
A Secure and Private Clarke Tax Voting Protocol without
Trusted Authorities

Changjie Wang and Ho-fung Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Sha Tin, Hong Kong, P. R. China
{cjwang, lhf}@cse.cuhk.edu.hk

ABSTRACT
Electronic voting has become one of the most popular activities
over the Internet. Security and privacy are always regarded as
crucial factors in electronic voting system design. Various secure
voting schemes have been proposed in the past several years to
ensure the safe operation of electronic voting and most of them
have focused on the common “one man, one vote” plurality
voting. In this paper, we study on the security and privacy issues
in the Clarke tax voting protocol, another important social choice
protocol. This protocol is important in electronic voting,
especially software agent based voting, because a voter’s
dominant strategy is truth-telling, and consequently the overhead
for counterspeculation is minimized. For the very same reason, it
is essential to achieve the security and the privacy protection of
voters so that voters’ preferences need not be made known to the
public, should this protocol be practical and popular. In this paper,
we first present several cryptographic building blocks, including
ElGamal cryptosystem, player-resolved distributed ElGamal
decryption, proof of knowledge of 1-of-k plaintext and
player-resolved mix network. Then we propose a secure Clarke
tax voting protocol making use of these techniques. In the
proposed protocol, we achieve privacy protection, universal
verifiability as well as other security requirements, such as
secrecy, eligibility, completeness, etc. One important feature of
the proposed protocol is that the full privacy protection of voters
is guaranteed, which means that all information in voting are kept
secret even in the presence of any collusion of participants
involved in the voting. The only information known publicly is
the final voting result, i.e., the winning candidate and the tax for
each voter.

Categories and Subject Descriptors
K.4.4 [Computer and Society]: Electronic Commerce

General Terms
Economics, Security, Theory

Keywords
Electronic voting, Clarke tax voting protocol, Security, ElGamal
encryption, Mix network, Privacy protection, universal
verification.

1. INTRODUCTION
Secure electronic voting systems are examples of advance
cryptographic protocols that are needed for practical applications
in real life. In general, a (secure) electronic voting scheme can be
viewed as a protocol that allows a group of voters to cast their
votes, while one or more authorities collect the votes, compute
and publish the outcome. It is clear that electronic voting schemes
should satisfy all security requirements and achieve at least the
same security level as those of ordinary paper-based elections,
while the fact that the digital communication method is used may
raise new security problems.

There have been many studies reported on the field of secure
electronic voting systems, most of which, however, have focused
only the common “one man, one vote” plurality protocol. The
Clarke tax voting protocol is one in which the dominant strategy
is truth-telling when the voters’ preferences are quasilinear [1, 25]
Consequently, it is often a more preferred protocol in some
scenarios of electronic voting, especially intelligent agent-based
voting, as it is comparatively more efficient when
counterspeculation is no longer necessary. In this paper, we
address the security issues in the Clarke tax voting protocol, and
propose a secure and private Clarke tax voting protocol for secure
electronic voting.

1.1 The Clarke Tax Protocol
We illustrate the Clarke tax algorithm with the following simple
example. Amy, Betty and Cindy are good friends. One evening
they decide to have Chinese food for dinner. Amy likes the
spicy Sichuan cuisine very much. Betty, on the other hand,
wishes to try the famous Peking duck, though Sichuan food is
acceptable for her. Finally, Cindy really wants to have a
delicious Cantonese seafood dinner, as she does not like spicy
food. However, in a Chinese meal dishes are always shared, so
they always need to share the bill after the meal, and each pays the
same amount of money regardless of how much one really eats.
Therefore, these friends must find a fair way to determine which
cuisine they should go for.
A solution to this kind of problems was presented by
Edward H. Clarke in early seventies [1, 2], which is now
commonly known as the Clarke tax protocol. The basic idea of
Clarke tax is that each voter is levied a tax that equals to other

voters’ loss incurred by the preference he declares. In other words,
a voter’s tax is related to how much its vote has lowered the
others’ utilities, and voters that do not end up changing the
outcome do not pay any tax. It is proved that the dominant
strategy for a voter in a Clarke tax protocol is to declare his true
preference [5].
Figure 1 shows an example of Clarke tax voting. Each row of the
table shows a voter’s preference. First, all voters Amy, Betty and
Cindy declare their preferences for Sichuan (S), Peking (P) and
Cantonese (C) food. According the declared preferences, they
should go for the Cantonese food, as the sum of value is 21, which
is the maximum among three possible options.
It can be observed that if Cindy had not cast her vote, the result
would have been Sichuan food (S). Therefore, Cindy’s
participating in voting effectively brings other voter’s total value
from 18 to 6. Therefore, Cindy is levied a tax of 12. On the
other hand, Amy and Betty do not need to pay any tax.

Voter
i

Declared Value
j

iv

Sum without Voter i
j

kk i
v

≠∑
Tax
taxi

 S P C S P C
Amy 10 4 0 3 15 *21 0
Betty 8 10 6 5 9 *15 0
Cindy –5 5 15 *18 14 6 –12

Sum
j

kk
v∑ 13 19 *21

Fig. 1. An Example of the Clarke Tax Voting:

wO C= ; Amy 0tax = , Betty 0tax = and Cindy 12tax = −

Formally, the Clarke tax algorithm can be described as follows.
Let Ω be the set of all possible outcomes and j

iv denote the
value of an outcome jO ∈Ω for voter i. The final outcome
(social choice) can then be calculated as

arg max
j

j
w O kk

O v∈Ω= ∑ . Let arg max
i j

j
w O kk i

O v′ ∈Ω ≠
= ∑ . The tax

for voter i is then iww
i k kk i k i

tax v v ′

≠ ≠
= −∑ ∑ .

1.2 Security Issues in the Clarke Tax Voting
Much research has been conducted on secure voting schemes and
an extensive list of requirements for securing electronic voting is
described in [3, 4]. In this paper, we will consider these security
requirements in Clarke tax scheme, among which are privacy
protection, universal verifiability, various forms of robustness as
well as other requirements such as, secrecy, completeness,
soundness, eligibility and so on.

It has been proved [5] that with Clarke tax scheme, revealing the
true value of each outcome is the dominant strategy of a voter.
Such information of true preference, however, is usually regarded
as the personal privacy of the voters, which is often too sensitive
to be made known to the public. Therefore, it is of high practical
importance to achieve privacy protection in Clarke tax scheme

should it be to become practical and popular. Besides the issues of
secrecy, completeness, soundness, eligibility, etc., the two most
important security requirements in Clarke tax system are privacy
protection and universally verifiability.

Privacy protection means that all sensitive information (i.e., the
voters’ true values of each outcome, the sum for each outcome,
and the sum for each outcome without voter i’s participation) in
the Clarke tax scheme should be kept secret, except that the final
results, i.e. the final elected outcome and the tax for each voter.

Universally verifiability is another important requirement of the
scheme. Due to the privacy protection requirements, only the final
results of the Clarke tax scheme should be known publicly.
Consequently, it is necessary to achieve that any participant can
verify the correctness of the results and detect any incorrect
behavior of other voters with only the publicly available
information.

1.3 Organization
The paper is organized as follows. We review the related work in
section 2 and present the main contributions of our work. In
section 3, we present several useful cryptographic building blocks
used in this paper. A secure Clarke tax voting scheme with full
privacy protection is proposed in section 4. We perform an
analysis on security and efficiency of the proposed scheme in
section 5, followed by conclusions in Section 6.

2. RELATED WORK
2.1 Secure Electronic Voting Protocols
There has been extensive research proposing various schemes on
the design of secure electronic voting in the literatures.
However, most of them concentrate on the common “one man,
one vote” plurality voting protocol. One of the earliest approaches
is proposed by Fujioka [4] using blind signatures [6] and
anonymous channels. In this scheme, a voter prepares a ballot in
plaintext, and then performs an interactive protocol with an
authority that verifies the validity of the vote, i.e., that the voter is
eligible to vote and has not already cast his vote. During the
interactive protocol, the authority issues a blind signature on the
ballot, which means that the voter will obtain the authority’s
digital signature on the ballot, without revealing the ballot
contents to the authority. Finally, all voters submit their signed
ballots to another counting authority who will then check and
count all valid ballots. Note that an anonymous channel (such
channel can be implemented based on cryptography, using
so-called mix network [7]) should be employed here to preserve
the privacy of voters.

Another approach to secure voting scheme is using verifiable
secret sharing [8, 9], in which there are several servers to count
the votes, and voters interact with all servers to share verifiably
secret votes among the servers [10, 11]. That is, each server gets a
share of each voter’s ballot, and these shares are constructed with
respect to a threshold t such that all the servers together can
cooperate to obtain complete information on each ballot, while
any subset of at most t servers has no information at all. The voter
must convince all servers that the shares are correctly constructed
and thus he is prevented from voting multiple times or voting
incorrectly. After all votes have been cast, all servers then jointly
compute the result of the election without leaking any sensitive
information.

Homomorphic encryption based secure voting schemes [4, 12, 13]
are proposed and discussed most recently, in which a voter can
simply publishes an particular encryption of vote using a specific
public key cryptosystem with a homomorphism property, say,
ElGamal encryption [14]. In such schemes, a public key known
to everyone can be used for encryption of the vote. When
submitting an encrypted vote, a voter not only has to identify
himself to be eligible to vote, but also has to prove the correctness
of the construction of his vote, i.e., the encryption contains a valid
vote. The privacy of voters is protected, since all individual votes
are encrypted and the proof is zero-knowledge [13]. Moreover,
due to the homomorphism of the encryption system, the election
result can be computed efficiently. Homomorphism here means
that two encryption of, say, number a and b, can be combined to
produce a new encryption of a b+ . By using this method
repeatedly, all votes can be “implicitly added” without any
decryption of any encrypted vote. Finally, we obtain an
encryption of the voting result that can be obtained after
decryption. The point of the above scheme is that the private key
needed has to be secretly shared among a set of authorities in a
threshold method. That is, each authority will hold a share of the
private key, and the shares have to be constructed with a threshold
value t so that no information of the private key leaks, unless
more than t authorities corrupt or are broken into by an attacker.
In other words, if at least 1t + authorities behave correctly, a
decryption can be performed. This is also known as threshold
decryption.

It is clear that most of the work reported in the literature on secure
voting systems rely on threshold computation that is distributed
among several authorities, out of which a fraction must be
trustworthy. Assumptions on the trustworthiness of third parties or
authorities are always made. In [10, 11], all servers share the votes
of voters and it is assumed that at least 1t + servers will never
collude to comprise the voters’ privacy. In [4, 13], the private key
for encrypting the vote is held by either a trusted third party or is
shared among a set of authorities. However, in the reality, it is not
always feasible to require that voters should trust any third party
or other voters. It is also possible that groups of voters are formed,
members of which share their knowledge and act as teams to
perform maliciously. We therefore argue that distributing the trust
on several authorities dose not achieve the privacy protection
completely, since we can never rule out the possibility that some,
or even all, of these authorities collude. Furthermore, in all
previous work, the number of votes received by each candidate is
also made publicly known at the end of the voting. Since it is
possible that any subset of voters collude to act as a team, it is
therefore easy for all but one voter to conclude and figure out the
other voter’s preference.

2.2 Our Contributions
As far as we know, there is no literature addressing the security in
Clarke tax voting scheme. The Clarke tax voting mechanism is
an important social decision protocol in which the dominant
strategy is truth telling. This is of particular significance to
software agent based electronic voting schemes, because
efficiency of voting is improved as the overhead of
counter-speculating can be eliminated.

In this paper, in addition to the security requirements suggested by
others in the previous work, we focus on security issues in the
Clarke tax system and propose a secure and private Clarke tax
voting scheme that achieves full privacy protection and

universally verifiability. We introduce the new standard for
privacy protection, named full privacy protection. That is, in the
proposed secure and fully private Clarke tax scheme, no
(semi-)trusted authorities are needed, and the possibility that
voters collude is not precluded. To achieve such full privacy
protection, we employ the play-resolved distributed ElGamal
decryption and player-resolved mix network so that to distribute
the trust and computation to the all voters themselves. In such
way, no information concerning the votes is revealed unless all
voters share their knowledge. We note that it is impossible for all
voters to form a single coalition and act as a team, or else voting
is not necessary at all.

In conclusion, our main contribution is a universally verifiable
secure Clarke tax voting scheme, in which each voter holds a
share of secret information and jointly compute the final voting
result. The only information publicly known is the final chosen
outcome and the tax for each voter, while other related
information is always protected.

3. PRELIMINARIES
In this section, we describe several cryptographic building blocks
used in the scheme, including ElGamal cryptosystem,
play-resolved distributed ElGamal decryption, proof of knowledge
of 1-of-k plaintext and player-resolved mix network.

3.1 ElGamal Cryptosystem
One of the basic tool in our scheme is the ElGamal cryptosystem
[14], which works over a group GF(P) where P is a big prime
number.

Let g be a generator of GF(P), which is a publicly available
system parameter. A private key is an arbitrarily selected integer

Px Z∈ . The corresponding public key is modxy g p= . Giving a
plaintext Pm Z∈ , its encryption under the public key is

{ , } { mod , mod }a ag p y m pα β = ⋅ where Pa Z∈ is selected
randomly. To decrypt this cipher text using the private key x, we
just compute / /()x a a xy m g mβ α = = .

The ElGamal cryptosystem has two important properties, namely
the semantic security property and homomorphism. These two
properties are useful in our scheme. The property of being
semantically secure means that a player who only knows the
public key can re-encrypt a ciphertext without knowing the
private key. Suppose that 1 1{ , } { mod , mod }a ag p y m pα β = ⋅ is
an encryption of some plaintext m, the player can then re-encrypt
it by computing

1 2 1 2

{ , }
{ mod , mod }
{ mod , mod }

a a a a

a a

g g p y y m p
g p y m p

α β′ ′

= ⋅ ⋅ ⋅

=

,

where 1 2a a a= + . In other words, it is infeasible for another
player to determine whether { , }α β′ ′ and { , }α β represent the
encryption on the same plaintext. Another useful property of
ElGamal system is homomorphism. Observe that if 1 1{ , }α β and

2 2{ , }α β represent ciphertext corresponding to plaintext m1 and
m2 respectively, then 1 2 1 2{ , }α α β β⋅ ⋅ represents an encryption
of the plaintext 0 1m m⋅ .

3.2 Players-Resolved Distributed ElGamal
Encryption
The ElGamal encryptions can be easily extended to a distributed
version, which is useful in our proposed scheme, by using a
distributed key generation protocol [15]. We call it the
players-resolved distributed ElGamal encryption, since the private
key is generated jointly by all players. First, each player
independently chooses an arbitrary number ix , then computes

and publishes modix
iy g p= along with a zero-knowledge

proof of knowledge of iy ’s discrete logarithm [16]. The public

key of the system is then calculated as modii
Y y p=∏ , and the

corresponding private key ii
X x=∑ . This process is called

distributed key generation. To decrypt a ciphertext
{ , } { mod , mod }a ag p Y m pα β = , all participants need to jointly
perform the distributed decryption. That is, each participant
computes and publishes modix

i pα α= separately and proves
its correctness by proving that log logg i iy α α= [17]. The
plaintext can then be decrypted by computing

() ()

()
mod

i

i i
i i

x a
a

i
a x a x

i
i

g m
Y m m p

g g

β
α

= = =
∑ ∑

∏
∏

.

3.3 Proof of Knowledge of 1-of-k ElGamal
Plaintext
By knowing the encryption exponent a of an ElGamal ciphertext
{ , } { mod , mod }a ag p y m pα β = ⋅ , a player can prove the
knowledge of the plaintext m in zero knowledge by proving
log log /g y mα β= [18]. In our scheme, we propose a
cryptographic primitive, named proof of knowledge of 1-of-k
ElGamal plaintext, as follows. To prove the knowledge of 1-of-k
ElGamal plaintext, a player who submits an ElGamal ciphertext
has to prove that the submission is a valid encryption, and the
plaintext m is one of the k possible plaintexts, without revealing
which plaintext it is exactly. We give the proof as follows.

Let E(m) be a submitted ElGamal ciphertext, that is,
0 1() (,) (mod , mod), { , ,..., }WE m g p Y m p m G G Gα αα β= = ∈ ,

where g and Y are the public key, α and m are kept secret. To
prove the correctness of E(m), the player generates a proof data f
(assume that kGm =):

f = {(s,C,C0,C1,…,Ck–1,Ck,Ck+1,…,CW), (u0,u1,…uk–1,uk,uk+1,…,uW),
(β)},

where,

(1) s, C0,C1,…,Ck–1,Ck+1,…,CW are randomly selected integers;

(2) () ()a a a
i i k iu Y m g G A G G= ⋅ ⋅ = ⋅ , for 0,...,i W= ,

where A Y g= . Note that a
k Au = ;

(3) 0 1 11
0 1 1 1(... ...)k k WC C C CCs

k k WC H A u u u u u− +
− += ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ;

(4) 1 1 1... ...k k k WC C C C C C− += ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ;

(5) aCs k ⋅−=β .

To perform the verification on the correctness of E(m), anyone
can check that the equation 1

1 0... (...)WCC
W WC C H A u uβ⊕ ⊕ = ⋅ ⋅ ⋅

hold.

3.4 Players-Resolved Mix Network
Another key technique in our scheme is known as mix network,
which is first introduced by Chaum [19] for privacy protection.
Some studies have been done, in both implementation techniques,
and applications for different purposes [20, 21, 22]. A mix
network is multi-party protocol that involves several mix servers.
The input to the mix network is a list of ciphertext items and the
output is a new, permutated list of those ciphertext items such that
there is one-to-one correspondence between the underlying
plaintexts of input and output items. The security of a mix
network is characterized by the infeasibility for an attacker to
determine which output items correspond to which input items.

In this paper, we employ a mix network based on the ElGamal
cipher, in which we do not assume the existence of mix servers;
instead, we assign the permutation task to all participants. In such
a way, the full privacy protection of correspondence between
input and output is achieved, and this is what we call
players-resolved mix network. In the following, we describe how
this mix network works.

The input to the mix network consists of a list of ElGamal
ciphertext 1 1 2 2(,),(,),..., (,)k kα β α β α β encrypted by a public
key. The corresponding private key is shared by all participants.
Then, each participant performs a random permutation on this
input list in turn by re-encrypting every ciphertext and output
them randomly. The final output then be a sequence

(1) (1) (2) (2) () ()(,),(,),..., (,)k kσ σ σ σ σ σα β α β α β′ ′ ′ ′ ′ ′ , where (,)i iα β′ ′

represents a random re-encryption of (,)i iα β , and ()σ is a
random permutation function on k elements. The key point in
above mix network is that each player must prove the correctness
of his random permutation without revealing the correspondence
between input and output. This proof can be done in
zero-knowledge manner, as follows.

Suppose that each player possesses a k-input mix permutation
consisting of a series of publicly verifiable 2-input mix boxes in
some architecture. To achieve the public verifiability of the
k-input mix permutation, the players only need to prove the
correctness of the 2-input mix boxes. Assume that two input
ElGamal ciphertexts: 1 1(,)α β and 2 2(,)α β on respective
plaintexts m1 and m2, and the output are two randomized
re-encrypted ciphertext 1 1(,)α β′ ′ and 2 2(,)α β′ ′ corresponding to

respective plaintexts 1m′ and 2m′ . To prove the correctness of
the 2-input mix box, a player first proves that both 1 1(,)α β′ ′ and

2 2(,)α β′ ′ are correct re-encryption of either 1 1(,)α β or

2 2(,)α β (see Appendix), and then proves that 1 2 1 2(,)α α β β
and 1 2 2(,)α α β β′ ′ ′ ′ denote the encryption on the same plaintext

1 2m m using the Plaintext Equivalence Proof in [23].

4. SECURE CLARKE TAX SCHEME WITH
FULL PRIVACY PROTECTION
4.1 An Overview of the Scheme
The proposed scheme can be considered to be a cryptographic
model of secure multiparty computation, in which there are n
voters, 1 2, ,..., nV V V , and m possible outcomes (“candidates”)

1 2, ,..., mO O O . We also assume that there exists a public bulletin
board for shared information. A voter has read-access to the
whole board; while having write-access to only a designated area.
Instead of having to reveal the true value of each candidate as in
the original Clarke tax protocol, in our scheme, each voter will
need to submit a particular ciphertext of his preferences using the
ElGamal system. The public key for encryption is a public
parameter and the corresponding private key is shared among all
voters in a distributed manner. The key idea of our approach is to
distribute the trust and the computation on all voters themselves.
In this way, we do not need any (semi-)trusted third party as in
other secure voting schemes, in which any form of collusion
among these trusted parties has to be assumed impossible.
Therefore, we do not make any special trust assumption in the
proposed scheme. That is, no voters need to trust any third party,
and it is anticipated that some group(s) of voters might collude in
some form.

The voting process can be outlined as follows. Before the voting
starts, all voters first perform the distributed ElGamal key
generation, as described in the previous section, to generate a
public key for system. Suppose that voter i chooses ix and

publishes modix
iy g p= . The public key of the system is then

modii
Y y p=∏ , and the corresponding private key ii

X x=∑ .

Note that the values of , 1ix i n≤ ≤ are kept secret by each
individual voter respectively. Therefore, the private key X cannot
be retrieved unless with the cooperation of all voters, which is
assumed to be impossible.

For ease of illustration, we suppose that there is a manager M to
perform the collection of votes as well as some publicly verified
calculations work.1 Note that we need not assume any special
trust on this manager M. When the voting starts, all voters cast the
encrypted votes containing their preferences, and then jointly
figure out the winning candidate and calculate the tax for each
voter, while keeping all the sensitive information in secret. We
assume that the voters’ values should fall into a bounded range.
For ease of presentation, throughout this paper we assume that

50 50j
iv− ≤ ≤ , for [1,], [1,]i n j m∈ ∈ .

4.2 Voting Procedures
We are now ready to give a formal description of the voting
procedures.

First, each voter iV generates a vector iB that consists of m
particular encrypted values corresponding to m candidates
respectively, and publishes them on the bulletin board, i.e.

1 M might also be responsible for verifying the eligibility of the voters’

identities with their public key certificates issued a trusted Certificate
Authority.

1 2

: { (2), (2),..., (2)}, where [50,50]
j

i i ivv v j
i iB E E E v ∈ − .

For public verifiability, each voter has to prove the correctness of
the construction of iB by performing the proof of knowledge of
1-of-K ElGamal plaintext 2 on each encrypted value.

The manager M will then collect all submissions and calculate
the component-wise product of all voters’ vectors to get the sum
vector V as:

1 2

1 1 1 1

: { (2), (2),..., (2)}
m

i i i

n n n n
v v v

i
i i i i

V B E E E
= = = =

=∏ ∏ ∏ ∏ .

This vector is called the sum vector because of the following
reason. Observe that, due to the homomorphic property of
ElGamal cryptosystem, the kth component kc of vector V has
the form

1 1

(2) (2), where
k
i k

n n
v O k

k k i
i i

c E E O v
= =

= = =∏ ∑ .

Note that
1

n k
k ii

O v
=

= ∑ is the sum of values of candidate kO .

Therefore, the vector V is a ciphertext of the vector of value
sum each candidate receives.

To figure out the final winning candidate, the manager M has to
find the largest one among

1

n k
k ii

O v
=

= ∑ , [1,]k m∈ with a

public verified method, without revealing the exact value of kO .

In the following, we propose a method to test whether p qO O≥

holds for two arbitrary encrypted sums pO and qO of values.

Note that we know only the ciphertext (2)pOE and (2)qOE
without having any further information such as pO and qO

themselves. To compare pO and qO , the manager M first

calculates (2) / (2) (2)p q p qO O O OC E E E −= = . By examining
whether 0p qO O− ≥ , we can decide whether pO is larger than

qO or not. Here, we can use the mix and match technique to

examine whether 0p qO O− ≥ from (2)p qO OC E −= , without

knowing the value of p qO O− . Recall that each value j
iv

satisfies 50 50j
iv− ≤ ≤ , thus the p qO O− should satisfy

100 100p qn O O n− ⋅ ≤ − ≤ ⋅ , where n is the number of voters.

Therefore, the problem of examining whether 0p qO O− ≥ is
equal to examine whether

2 100 1 100((2)) {1,2,2 ,....,2 ,2 }p qO O n nD E − ⋅ − ⋅∈ .3

2 Here, the plaintext set should be 50 49 0 50{2 ,2 ,..., 2 ,.., 2 }− − . That is,

the voter has to prove that each encrypted value ()E m is a correct

ElGamal encryption such that 50 49 0 50{2 ,2 ,...,2 ,..,2 }m − −∈ , without
revealing what m is exactly.
3 Here, ()D x means the ElGamal decryption on x.

The manager M now constructs and publishes 100 1n⋅ +
ciphertexts / (2)i

iC C E′ = , 0 100i n≤ ≤ ⋅ in a publicly

verifiable manner, that is, M generates (2)iE and proves the
correctness by publishing a proof of knowledge of ElGamal
plaintext using Schnorr identification protocol [42], and then
calculates / (2)i

iC C E′ = publicly.

All voters then work as a mix network as described in the previous
section to perform a permutation with an input list

0 1 100)(, , ,)i nC C C C ⋅′ ′ ′ ′= K , so as to mix them to form a new

ciphertext list 0 1 100(, , ,)nC C C C ⋅′ ′ ′ ′= K which is a shuffled
permutation of the re-encryption of the 0 1 100)(, , ,)i nC C C C ⋅′ ′ ′ ′= K .

To determine whether p qO O≥ for two arbitrary encrypted

sums pO and qO , all voters first perform the distributed

ElGamal decryption on the list 0 1 100)(, , ,)i nC C C C ⋅′ ′ ′ ′= K . Then
all voters should check whether there exists one plaintext “1” in
the decrypted list 0 1 100() ((), (), , ())i nD C D C D C D C ⋅′ ′ ′ ′= K . If one
plaintext “1” exists in the decrypted list, then it can be concluded
that p qO O≥ . Otherwise, it can be concluded that p qO O< .
The correctness of this approach can be established by the
following theorem.

Theorem 1 If there exists one plaintext “1” in the decryption list
0 1 100() ((), (), , ())i nD C D C D C D C ⋅′ ′ ′ ′= K , it is concluded that

p qO O≥ ; if there is no plaintext “1” existing in the list

0 1 100() ((), (), , ())i nD C D C D C D C ⋅′ ′ ′ ′= K , it is concluded that

p qO O< .4

Proof Suppose the encrypted vector of each voter is:
1 1 1 1

{ (2) (, 2), ... , (2) (, 2)}
j m m m

i i i i i i i ivv k k v k k v
iB E g Y E g Y= = = ,

Where [50,50]j
iv ∈ − and ,1 ,1j

ik i n j m≤ ≤ ≤ ≤ are the
encryption exponent selected by voter iV . The component-wise
product of all voters’ vectors can then be denoted as:

4 There are some restrictions that should be noted.
(1) The value of n should not be too large, so that the calculation of

100 1n⋅ + ciphertexts is feasible.
(2) It is clear that we have to select the module p of the ElGamal system

carefully to assure that there are no common values in the set
100 100 1 1:{2 ,2 ,....,2 }n nA − − + − and set 2 100):{1,2,2 ,....,2 }nB . We

elaborate this requirement in more details. Suppose p qO O< and

p qO O δ− = − , where 0 100nδ< ≤ , then the decrypted list should

be 2 100(2 /1,2 / 2,2 / 2 , ,2 / 2)nD δ δ δ δ− − − −= K in which there should no

plaintext “1” exist. Note that 2 δ− is the reverse of 2δ in GF(p), that
is 2 1modx pδ ⋅ = , if let 2 xδ− = . Obviously, there is no plaintext

“1” in the decrypted list if and only if 2 100{1,2,2 ,...,2 }nx∉ . To

satisfy this, we must select p such that 2 1mod pδ ≠
for 1,2, ,100 ,100 1,..., 200n n nδ = +K .

1 1 1

1 1 1 1 1 1
1{ ,..., } {(, 2),..., (, 2)}

n n n n n n
m m m

i i i i i i
i i i i i i

k k v k k v

mV c c g Y g Y= = = = = =
∑ ∑ ∑ ∑ ∑ ∑

= =

As illustration before, to compare whether p qO O≥ the manager

M calculates 1 1 1 1 1 1/ (, 2)

n n n n n n
p q p q p q

i i i i i i
i i i i i i

k k k k v v

p qC c c g Y= = = = = =

− − −∑ ∑ ∑ ∑ ∑ ∑
= = and

constructs 100 1n⋅ + ciphertexts

1 1 1 1 1 1

1 1 1 1 1 1

2(,)
(2) 2

(, 2), 0 100

n n n n n n
p q p q p q

i i i i i i
i i i i i i

j j
M M

n n n n n n
p q j p q j p q

i i i i i iM M
i i i i i i

k k k k v v

j j k k j

k k k k k k v v j

C g YC
E g Y

g Y j n

= = = = = =

= = = = = =

− − −

− − − − − −

∑ ∑ ∑ ∑ ∑ ∑
′ = =

∑ ∑ ∑ ∑ ∑ ∑
= ≤ ≤ ⋅

Here, , 0 100j
Mk j n≤ ≤ is the arbitrary encryption exponent

selected by the manager M . Note that
1

n p
p ii

O v
=

= ∑ and

1

n q
q ii

O v
=

= ∑ . Without loss of generality, we suppose that

p qO O≥ and p qO O δ− = , therefore,

1 1 1 1(, 1)

n n n n
p q p q

M Mi i i i
i i i i

k k k k k k

C g Y
δ δ

δ
= = = =

− − − −∑ ∑ ∑ ∑
′ = ⋅ .

The ciphertext list 0 1 100: (, , ,)nC C C C′ ′ ′ ′K is then mixed by all

voters and the output 0 1 100: (, , ,)nC C C C′ ′ ′ ′K is a shuffled

re-encryption of C′ . Note that there must be a factor in C′ , say

uC′ , corresponding to the Cδ′ . Here, ()u δ= Φ where ()Φ is

a shuffled permutation function. Then, the uC′ can be denoted as

(rδ is the re-encryption factor here):

1 1 1 1

() ()

(, 1)

n n n n
p q p q

M Mi i i i
i i i i

k k k r k k k r

uC g Y
δ δ

δ δ
= = = =

− − ⋅ − − ⋅∑ ∑ ∑ ∑
′ = ⋅

Now, all voters perform the distributed ElGamal decryption on
the 0 1 100: (, , ,)nC C C C′ ′ ′ ′K and the decryption of the specific

uC′ is as follows

1 1 1 1

1 1 1

1 1

()

()

2()

()

2

2

n n n n
p q p q

M wi i i i
i i i i

n n n
p q

M ii i
i i i

n n
p q
i i

i i

p q

k k k r v v

u
k k k r x

v v

O O

YD C

g

δ

δ
δ

δ

δ

δ

= = = =

= = =

= =

− − ⋅ − −

− − ⋅

− −

− −

∑ ∑ ∑ ∑
′ =

∑ ∑ ∑

∑ ∑
=

=

Note that the values of 1 1

()

() , 1

n n
p q

Mi i
i i i

k k k r
xg i n

δ
δ

= =

− − ⋅∑ ∑
≤ ≤ are

calculated by each voter separately with their secret ix and then
be published on the bulletin board with a proof of the correctness
[19].

It is easy to deduce that if p qO O≥ and p qO O δ− = , there

must be a decryption () 1uD C′ = , otherwise, p qO O< if there is
no plaintext “1” exist.

 ٱ

By repeating the above examination 1m − times, the manager M
and the voters can find out the largest one among

1

n k
k ii

O v
=

= ∑ , [1,]k m∈ , the value sum received by the

candidate that receives the largest sum of values, without knowing
either the exact value of the sum of points of each candidate, or
the difference between those sums. Finally, the manager M
publishes the winner and all the verification information on the
bulletin board, so that anyone can check the correctness of the
result. It is obvious that any one can verify the legitimacy of the
winner.

4.3 Calculation of individual Tax
The calculation of the tax for each voter is similar the above
procedures, as described in the following.

To calculate the tax for voter iV , the manager M first calculates
the sum of values for each candidate without Vi’s vote, by
computing the component-wise product of all vectors product,
except the Vi’s vector, that is:

1 2

1, 1, 1,

{ (2), (2),..., (2)}
m

j j j
n n n

v v v
i

j j i j j i j j i

V E E E
= ≠ = ≠ = ≠

′= ∏ ∏ ∏

With the above method, the manager M as well as any voter can
calculate the final winning candidate without Vi’s vote, while
keeping all individual values in secret. If the final voting result is
just same as that with the participation of iV , the tax for iV is

zero. Otherwise, the tax itax for iV is calculated as follows.

Suppose the original winning candidate is Ow and the winning
candidate without Vi’s participant is

iwO ′ , then the tax for iV

should be:

iww
i k kk i k i

tax v v ′

≠ ≠
= −∑ ∑

By calculating 1, 1,(2) / (2)

n n
ww i

k k
k k i k k i

v v

Y E E
′

= ≠ = ≠
∑ ∑

′ = , and requesting all
voters to perform a further distributed ElGamal decryption on

Y ′ , we can get 1, 1,2 2 mod

n n
ww i

k k
k k i k k i i

v v
tax p

′

= ≠ = ≠

−∑ ∑
= . Though the

calculation of itax is generally regarded as a difficult problem
based on usually discrete logarithm problem assumption, in this
particular setting of n and value range, we can easily calculate the

itax by trying all possible values in [–100n, 100n].

5. ANALYSIS
5.1 Security Analysis
5.1.1 Privacy Protection and Public Verifiability
In the proposed secure Clarke tax scheme, only the final winning
candidate5 and the individual tax for each voter are published at
the end of the voting, and other information, such as the voters’
values of each candidate, the sum of the values of each candidate
and difference between those sums are always kept secret. In such
a way, we ensure the privacy protection of each voter in
maximum degree.

In the protocol, each voter publishes his value for each candidate
in a particular ElGamal encrypted vector form using a public key
Y, instead of in plaintext. Without the knowledge of the
corresponding private key X, nobody can get the values of voters
without breaking the ElGamal cryptosystem, which is assumed to
be infeasible. Making use of the homomorphic property of
ElGamal encryption, we get the encrypted vector of the sum of the
each candidate’s values. By employing the player-resolved mix
and match protocol, we perform the comparison among the
encrypted sum value, without leaking any further information.
Since the basic building blocks of encryption scheme, mix scheme
and mix and match protocol are proved to be secure [14, 23, 24],
it is easily to deduce that our scheme is secure against any passive
attack.

Since the all related information is in ciphertext form, it is
possible that any voter or the manager M perform maliciously to
disturb the voting. For example, a voter may submit wrong
encrypted values for some candidates or make an incorrect
re-encryption during the mix work. In the proposed scheme,
however, such active attacks can be easily resisted since we
employ the zero-knowledge proof mechanism. For example, when
publishing the encrypted values vector, a voter has to also publish
a proof of knowledge of 1-of-k ElGamal plaintext, and during the
mix network, voters have to prove the correctness of the output of
each mix work by giving the proof of the correctness of 1-of-k
ElGamal re-encryption and Plaintext Equivalence Proof. In such
way, any participator can verify the correctness of each step of the
scheme, and malicious voters will be detected immediately
without additional communication and information revelation.
Thus, the public verifiability (robustness) of the scheme is
achieved.

5.1.2 Collusion-Proof
Another important security feature of our scheme is that we
achieve the full privacy protection of the voters. That is, we do not
assume the existence of any kind of trusted parties. Moreover, no
collusion of voters can possibly lead to the revelation of any
private information, unless all voters together form a single
collusion, which is assumed impossible, otherwise voting is not
necessary at all.

Theorem 2 The proposed secure Clarke tax voting scheme is
collusion-proof, which means that all private information of
voters is always kept secret even in the presence of any form of
collusion of voters and administrator, unless all voters are
involved in the collusion.

5 That is, the only available result is which candidate is the winner, while
the exact sum of the value of the winner is unknown.

Recall that in our scheme, each voter’s submission is an encrypted
vector of m ElGamal encryptions

1 2

{ (2), (2),..., (2)}
j

i i ivv v
iB E E E= . The only method to get the true

value of a voter is to decrypt the (2)
j

ivE using the proper private
key X. In our scheme, however, we do not assume one or more
trusted (semi-trusted) authorities to maintain the private key.
Instead, we distribute the trust over all voters, which means that
all voters jointly generate the key pairs

1
(, mod)n X

ii
X x Y g p

=
= =∑ where ix is the secret number

generated by each voter respectively (see section 3). As a result,
the only way to decrypt the encrypted vector is that all voters
participate in the computing with their secret numbers ix .
Therefore, any group of colluding voters cannot open any specific
encrypted value vector, without the cooperation of all other
voters.

While employing the mix network, we use a similar idea. That is,
we do not suggest the existence of any mix server and the mix
permutation is instead performed by all voters one by one. In such
way, even (n – 1) voters collude, they still cannot decide the
correspondence between the input ciphertexts and the output
re-encrypted ciphertexts.

5.2 Efficiency Analysis
We discuss the communication efficiency and the computation
efficiency of the proposed scheme in this section.

Table 1. Communication complexity of proposed secure
Clarke tax scheme

 Pattern Round Volume
Voting

(Per one voter)
Voter→ Bullet

in Board 1 ()O m

M→ Bulletin
Board m – 1 (100 1)O n+

Determining
the winner

(Per one
voter)

Voter→ Bullet
in Board 2(m – 1)

(100 1)O n+

per round

M→ Bulletin
Board m – 1

((100 1))O n n+

per round Calculation
of individual

tax
(Per one
voter) Voter→ Bullet

in Board
2(m – 1) +

1

((100 1))O n n+
 in first 2(m
– 1) rounds,

and at most
()O n in the

last round

Table 1 gives the communication complexity of the proposed
scheme when there are n voters and m candidates, with the value
distribution being [–50, 50]. It is shown that our protocol has low
round communication complexity (only one round) in voting
procedure, and approximate m – 1 rounds for determining the
winning candidate and calculation of the individual tax. It is clear

that most communication complexity is due to the fact that it is
player-resolved, which is used for full privacy protection purpose.

Tables 2 shows the computational complexity of the proposed
scheme. It is clear that the computational complexity of the
scheme is approximately determined by m, n and the value
distribution, so our schemes has heavy cost implication in case of
a large number of voters and candidates or a wide range of value
distribution. Therefore, a reasonable restriction of m and n and
value distribution should be applied for an efficient
implementation of our scheme.

Table 2. Computational complexity of proposed secure

Clarke tax scheme

 Computational complexity
Key pairs
generation

One modulo exponential computation and
one proof for each voter

Voting vector
generation

m encryptions and proofs for each voter

M Per one voter

Determining
the winner

100 1n + encryption
and proofs;

nm ⋅ ciphertext
multiplications;

)2100()1(+⋅− nm
ciphertext divisions.

1m − mix
permutations
((100 1n +)-input);

1m − modulo
exponential
computations and
proofs.

M Per one voter

Calculation of
individual tax

)2100()1(+⋅−+ nmm
ciphertext divisions.

)1(−⋅ mn mix
permutations
((100 1n +)-input);
at most)1(−⋅ mn
modulo exponential
computations and
proofs.

6. CONCLUSION
In this paper, we address the security issues in Clarke tax protocol
and propose a secure electronic Clarke tax voting scheme that
achieves full privacy protection of the voters and universal
verifiability, as well as other suggested security properties. We
propose the conception of full privacy protection, i.e. all
information in Clarke tax voting system are concealed during and
after the voting, except the final result of who is the winning
candidate and the tax for each voter. No one can compromise the
voters’ privacy without the cooperation of all voters. This
requirement is stronger and more realistic than those achieved by
cryptographic electronic voting systems found in the literature.
Our scheme also satisfies the universal verifiability criterion,
which means that any participant can publicly verify the
correctness of both the each step in the voting procedure and the
final voting results.

7. REFERENCES
[1] Clarke, E. H. “Multipart pricing of public goods”, Public

Choice 11, pp17-33, 1971.

[2] Clarke, E. H. “Multipart Pricing of public goods: An
example”, Public Price for Public Products, Urban Inst.,
Washington, 1972.

[3] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret
voting scheme for large scale election”, In advance in
Cryptology – Auscrypt’92, LNCS, Springer-Verlag,
pp.244-251, 1992.

[4] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and
optimally efficient multi-authority election schemes”, In
Advance in cryptology – Eurocrypt’97, Vol 1233, LNCS,
Springer-Verlag, pp. 103-118, 1997.

[5] Ephrati, Eithan and Rosenschein, Jeffery S. “Voting and
multi-agent consensus”, Technical report, Computer Science
Department, Hebrew University, Jerusalem, Israel,1991.

[6] Chaum,D., “Blind signatures for untraceable payments”,
Advances in Cryptology-CRYPTO’82 Proceedings,
pp199-203, Plenum Press, 1983.

[7] M. Abe, “Universally verifiable mix-net with verification
work independent of the number of mix-servers”, In
Advances in Cryptology-Eurocrypt’98, Vol. 1403, LNCS,
Springer-Verlag, pp.437-447, 1998.

[8] M. Stadler, “Publicly verifiable secret sharing”, In Advances
in Cryptology-Eurocrypt’96, Vol. 1070, LNCS,
Springer-Verlag, pp. 190-199, 1996.

[9] E.Fujisaki and T. Okamoto, “A practical and provably secure
scheme for publicly verifiable secret sharing and its
application”, In Advances in Cryptology-Eurocrypt’98, Vol
1403, LNCS, Springer-Verlag, pp.32-46, 1998.

[10] B. Schoenmakers, “A simple publicly verifiable secret
sharing scheme and its application to electronic voting”, In
advance in Cryptology – Crypto’99, Vol. 1666, LNCS,
Springer-Verlag, pp 148-164, 1999.

[11] R. Crammer, M. Franklin, B. Schoenmakers and M. Yung,
“Multi-authority secret ballot elections with linear work”, In
advance in cryptology-Eurocrypt’96, Vol.1070, LNCS,
Springer-Verlag, pp.72-83, 1996.

[12] J. Benaloh, Verifiable secret-ballot elections, PhD thesis,
Yale University, Department of Computer Science, New
Haven, CT, September 1987.

[13] K. Sako and J. Killian, “Secure voting using partial
compatible homomorphism”, In Advances in
Cryptology-Crypto’94, Vol. 839, LNCS, Springer-Verlag,
pp.411-424, 1994.

[14] ElGamal, T., A Public-key cryptosystem and a signature
scheme based on discrete logarithms, In Advances in
Cryptology - CRYPTO’84 Proceedings, Springer-Verlag,
p10-18, 1985.

[15] Wang, C.J. and Leung, H. F., “Secure Double Auction
Protocols with Full Privacy Protection”. In: Proceedings of
the 6th Annual International Conference on Information
Security and Cryptography, LNCS, Springer-Verlag, 2003.

[16] Schnorr, C.P.: Efficient signature generation by smart cards.
Journal of Cryptology, 4, pp 161-174, 1991.

[17] Chaum, D., Pedersen, T.P.:Wallet databases with observers.
In: Advances in Cryptology – Proceedings of the 12th Annual

International Cryptology Conference, LNCS 740, Springer
Verlag, 1992.

[18] R. Cramer, I. Damgard and B. Schoenmakers, “Proofs of
partical knowledge and simplified design of witness hiding
protocol”, Proceedings of CRYPT’94, pp.174-187, 1994.

[19] Chaum, D. “Untraceable electronic mail, return addresses,
and digital pseudonyms”, Communications of the ACM,
24(2), pp.84-88, 1981.

[20] Horster, P., Michels, M. and Petersen, H. “Some remarks on
a receipt free and universially verifiable mix-type voting
scheme”, ASIACRYPT’96, Vol. 1163, LNCS, pp.125-132,
Springer-Verlag, 1996.

[21] Park, C., Itoh, K. and Kurosawa, K. “All/nothing election
scheme and anonymous channel”, EUROCRYPT’93, Vol.
921, LNCS, Springer-Verlag, 1993.

[22] Sako, K, and Kilian, J. “Receipt-free mix-type voting scheme
– a practical solution to the implementation of a voting
booth.”, EUROCRYPT’95, Vol. 921, LNCS,
Spinger-Verlag, 1993.

[23] Jakobsson, M. and Juels, A. “Millimix: Mixing in small
batches”, DIMACS Technical Report 99-33, June, 1999.

[24] Jakobsson, M and Juels, A., “Mix and Match: Secure
Function Evaluation via ciphertexts”, Proceedings of
ASIACRYPT 2000, LNCS, Springer-Verlag, pp.162–177,
2000.

[25] Groves, T., “Incentives in Teams”, Econometrica,
41:617–631, 1973.

Appendix : Proof of the Correctness of 1-of-k ElGamal
Re-encryption

To prove the correctness of the 2-input mix box, a player first has
to prove that the each output ciphertext is a correct re-encryption
of one of the input ElGamal encryptions. In the following, we
give the general zero-knowledge proof of such problem.

Suppose there are n input ElGamal ciphertexts

1 2(), (),..., ()nE m E m E m where () (,)i ik k
i iE m g Y m= . Here, g

and Y are public and 1 2 1 2, ,... , , ,...n nk k k m m m are kept secret.
Without loss of generality, we assume that the output is the
re-encryption of w-th input ciphertext, that is, , w w wi w k k s′= = + ,
where ws is encryption exponent generated and keep privately
by the player. Now, the player proves that ()wE m is a
re-encryption of one of the 1 2(), (),..., ()nE m E m E m , without
reveal what w is. Firstly, the player calculates

/ , / , /w i w ik k k k
i i w i i i ir g g R Y m Y m H R r′ ′= = = for 1 i n≤ ≤ . Let

/h Y g= , and then /w w ws s s
wH Y g h= = . The player then proves

the knowledge of ws corresponding one of the iH by showing
the proof data

f = {S, C, C1,…,Cw-1,Cw,Cw+1,…,Cn },

where,

(1)α , C1,…,Cw-1,Cw+1,…,Cn are randomly selected integers from

qZ ;

(2) (||)C H L z= , where 1 2|| ||,...,|| nL H H H= , and

0,
α

= ≠
= ∏ i

n C
ii i w

z h H

(3) 1 2 1 1(...) modw w w nC C C C C C C q− += − + + + + +

(4) modk wS C s qα= − ⋅

Verification. Anyone can verify the correctness of
() (,)i ik k

i iE m g Y m′ ′= , by checking whether the equation:
1 2

1 1 2... (|| ,...)nCC CS
K nC C H L h H H H+ + = holds.

	page555: 556
	c0: Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICEC'04, Sixth International Conference on Electronic Commerce
Edited by: Marijn Janssen, Henk G. Sol, and René W. Wagenaar
Copyright 2004 ACM 1-58113-930-6/04/10…$5.00
	page556: 557
	page557: 558
	page558: 559
	page559: 560
	page560: 561
	page561: 562
	page562: 563
	page563: 564
	page564: 565

