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Abstract

Classical routing and admission control strategies achieve provably good performance by relying
on an assumption that the virtual circuits arrival pattern can be described by some a priori known
probabilistic model. Recently a new online routing framework, based on the notion of competitive
analysis, was proposed. This framework is geared towards design of strategies that have provably
good performance even in the case where there are no statistical assumptions on the arrival pattern and
parameters of the virtual circuits. The online strategies motivated by this framework are quite different
from the min-hop and reservation-based strategies. This paper surveys the online routing framework,
the proposed routing and admission control strategies, and discusses some of the implementation issues.
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1 Introduction

Future Broadband Integrated Services Digital Networks (B-ISDN) will carry a wide spectrum of new consumer
services, such as video-on-demand, video teleconferencing, etc. A key characteristic of these services is
that they require quality-of-service (QOS) guarantees. Assuring QOS requires reservation of resources. As
a result, B-ISDN will likely allocate resources in terms of virtual circuits (or virutal paths). In particular,
creating a virtual circuit will require reservation of bandwidth on some path between the endpoints of the
connection. Since network resources are limited, some requests for establishment of virtual circuits will be
denied.

Thus, there is a need for an admission control and routing strategy that addresses the following two questions:� What path should be used to route a given circuit ?� Which circuits should be routed and which ones should be rejected ?

The admission control and routing strategy has to take into account the limitations of the underlying
network. In particular, due to the high bandwidth-dely product, each circuit has to be routed on a single path.
Moreover, rerouting circuits is either heavily discouraged or outright forbidden. For some applications it is
more efficient to use multicast circuits, where instead of a single destination there are multiple destinations.
Examples include teleconferencing, video on demand, database updates, etc. In this case the routing strategy
has to choose a tree that spans the nodes participating in the multicast.

The problem of bandwidth reservation and management in the context of circuit-switched networks has
been studied extensively. Until recently, most of the analysis and design effort concentrated on achieving
provably good performance under the assumption that the arrival pattern of virtual circuit requests can be
described by a simple probabilistic model with known parameters. This approach, starting from the work of
Kelly [26], lead to the development of many practical routing strategies. Examples include the Dynamic Non-
Hierarchical Routing (DNHR) [2, 4, 1] and Real Time Network Routing (RTNR) [3] strategies developed in
AT&T, as well as Dynamically Controlled Routing (DCR) developed at Bell Northern Research [16, 17, 24].
Dynamic state-dependent routing strategies based on reservation were thoroughly analyzed by Mitra et. al.
in [34, 35].

Recently, a new framework was proposed that leads to routing strategies that can achieve provably good
performance without relying on any assumptions about the probabilistic behavior of the traffic [20, 5, 19, 8, 9].
The first step in developing such strategies was to develop an appropriate way to compare these strategies one
to another. The difficulty lies in the fact that traditionally, the performance of routing strategies is measured
as a function of the parameters characterizing the input traffic; this approach is not appropriate when there
is no a priori knowledge of these parameters. Thus, it was necessary to develop a measure that will allow us
to compare different strategies and that is meaningful independent of whether or not there are assumptions
about the input traffic.

The idea, proposed in [20, 5], is to use the concept of the competitive ratio. This concept was introduced
in [39] and further developed in [25, 15, 33]. (Some of the earlier papers on approximation algorithms,
e.g. [40], can be viewed as optimizing the competitive ratio as well.) A competitive ratio is defined with
respect to two algorithms; both algorithms have to deal with the incoming requests, which in our case
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are requests for establishing virtual circuits. One is the online algorithm whose performance we want to
measure. The online algorithm has to deal with the requests one-by-one and can not use any knowledge
of the future requests. The other is the best possible (in terms of performance) offline algorithm; this
algorithm is omniscient in the sense that it is assumed to have a complete a priori knowledge of the entire
request sequence, including future requests. Informally, the competitive ratio measures how much the online
algorithm loses in performance as a result of not making optimum decisions. In particular, it measures how
much is lost due to lack of knowledge of future requests.

Formally, the competitive ratio of a given online algorithm is defined as the supremum over all input
sequences of the performance achieved by the optimum offline algorithm and the performance achieved
by this online algorithm. Roughly speaking, the statement that a particular strategy has competitive ratio� means that its performance is at most a factor of 1=� of the performance of the best possible offline
algorithm.

Clearly, the “best” strategy with respect to the competitive ratio depends on the parameter chosen to
measure the performance. Recently, two measures were proposed for computing the competitive ratio of
the online routing and admission control algorithms – the throughput and the congestion measure. In the
first, we measure the proportion of the routed (accepted) circuits. A variation on this measure is the total
routed bandwidth-duration product, i.e. total throughput. In the second, we measure the maximum link
congestion, i.e. maximum ratio of the allocated bandwidth on a link to its total bandwidth. Clearly, to use
this measure we have to disallow rejections. Consequently, disallowing rejections implies that the online
algorithm should be allowed to use more than 100% of the edge capacity.

A competitive strategy for the congestion-minimization model was developed by Aspnes, Azar, Fiat,
Plotkin, and Waarts in [5]. This strategy achieves a competitive ratio of O(logn) for permanent (i.e. infinite
holding time) virtual circuits (PVCs), where n is the number of nodes in the network. It was extended to
the case of finite holding time circuits (SVCs) where the holding time of a circuit becomes known upon its
arrival in [13]. For this case, the strategy achieves O(lognT ) competitive ratio, where T is the maximum
holding time.

Competitive strategies for the throughput-maximization model were given by Garay and Gopal for the
case of a single link [20], by Garay, Gopal, Kutten, Mansour and Yung [19] for a line network, and by
Awerbuch, Azar, and Plotkin [8] for general network topologies. In particular, if the bandwidth requested by
a single circuit never exceeds O(1= logL) fraction of link capacity, the strategy in [8] achieves a competitive
ratio ofO(logL) for PVC routing, whereL is the maximum number of hops taken by a virtual circuit. In the
SVC case where the duration of a circuit becomes known upon its arrival and the requested bandwidth never
exceeds O(1= logLT ) fraction, this strategy achieves O(logLT ) ratio. It was shown that polylogarithmic
competitive ratio is not achievable if the bandwidth of a single circuit exceeds O(1= logL) fraction of single
link bandwidth for the PVC case and O(1= logLT ) fraction for the SVC case [8].

Roughly speaking, the main idea behind the new competitive strategies is to assign each link a “length”
that is a highly nonlinear (e.g. exponential) function of its current congestion. The new circuit is routed
along the shortest path with respect to this length. In the throughput-maximization model, the circuit is
rejected if the length of the shortest path exceeds some predefined threshold that depends on the profit (e.g.,
bandwidth-duration product) associated with this circuit.

The intuition of routing along shortest paths with respect to a length function that is exponential in the
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congestion is based on viewing the routing problem as an instance of multicommodity flow problem. (See [14]
for a thorough treatment of this relationship.) The multicommodity flow problem involves simultaneously
shipping of several different commodities from their respective sources to their sinks in a single network so
that the total amount of flow going through each edge is no more than its capacity. Associated with each
commodity is a demand, which is the amount of that commodity that we wish to ship. In the routing context,
commodities correspond to virtual circuits, demands correspond to the requested bandwidth, and capacity
corresponds to the link bandwidth.

Roughly speaking, the multicommodity flow solution is optimal if all flows are routed along shortest
paths, where the length is defined to be an appropriate function of the link congestion. Recently, several
multicommodity flow algorithms that are based on repeated rerouting of flow onto shortest paths were
developed [37, 28, 31]. By defining the length function to be exponential in the current congestion, these
algorithms produce an approximate multicommodity flow in polynomial time.

It is important to note that although these (offline) multicommodity flow algorithms provide the intuition
behind the idea of routing along shortest paths with respect to an exponential function of congestion, they can
not be used directly to construct dynamic online routing strategies. The main reason is that these algorithms
rely on repetitive rerouting. Moreover, they work only if we have a complete knowledge of the entire request
sequence.

While the O(logLT ) competitive ratio does not seem sufficiently small from a practical point of view,
it is important to observe that this ratio is achieved without any a priori knowledge about the input. The
guarantee on competitive ratio can be greatly improved if we can introduce some probabilistic assumptions.
The resulting strategies work well if the assumptions are satisfied, and do not “break down” if the assumptions
turn out to be wrong.

We discuss several possible classes of assumptions in Section 4. For example, to achieve an O(logLT )
competitive ratio in the throughput-maximization case, it is sufficient to know the distribution on the
holding time of each arriving circuit rather than having the specific holding time. In particular, if the
holding times are exponentially distributed, then it is possible to further improve the competitive ratio toO(logL log logL) [22]. This bound does not rely on the frequently made assumption that the arrival patterns
to different links are independent. It is interesting to note that there can be no strategy (deterministic or
randomized) that achieves a polylogarithmic competitive ratio in case there is no a priori information (and
hence no probabilistic assumptions) about the holding times [12, 32].

Several practical routing and admission control strategies derived from the competitive strategies were
studied in [21] for the PVC case and in [22] for the SVC case. Simulations show that these strategies
outperform the minimum-hop and reservation-based strategies for sparse networks. Reservation based
strategies are usually based on the notion of “primary paths” that are preferred paths for routing; other,
“alternate” paths, are used only if the primary paths are totally congested. Selection of primary paths is a
non-trivial problem and usually has to involve knowledge of the traffic matrix for general topologies. Since
the strategies based on the competitive analysis do not rely on the notion of primary vs. alternate traffic, they
seem more suitable for sparse networks with non-symmetric traffic matrices.

Section 2 introduces the general framework. Section 3 presents competitive strategies for PVC routing
in the throughput-maximization and congestion-minimization models and Section 4 addresses the issues
involved in extending these strategies to the SVC case. Section 5 considers the problem of routing multicast
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circuits. Section 6 discusses some results of applying these theoretical algorithms to realistic networks.

2 Model and Definitions

The network is represented as a capacitated (directed or undirected) graph G(V;E; u) with n nodes andm edges, where u(e) represents the capacity of the edge e 2 E. The input sequence is a collection of k
requests: �1; �2; :::; �k, where each request �i is described by the tuple:�i = (si; ti; r(i; �); T s(i); T f(i); �(i))
Nodes si and ti are the source and destination of the request, r(i; �) is the bandwidth required by �i as a
function of time; T s(i) and T f(i) are the start and finish times for the request. Let T (i) = T f(i)� T s(i)
denote the holding time (i.e. duration) of the requested circuit, and let T denote the maximum possible value
of T (i). We use r(i) instead of r(i; �) if the requested bandwidth does not depend on � . �(i) denotes the
“profit” that we get if the request is routed (accepted). For example, �(i)might be defined to be proportional
to the bandwidth-duration product r(i)T (i).

For convenience r(i; �) is defined to be 0 for � 62 [T s(i); T f(i)] and also if i is rejected. In most cases,
the requested bandwidth r(i; �) remains fixed over the duration of the circuit. The relative load at time � on
an edge e just before considering the jth request is defined by�e(j; �) =Pe2Pi;i<j r(i;�)u(e)
where Pi is the path along which the ith connection is routed. Let �(j) = maxe2E;� �e(j; �). Similarly,
define ��e(j; �) and ��(j) to be the corresponding quantities for the routes produced by the offline algorithm.
For simplicity we will abbreviate �(k) as � and ��(k) as ��, where k is the index of the last request.

In this paper we concentrate on two related models. In the congestion-minimization model, the routing
strategy is required to accept all of the requests. The goal is to minimize the maximum congestion �. The
competitive ratio used to measure the performance of strategies in this model is defined as the supremum
over all request sequences of �=��, where �� is the congestion produced the the optimum offline algorithm.

In the throughput-maximization model, the routing strategy is allowed to reject some of the requests.
The goal in this case is to maximize the total profit

Pi �(i) associated with the accepted requests. The
competitive ratio in this model is the supremum over all possible request sequences � of the ratio between
the profit of the optimum offline algorithm on � and the profit of the online algorithm on the same �. Note
that the optimization goal depends on the exact definition of the profit. For example, if the profit is constant
per request, then the goal is to maximize the total number of satisfied requests. If the profit is proportional
to the bandwidth-duration product, then the goal is to maximize the total routed bandwidth.
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3 Routing Permanent Virtual Circuits

3.1 Competitive PVC Routing in Throughput-Maximization Model

In this section we describe a competitive routing and admission control strategy for the throughput-
maximization model [8]. We start by identifying some additional restrictions that have to be imposed
on the type of traffic, and then present a simplified strategy for routing PVC circuits. The discussion of the
more general routing and admission control strategy for the SVC case is deferred to Section 4.

Assumption and Restrictions Let L be the maximum number of hops allowed for a single circuit. First,
we assume that the profit is scaled such that the following condition is satisfied.1 � 1L � �(i)r(i) � F(1)

Note that it is always possible to satisfy the above condition if we choose large enough F . For example, if
the profit is defined to be proportional to the bandwidth, than we can take �(j) = Lr(j) and F = 1.

We assume that the rates r(i) of the requests are small compared to the link capacities. More precisely, we
assume that for every request r(i) � minefu(e)glog(2LF + 1) :(2)

It was shown in [8] that such restriction is necessary. More precisely, they showed that if we allow requests
with rates r(j) larger than minfu(e)g=k, then there can be no online strategy that achieves a competitive
ratio smaller than 
(L1=k + F 1=k). In other words, without assumption (2) it is impossible to design a
strategy that achieves a polylogarithmic competitive ratio in the general case. If we restrict the underlying
network topology to a tree or a hypercube, it is possible to achieve logarithmic competitive ratio without the
above assumption [11, 10].

PVC Routing Algorithm In the PVC case, each arriving circuit has infinite holding time. The idea is to
assign each link a length that is exponential in the current congestion of this link. More precisely, define the
base � = 2LF + 1. (This choice will become clear after the proof of Lemma 3.3.) The length of an edge e
just before job j is considered, is defined by:ce(j) = u(e) ���e(j) � 1�
The online routing strategy, proposed in [8], is as follows:� When request j arrives, check if there exists a path P in the graph from sj to tj satisfying the following

condition. Xe2P r(j)u(e)ce(j) � �(j)
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� If such a path P exists, accept the connection and use P to route the connection; otherwise reject the
request.

The proof of competitiveness of the above strategy is based on three lemmas. Lemma 3.1 shows that the
sum of the lengths of all the edges at any point in time is withinO(log�) factor of the already accrued profit.
Lemma 3.2 shows that the total profit of circuits that were rejected by the online algorithm but accepted by
the offline algorithm is bounded by the total length. Finally, Lemma 3.3 shows that appropriate choice of �
implies that the routing strategy never violates capacity constraints. In other words, if the algorithm decides
to route a circuit, then there is always sufficient available capacity.

Lemma 3.1 LetA be the set of accepted requests and k be the index of the last connection. Then2 log�Xj2A�(j) �Xe ce(k + 1)
Proof : By induction on k, the number of arrived requests. For k = 0, both sides are 0. Rejected connections
do not matter since they neither affect the length nor the profit. Therefore we are done if we show the following
for an accepted connection �j. Xe (ce(j + 1)� ce(j)) � 2�(j) log�
Consider an edge e 2 Pj . From the definition of the length we havece(j + 1)� ce(j) = u(e) ���e(j)+ r(j)u(e) � ��e(j)�= u(e)��e(j) �� r(j)u(e) � 1�= u(e)��e(j) �2 r(j)u(e) log� � 1�
Assumption (2) implies that r(j) � u(e)log� . Since 2x � 1 � x for x 2 [0; 1], we getce(j + 1)� ce(j) � ��e(j)r(j) log� = log��r(j)u(e)ce(j) + r(j)� :
Summing up over all the links and using the fact that the request �j was accepted, we get:Xe (ce(j + 1)� ce(j)) � log � (�(j) + jPjj � r(j)) :
Using the fact that the number of hops in the path is less than L, and the assumption (1) that the profit was
scaled appropriately, implies Xe (ce(j + 1)� ce(j)) � 2�(j) log�:
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The next step is to show that the profit due to requests that were routed by the offline algorithm but were
rejected by the online algorithm is bounded by the sum of the lengths of all the edges.

Lemma 3.2 LetQ be the set of indices of the requests that were admitted (routed) by the offline algorithm but not

by the online algorithm, and denote ` = maxfQg. Then
Pj2Q �(j) �Pe ce(`):

Proof : Let P 0j be the path used by the offline algorithm to route �j, for j 2 Q. The fact that �j was not
admitted and monotonicity in j of the lengths ce(j) with respect to j imply�(j) � Xe2P 0j r(j)ce(j)u(e) � Xe2P 0j r(j)ce(`)u(e) :
Summing over all j 2 Q, we get:Xj2Q�(j) � Xj2Q Xe2P 0j r(j)u(e)ce(`) �Xe ce(`) Xj2Q:e2P 0j r(j)u(e) �Xe ce(`):

The last inequality follows from the fact that the offline algorithm cannot exceed unit relative load at any
instance in time.

Lemmas 3.1 and 3.2 imply a polylogarithmic bound on the maximum possible ratio between the profits
of the offline algorithm and the profit due to requests that were accepted by the online algorithm. It remains
to show that if the online strategy decides to accept a request and route it along some path P , then there is
indeed sufficient available capacity along P . The intuition is that the length of an edge when it is close to
saturation is so large that it will never be chosen by the online algorithm. In the following lemma A denotes
the set of requests that were routed by the online algorithm.

Lemma 3.3 For all edges e 2 E,
Pj2A;e2Pj r(j) � u(e).

Proof : Let �j be the first request that caused the capacity violation on an edge e. This implies that�e(j) > 1� r(j)u(e) . Using assumption (2) and the definition of length, we havece(j)=u(e) = ��e(j) � 1 > �1� 1log � � 1 = �=2� 1 = LF
Assumption (1) gives r(j)u(e)ce(j) > LF � r(j) � �(j)
which means that request �j could not have been routed through edge e.
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Note that the total profit of the offline algorithm can be bounded by the profit of the online algorithm plus
the profit due to circuits that were accepted by the offline but rejected by the online. This fact, together with
lemmas 3.1, 3.2, and 3.3 implies that the competitive ratio of the algorithm is bounded by O(log�). Note
that if profit is proportional to the bandwidth, we have O(log�) = O(logL), matching the lower bound
in [8].

Theorem 3.4 ([8]) The PVC routing and admission control strategy shown in Figure 1 never violates the capacity

constraints and accrues at least O(1= log�)-fraction of the profit accrued by the optimal offline algorithm.

3.2 PVC Routing in Congestion-Minimization Model

In this section we will describe an online strategy for the PVC case that is competitive in the congestion-
minimization model. This strategy was developed in [5]; we will present the analysis from [9]. As before,
we defer the discussion of the SVC case to Section 4.

As in the throughput-maximization model, we define the length of a link to be exponential in the current
congestion on this link. More precisely, we setce(j) = ��e(j)(�r(j)=u(e) � 1)
where � = 1 + 
=2 for some 0 < 
 < 1. The online strategy routes on the shortest path with respect to
this length. (Recall that, in contrast to the throughput-maximization model, no rejections are allowed.)

For simplicity, we will assume that the congestion of the offline algorithm is 1. If it is not, one can use a
binary doubling procedure to guess an approximation to this congestion, and scale the input appropriately [5].
The key to the proof of competitiveness of the above strategy is the following “stability condition”:

Definition 3.5 ([9]) LetP be some existing s� t route satisfying request �j, and let P 0 be any s� t path in G.

We say that the algorithm is in a stable state if, for any P , P 0 and k � j, we have:Xe2P ��e(j)(�r(j)=u(e) � 1) � 2 Xe2P 0 ��e(k)(�r(j)=u(e) � 1):
We will show that as long as the stability condition is satisfied, the congestion is small. First, observe

that this condition is inductively satisfied since the relative loads do not decrease. Moreover, applying the
condition with P 0 being the path P �j used by the optimum offline algorithm to route connection �j, and
using the fact that 8x 2 [0; 1] : 2(�x � 1) � 
x, we get:Xe2Pj ��e(j)(�r(j)=u(e) � 1) � 2 Xe2P� ��e(k)(�r(j)=u(e) � 1)� 
 Xe2P�j ��e(k)r(j)=u(e):

8



Let P ;P� be the set of paths used by the online and the offline algorithms to route the currently active
connections, respectively. Summing over all currently active connections, and exchanging the order of
summation yieldsXe2E XPj2Pje2Pj ��e(j)(�r(j)=u(e) � 1) � 
Xe2E ��e(k) XP�i 2P�je2P�i r(i)=u(e):
Notice that the left hand-side is a telescopic sum for each edge e. Since the normalized load of the offline
algorithm never exceeds 1, we have

Pe2E ��e � m=(1 � 
): Thus, the ratio between the congestion of
the online algorithm and the congestion of the offline algorithm (which we assumed to be 1) never exceedsO(logm), which implies the following claim.

Theorem 3.6 ([5]) The congestion-minimization routing algorithm is O(logn)-competitive.

4 Switched Virtual Circuits Routing

The strategies presented in Sections 3.1 and 3.2 work only for routing PVC circuits. In this section we
describe how to adapt these strategies routing Switched Virtual Circuits (SVC).

4.1 Known Holding Times

The PVC routing and admission control strategies described above can be easily extended to the SVC case
when the holding time of a circuit becomes known upon the arrival of this circuit. We will refer to this
case as the known holding times case. The idea, proposed in [13], is to “flatten” the time, i.e. duplicate the
network for each time unit.

More precisely, let �e(j; �)denote the congestion on edge e at time � as measured upon arrival of request�j. In other words, this is the congestion on e at time � due to the load created by requests �1; : : : ; �j�1.
Observe that �e(j; �) is non-decreasing with j. For the throughput-maximization case, the length associated
with edge e and time instance � is defined byce(j; �) = u(e)(��e(j;�) � 1);(3)

where � = 2LTF + 1, and F is defined by (1). If e 2 Pj , then e’s contribution to the length of the path Pj
is computed as: X� r(j; �)u(e) ce(j; �) =X� r(j; �)(��e(j;�) � 1);(4)

If there exists a path whose length is bounded by the profit �(j), then this path is used to route the connection�j. Otherwise, the connection is rejected. The modified algorithm is presented in Figure 1.

It is straightforward to adapt the proofs of Lemmas 3.1, 3.2, and 3.3 to the SVC case. The additional
requirement needed to satisfy Lemma 3.1 is that �(j) � Lr(j)T (j), and the condition that is sufficient for
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SVC ROUTE(�j = (s; t; r(�); T s; T f ; �)):8�; e 2 E : ce(j; �) u(e)(��e(j;�) � 1);
if 9 path P in G(V;E) from s to t s.t.Xe2P XTs��<Tf r(�)u(e)ce(j; �) � �
then route the connection on P , and set:8e 2 P; T s � � � T f ,�e(j + 1; �) �e(j; �) + r(�)u(e)
else reject the connection

Figure 1: The SVC routing and admission control strategy for the throughput-maximization model.

Lemma 3.3 is that �=2� 1 � �(j). Thus, instead of the assumptions (1) and (2) we have to assume that:1 � 1L � �(j)r(j; �)T (j) � F(5) r(j; �)� minefu(e)glog(2LTF + 1)(6)

As in the PVC case, (5) can be always satisfied by taking a large enough value of F . Also, without
assumption (6), it is impossible to achieve a polylogarithmic competitive ratio [8]. For example, setting�(j) = LT (j)r(j) and � = 2LT satisfies the above assumption and leads to O(log�) = O(logLT )
competitive ratio. Maximizing

Pj �(j) in this case corresponds to maximizing the total bandwidth-
duration product, i.e. throughput. If the goal is to maximize the total acceptance rate, then the profit
should be constant per request. For example, defining �(j) = LTmaxrmax leads to competitive ratio ofO(log(L(Tmax=Tmin)(rmax=rmin))).

The same idea of “flattening” the time scale can be applied to design competitive algorithms for
congestion-minimization case. More precisely, define the length of an edge as follows:ce(j; �) = ��e(j;�)(�r(j;�)=u(e) � 1):
where � is defined as in Section 3.2. The strategy is to route request �j on path Pj that minimizesXe2Pj�2[Ts ;Tf ] ce(j; �)
The stability condition (Definition 3.5) can be adapted to the SVC case in a natural way by adding a
summation over time. See [13] for a complete proof that the above strategy achieves O(lognT ) competitive
ratio.
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4.2 Unknown Holding Times

The SVC routing strategies described above rely on a priori knowledge of holding times. In many real
applications holding times become known only after termination of the call, and hence it is important to
develop strategies for this case, which we refer to as the unknown holding times case.

If we have no information whatsoever about the holding times, it is easy to show that there can be no
competitive throughput-maximization algorithm. Roughly speaking, the reason is as follows. First, observe
that the online algorithm has to reject a request at some point. Say, it rejects the kth request in some sequence.
Now assign arbitrary long holding time to this rejected request and make it the last request in the sequence.
The offline algorithm will reject all the requests except this last one, and thus will get arbitrary larger
throughput than the online algorithm. Similar argument shows that there can be no competitive algorithm
that maximizes the number of routed requests [9].

The situation is not much better for the congestion-minimization case. It is easy to adapt the lower
bound of Azar, Broder, and Karlin [12] to show 
(n1=4) lower bound for the competitive ratio in this case,1
assuming the underlying graph is directed. This adaptation results in a sequence where holding times of
some of the requests are exponential in n, and hence does not preclude an O(logT )-competitive algorithm.
Ma and Plotkin [32] showed how to construct a different sequence where all holding times are polynomial,
and improved this lower bound to 
(minfn1=4; T 1=3g). The lower bounds in [12, 32] apply even if the
online algorithm is allowed to use randomization. It is interesting to note that no nontrivial lower bounds
are known for the case where the underlying graph is undirected.

These lower bounds indicate that we should consider alternate models. One natural model, considered
in [23], is to assume that the distribution on the holding time becomes known with the arrival of the request.
Observe that in this case we have to compare to an offline algorithm that does not have a complete knowledge
of the request sequence. More precisely, it should have a complete knowledge of the request parameters
except the holding time. In this case it is possible to modify the throughput-maximization algorithm so
that the expected throughput achieved by this strategy will be within O(logLT ) factor of the expected
throughput achieved by the optimum offline algorithm. Roughly speaking, the idea is to route a circuit with
constant rate r(j) as if its rate depends on time and is equal to r(j; �) = r(j) � Prfj alive at �g.

In case the holding times are distributed exponentially, the algorithm in [23] becomes significantly simpler
and achieves O(logL log logL) competitive ratio with respect to expected throughput. This improvement
is based on two ideas. First, the fact that the holding times are distributed according to an exponential
distribution implies that the result of summing the cost of an edge over time is a function of the current load
only, and hence can be written in a closed form. Second, � can be taken to be independent of T . Intuitively,
the reason that � was taken to be proportional to T in the throughput-competitive SVC routing algorithm
described in the previous section was to make sure that even if a link is currently saturated but will be free
from the next time step on, the cost of this link (summed up over time) will exceed the maximum profit,
preventing the algorithm from using this link. The fact that the holding times are distributed exponentially
implies that the probability of such even is very low.

An alternative model is to allow rerouting. Observe that if the number of reroutings per connection is1The result in [12] is an 
(pn) lower bound in the context of load-balancing. Adaptation of this lower bound to the routing
model results in an 
( 4pn) lower bound.
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not limited, it is trivial to maintain optimum relative load, i.e. competitive ratio of 1. Thus, we should allow
only limited rerouting. In [9], it was shown that by allowing each circuit to be rerouted at most O(logn)
times during its lifetime, we can maintain O(logn) competitiveness with respect to maximum congestion.
Roughly speaking, the idea is to make sure that the stability condition (Definition 3.5) is always satisfied. If
one of the routed circuits does not satisfy the condition, it is rerouted onto the shortest possible path. Since
this causes its length to go down by at least a factor of 2, one can show that it will not be rerouted more thanO(logn) times.

5 Routing Multicast Circuits

Similar to a virtual circuit request, a multicast request is specified by the required bandwidth, holding time,
and the set of participating nodes. In order to satisfy a multicast request, we need to allocate the required
bandwidth along a tree connecting the set of participating nodes. This is in contrast to the virtual circuit
routing problem, where we needed to allocate bandwidth along an appropriate path.

The multicast case can be treated in exactly the same way as we have treated the virtual circuit routing
problem in the previous sections, leading to strategies with exactly the same bounds. The only difference
is that instead of finding a shortest path connecting the source and the sink nodes, we need to find a
minimum-cost Steiner tree spanning the set of participating nodes. For example, to see that this is true for
the throughput-maximization case, consider the proof of Theorem 3.4. Observe that the fact that we route
along a path rather than some other subgraph of the network is used only in one place: in equation 3 we used
the fact that the path can include at most L links. Thus, the same approach will work for multicast routing,
with L replaced by L0, the maximum number of links in the tree.

Although finding minimum-cost Steiner trees is NP-hard, it is sufficient to use a simple polynomial-time
2-approximation algorithm. One interesting variant of multicast routing is when we are allowed to choose
a subset of the nodes participating in the multicast group, and allocate a tree spanning only these nodes.
Naturally, the profit in this case should be proportional to the number of spanned (satisfied) nodes. A
profit-competitive strategy for this case is to find the largest subset of the multicast group that can be spanned
by a steiner tree whose cost is below the profit scaled by the size of this subset [8]. This is an NP-hard
problem. Heuristics for solving this problem were given in [18]; an O(log2 n)-approximation algorithm is
described in [7].

6 Implementation Issues

The previous sections presented the competitive routing and admission control strategies from a purely
theoretical point of view. In this section we will discuss some of the issues involved in applying these ideas
to realistic scenarios.

Should we implement the throughput-maximization strategy analyzed in Section 4 “as is” ? This question
was studied in [22], where it was observed that using this strategy “as-is” does not lead to sufficiently good
results. In fact, the resulting performance was observed to be always worse than the performance of a simple

12



greedy min-hop strategy.

The main problem is that the analysis suggests a huge value of � = 2LTF + 1, proportional to the
largest holding time T , which leads to a very conservative admission control strategy. Indeed, consider a
single link network (L = 1) where at time t0 we are trying to route request �j with unit holding time.
Consider the case where the current congestion of the link is �(j; t0) = 1= logT . Observe that if we follow
the throughput-maximization strategy exactly, then we will not be able to route this request, even though the
link is essentially unused.

Recall that � was determined in order to satisfy Lemma 3.3. Roughly speaking, the analysis suggested
that � should be large enough so that the cost of any path that has a saturated link will exceed the maximum
profit. In [23] it was observed that in many realistic situations the cases where the link is saturated at t
and is totally unused at t + 1 are rare. Using this observation they showed that if one assumes exponential
distribution of the holding times, then a much smaller � = O(L logL) is sufficient if the strategy is modified
to reject a request that has a saturated link on each one of the shortest paths connecting its endpoints.

Simulation studies of this modified strategy (referred to as the “EXP” strategy in [22]) show that it
outperforms many natural algorithms, including several variants of min-hop and reservation-based algorithms
on several commercial topologies. Somewhat surprisingly, the EXP strategy leads to shorter average hop-
count than the min-hop based algorithms.

An important question is how to implement shortest-path-based strategies in a distributed environment.
Namely, in the environment where there is no central node that makes all the routing decisions and that
has a complete knowledge of the state of the system. There are two main issues that have to be addressed.
First, the routing should be concurrent, i.e. several nodes might be trying to create routes at the same time.
Second, the strategy has to work even with outdated data about the global state of the system.

Concurrent routing was considered from a theoretical point of view by Awerbuch and Azar in [6]. They
showed that by iterative flooding over all of the possible routes, one can route all of the requests in a
logarithmic number of “flooding rounds” if several nodes are trying to route concurrently. Their strategy
leads to a polylogarithmic competitive ratio if the number of different possible routes between any two points
is very small. Moreover, their strategy is resilient against non-malicious failures of the nodes. It is not known
how to treat the case where there are node pairs that are connected by a large number of different possible
routes.

In order to make sure that each node in the network has a recent view of the global state of the network,
one can periodically flood the network with state updates. An alternative approach, suggested in [22], is to
allow each node to update its view of the network only when it decides on a route. More precisely, during
the creation of the route, the node should update its information about all the edges on the route. If during
the creation of the route a saturated edge is encountered, the strategy is to try again, up to some parameter k
tries, and then reject the request.

The advantage of this approach is that has relatively low overhead and does not require an external
“update procedure”. Simulation results described in [22] indicate that although for k = 1 (i.e. reject if
the path chosen by looking only at the locally available information has a saturated link) the performance
is worse than the performance of the centralized strategy, it is significantly better than the performance of
min-hop based strategies. Simulations also indicate that already for small values of k, the performance
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essentially reaches that of the centralized algorithms.

Intuitively, the distributed strategy based on the exponential length function outperforms the min-hop
strategy because it tries to choose paths that are the least saturated according to its (outdated) information.
This is in contrast to min-hop based strategy, that tries to route over arbitrary paths that had sufficient
available capacity according to the (same) outdated data. Thus, the paths chosen by the exponential-length
based strategy are more likely to have sufficient available capacity at present.

7 Conclusions

In this paper we have surveyed a class of routing and admission control strategies based on assigning each
link a length that is an exponential function of the current congestion on this link, and routing along the
shortest path with respect to this length; if no sufficiently short path exists, the request is rejected. From
the theoretical point of view, this approach is attractive because it unifies the routing and admission control
decisions. Moreover, it was shown that the appropriate choice of the length function results in algorithms
that outperform min-hop based and reservation-based algorithms on sparse network topologies.

The algorithms were motivated by using competitive ratio to compare performance of various strategies.
The main advantage of this measure is that it allows us to compare strategies without any assumptions on the
statistical behavior of the offered traffic. By incorporating statistical assumptions into algorithms motivated
by competitive analysis we get algorithms that have good performance under these assumptions, and at the
same time do not “break down” when these assumptions are not satisfied.

Although all of the strategies presented in this paper are dealing with managing the available bandwidth,
similar competitive approaches can be applied to design strategies for managing other resources in the
network, such as the available buffer space, processing load, etc.

Much work remains to be done. One potential problem with the strategies described in this paper
is that they do not address the fairness issues. For example, it is easy to see that the admission control
strategy described in Section 4 will be much more inclined to reject high-bandwidth requests than low-
bandwidth ones. Another problem stems from the fact that the competitive ratio is too pessimistic a measure,
since it compares to a very powerful omniscient offline algorithm that can not be implemented. Several
new measures that are more refined than competitive ratio were recently proposed in [29]. An interesting
research direction is to try to design strategies based on these new measures. Another promising research
direction is to combine the ideas of the competitive online routing with the more traditional reservation-based
approaches [3, 27, 34, 35, 36, 30, 38] in order to derive strategies that have good performance both for dense
and for sparse topologies.
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