in the normal
mixture and hypotheses relating to the restrictions placed upon the covariance matrices,
mean vectors and proportions. As pointed out by Yung (1994, 1997), and Jedidi, Jagpal
and DeSarbo (1997a, 1997b) the latter type of hypothesis can be tested using the gener-
alized likelihood ratio test as long as competing hypotheses are nested. In covariance
structure modeling, an unrestricted mean vector and covariance matrix usually features as
a baseline to evaluate a model incorporating restrictions, assuming the more restrictive
model is identified. The differences in the number of parameters estimated are the degrees
of freedom (dr) and minus twice the difference between the loglikelihoods provides a )(2
test for the restricted model. Examples of this application of the likelihood ratio test are
given below. The identification of structural equation models in regular multi-group co-
variance structure modeling requires consideration, but can usually be resolved easily.
Many commonly employed models are known to be identified.

Identification of structural equation models within multivariate normal mixtures does
not pose a problem. An obvious necessary condition is that the structural equation model
is identified in a regular multi-group analysis, Normal mixtures are typically identified
(Titterington, et al., 1985, p. 162). Concerning identification, Jedidi, Jagpal and DeSarbo
(1997a) provide a proof that the established identification of the structural equation model
and the requirement of normality within each component are sufficient and necessary
conditions for identification of the model within the multivariate normal mixture.

Hypotheses relating to the number of components in a mixture cannot be tested using
the likelihood ratio test, because a regularity condition for the generalized likelihood ratio
test (e.g., Azzalini, 1996, p. 71) does not hold (Everitt & Hand, 1981, sec. 5.2.2). Wedel 
DeSarbo (1995, 1994; see also Jedidi, et al. 1996; Jedidi, Jagpal, & DeSarbo, 1997a, 1997b)
rely on information criteria based Akaike’s information criterion as informal indicators of
the number of components of the mixture. Although these criteria are themselves based on
the loglikelihood, they appear to be useful (see Jedidi, Jagpal & DeSarbo, 1997a). Monte
Carlo procedures have been suggested to determine the number components (Arminger 
Stein, 1997; Feng & McCulloch, 1996; McLachlan, 1987), but these are computationally
intensive. Goodness of fit procedures based on the Pearson X2 test and the Kolmogorov-
Smirnoff test have recently been suggested (Agha & Branker, 1997), but these have yet 
be applied in the context of multivariate normal mixture subject to SEM.

Separation of Components

In fitting regular multigroup structural equation models as well as in fitting normal
mixtures, validity of asymptotic results, relating to standard errors and the X2 goodness of
fit index, depends on distributional aspects of the data, sample size, and the accuracy of the
model under consideration. In fitting normal mixtures, however, an additional consider-
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ation of great importance is the separation of the components. When separation is poor,
the 1‘2 goodness-of-fit measure and standard errors cannot be trusted (Everitt & Hand,
1981, p. 44ff.; Yung, 1994, p. 49).

Two measures relating to the degree of separation have been suggested. Wedel and
DeSarbo (1994; Jedidi et al. 1996) use an entropy measure that represents the degree 
fuzziness in component membership and is bounded by zero and one (perfect separation).
Yung (1994) assesses the separation between each pair of components in a multicompo-
nent mixture by calculating a multivariate version of Hosmer’s measure of separation
(Hosmer, 1974):

dq = max [(~; - ~[.~j)T~-l(~[.l[i -- ~[~j)]l/2.
hG{i,j}

(13)

Because Yung’s measure provides more information, especially considering his simulation
results (Yung, 1994), we report these. Results of Yung’s simulation study suggest that the
asymptotic theory works well for values of dij of about 3.8 or over. Below we investigate the
effects of separation of likelihood-based and Hessian-based confidence intervals.

Illustrations

We illustrate the fitting of multivariate normal mixture subject to constraints using 3
data sets.

We report ML estimates, standard errors, and likelihood-based 95% CI’s. Although
they are redundant, we also report Hessian-based 95% CI’s to facilitate comparison with
the likelihood-based CI’s.

Murphy-Boiling Isoniazid data: a univariate normal mixture with nonlinear constraints
(Murphy & Bolling, 1967). Hamilton (1991) uses these data to illustrate his quasi-Bayes-
ian method of fitting normal mixtures. Here we use these data to illustrate the use of
non-linear constraints. A sample of 220 subjects was administered a tuberculostatic drug.
After 6 hours the concentrations of the drug in the blood were measured. Individual
differences in metabolic rate are hypothesized to be determined by a single locus (gene)
with two alleles, F (fast rate) and S (slow rate). Under full dominance, homozygotic FF
individuals are indistinguishable from heterozygotic FS individuals concerning metabolic
rate. Full dominance appears to be the accepted model, as documentation of the drug
speaks only of a slow and fast rate (Farmacotherapeutisch Kompas, 1994). Like Hamilton
(1991), we are interested in fitting the three component model.

A problem with these data the poor separation of two components, as can be seen in
Figure 1. The SS distribution is clearly discernible, but, assuming the absence of complete
dominance, the distributions of the FS and FF cases are hard to distinguish. Although the
histogram is quite compatible with a three component mixture (see Titterington, et al.,
1985, Fig. 4.1.1), the degree of overlap makes the three component mixture hard to fit
(Murphy & Boiling, 1967; Hamilton, 1991).

Assuming the single gene model without dominance, we can fit a mixture of three
normals subject to two non-linear constraints that are derived from a simple biometric
model. Let a and 1 - a denote the allele frequencies of S and F in the population. We
assume that the sample is representative and that environmental effects do not contribute
to the between-phenotype variance. The means of each phenotype are then tx(SS) 
[3~ - a23], IX(FS) = [7], and Ix(FF) = [~/+ (1 - a)26]. The parameter 6 is the genotypic
effect and the parameter ,/is the so-called mid-parent value, which can be interpreted as
a constant from which the effects of the alleles are expressed. Furthermore, the propor-
tions of each component of the mixture are pT = [a2 2a(1 -- a) (1 -- a)2]. The model



236 PSYCHOMETRIKA

0 1 2 3 4 5 6 7 8 9 10 11

18"~

12’

0
0 1 2 3 4 5 6 7 8 9 10 11

FIGURE 1.
Top: Histogram of the Murphy-Boiling Isoniazid data (N = 220; Adapted from Hamilton, 1991) with superim-

posed normal distributions of Model 2. Bottom: Components of Model 2.

implies that the proportions can be modeled using a single parameter (instead of 2),
namely a, and that the means can be modeled using 2 parameters (instead of 3).

Table 1 contains the parameter estimates for the mixture of two component (Model
0) and the mixture of three normals, without (Model 1) and with (Model 2) the restrictions
mentioned.3 The estimates reported by Hamilton using his quasi-Bayesian method of
estimation (Model 3) and the two component solution are included for comparison. Com-
paring model 1 and model 2, we find we cannot reject the nonlinear constraints: minus
twice the log-likelihood equals X2(2) = 3.14 (p = .20). In inspecting the estimates, 
only striking differences are in the variances of the second and third component. With the
nonlinear constraints, these variances are larger (1.87 vs. 1.25 and 2.39 vs. 1.05). There are
considerable differences in the estimated CI’s in model 2. In three cases the Hessian based
CI’s differ from the likelihood-based CI’s. In these three cases the latter hit a lower bound.
In Model 3, except for the variance in the third component, the CI’s agree quite well, even

3 The data were derived from the histogram published in Hamilton (1991). Hamilton demonstrates that the

inherent loss of information does not seriously affect the results.
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Table i: Parameter estimates, standard errors, and 95% CI’s (upper/lower

endpoints) for the Murphy-Bolling data. Standard errors in parentheses.

parameter

~i (SS)

CI (s.e)

CI (logL)

o2~ (SS)

Cl (s.e)

CI (logL)

pl (SS)

CI (s.e)

CI (logL)

~2 (SF)

Cl (s.e)

CI (logL)

o2~ (SF)

CI (s.e)

CI (logL)

P2 (SF)

CI (s.e)

CI (logL)

Z3 (FF)

CI (s.e)

CI (logL)

o23 (FF)

CI (s.e)

CI {logL)

p3 (FF)

logL

Model 0

1 71 (.072)

1 57/1.85

1 57/1.86

0 40 (.066)

0 27/0.53

0 29/0.56

.40~

6.92 (.15)

6.62/7.23

6.59/7.22

2.68 (.40)

1.90/3.46

2.04/3.68

.60 (.034)

.53/.66

.53/.66

8.23

-477.358

Model 1

1.74 (.071)

1.60/1.88

1.60/1.88

43 (.068)

29/.56

31/.59

41 (.033)

35/.48

35/.48

6.35 (.32)

5.73/6.98

5.33/6.96

1.25 (.48)

.31/2.20

.01~/2.73

.45 (.i0)

.25/.64

.01#/.60

8.98 (.75)

7.51/10.44

6.74/11.36

1.05 (.72)

.36/2.47

.01#/4.31

7.02

11.07

2.55

-475.059

Model 2

1.72 (.071

1.58/1.86

1.58/1.86

.41 (.067)

.28/.54

.30/.57

.39 (.036)

.32/.46

.33/.47

6.56 (.18)

6.21/6.92

6.18/6.90

1.87 (.49)

.90/2.84

.99/3.12

.47 (.015)

.44/.50

.43/.49

8.25 t (.31

7.64/8.86

7.69/8.97

2.39 (1.03

.36/4.42

.87/6.12

.14"

7.54

10.17

1.24

-476.628

Hamilton

1.75

.45

.41

6.14

1.06

.36

8.31

1.74

.23

Note:
*An asterisk indicates that the parameter is subject to a linear

constraint (p~ in model 0, P3 elsewhere), tA dagger indicates that the

parameters is non-linearly constrained. #Indicates that the lower bound on

the parameter was hit during optimization.

Model 0: two component model with standard constraint (~pl=l) . Under this

model SF and FF are indistinguishable. Model i: three component model

with standard constraint (~pi=l). Model 2: standard constraint & 

nonlinear constraints.

though the distance between the second and third components is smaller than in model 2
(d23= 2.55 vs. d23 = 1.24). In view of the poor separation, the CI’s cannot be trusted.

The estimates of Model 2 differ slightly from those reported by Hamilton (1991) 
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that the variances of the second and third component are larger (1.87 vs. 1.06 and 2.39 vs.
1.74). Furthermore, Hamilton assigns more individuals to the third component (.14 vs.
.23). Figure 1 is a graphical representation of the fitted components.

Qualitative developmental change: Analysis of conservation data. Van der Maas
(1993) designed a nonverbal computer-based test to assess the ability to conserve contin-
uous quantity, an ability that is characteristic of the concrete operational stage in Piaget’s
structural theory of cognitive development (Piaget & Inhelder, 1969). This test, which 
concerned with pouring equal amounts, consists of 4 items that are reproduced in Figure
2. The subjects are required to imagine that the liquid in the transparent vessel on the left
is poured into the transparent vessel on the right. They are instructed to indicate their
expectation concerning the level of the liquid in the vessel to the right by moving the level
of the liquid up or down using designated keys on the computer keyboard. The movable
level is represented by a thin black line. The correct level is indicated in Figure 2 by "0 cm"
(i.e., zero centimeters). Subjects in the pre-operational stage are hypothesized to set the
expected level to the level in the original vessel, that is, they simply align the levels.
Subjects in the concrete operation stage are expected to realize that the dimensions of the
vessel will affect the observed level of the liquid and act accordingly.

A total of 90 children ranging in age from 6.5 to 11 years completed the computer test
within their school settings (see van der Maas, 1993, chap. 2). We specify a two component
mixture as the subjects are expected to be in the concrete operational stage (conservers),
or in the pre-operational stage (nonconservers). The mean vector of the conservers, ~c, 

T
expected to equal [0 0 0 0j , and the mean vector of the nonconservers, I~NC, is expected
to equal [.75 -2 0 -.5] 1, where the subscript NC stands for nonconserver and C for
conserver. We do not initially impose any restrictions on the covariance matrices. Rather
than estimating the covariance matrices, however, we do specify ~Ec = Ac~ItcATC and
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~NC
T

= ANCaPNcA[vc. The diagonal 4 × 4 matrix AC(NC) contains the standard deviations
and the symmetric 4 × 4 matrix aPC(NC) is a correlation matrix. This parametrization is’
convenient, because it yields estimates and standard errors of the correlations among the
4 items rather than the covariances. Histograms of the data are shown in Figure 3.

We start by fitting the model with and without the fixed means. The log-likelihoods
equal -49.28 and -11.04, respectively so we reject the hypothesis concerning the means
(X2(8) = 76.5 (p < 0.001). Parameter estimates are shown in Table 2 for the model 
unconstrained means. Both visual inspection of Figure 4, and Yung’s separation measure
(d12 ~- 38) indicate that the components are very well separated.

Analysis of the means indicates that all means in the identified C group deviate from
their expected values (two-sided univariate t-tests, a ~ .006, i.e., 0.05/8). In the NC group
the means of the third and fourth items differ from their expected values. In comparing the
variances, it is evident that the C group is a lot more variable than the NC group. It is likely
that the items are easier for members of the NC group: A typical subject is assumed to
merely align the level in the vessel to the level in the original vessel. In addition, the C
group may not be quite as homogeneous as we suppose it is.

The correlations in the C group appear to be due to overestimation on Item 1 and 3
and underestimation on Item 2. Except for the mean on Item 4, which is clearly more
difficult, the mean values are compatible with this idea of over- and underestimation. In the
NC group, none of the correlations appears to be significantly greater than zero, judging
by the standard errors. If the NC children are carrying out a simple alignment, the most
obvious hypothesis is that the covariance matrix is diagonal.

We refit the model, subject to the following constraints. The covariance matrix the NC
group is constrained to be diagonal. In the C group, we specify a constrained oblique two
factor model. Given this hypothesis, the density is:

/(Y/; P, ~{~’}, M,{~’}) = Pc~Tc(Yi; {AcaPcAc~ + Oc}, Vc) + PNCgNc(Yi’, {A/vcA~c}, VNc),

where (Pc + PNC = 1). The 4 × 4 diagonal matrix ANt contains the standard deviations
of the scores on the items. The model matrices in the C group are diag [Oc] =

[o~1 o’~2 ~3 a~4] and

I I1 1= al~’c = p

The equality constraints imposed on the factor loadings are inspired by the fact that Items
2 and 3 are essentially of the same type (see Figure 2). Item 1 does not resemble item 
to the same degree, but these items are similar. In fitting the model, the parameter ~3 kept
hitting the lower bound (.0001) and the parameter ~2 kept assuming very small values. 
therefore specified diag {Oc} = [o~1 0 0 ~4]. The log-likelihood ratio for this model

equals -18.56, so we have a t ‘2 of 15.0 (-2 * [11.04 - 18.56]) with 29 - 18 = 11 df (~ 
.18). There is no reason to reject the restrictions imposed. The estimate of ~’b 
[A~ A2 0 ~ ~4] equals [.21(.037) .72(.059) -.68(.072) .10(.019) .13(.024)] 
errors in parentheses). The m~ng proportion equals .61 (.05). The fitted moments in 
C group are shown in Table 2. Standard deviations in the NC group equal .056 (.006), .071
(.008), .068 (.009), and .072 (.009).

Besides the item scores, IQ scores (Raven Progressive Matrices) and age are avail-
able. We now investigate the relationship be~een these variables and the item scores in
the NC group and the scores on the common factors in the C group. In the NC group both
the item scores and the covariates are treated simply as obse~ed variables. In the C group,
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Table 2: Parameter estimates for analysis of conservation data (N=90

standard errors in parentheses, 95% CI’s for means (upper/lower end

point).

Unconstrained model (logL = -ll.04).Identified concrete operational
group, proportion =.59 (s.e. .052), N =53.
correlation matrix (~)

i"

-.25 (.13)

0.45 (.II) -.66 (.08)
-.Ii (.13) 0.53 (.i0) -.31 

st. dev.’s .36 (.035) .73 (.070) .63 (.061

~ (means)

expected 0.0 0.0 0.0
observed .20’ (.05) -.53’(.10) .42’ (.09)
CI (s.e) .11/.30 -.73/-.33 .25/.59

Cl (logL) .10/.30 -.73/-.33 .24/.59

.42 (.040)

0.0

.25’(.057)

.14/.37

.14/.37

Identified pre-operational group, proportion =.41, N=37.

correlation matrix
i*

-.16 (.16) 

.32 (.15) .01 (.17) 1"
-.03 (.16) .04 (.16) -.30 (.15) I*

st dev.’s

~ (means)

expected
observed

CI (s.e)

CI (logL)

.06 (.007) .07 (.008) .ii (.014) .07 (.008)

.75 -2 2 -.5

.74 (.010) -2.01(.012) 2.05’(.019) -.54’ (.012)

.72/.76 -2.03/-1.99 2.02/2.07 -.57/-.52

.71/.76 -2.03/-1.99 2.01/2.07 -.57/-.52

Fitted moments for C group. Constrained model (logL=-18.56).
=.61 (s.e. .051), N =55.
Correlation matrix

1

.39 1
.54 -.68 1

.20 .51 -.35 1
St. dev.’s .37 .72 .72 .41
Means .21 (.05) -.56 (.09) .45 (.09) .24 

Proportion

tDeviates significantly (Itl > ta/2;N-1, ~=.05/8,

according to the two-sided univariate t-tests based on the reported

estimates of means and standard deviations and expected values of the

means. *Parameters fixed to values reported.

.006) from expected values

we regress the observed covariates on unobserved, latent variables. The covariates, which
correlate .48 in the entire sample, were examined separately. The model for a given item
i in the NC group is (discarding subject subscripts; the model for age is identical):

I i -- p,(Ii) = [3i[l o --/x(IQ)] + ~(Ii), i = 1 ..... 4
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Table 3: ML parameter estimates,

95% CI’s (lower/upper endpoint)

factor and items scores.

standard errors (in parentheses), and

for the regression on IQ and AGE of

covariate: IQ AGE

C group estimate %var estimate %var

var (cov.)

mean (cov.

~ (on

CI (s.e)

CI (logL)

~ (on

CI (s.e)

CI (logL)

84(.16)

) 3 18(.12)

048(.027)

10/.005

10/.004

052 (.028)

003/.10

001/.ii

.14 (.027)

3.03 (.051)

6% -.097 (.067) 3.5%

-.230/.034

-.402/.031

7% .114 (.068) 5.5%

-.021/.246

-.014/.404

NC group estimate %var estimate %var

var(cov.) .65 (.15)

mean(cov.) 2.41 (.13)

(Item i) .007 (.012) <1%

CI (s.e) -.017/.032

CI (logL) -.018/.030

(Item 2) -.050 (.012) 32%

CI (s.e) -.074/-.027

CI (logL) -.074/-.025

B(Item 3) 0.013 (.023) <1%

CI (s.e) -.033/.057

CI (logL) -.033/.059

(Item 4) 0.010 (.015) 1%

CI (s.e) -.020/.037

CI (logL) -.020/.039

.14 (.032)

2.83 (.061)

.002 (.027)

-.051/.054

- 052/.057

- 042 (.031)

- 103/.017

- 104/.020

- 032 (.049)

130/.063

132/.067

0 032 (.031)

031/.093

032/.095

O%

4.8%

1.2%

2.2%

where I i stands for item i. In the C group, the each common factor is regressed on IQ as
follows:

-q = [3[IQ -/x(IQ)] + ff(~;).

Table 3 contains the results for IQ and age. In each analysis all parameters were estimated
simultaneously, including those that featured in the previous analysis. The covariate IQ
explains about 6% and 7% of the variance in the common factors in the C group. Judging
by the CI’s, the regression coefficients do not deviate from zero. In the NC group we find
the unexpected result that IQ explains a substantial portion (32%) of the variance asso-
ciated with item 2. In all other cases in the NC group, the percentage of explained variance
is negligible. Refitting the model with all regression coefficient fixed to zero results in a
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loglikelihood of -133.36 and a X2(6) of 17 (p = 0.01). Limiting the regression to 
second item in the NC groups, we obtain loglikelihood of -127.6 and a 9(2(5) of 5.5. 
visual inspection of the relevant scatterplot in the NC group suggests that the significant
regression in the NC group cannot be attributed to any outlying cases.

Results for the covariate age are quite clear. The percentage of explained variance is
quite small in both components (in the C group, 3.5% and 5.5%; in the NC group, between
0% and 4.8%). The loglikelihood for this model equals -54.8. Refitting the model with all
regression coefficients fixed to zero, we find a log-likelihood of -58.08 and a X2(6) of 6.6.
Age and IQ (with the exception mentioned) appear to do little to explain the within-
component variance.

Overall, the results are quite compatible with the hypothesis that the NC subjects are
carrying out an alignment. In the C group, the results suggest that the subjects know the
correct responses to the items, but are prone to over- or underestimation depending on the
item. This interpretation is based on the provisional assumption that the C group is
homogeneous.

An illustration based on the quasi-Markov simplex model." An analysis of simulated
data. We simulate two longitudinal datasets according to a first order autoregression
comprising 6 equidistant measurement occasions. In the first group, the time series is
stationary throughout. In the second group, the time series is identical in means and
covariance structure up to occasion 3, but thereafter the means and covariance structure
change. From occasion 4 onwards, the time series in the second group is again stationary,
but is characterized by a different mean and different autoregressive parameter.

In the first group, the model is as follows (J6reskog, 1970; subject subscript discarded;
subscript j denotes occasion):

T/1 -- /’/~(T/1) = ~1,

"0j - tx(’0j) =/31[rlj_l -/x(~_l)] + ¢~, j = 2 ..... 6

Y~ = ~ + tz(~lj) + e~, j = 1, ..., 

where/31 = .5 and/,(¢j) = 0. The observations are characterized by variances, covariance
and means which equal:

o’2(~) = j = 1 .... , 6

o’2(ff~) = 7.5, j = 2, ..., 6

~r2(’o~) = 10,

0"2(’Oj) = /3120"2(~j_1) "J- O’2(b~j) 10,

COV (T~j~j_I) ~--- ~lO’2(’l~j_l) 

j=2 .... ,6

j=2 ..... 6

/*(rlj) = 10, j = 1, ..., 

~r2(y~) = o-2(rl~) + o’2(ei) = 12. j = 1 6

In the second group, we have the same model from occasions 1 to 3, but hereafter the
autoregressive parameter,/32, equals .70, the mean equals 14, the residual variance equals
5.1, and the error variance equals 4:

O’2(8j) 4,j = 4,.. ., 6

O’2(~j) 5.1, j = 4 .. ... 6
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O’2(glj) = /3220"2(’t’/j_l) -{- O’2(~’j) j = 4, .. ., 6

COV (T~j’I"~j_I) = ~320"2(T~j_1) 7,j = 4 .. .. , 6

/z(~/j) = 14, j = 4 ..... 6

~r2(yj) = ~r2(~) + o’2(e~) = 14. j = 1, 

The density is now:

f(y/; p, Z{r},/x{r}) =P191(Yi; {(I - B~-l)~Iq(I - B~-l)r + O1}, 

+ P2/72(Yi; {(I - B~q)xlt2(I - B~-I)T + O2}, !12)

where diag [~a] = [10, 7.5, 7.5, 7.5, 7.5, 7.5], diag [Rt2] = [10, 7.5, 7.5, 5.1, 5.1, 5.1], 1~1 =

2I, and diag [~2] = [2, 2, 2, 4, 4, 4]. The first lower subdiagonal4 of the otherwise zero
matrix B1 equals [.5, .5, .5, .5, .5] and the first lower sub-diagonal of B2 equals [.5, .5, .7,
.7, .7]. Finally Vlr = [10, 10, 10, 10, 10, 10] and v~ = [10, 10, 10, 14, 14, 14].

For each component, 150 cases were created, a total of 300 cases (Pl = P2 = .5). 
fitting the unconstrained mixture (55 parameters), we obtain a log likelihood of -4724.6.
The estimate of the proportion equals .44. Fitting the constrained true model, we find a
loglikelihood of -4749.9. The goodness of fit for the constrained model is 9(2(45) = 50.6
(p = .36). The mixing proportion equals .59. Table 4 contains the parameter estimates
obtained by fitting the constrained mixture and estimates obtained using Yung’s two stage
procedure. The results of these two analyses are quite similar both in terms of X2 (50.6 vs.
58.9) and of the parameter estimates. The separation of the components equals 1.98.
Recalculating this measure for the last 3 occasions, we find a value of 2.84. The CI’s based
on the standard error and the loglikelihood are quite similar. In the cases of o-2(~j) (true
value: 5.1) and o’2(ej) (2), the CI’s diverge somewhat. In the latter case, the loglikelihood
CI hits a lower bound. As in Illustration 1, the relatively poor separation between the
components renders the CI’s unreliable, regardless of how they are calculated.

This illustration is indicative of the type of analysis that we would like to carry out in
studying qualitative development using the sort of data that featured in the previous
illustration. Given J measurement occasions, the model could be extended to a maximum
of J + 1 components. The assumption that the process before and after the stage transition
is stable, gives rise to a highly constrained model that renders the specification of J + 1
components feasible.

Confidence Intervals: A Simulation Study

In the illustrations, we generally observe quite good agreement between the likeli-
hood-based CI’s and the Hessian-based CI’s. A simulation study was carried out to arrive
at a more systematic comparison of the CI’s and their accuracy. We simulated a 5-variate
normal mixture consisting of two components of equal size (Pl = .5). Two factors were
varied: sample size with three levels (N = 100, N = 200, N = 400), and separation of the
components with two levels (d12 = 3.69 and d12 = 2.076). Within each condition, 250
replications were carried out (a total of 1500 data sets). The 5 variables were simulated
according to a single common factor model that was identical in the two components. The
factor loadings equaled A:r = [1 1.3 .9 1.2.8] and the error variances equaled diag (O)
= [1 1.3.7 1.2.6]. The variance of the common factor equaled 1 (~ = [1]). The variances
of the indicators attributable to the common factor ranged between 50% and 56%. The
means in the first component equaled VlT = [2 3 4 3 2]. In the d12 = 3.69 condition, the

4 That is, the elements in row i and column i - 1, where i = 2,..., 6.
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Table 4: ML parameter estimates, standard errors in parentheses, 95% CI’s

(lower/upper endpoint) for Illustration 

Componenn 1
oz(£j) = 2 (j=i,6)
CI (s.e)
CI (logL)
o2(~j) = 7.5 (j=2,6)
CI (s.e)
CI (logL)

02 (]]i) i0
CI (s.e)
CI (logL)
]/(T]j) = i0 (j=1,6)
CI (s.e)
CI (logL)
~j,j-I = .5 (j=2,6)
CI (s.e)
CI (logL)
Component 2
oz(aj) = 4 (9=4,6)
CI (s.e)
CI (logL)
o2(~j) = 5.1 (j=4,6)
CI (s.e)
CI (logL)

D(Hj) = 14 (j=4,6)
CI (s.e)
CI (logL)
~j,j-i = .7 (j=4,6)
Cl (s.e)
CI (logL)
proportion (.5)
CI (s.e)
CI (logL)
d12(j=i,6)
d12 (j=4, 6)
logL
X2 (df)

ML (mixture)~

I.ii (1.09)
-1.04/3.27
.01~/3.07
8.79 (1.40) 9.08
6.05/11.53
6.31/10.87
11.73 (1.42) 11.80
8.95/14.52
9.14/14.67
10.06 (.15) 9.96
9.78/10.35
9.77/10.35
.48 (.05) .43
.38/.58
.38/.58

5.32 3.68
3.04/7.62
2.88/7.75
3.09 (1.44) 5.18
.26/5.92
.81/6.75
14.57(.47) 13.52
13.64/15.48
13.60/15.43
.74 (.06) .73
.61/.87
.60/.86
.59 (.06) -
.47/.70
.47/.72
1.98
2.84
-4749.9 -4754.1
50.6(45) 58.9(45)

2 stage GLS2

1.04

Note

1 Parameter estimates obtained by fitting the mixture. 2 Parameters

estimated using Yung’s (1994) two stage GLS. Unstructured means and

covariance matrix for 2 stage GLS were calculated using EM algorithm.

Subsequent parameter estimation based carried out by minimizing the

loglikelihood ratio. #Bound on parameter was hit during optimization.

means in the second component equal v~" = [6 8.2 7.6 7.8 5.2], and in the d12 = 2.067
condition, v~" = [4.25 5.92 6.02 5.7 3.8].

Data simulation and analysis were carried out using FORTRAN programs on a
Pentium 75 personal computer. For each replication, we first fitted the unconstrained
mixture using the EM algorithm to obtain a baseline log likelihood. The log likelihood for
the constrained mixture was maximized using E04VDF with the parameters in A and 19
constrained to be equal over the components. The variance of the common factor was
standardized in both components. A )(2 goodness-of-fit index for the factor model was
calculated as minus twice the difference between the log likelihood of the unconstrained
model and that of the constrained model. The number of parameters estimated equaled 41
in the unconstrained analysis, and 21 in the constrained analysis. There are 20 (41 - 21)
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degrees of freedom for the common factor model. Following each analysis, checks were
carried out to ascertain that no parameter had hit a bound and that the program had
converged properly. Subsequently the Hessian-based standard errors were calculated. Fi-
nally, the function in Eqs. 11 and 12 were minimized using E04VDF to obtain the log-
likelihood based CI’s. A check was carried out to ascertain that a minimum had been
reached within the permitted number of iterations. Whether a bound was hit during the
calculation of the log-likelihood CI’s, was not considered. This implies that some CI’s were
found to equal the stated parameter bounds. The bounds were set very wide. For the
components of A, vl and 1)2, the bounds were set to equal -+200. Bounds on the diagonals
of 19 equaled .00001 and 200. The bounds on the mixing proportion, Pl, equaled .001 and
.999. We limit our attention to the following parameters: the second factor loading, the
second error variance, the first mean in the first component, and mixing proportion. These
are denoted h.2 (true value 1.3), o-2e2 (1.3), vll (2), and Pl (.5), respectively.

Starting values were set to equal the true values in all analyses. In the cells N = 200
& d12 = 2.076 and N = 100 & d12 = 2.076, 3.9% and 7.6%, respectively, of the analyses
failed due to divergence during maximization of the log-likelihood for the constrained
model. Failed analyses were repeated with new data to make up the total of 250 replica-
tions.

The mean and standard deviation of X2 goodness of fit indices are reported in Table
5 and 6 for each cell in the 2 × 3 design. In the d12 = 3.69 conditions, the X2 follows its
expected distribution when N = 200, or N = 400. When N = 100, the X2 does not
approach its expected distribution very well and the factor model is rejected at a signifi-
cance level of 0.05, in 14% (35/250) of the replications (X2(20) > 31.41; expected number
of rejections 12.5). In the d12 -- 2.076 conditions, the 9(2 statistic cannot be trusted
regardless of the considered sample sizes, although the number of rejections increase as
the sample size is smaller. The results relating to the X2 statistic agree with those reported
by Yung (1994; Table 14).

We first discuss the results relating to the parameter estimates in the d12 = 3.69 cells.
The means of the estimates are generally close to their true values. In the N = 100 cell the
mean of the estimate of the error variance is underestimated (1.228 vs. 1.3). We observe
a good agreement between the standard deviation of the estimates of the factor model and
the associated mean Hessian-based standard errors. The mean CI’s are likewise very close
in value. Besides the likelihood-based and Hessian-based intervals, we calculate so-called
empirical CI’s based on the mean and standard deviation of the parameter estimates (see
footnote Table 5). The mean standard errors of the proportions are systematically larger
than the standard deviation of the estimate (.011 vs..027 [N = 400], .015 vs..039 [N 
200], and .028 vs..055 [N = 100]). This finding is surprising, because Yung (1994, Table
15) finds that the mean standard errors are consistently smaller than the standard deviation
of the estimate of the proportion, even in conditions characterized by separation better
than our 3.69. The likelihood-based CI’s and Hessian-based CI’s are quite similar, but are
slightly wider than the empirical CI’s.

In the d~2 = 2.076 condition, we find that the true variability of the estimates is
systematically underestimated by the Hessian-based standard errors. This is now also the
case with the variability of the estimates of the proportion. The smaller the sample size, the
greater the underestimation. In the N = 100 cell, the mean standard errors are too small
by about a factor 1.5. The upper endpoints of the empirical and likelihood-based CI’s of
the parameters of the factor model agree quite well, even in the N = 100 cell. The lower
endpoints agree well only in the N = 400 conditions. Except for results relating to the
factor loading (A2), the likelihood-based lower endpoints of the CI’s are closer in value to
the empirical lower endpoints than the Hessian-based endpoints. The lower and upper
endpoints of the likelihood-based CI’s of the proportion in the N = 200 and N = 100
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Table 5: Summary statistics calculated in the d12=3.69 conditions. 250

replications within each condition.

Condition N=400 (~(Z2)=20.233, ~(X2)=6.41, rejected=132, 5.2%)

parameter 12=1.3 vn=2

z(est.) 1.294 1.982

m(est.) .091 .113

~(st.err.) .094 .iii

~(st.err.) .007 .007
upper CI(emp.)I 1.472 2.203

upper D(loglCI) 1.491/1.014 2.202/1.00
upper D(hessCI) 1.489/1.01 2.209/1.00

lower CI(emp.) 1.115 1.760

lower ~(loglCI) 1.118/1.00 1.765/1.00

lower D(hessCI) 1.119/1.00 1.775/1.00

~2£2=1.3

1.299

.119

.120

.009

1 532

1 556/1.02
1 544/1.01

1 065

1 080/1.01

1 074/1.01

pl= . 5

.500

.011

.027

.001

.521

.553/1.06

.563/1.08

.478

.448 .94

.457 .96

Condition N=200 i~(X~)=21.28,

v(est.) 1.316

o(est.) .146

z(st.err.) .135

o(st.err.) .020

upper CI(emp.) 1.602
upper z(loglCI) 1.606/1.00

upper D(hessCI) 1.590/.99
lower CI (emp.) 1.029
lower z(loglCI) 1.068/1.04

lower z(hessCl) 1.062/1.03

0(X~)=7.05, rejected=20, 8.0%)

1.939

.145

.158

.015

2 214
2 256/1.02

2 259/1.02

1 645
1 628/.99

1 640/1.00

1.279

.172

.170

.019
1.616

1.657/1.03

1.622/1.00

.942
.975/1.04
.955/1.01

499

015

039

OO2
528

574/1.09

.584/1.11

.469

.424/.90

.433/.92

Condition N=I00 (D(X~)=23.38, m(Z2)=8.37, rejected=35, 

z(est) 1.309 1.981 1.228 .501

o(est.) .222 .210 .259 .028

D(st.err.) .184 .223 .234 .055

~(st.err.) .028 .032 .034 .005

upper CI(emp.) 1.744 2.393 1.735 .556

upper D(loglCI) 1.740/1.00 2.447/1.02 1.780/1.03 .609/1.10

upper D(hessCI) 1.679/.96 2.428/1.01 1.697/.98 .618/1.11

lower CI(emp.) .874 1.569 .720 .446

lower D(loglCI) .974/1.11 1.533/.98 .821/1.14 .394/.88

lower ~(hessCI) .960/1.10 1.553/.99 .778/1.08 .404/.91

"empirical" CI’s are calculated as D(est.) ± m(est.)*l.96.

rejected means that the Xz(20) for the common factor model exceeded 31.41
(~=0.05).
expected mean and standard deviation equal df and{(2df), i.e. 20 and 6.324.

ratio of z(loglCI) to CI(emp.).

conditions hit the lower (.001) and upper bound (.999) in a number of cases (see footnote
Table 6). The same applied to the lower endpoint of the likelihood-based CI of the error
variance in the N = 100 condition.
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Table 61: Summary statistics relating to 4 parameters calculated in the

d12=2.076 conditions. 250 replications within each condition.

Condition N=400 (~(Z2)=26.04,

parameter L2=1.3 va=2 ~2£2=1.3

D(est.) 1.328 1.999 1.236
o(est.) .183 .225 .152
D(st.err.) .145 .174 .132
o(st.err.) .054 .048 .025
upper CI(emp.) 1.687 2.440 1.534
upper D(loglCI) 1.689/1.00 2.485/1.02 1.514/.99
upper D(hessCI) 1.622/.96 2.351/.96 1.505/.98
lower CI(emp.) .969 1.558 .938
lower ~(loglCI) 1.068/1.10 1.626/1.02 .955/1.02
lower ~(hessCI) 1.053/1.09 1.667/.96 .988/1.05

o(x2)=9.56, rejected 59, 23.6%)

pi=.5
496
069
052
014
631
613/.97
607/.96
361
369/1.02
405/1.12

Condition N=200 (D(X2)=29.13, o(x2)=9.36, rejected=94, 37.6%)

D(est.) 1.365 2.040 1.225
o(est.) .254 .377 .203
~(st.err.) .178 .214 .186
o(st.err.) .047 .056 .034
upper CI(emp.) 1.863 2.778 1.623
upper ~(loglCI) 1.867/1.00 2.929/1.05 1.642/1.01
upper D(hessCI) 1.724/.93 2.470/.89 1.600/.99
lower CI(emp.) .867 1.301 .827
lower D(IoglCI) 1.030/1.19 1.448/1.11 .820/.99
lower v(hessCI) 1.026/1.18 1.630/1.25 .871/1.05

517
i00
064
017
713
6934/.97

651/.91
321
3283/1.02
402/1.25

Condition N=I00 (~(X2)=28.37,
D(est.) 1.290
o(est.) .305
~(st.err.) .203
o(st.err.) .041
upper CI(emp.) 1.889
upper D(loglCI) 1.888/1.00
upper D(hessCI) 1.698/.90
lower CI(emp.) .692
lower D(loglCI) .908/1.31
lower D(hessCI) .901/1.30

o(x2)=9.54, rejected=92, 37%)

1.957
.406
.263
.064
2 753
2 912/1.05
2 481/.89
1 161
1 226/1.11
1 452/1.25

1.139
.302
.235
.049
1.731
1.725/1.00
1.610/.93
.547
.6702/1.22
.689/1.26

.505

.123

.071

.014

.746

.6906/.92

.655/.88

.264

.3075/1.16

.374/1.42

isee footnotes Table 5

2In 10/250% of the replications, the endpoint hit the bound (.00001).

3In 27/250% of the replications, the endpoint hit the bound (.001).

4In 25/250% of the replications, the endpoint hit the bound (.999).

~In 22/250% of the replications, the endpoint hit the bound (.001).

6In 23/250% of the replications, the endpoint hit the bound (.001).

Table 7, finally, contains the correlation (Spearman’s p) between the standard errors
and the observed measure of separation calculated within each cell of the design. A
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Table 7: Spearman’s p between observed distance measures, d12 , and

standard errors, and ~2 within each cell.

standard error of

cell k2 vn a2a2 Pl X2

d12=3.69 N=400 -.54 -.72 -.06’-.94 .00

d12=3.69 N=200 -.53 -.71 .00 -.91 -.08

d~2=3.69 N=I00 -.59 -.65 .00 -.88 -.15

d12=2.076 N=400 -.48 -.72 -.Ii -.88 -.25

d~2=2.076 N=200 -.37 -.60 -.16 -.90 -.27

d12=2.076 N=I00 -.38 -.50 .02 -.83 -.28

striking result, that Yung (1994, p. 49) also reports, is that the standard error of the error
variance is hardly affected by the separation between the components. Concerning the
other parameters, it is clear that the standard error of the proportion is highly dependent
on the degree of separation. This finding is consistent with the rather large discrepancies
between the standard deviations of the estimates and their mean standard errors. The
standard errors of the factor loading and the mean are also quite sensitive to the degree
of separation, although the latter is more sensitive than the former. Table 7 also contains
the correlations between the X2’s and the degree of separation. Within the d12 = 3.69 cells,
the correlations are small, but there is a clear relationship with sample size. The greater the
sample size, the less the 9(2 is influenced by the degree of separation. The correlation
ranges from .0 (N = 400) to -.15 (N = 100), In the d12 = 2.067 cells, the correlations
are about -.27, and much less affected by sample size.

The results of the present simulation study indicate that the loglikelihood-based CI’s
and Hessian-based intervals are comparable and quite accurate when the separation is
good (d12 = 3.69). When the separation of the components is poorer (d12 = 2.076), 
likelihood-based CI’s are generally slightly more accurate. The CI’s of the factor loading
are an exception. Here the likelihood-based and Hessian-based CI’s are similar and differ
equally from the empirical CI’s.

Most results are compatible with those presented by Yung (1994). An important
difference relates to the variability of the estimates of the proportions in the d12 = 3.69
condition. As mentioned, we find that the standard deviations of the estimates are smaller
than the means of the standard error. Yung observed the exact reverse. We suspect that
this difference is due to the difference in the model that featured in the simulations. Yung
(1994) based his simulations on an oblique two common factor model, where the differ-
ences between the components were due to latent factor means and latent factor
(co-)variances (see S6rbom, 1974). The present model is a lot simpler, and, especially
within the context of normal mixtures, a lot easier to fit. It is our experience that con-
strained normal mixtures are difficult to fit when the mixture is specified at the level of the
latent variables, as is the case in Yung’s (1994) simulation.
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Discussion

We have found that fitting multivariate normal mixtures subject to SEM does not pose
any additional computational problem to those that are generally recognized. Rather, the
introduction of constraints reduces the number of parameters and so alleviates the com-
putational load. Although individual bounds may keep parameter estimates within the
admissible parameter space, such constraints do not necessarily guarantee that a covari-
ance matrix will remain positive definite during optimization. In optimizing the loglikeli-
hood function using the quasi-Newton method, we used a penalty to ensure that covariance
matrices remained positive definite. In maximizing the log-likelihood function using the
EM algorithm in contrast, we found that a covariance matrix that was positive definite
thanks to sensible starting values, usually stayed so during optimization. Regardless of the
number, or type of constraints, and indeed of the method of estimation, the danger of local
maxima in fitting normal mixtures is ever present and the only way to gain confidence in
a solution is to vary starting values. We have often found it necessary to go through the,
at times, tedious process of finding suitable initial values and checking solutions.

A number of possibilities in estimating parameters remain to be considered. One
possibility is to implement Hamilton’s quasi-Bayesian approach to parameter estimation in
normal mixtures (Hamilton, 1991). Judging by the results of Hamilton’s Monte Carlo
study, this appears to be a useful option. A second possibility is the use of a genetic
algorithm to optimize the loglikelihood (Goldberg, 1989). Genetic algorithms are compu-
tationally intensive, but are quite insensitive to local maxima and to the choice of initial
values, i.e., vexing problems in fitting multivariate normal mixtures. Van der Maas and
Raijmakers (1997) have demonstrated the effectiveness of this method of optimization 
exploratory latent class analysis.

We have found the quasi-Newton based approach to optimization using exact gradi-
ents to be feasible. The combined use of the EM algorithm and the Quasi-Newton algo-
rithm in Yung’s two stage GLS procedure (Yung, 1994) is helpful in finding good starting
values. Solutions still have to be checked, however, because the EM algorithm may con-
verge to a local maximum.

We have focused solely on mixtures of multivariate normals. The assessment of
multivariate normality is problematic, because the histograms of a mixture of univariate
normals may assume a variety of shapes (Everitt & Hand, 1981, p. 27 ff.; Titterington, et
al., 1985, p. 49). To assess normality, one may first to fit the mixture and obtain assignments
of the cases to the components based on the posterior probability, (9). Given these, the
assumption of normality can be assessed using goodness-of-fit procedures.

We have further limited our attention to fitting mixtures in the absence of any infor-
mation concerning the component membership of the cases. Titterington, et al. (1985, p.
3) discusses fitting mixtures given an addition sample of fully categorized cases (e.g., cases
whose component membership is known a priori). Yung (1994, 1997) presents versions 
his estimation procedures that can accommodate such complex sampling schemes. The
ability to include categorized data in fitting a mixture is useful, because the addition of such
information is known to be very beneficial from a computational point of view (Hamilton,
1991; Titterington, et al., 1985; Yung, 1994). The quasi-Newton approach to estimation,
that we have adopted here, has the advantage that it is easy to generalize to include
multigroups (e.g., males and females). Because the loglikelihood function and gradients
need only be weighed by the relative group size prior to summation over the groups,
additional programming requirement is quite small. Fitting multigroup mixtures, where
the data in each group may or may not be a mixture, provides an alternative to Arminger
and Stein’s approach of incorporating group membership as a fixed observed covariate.

On the basis of the results of our simulation study, we have found that likelihood-
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based CI’s are only slightly more accurate than the Hessian-based CI’s. Like Yung (1994),
we find that asymptotic results relating to standard errors, CI’s, and the likelihood ratio
cannot be trusted when the separation between the components is insufficient. It is there-
fore advisable to consider the separation between the components, before setting too great
a store by such results.

Appendix 1: Derivatives of the Log-Likelihood Function

This appendix contains the derivatives of the loglikelihood function in (10). The
multivariate normal mixture density is given in (7). Rather than ensuring that the mixing
proportions sum to unity by introducing a Lagrange multiplier, we specify the bounds l k <--

Pk <- uk, where 0 < l k < uk < 1 (k = 1, ..., R - 1), and concentrate the loglikelihood
function by solving for PR: PR = 1 -- Pl -- P2 -- ... -- PR-I. Depending in the value of
R and the values of the bounds, l k and Uk, it is possible that PR assumes a negative value.
As a precaution, we check whetherpn > 0, and introduce a penalty if this is not so (a rare
occurrence). Maximum likelihood estimates of p and ~- are obtained by maximizing the
loglikelihood function, L(p, ~-; Y, R), (10). We first require the derivatives of L(p, ~ Y, 
with respect to ~k, P and ~k. To ease presentation, let f and gk represent f(Yi, P, ~{~’},
tx{~’}) and gk(Yi, Zk{~’k}, txk{~’k}), respectively, and let L stand for L(p, ,r; Y, R).

Bearing in mind that Pn depends on the other components of the vector p, the
derivative with respect to the components of p is (e.g., Everitt & Hand, 1981, Eq. 2.16):

N

3L/Op~, = ~ f-l[gk -- g~]. (k = 1 ..... R - 1) (1A)
i=1

The derivative with respect to tx~ is (e.g., Everitt & Hand, 1981, Eq. 2.17):

N

OL/Ol&k = Z 09ki[~~i(Yi- /-tk)], (k = 1 .... , R) (2A)
i=1

where OJki is posterior probability defined as p~gkf-1. Everitt and Hand (1981, Eq. 2.8)
provide the derivative with respect Z~-I. We require the derivative with respect to ~.
Using results published in Graybill (1983, p. 356-359), we have:

N 1
OL/OY,~ = ~ ~ OOki{[~’~l(yi -- ~tk)(y i -- ~l,k)T~ -1] -- ~-1}. (k = 1 .... , R)

i=1

(3A)

Once we have calculated [OL/O~i,k] and [OL/Otx~], we use the chain rule to obtain the
derivatives of the loglikelihood with respect to the model matrices Ak, Bk, ~k, and Ok, and
vectors vk and ak (Equations (4A) to (7A) can be found in J6reskog, 1977):

oL/O~kO~k/OAk = 2[oL/O~,k]Ak(I -- Bk)-l~Itk(I -- Bk)-1T (4A)

oL/O~,kO~,k/O(I -- Bk) = --2(I -- Bk)-lrA’[[OL/O~,k]Ak(I Bk)-~XItk(I -- Bk)-aT
(5A)

(6A)

(7A)

(8A)
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OL/OlzkOlxk/O(I - Bk) = -(I Bk)-lVA~[OL/Oi.tk]Ot[ (9A)

OL/O~Ol~/Oa~ = (I - B~)-lrA~[OL/61x~] (10A)

OL/O~O~/O v~ = [OL/O~k] (llA)

Finally, letting Mk ~ {A~, (I - B~), ~k, Ok, v~, ag}, we have:

OL/OM~ = OL/O~O~/OM~ + OL/O~O~/OM~ (k = 1 ..... R).
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