
 
 

 

 

 

 

Designed synthesis of mono-dispersed silica-based nanostructures and their 

applications in drug/gene delivery  

Meihua Yu 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at 

The University of Queensland in 2014 

Australian Institute for Bioengineering & Nanotechnology



I 
 

Abstract 

Over the last two decades, silica based nanoparticles (SiNPs) have been extensively investigated as 

promising nano-carriers to deliver various therapeutic/diagnostic agents into living systems, due to 

their unique properties of tunable pore structure and particle size, easy surface modification and low 

cost. In particular, SiNPs with small sizes ( 100 nm) and high monodispersity, SiNPs possess great 

advantages in cell endocytosis process, which is vital to achieve high efficiency in biomedical 

applications. Although there have been tremendous studies in the synthesis of monodisperse 

nanometer-sized SiNPs, more efforts are still needed to develop facile, economic and 

environmentally friendly synthesis approaches for fabricating novel monodisperse SiNPs with 

desired particle size, nano-structure and functionality. The as-designed novel SiNPs are expected to 

expand their capacity in various biomedical applications, such as enhanced bio-imaging 

performance in three dimensional spheroid models, improved cellular drug/gene delivery efficiency.  

The aim of this project is to develop novel and facile approaches to prepare highly mono-

dispersed SiNPs with finely controlled structures for drug/gene delivery and gain insight into the 

roles of particle size, surface functionality on cell penetration performance and drug/gene delivery 

efficiency. The main achievements obtained in this thesis are listed below. 

In the first part, a new and facile approach has been developed to prepare monodisperse 

mesoporous silica nanospheres (MMSNs) with controlled particle sizes (50-100 nm) and pore 

diameters (2.8-4.0 nm). In this approach, MMSNs were synthesized simply in a sodium acetate 

solution without adding any other alkali or alcohol additives. By further investigations on formation 

process, we proposed a spherical micelle templating mechanism to explain the formation of 

MMSNs in our system, which is different from that of traditional highly ordered mesoporous silica 

nanoparticles (MCM-41). MMSNs developed in this part are expected to have potential applications 

in drug/gene delivery and cell imaging.  

In the second part, even smaller mono-dispersed SiNPs (ultra-small hybrid silica spheres, UHSS) 

with a diameter of only  10 nm were developed by a facile strategy under phosphate-citrate buffer 

solution (pH = 4.6) at room temperature without addition of toxic additives. Compared to traditional 

MCM-41 nanomaterials, the designed novel UHSS showed enhanced penetration ability in three 

dimensional glioma spheroids. 

Following the second part, epoxysilane functionalized UHSS (Epoxy-UHSS) with a diameter of 

10 nm were designed under similar synthesis conditions, which can be easily covalently 

conjugated with cationic polyethyleneimine (PEI) (PEI-UHSS). This designed positively charged 

PEI-UHSS demonstrated excellent delivery efficiency of a functional siRNA against polo-like 

kinase 1 (PLK1-siRNA) in osteosarcoma cancer cells (KHOS) and survivin-siRNA in human colon 

cancer cells (HCT-116) inducing a significant cell inhibition, which is comparable to commercial 
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agents. These results indicated that suitable functionality of SiNPs is significant to achieve efficient 

gene delivery. 

In the fourth part, we further investigated the influence of surface functionality of SiNPs on 

drug delivery efficiency. Hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs) 

were developed, which possess specific affinity to CD44 over expressed on the surface of a specific 

cancer cell line, HCT-116 (human colon cancer cells). Compared with bare MSNs, HA-MSNs 

exhibited a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, 

doxorubicin hydrochloride (Dox), were loaded into MSNs and HA-MSNs. Dox loaded HA-MSNs 

showed greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced 

cell internalization behavior of HA-MSNs. This work indicated that the desired surface 

functionality is also crucial to improve drug delivery efficiency. 

Apart from surface functionality, the particle size of SiNPs is expected to have significant effect 

on gene delivery efficiency. In the last part, amine modified monodisperse Stöber spheres (NH2-SS) 

with various diameters of 125, 230, 330, 440 and 570 nm were synthesized. The in vitro 

transfection efficiencies of NH2-SS were studied in HEK293T cells by delivering plasmid DNA 

encoding green fluorescent protein (GFP) (pcDNA3-EGFP, abbreviated as pcDNA, 6.1kbp).  It was 

found that an optimized particle size of 330 nm exhibited the highest expression of GFP. Our 

mechanistic study showed that the binding affinity of pcDNA/NH2-SS complexes decreased while 

the cellular uptake ability increased with NH2-SS size increasing from 125 to 570 nm. The opposite 

effects lead to an optimal NH2-SS size of 330 nm that provides the maximum gene delivery 

efficiency. A similar size-dependent gene delivery relationship was further demonstrated in another 

plasmid DNA with a bigger size of 8.9 kbp. This work for the first time demonstrates the significant 

role of particle size of cationic silica nano-carriers on gene delivery efficiency. The knowledge 

obtained from this work is crucial for the rational design of synthetic gene delivery systems with 

improved efficiency for gene therapy. 
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image are 200 nm. 

Figure 4.5  TEM images of (a) MMSNs-60-A100; (b) MMSNs-60-A130; (c) MMSNs-60-A160; (d) 

Nitrogen adsorption–desorption isotherms of the products and (e) corresponding pore 

size distributions by the BJH method using adsorption branch. The Y-axis value of 

MMSNs-60-A130, MMSNs-60-A160 is raised by 150, 350 cm3/g respectively in (d). 

Figure 4.6  (a) Digital image of the reaction solution at t = 2 h at 60 C after cooling in fridge at 4.5 

C for 1 h; TEM images of (b) as-synthesized MMSNs obtained from (a) after 

centrifugation; (c) the top layer of (a); (d) calcined MMSNs obtained from the reaction 

solution at 4 h after adding TEOS at 70 C; as-synthesized samples obtained at 80 C at 

a reaction time of 20 min (e) and 2 h (f). 

Scheme 4.1  The formation process of MMSNs through spherical micelle templating mechanism. (1) 

silica-coated CTAC micelles are formed through the co-organization of silica 

precursors and surfactant CTAC; (2) aggregation of a part of silicasurfactant 

composite micelles into disordered spherical nanospheres; (3) the primary-generated 

small particles grow homogeneously into bigger particles, and finally form 

monodisperse mesoporous silica nanospheres (MMSNs). The size of MMSNs 

increases as the reaction temperature increase. 

Figure 4.7  ATR-FTIR spectra of the reaction mixtures as a function of time in MMSNs-60 

reaction system. 

Figure 4.S1 DLS measurements of calcined MMSNs-60-A100, MMSNs-60-A130 and MMSNs-60-

A160. 

Figure 4.S2  XRD patterns of MMSNs-B10.0, MMSNs-60-B11.5 and MMSNs-60-B12.0. 

Figure 4. S3  XRD patterns of MMSNs-A100, MMSNs-60-A130 and MMSNs-60-A160. 

Scheme 4. S1 Face-centered cubic (fcc) packing models for the calculation of mesopore volume of 

MMSNs. (Left) A HSP packing model. (Right) A conventional fcc packing model.   

Figure 4. S4   Pore size distribution of MMSNs-60 in the range of 0-20 nm. 

Figure 4. S5    High magnification TEM images of MMSNs-60 (left) and MMSNs-60-B12.0 (right). 

Figure 4. S6    ATR-FTIR spectra of the reaction mixtures as a function of time in MCM-41[3] 

reaction system. 

Scheme 5.1    Schematic representation of ultra-small hybrid silica spheres (UHSS) with a diameter 

of 10 nm and their penetration in 3D glioma spheroids. The red dots in the glioma 

spheroid represent UHSS. 
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Figure 5.1  (a) TEM image of UHSS, (b) diameter distribution of UHSS measured by TEM, (c) 

DLS measurement and digital image (inset) of UHSS and (d) N2 adsorption–

desorption isotherm and the corresponding pore size distribution curve (inset) of 

calcined UHSS. 

Figure 5.2  Confocal microscopy images of U87MG spheroids treated with RBTC-UHSS at 0 mg 

ml-1 (first row), 50 mg ml-1 (second row) and 100 mg ml-1 (third row). 

Figure 5.3 Z-stack images of U87MG spheroids treated with RBTC-UHSS at 100 mg ml-1. All 

scale bars are 20 mm. 

Figure 5.S1  Solid state 13C NMR spectra of UHSS before (a) and after (b) calcination. 

Figure 5.S2   TEM image of calcined UHSS. 

Figure 5.S3 Digital images of samples of UHSS-1, UHSS-2, UHSS-3, UHSS-4, UHSS-5, and 

UHSS-6. 

Figure 5.S4  TEM images of (a) UHSS-1, (b) UHSS-2, (c) UHSS-3, (d) UHSS-4, (e) UHSS-5, and 

(f) UHSS-6. 

Figure 5.S5    DLS measurements of UHSS-1, UHSS-2, UHSS-3, UHSS-4, UHSS-5, and UHSS-6. 

Figure 5.S6   TEM images of calcined UHSS-1(a), UHSS-2(b), UHSS-3(c), UHSS-4(d), and 

UHSS-5(e). 

Scheme 5.S1 Illustration of the formation mechanism of UHSS with different diameters by 

adjusting the molar ratio of DMDMS/TMOS. 

Figure 5.S7   (a) TEM image and (b) DLS result of UHSS-HCl. 

Figure 5.S8   (a) TEM image, (b) digital image of RBTC-UHSS sample after dialysis. 

Figure 5.S9  Confocal microscopy images of B16F0 cells treated with RBTC-UHSS at 0µg/ml 

(first row), 50µg/ml (second row) and 100µg/ml (third row). Red fluorescence arises 

from RBTC dyes that are conjugated to UHSS and nuclei are stained with DAPI, 

showing blue fluorescence. 

Figure 5.S10   Confocal microscopy images of monolayer of U87MG cells treated with RBTC-

UHSS at 0µg/ml (first row), 50µg/ml (second row) and 100µg/ml (third row). 

Figure 5.S11   Hemotoxylin-Eosin (H&E) staining image of U87MG spheroid section from the 

middle. 

Figure 5.S12   Z-stack images of spheroid of U87MG cells treated without RBTC-UHSS. All scale 

bars are 20 µm. 

Figure 5.S13  TEM image of FITC-MCM-41. 

Figure 5.S14   Z-stack images of spheroid of U87MG cells treated with FITC-MCM-41at 10µg/ml. 

All scale bars are 20 µm. 
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Figure 5.S15   Cell viability of U87MG cells after treated with of UHSS at different concentrations. 

Scheme 6.1   Illustration of the polyethyleneimine conjugation process on the surface of Epoxy-

UHSS, followed by the siRNA delivery into cells. 

Figure 6.1   TEM images of (a) Epoxy-UHSS and (b) PEI-UHSS and (c) solid-state 13C CPMAS 

NMR spectra of F127, Epoxy-UHSS, and PEI-UHSS. 

Figure 6.2     Confocal microscopy images of KHOS cells treated with Cy3-oligoDNA/PEI-UHSS. 

Figure 6.3    Cell viability of (a) KHOS and (b) HCT-116 cells after treated with PEI-UHSS at 

different concentrations; delivery efficiency of (c) PLK1-siRNA in KHOS cells and 

(d) survivin siRNA in HCT-116 cells; western-blot analysis of (e) PLK1 protein in 

KHOS cells and (f) survivin protein in HCT-116 cells. 

Figure 6.S1  (a) diameter distribution measured by TEM, (b)DLS measurement (left) and (c) digital 

image of Epoxy-UHSS. 

Figure 6.S2  Chemical structures of DGMS and GPTMS. 

Scheme 6.S1 The chemical reaction between the epoxy moiety of Epoxy-UHSS and PEI. 

Figure 6.S3 TEM image of epoxysilane functionalized small particles synthesized by using (3-

Glycidyloxypropyl)trimethoxysilane and TMOS as silica source. 

Figure 6.S4    DLS measurement of PEI-UHSS 

Figure 6.S5   Zeta potential distribution curves of Epoxy-UHSS and PEI-UHSS. 

Figure 6.S6  Confocal microscopy images of KHOS cells with the treatment of free Cy3-oligoDNA. 

The cells without any treatment are as a control. 

Figure6.S7   Degradation of free PLK1-siRNA and its complex with PEI-UHSS after treated with 

RNase A monitored by the percent increase in absorbance at 260 nm. 

 

Figure 7.1   (a) XRD pattern; (b) N2 adsorption–desorption isotherm and the corresponding pore 

size distribution (inset of (b)) of calcined MSNs; TEM images of (c) MSNs and (d) 

HA-MSNs. 

Figure 7.2    (a) Zeta potential analysis of MSNs, NH2-MSNs and HA-MSNs in PBS solution; (b) 

FTIR spectra of freeze dried MSNs, HA-MSNs and HA polymer; (c) 13C NMR 

spectra of NH2-MSNs and HA-MSNs. 

Figure 7.3   Confocal microscopy images of HCT-116 cells without any treatment as a control (first 

row), with the treatment FITC labelled HA-MSNs (second row), MSNs (third row) 

and free HA (10 mg mL-1) together with FITC labelled HA-MSNs (last row). Green 

fluorescence arises from FITC dyes that are conjugated to silica nanoparticles and 

nuclei are stained with DAPI, showing blue fluorescence 
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Figure 7.4     (a) Fluorescence activated cell sorter (FACS)analysis of the FITCintensity of the cells 

treatedwith an FITC labeled CD44 antibody, MSNs, and HA-MSNs in the absence or 

in the presence of free HA (10 mg mL-1); (b) bar chart of FITC mean intensity of the 

gated positive cells (M1 indicated in Fig. 4a) treated with FITC modified silica 

particles. 

Figure 7.5   Cytotoxicity of free Dox, Dox-HA-MSNs, Dox-MSNs, HA-MSNs and MSNs against 

HCT-116 cells at different concentrationsC1, C2 and C3(for details, see Table1). 

Scheme 8.1   A schematic illustration of the bind affinity between NH2-SS and pcDNA and cellular 

uptake performance of their complexes as a function of particle size. The GFP 

transfection efficiency is the highest when the binding affinity and cellular uptake of 

pcDNA/NH2-SS complexes is balanced. 

Figure 8.1   TEM images of NH2-SS125 (a), NH2-SS230 (b), NH2-SS330 (c), NH2-SS440 (d), 

NH2-SS570 (e), NH2-SS125/pcDNA (f), NH2-SS230/pcDNA(g), NH2-

SS330/pcDNA(h), NH2-SS440/pcDNA(i) and NH2-SS570/pcDNA(j). 

Figure 8.2   GFP expression levels in HEK 293T cells by flow cytometry, after treated with naked 

pcDNA, NH2-SS125/pcDNA, NH2-SS230/pcDNA, NH2-SS330/pcDNA, NH2-

SS440/pcDNA and NH2-SS570/pcDNA at different weight ratios of NH2-SS to 

pcDNA. The Y value of fluorescence intensity of GFP = GFP positive cell percentage 

 GFP mean intensity per GFP positive cell. 

Figure 8.3    AFM images of pcDNA deposited onto mica. 

Figure 8.4   pcDNA binding capacities of NH2-SS125, NH2-SS230, NH2-SS330, NH2-SS440 and 

NH2-SS570 measured by Nanodrop. 

Figure 8.5 Agarose gel electrophoresis of NH2-SS/pcDNA demonstrating plasmid 

DNA/nanoparticle complexation with increasing amounts of NH2-SS (μg). The 

amount of pcDNA was constant (0.5 μg). 

Figure 8.6    Internalization performances of complexes NH2-SS125/pcDNA, NH2-SS230/pcDNA, 

NH2-SS330/pcDNA, NH2-SS440/pcDNA and NH2-SS570/pcDNA into HEK 293T 

cells by measuring the silicon amount per cell. 

Figure 8.7   GFP expression levels in HEK 293T cells by flow cytometry after treated with naked 

H1, NH2-SS125/H1, NH2-SS230/H1, NH2-SS330/H1, NH2-SS440/H1 and NH2-

SS570/H1 at different weight ratios of NH2-SS to H1. The Y value of fluorescence 

intensity of GFP = GFP positive cell percentage  GFP mean intensity per GFP 

positive cell. 

Figure 8.8  a) H1 adsorption capacities of NH2-SS125, NH2-SS230, NH2-SS330, NH2-SS440 and 

NH2-SS570 measured by Nanodrop; b) agarose gel electrophoresis of NH2-

SS/H1demonstrating plasmid DNA/nanoparticle complexation with increasing 

amounts of NH2-SS (µg). The amount of H1 was constant (0.5 μg).  

Figure 8.9  Internalization performances of complexes NH2-SS125/H1, NH2-SS230/H1, NH2-

SS330/H1, NH2-SS440/H1and NH2-SS570/H1 at w/w = 160 into HEK 293T cells by 

measuring the silicon amount per cell. 
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NH2-SS330, NH2-SS440, NH2-SS570 and their complexes with pcDNA or H1. 

Figure 8.S2  GFP expression levels in HEK 293T cells by flow cytometry, after treated with 
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intensity of GFP = GFP positive cell percentage  GFP mean intensity per GFP 

positive cell. 

Figure 8.S3  Confocal images indicating expressed GFP in HEK 293T cells, after treated with 

naked pcDNA, NH2-SS125/pcDNA, NH2-SS230/pcDNA, NH2-SS330/pcDNA, NH2-

SS440/pcDNA and NH2-SS570/pcDNA. 

Figure 8.S4    Particle size distribution curve of pcDNA measured by DLS method. 

Figure 8.S5 Cell viability of HEK 293T after treated with NH2-SS particles at different 

concentrations (100, 200, 300µg/ml). 

Figure 8.S6  GFP expression levels in HEK 293T cells by flow cytometry, after treated with 

PEI/H1 complexes with different N/P ratios. The Y value of fluorescence intensity of 

GFP = GFP positive cell percentage GFP mean intensity per GFP positive cell. 

Figure 8.S7  Confocal images indicating expressed GFP in HEK 293T cells, after treated with 

naked H1, NH2-SS125/H1, NH2-SS230/H1, NH2-SS330/H1, NH2-SS440/H1 and 

NH2-SS570/H1.  
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Introduction 

1.1 Significance of the project 

 

In recent decades, the application of nanotechnology in medicine (so called nanomedicine) has been 

revolutionized due to the rapid developments in nanotechnology.
1
 Various kinds of nanomaterials 

have been used in nanomedicine, because they can penetrate into cells and efficiently deliver 

therapeutic or diagnostic agents into living systems by taking advantage of their small sizes.
2-4

 

Compared with traditional organic lipid or polymer based nanomaterials, the inorganic counterparts 

possess unique properties including inertness, stability and ease of functionalization. In particular, 

silica based nanoparticles (SiNPs) with excellent biocompatibility, tunable pore/ particle size and 

controllable surface chemistry have attracted enormous research interest in various bio-applications, 

including cell imaging, diagnosis and bioanalysis, and drug/gene delivery.
5-7

 SiNPs with a small 

size ( 100 nm) and high monodispersity possess advantages in cell endocytosis process, which is 

vital to achieve high efficiency in biomedical applications. Although there have been tremendous 

studies in the synthesis of mono-dispersed nanometer-sized SiNPs, still more efforts are needed to 

develop facile, economic and environmentally friendly synthesis approaches for fabricating novel 

mono-dispersed SiNPs with desired particle sizes, nano-structures and functionalities. The designed 

novel SiNPs are expected to expand their capacity in various biomedical applications, such as 

enhanced bio-imaging performance in three dimensional (3D) spheroid models, and improved 

cellular drug/gene delivery efficiency. 

1.2 Research objective and scope 

 

This project aims to develop novel and facile approaches to prepare highly mono-dispersed SiNPs 

with finely controlled pore structures, particle sizes (10-100 nm), surface functionality for highly 

efficient drug/gene delivery and gain insight into the roles of particle size, surface functionality on 

cell penetration performance and drug/gene delivery efficiency. This thesis does not only focus on 

the development of facile synthesis of highly mono-dispersed SiNPs with novel structure properties, 
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but also provide some guidelines for the design of highly efficient delivery systems for various 

biomedical applications. The objectives of this project are specified as follows:   

1) To develop facile approaches to synthesize various types of highly mono-dispersed SiNPs with 

finely controlled pore structure (dense, porous and hybrid), particle size (10-100 nm) and 

surface functionality and then to fully characterize their structure properties.  

2) To evaluate the influence of particle size and mono-dispersity of SiNPs on cell penetration 

ability in both monolayer and 3D spheroid models of various types of cells. 

3) To comprehensively study the influence of surface functionality of SiNPs on small anticancer 

drug and siRNA delivery efficiency; 

4) To gain insight of the role of particle size of highly mono-dispersed SiNPs on large plasmid 

DNA (pDNA) transfection efficiency by deeply investigating the interaction between SiNPs and 

pDNA and the cellular uptake performance. 

SiNPs with various nano-structures can be fabricated by controlling the nucleation and growth 

in the sol-gel process of silica precursors and/or its assembly process with structure directing agents 

(surfactants).  During the sol-gel process, a strong acid or alkali usually is utilized as a catalyst to 

initiate the hydrolysis and condensation of silicon alkoxides. It would be of great interest if the 

harsh conditions could be avoided to generate mono-dispersed SiNPs with small sizes for bio-

medical applications. In this thesis, it is hypothesized that a salt of a weak acid and a strong base 

(e.g. NaAc), biological buffer with a pH near neutral condition could slow down the hydrolysis and 

condensation of silica sources, which is beneficial for the generation of  mono-dispersed SiNPs with 

small sizes within 100 nm (Objective 1, Chapter 4, 5 and 6). For mono-dispersed SiNPs with ultra-

small sizes, it is hypothesized its cell penetration ability is much higher in mono-layer and 3D 

spheroid models, compared with conventional SiNPs (Objective 2, Chapter 5).  Besides particle 

sizes, surface functionality is also crucial on cell penetration performance and subsequent 

anticancer drug/siRNA delivery efficiency. Polyethylenimine (PEI) has been regarded as an 

efficient cationic group, which has a higher endosomal escape capability, favoring a high gene 

silencing efficacy. It is hypothesized that successful surface modification of PEI on the ultra-small 

SiNPs could highly improve the siRNA delivery efficiency by taking advantages of small particle 

sizes and proper surface functionality (Objective 3, Chapter 6). For anticancer drugs, it is 

hypothesized that surface modification of biodegradable and biocompatible hyaluronic acid (HA) 

could increase anticancer accumulation carried by HA attached SiNPs in CD44 over-expressing 

cancer cells (Objective 3, Chapter 7).  Different from small cargoes, plasmid DNA (pDNA) is much 
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bigger. It is hypothesized that pDNA would affect the sizes of SiNPs and subsequent cellular uptake 

after forming complexes, and there is an optimized particle size of highly mono-dispersed SiNPs for 

a high transfection efficiency of pDNA (Objective 4, Chapter 8). 

1.3 Thesis outline 

 

This thesis is written according to the guidelines of the University of Queensland. The outcomes of 

this PhD thesis are presented in the form of journal publications. The chapters in this thesis are 

presented in the following sequence:  

Chapter 1. Introduction 

This chapter introduces the background of this project and outlines the research objectives 

Chapter 2. Literature review 

This chapter presents an overview on current synthesis mechanism, functionalization strategies for 

SiNPs and their biological applications in drug/gene/protein delivery and cell imaging/sensing. 

Chapter 3. Methodology 

This chapter summarizes the strategies utilized in the whole PhD project, including material 

synthetic methods for SiNPs, and the techniques for material characterizations and biological 

evaluations. 

Chapter 4. A Simple Approach to Prepare Monodisperse Mesoporous Silica Nanospheres 

with Adjustable Sizes 

This chapter reports a new and facile approach to prepare monodisperse mesoporous silica 

nanospheres (MMSNs) with controlled particle sizes (50-100 nm) and pore diameters (2.8-4.0 nm). 

MMSNs developed in this part are expected to have potential applications in drug/gene delivery and 

cell imaging. 

Chapter 5. Facile synthesis of ultra-small hybrid silica spheres for enhanced penetration of 3D 

glioma spheroids 

In this chapter, even smaller mono-dispersed SiNPs (ultra-small hybrid silica spheres, UHSS) with 

a diameter of only  10 nm were developed by a new and facile strategy under phosphate-citrate 

buffer solution (pH = 4.6) at room temperature without addition of toxic additives. Compared with 
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traditional MCM-41 nanomaterials, the designed novel UHSS showed enhanced penetration ability 

in 3D glioma spheroids. 

Chapter 6. An approach to prepare polyethylenimine functionalized silica-based spheres with 

small size for siRNA delivery 

Following Chapter 5, epoxysilane functionalized UHSS (Epoxy-UHSS) with a same diameter of 

10 nm were designed under similar synthesis condition, which can be easily covalently conjugated 

with cationic PEI (PEI-UHSS). This designed positively charged PEI-UHSS demonstrated excellent 

delivery efficiency of functional siRNA against polo-like kinase 1 (PLK1-siRNA) in osteosarcoma 

cancer cells (KHOS) and survivin-siRNA in human colon cancer cells (HCT-116) by inducing a 

significant cell inhibition, which is comparable to commercial agents. These results indicated that 

suitable functionality of SiNPs is significant to achieve efficient gene delivery. 

Chapter 7. Hyaluronic Acid Modified Mesoporous Silica Nanoparticles for Targeted Drug 

Delivery to CD44-overexpressing Cancer Cells 

In this chapter, the influence of surface functionality of SiNPs was further evaluated on small 

anticancer drug delivery efficiency. HA modified SiNPs were designed, which possess specific 

affinity to CD44 over expressed on the surface of a specific cancer cell line, HCT-116 (human 

colon cancer cells).  An anticancer drug (doxorubicin hydrochloride, Dox) loaded HA-SiNPs 

showed greater cytotoxicity to HCT-116 cells than free Dox and Dox-SiNPs due to the enhanced 

cell internalization behavior of HA-SiNPs. This work indicated that the desired surface 

functionality is also crucial to improve drug delivery efficiency. 

Chapter 8. An unusual size-dependent gene delivery relationship of monodispersed silica 

nanoparticles 

Apart from surface functionality, the particle size of SiNPs is expected to have significant effect on 

gene delivery efficiency. In Chapter 8, positively charged solid mono-dispersed SiNPs with various 

diameters (125-570 nm) were designed to exclude the influence of internal porosity of nanoparticles.  

It was found that an optimized particle size of 330 nm exhibited the highest expression of GFP by 

delivering the large pDNA (6.1 and 8.9 kbp) into cells. This unusual observation is different from 

the well-accepted understanding that small particle sizes ( 100 nm) are preferred for efficient 

cellular delivery. It was identified that both factors of binding affinity and cellular uptake were 

crucial to the performance of gene therapy. These findings provide design modes to optimize gene 

transfection efficiency of synthetic gene delivery systems. 
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Chapter 9. General discussion and outlook  

This chapter presents a general discussion of the work in this thesis and outlook for the future work. 

1.4 References  

 

1. Kim, B.Y.S., J.T. Rutka, and W.C.W. Chan, Current Concepts: Nanomedicine. New England 

Journal of Medicine, 2010, 363(25), 2434-2443. 

2. Liong, M., et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug 

delivery. Acs Nano, 2008, 2(5), 889-896. 

3. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature Reviews 

Drug Discovery, 2005, 4(2), 145-160. 

4. Doane, T.L. and C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug 

delivery and therapy. Chemical Society Reviews, 2012, 41(7), 2885-2911. 

5. Mai, W.X. and H. Meng, Mesoporous silica nanoparticles: A multifunctional nano therapeutic 

system. Integrative Biology, 2013, 5(1), 19-28. 

6. Mamaeva, V., C. Sahlgren, and M. Linden, Mesoporous silica nanoparticles in medicine-Recent 

advances. Advanced Drug Delivery Reviews, 2013, 65(5), 689-702. 

7. Tang, F.Q., L.L. Li, and D. Chen, Mesoporous Silica Nanoparticles: Synthesis, 

Biocompatibility and Drug Delivery. Advanced Materials, 2012, 24(12), 1504-1534. 



Chapter 2 Literature Review 

6 
 

CChhaapptteerr  22    
     Literature review 

This chapter reviews the existing studies on silica based nanoparticles (SiNPs) for biomedical 

applications. It begins with a brief introduction to current nanomaterials that have been widely used 

in medicine in 2.1. SiNPs are then proposed to be promising candidates to deliver therapeutic or 

diagnostic agents into living systems. The background of SiNPs in synthesis mechanism, 

functionalization strategies is overviewed in section 2.2. The biological applications of SiNPs in 

drug/gene/protein delivery and cell imaging/sensing are reviewed in section 2.3. Finally the 

conclusion is given in section 2.4 and the critical issues and potential challenges are discussed on 

synthesis design and biological applications of SiNPs.   

2.1 Nanoparticles for applications in medicine 

Nanomedicine in clinical diagnosis and treatment has been revolutionized due to the rapid 

developments in nanotechnology.
1
 The application of nanoparticles in medicine is an emerging field 

of nanomedicine. Because of their small sizes, nanoparticles can penetrate into cells and efficiently 

deliver therapeutic or diagnostic agents into living systems.
2-4

 Numerous kinds of nanoparticles 

(Figure 2.1) have been extensively tested on biosystems, which can be generally divided into 

organic and inorganic nanoparticle systems. Many of the conventional organic drug delivery 

systems (such as liposomes, micelles and polymers) have reached the later stages towards clinical 

applications (Figure 2.1) and a few of them have even received U.S. Food and Drug Administration 

(FDA) approval (Table 2.1). From a scientific point of view, there are several major barriers 

hindering the clinical translation of laboratory-developed nanocarriers:
5,6

 (1) insufficient loading 

capacity of therapeutic agents with controlled release profiles, (2) limited targeting ability towards 

desired sites in the context of multiple in vivo physiological barriers, (3)  inherent toxicity properties 

and (4) cost and scalable fabrication. Because of the limitations of conventional nanocarriers, a 

variety of inorganic delivery systems are emerging, which have special structures and 

chemophysical properties (such as robust framework, ease of preparation and functionalization).
2,7

 

Compared with conventional drug delivery nanocarriers, most of inorganic nanocarriers (e.g. 

quantum dots, iron oxide, mesoporous silica nanoparticles (MSNs) are still in their pre-clinical 

stages of development (Figure 2.1), with a few exceptions (such as Gold nanoparticles listed in 

Table 2.1). However, successful demonstrations of some inorganic nanocarriers’ efficacy, excellent 
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biocompatibility and safety profile at the cellular and intact animal level are extremely encouraging 

from the perspective of moving these platforms into clinical trials. For example, silica-based 

nanoparticles (SiNPs) have tunable pore structures and particle sizes, high specific surface area, 

large pore volume and easy surface modification. These unique properties endow them with 

advantages to load and deliver various therapeutic agents to the targeted sites.
6-8

 Additionally the 

fabrication of SiNPs is simple, scalable and cost-effective. More importantly, silica has excellent 

compatibility and is accepted as “Generally Recognized As Safe” (GRAS) by the FDA and has 

been widely used as additives in cosmetics and food.
9,10

 Recently, the first silica based diagnostic 

nanoparticles called “C-dots” (Cornell dots)
11,12

 have received the FDA approval for stage I human 

clinical trial in melanoma patients. This represents an important step towards clinical applications of 

SiNPs.  

 

Figure 2.1 The scheme shows the leading nanocarriers for drug delivery and their general stages of 

development. The top row shows the representative conventional nanocarriers such as liposomes, 
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micelles, dendrimers, and polymers. The bottom row shows novel inorganic nanocarriers such as 

carbon nanotubes, quantum dots, iron oxide, gold, and mesoporous silica nanoparticles.
7
 

Table 2.1  Representative drug delivery carriers on the market or in clinical trial.
7
 

Nanocarrier platform 

Delivered  

therapeutic agent 

Stage (Date)  

in development Drug name Indications 

Liposome Doxorubicin Approved ((November 17, 

1995) 

Doxil Kaposi's sarcoma, recurrent 

breast cancer, and ovarian 

cancer13 

Vincristine Approved (May 21, 2004) OncoTCS Non-Hodgkin's lymphoma14 

Daunoxome Approved (May, 1996) Daunoxome Kaposi's sarcoma15 

Polymeric micelle Paclitaxel Phase II clinical trial  Genexol-PM Non-small-cell lung cancer 

(NSCLC)16 

Albumin (protein–drug 

conjugate) 

Paclitaxel Approved (January 7th, 2005) Abraxane Metastic breast cancer17 

Gold 

 

 

Silica   

Recombinant human 

 tumor necrosis factor 

 (rhTNF) 

cyclic 

arginineglycine-

aspartic acid (cRGD) 

peptide, and 124I 

Phase II clinical trial 

 

 

Phase I clinical trial 

AurImmune™ 

 

 

C dots 

Pancreatic cancer, melanoma, 

soft tissue sarcoma, ovarian, 

and breast cancer18 

Human melanoma12 

 

 

2.2. Synthesis and functionalization of SiNPs 

A wide variety of SiNPs have developed for biomedical applications such as therapeutic 

drug/gene/protein delivery, cell imaging and intracellular sensing, which include solid, mesoporous, 

hollow and hybrid silica particles.  

2.2.1 Synthetic routes of SiNPs 

Sol-gel technique is the most common method for SiNPs fabrications. Knowledge of nucleation and 

growth mechanisms in sol-gel process of silica precursors is an important prerequisite for 

controllable synthesis of SiNPs with desired nanostructures.  

In 1968, Stöber et al.
19

 described a pioneering method for the synthesis of mono-dispersed solid 

SiNPs by the hydrolysis and condensation of silicon alkoxides in a mixture of alcohol and water  

using ammonia as a catalyst. The silica particle diameter can be adjusted from 50 nm to 2 µm, 

simply by varying the catalyst and/or precursor concentrations. It has been demonstrated that solid 

SiNPs synthesized by Stöber method can be used in gene delivery utilizing the surface space and 
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surface charge properties, which will be introduced in details in section “2.3.1.2 Gene delivery”. By 

a modified Stöber method, C dots (a class of highly fluorescent and photostable core-shell solid 

SiNP with diameters of 7-30 nm) have been synthesized for diagnostic applications and have 

reached stage I human clinical trial.
11,12

  

MSNs are the most common used type of SiNPs for nanomedicine applications.  MCM-41 type 

of MSNs with uniform mesopore sizes and a long-range ordered pore structure were first reported 

in the early 1990s by soft-templating method.
20,21

  Since then, different types of MSNs with various 

pore sizes/nanostrucutres and morphology have been developed and widely used in many 

applications such as catalysis, separation, sensors and drug delivery. The following section is going 

to focus on the controlled synthesis of several major types of MSNs that have been utilized for bio-

applications, including MCM-41, MCM-48 and SBA-15 types of MSNs.   

 

Figure 2.2 Possible mechanistic pathways for the formation of MCM-41: ( 1 ) liquid crystal phase 

initiated and (2) silicate anion initiated.
20

  

MCM-41 is the most extensively studied type of MSNs for biomedical applications. MCM-41 

with two-dimensional (2D) hexagonal p6m mesopore structure and a pore size of 2-3 nm was 

synthesized by utilizing cetyltrimethylammonium bromide (CTAB) as the templating surfactant, 

tetraethyl orthosilicate (TEOS) or sodium silicate (Na2SiO3) as the silica sources, and alkali as 

catalyst.
21

 Liquid crystal templating (LCT) mechanism was proposed for the formation of MCM-41 

with two possible pathways (Figure 2.2). (1) The surfactant self-aggregates into micelles in aqueous 

solution, followed by the formation of micellar rods. After stacking of the cylindrical micelles into a 

regular array of micelle liquid crystals, the anionic silicate will deposit on the positively charged 

micelle liquid crystals. Removing surfactant leads to mesoporous silica materials. (2) The 

cooperative assembly of surfactant and silicate leads to the generation of organic-inorganic 

composite of liquid crystals. The mesopores of silica materials will be generated after removing 

surfactants. With deep understanding on the formation mechanisms of MSNs and availability of 

various types of surfactants, the particle sizes, morphology, pore sizes/structures of MSNs can be 
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rationally controlled.
22,23

 Particle size has been regarded as one of the most important structure 

parameters of MSNs for biomedical applications, because MSNs with small sizes possess advantage 

in cell endocytosis process, which is crucial to achieve high efficiency in bio-applications.
24,25

  

Biomedical applications require MCM-41 type MSNs with an ideal diameter less than 100 nm, 

and these have been prepared by different methods. For example, Imai and co-workers have 

successfully synthesized MCM-41 type MSNs with diameters of 20-50 nm using a binary surfactant 

templating approach,
26

 however, aggregation and polydispersity of MSNs are limitations for their 

biological application. To resolve the aggregation issue, uniform and highly ordered MSNs were 

prepared utilizing highly diluted surfactant solutions,
27-30

 however this method leads to low yields 

and difficulty in product collection. Bein et al. reported a high-yield approach to synthesize 

colloidal mesoporous silica (CMS) particles with controlled sizes and various functional groups,
31-33

 

where triethanolamine (TEA) was used as the base and also the complexing agent for silicate 

species to limit the growth and aggregation of particles. Huo and his co-workers further investigated 

the formation of CMS, and proposed a new mechanism to understand the growth mechanism of 

CMS.
34

 It is proposed that the rate of hydrolysis and condensation of silicon alkoxide at different 

pH controls the sizes of CMS, and the addition of additive agents with certain acid-base buffer 

capacity is necessary to obtain homogeneous CMS.
34

 Tatsumi and his co-workers have reported a 

new method to obtain discrete mesoporous silica nanospheres, which was based on the emulsion 

system containing silica source, surfactant, water and basic amino acid.
35

 Until now, the availability 

of various MCM-41 type MSNs with small sizes ( 100 nm) and high monodispersity provides the 

possibility of improving the efficiency of MSNs in bio-applications.  

MCM-48 as another important type of MSNs has also attracted much attention in biomedical 

applications, which has three-dimensional (3D) bicontinuous mesopores with cubic Ia3d 

structure.
36,37

 The bicontinuous pore channels are considered to be helpful for fast molecular 

transport and easy molecular accessibility. In 1990s, the synthesis of MCM-48 was rather 

complicated where cationic-anionic co-surfactants were utilized as templates and high temperature 

and long reaction time was involved. Moreover, the particle sizes of MCM-48 were large ( 1µm), 

which were not suitable for biomedical applications. In 2010, Kim et al. reported a facile approach 

to synthesize mono-dispersed spherical MCM-48 based on modified Stöber method utilizing 

triblock copolymer Pluronic F127 as a particle size designer. The particle sizes can be controlled 

within the range of 70-500 nm by adjusting the amount of F127. Moreover, the pore diameter can 

also be precisely controlled from 2.3 to 3.3 nm by using different alkyl chain surfactants. The 

ability of tailoring the particle sizes and monodispersity of MCM-48 type MSNs is important to 

achieve their applications in biomedical fields.
38,39
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Another type of MSNs for bioapplications is SBA-15 silica materials.  SBA-15 was firstly 

synthesized in strong acidic condition using amphiphilic triblock copolymer EO20PO70EO20 

[Pluronic P123, EO refers to poly(ethylene oxide), PO refers to poly(propylene oxide)] as template 

in 1998.
40

 SBA-15 also has a 2D hexagonal p6mm mesostructure, but has a much thicker wall and 

bigger pore sizes (5-30 nm) than MCM-41.  Generally the particle sizes of SBA-15 are in several 

micrometers. In recent years, several methods have been developed to generate SBA-15 type MSNs 

in sphere, rod and ellipsoid shapes with reduced sizes in sub-micrometer range.
41-43

 However, there 

are still few successful examples of SBA-15 type MSNs utilized in biomedical applications.
43

 Most 

of the SBA-15 type MSNs is still far away from ideal candidates for biomedical applications with a 

particle size less than 200 nm and excellent monodispersity.   

     In the past decade, mono-dispersed silica-based spheres with diameters of several to a few tens 

of nanometres, an emerging type of SiNPs, have attracted increasing attention in fluorescence and 

magnetic resonance imaging, and diagnosis applications.
44-48

 Several synthesis methods have been 

developed to generate mono-dispersed silica-based spheres with small sizes. For example, Huo et al. 

reported the use of FDA approved Pluronic F127 micelles to template silica deposition in the 

hydrophilic PEO shell region in acidic solution, to form robust silica cross-linked micellar core-

shell nanoparticles with an ultrafine and uniform size of  12 nm.
44

 To terminate the silicate 

condensation and prevent interparticle aggregation and growth, dimethyl-silane was introduced in 

the reaction solution after a certain time of adding TEOS. Tan et al. reported a facile synthesis of 

similar hybrid micelles with a diameter of ~ 14 nm by interfacial templating condensation method 

in the mixture of water and tetrahydrofuran (THF).
45

 Yuan et al. reported the use of commercially 

unavailable diblock copolymer micelles comprising cationic poly(2-(dimethylamino)ethyl 

methacrylate) (PDMA) coronas and hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) 

(PDPA) cores as nanosized templates for the deposition of silica under neutral aqueous solution at 

20C, to form silica hybrid spheres with a diameter of  35 nm.
49

 In a previously reported work, 

ultra-small silica hollow spheres with a diameter of ~ 24.7 nm were synthesized in strong acidic 

condition after removing surfactant where trimethylbenzene (TMB) is utilized as a swelling agent.
25

 

Recently, Ma et al. reported one-pot synthesis of PEGylated MSNs with controllable diameters 

from 6 to 9 nm where cationic CTAB was used as the template and the extraction process to remove 

the toxic surfactant.
50

 Such small silica-based spheres with uniform nanometer-size and excellent 

monodispersity and stability in aqueous media have shown enhanced cellular uptake in their bio-

applications.
25

 It is crucial for further bio-medical applications towards clinical use.   
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    In addition, hollow/rattle type of SiNPs also shows great potentials in bio-medical 

applications.
6,51

  As this type of SiNPs is not the focus in this thesis, detailed information about their 

synthesis and bio-application will not be introduced here.   

2.2.2 Surface functionalization strategies of SiNPs 

Besides particle size, surface property is another key factor affecting the efficacy of SiNPs in 

biomedical applications. SiNPs modified with desired functional groups have shown improved 

adsorption capacities to bioactive molecules/drugs, increased targeting ability to desired sites, 

enhanced biocompatibility, demanded release of cargos, etc.  

The surface of SiNPs can be modified by two commonly used methods: co-condensation (one-

post synthesis) or grafting (post-synthesis modification).
52

 The surface functional groups can be 

selectively either on the external or internal surfaces of SiNPs.   

In co-condensation (one-pot) synthetic method, organoalkoxysilanes with functional groups and 

tetraalkoxysilane silica sources are added into the reaction solution together to produce organic-

functionalized SiNPs in one step. The advantages of this method are: (1) suitable for various 

organoalkoxysilanes; (2) applicable to different reaction conditions; (3) homogeneous coverage of 

functional groups. However, the addition of organoalkoxysilanes into the 

tetraalkoxysilane/surfactant solution could affect the self-assembly process and the 

structure/morphology of the final materials. Thus, in this method, the concentration and type of 

organoalkoxysilanes should be carefully chosen during the synthesis functionalized SiNPs. 

Moreover, this method results in non-selective modification of functional groups on both internal 

and external surfaces of MSNs type SiNPs. Additionally, solvent extraction method is the only way 

to remove the surfactant to preserve the organic functional groups introduced to the mesostructured 

SiNPs.  

In the case of grafting (post-synthesis method), the functional organoalkoxysilanes are introduced 

on the surface of SiNPs by silylation on free (Si-OH) and germinal ( Si(OH)2 ) silanol groups. 

For MSNs type of SiNPs, the surfactant is usually removed by calcination or extraction method. 

Calcination (normally at 400-650C) process leads to the condensation of silanol groups, limiting 

the grafting amount of functional groups, while the extraction process (acid/alcohol mixtures for 

cationic surfactants, alcohols for non-ionic surfactant) will maintain most of surface silanol groups. 

This method has some advantages: (1) retaining the mesostructure of MSNs type of SiNPs after 

grafting functional groups; (2) having a wide range of functional groups by utilizing different 

organoalkoxysilanes; (3) selectively functionalizing the internal or external surface of MSNs type of 
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SiNPs. As shown in Figure 2.3, the as-synthesized MSNs with surfactant inside the mesopores will 

be obtained by self-assembly process (Figure 2.3A-B), then could be first grafted with one 

organoalkoxysilane on the external surface (Figure 2.3C). After removal of the surfactant by 

extraction method (Figure 2.3D), the inner surface can be grafted with another functional group 

before loading cargo inside inner pores (Figure 2.3E). However, the functional groups introduced 

by grafting method have an inhomogeneous distribution on the surface of MSNs type of SiNPs with 

a higher density around the pore entrance and the external surface of final materials.  

 

Figure 2.3 Schematic illustration for the synthesis and selective functionalization of MSNs.
53

 

   The selective modification of the external surface is important with specific ligands for tumor 

targeting,
54

 pore gating molecules for controlled release
55

 or cationic groups/polymer for carrying 

negative cargos on the outer surface.
56

 Desired surface modification can be easily achieved in 

SiNPs due to the unique chemist properties, but serious aggregation of SiNPs tends to happen. Thus, 

researchers should pay special attention to maintain the dispersity of SiNPs during the fabrication of 

multifunctional SiNPs.   

2.3 Cellular uptake mechanisms of SiNPs 

Efficient cellular uptake of SiNPs is of great significance during their biological applications, which 

is dependent on particle sizes,
24,25

 surface charges,
57-59

 shapes
60-62

 and structures, and has also been 

reported to be cell type-specific.
57,58,62

 Xing et al. demonstrated that the uptake of silica-coated 

nanoparticles by human cervical cancer cells (HeLa) was a concentration-, time-, and energy-

dependent endocytic process.
63

 The uptake of silica-coated nanoparticle was found to take place 

through adsorptive endocytosis and fluid-phase endocytosis. Slowing et al. investigated the 

influence of the external surface functionalities of MCM-41-type on the uptake efficiency of MCM-
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41 as well as their ability to escape endosomal compartments.
59

 By controlling the surface charge 

(zeta potential) of MCM-41, the authors demonstrated that ionic MCM-41 with high surface 

charges can easily escape endosomal entrapment, which could be attributed to the osmotic pressure 

caused by the high density of ions of highly charged MCM-41. The endosomal escape ability is a 

key factor taken into account in designing effective intracellular delivery vehicles for drugs and 

genetic molecules. In addition, the uptake efficiency by cancer cells significantly increased by 

grafting folic acid on the surface of MCM-41, which was associated with the participation of folic 

acid receptors in the surface of the cells. Clathrin pits were identified as the main pathway of non-

functionalized MCM-41 while folic acid receptor-mediated endocytosis of folic acid modified 

MCM-41. Amine and guanidinium functionalized MCM-41 entered into cells by a clathrin and 

caveolae independent mechanism.
59

  Huang et al. designed three different shaped mono-dispersed 

MSNs with similar particle size and surface charge but different aspect ratios (ARs, 1, 2, 4).
61

 It was 

found that these different shaped MSNs were internalized into A375 human melanoma cells by 

nonspecific cellular uptake. Rod-shaped MSNs with a larger AR showed increased and faster 

cellular uptake and consequently a greater effect on apoptosis, migration and disturbed organization 

of the cytoskeleton.  

These studies have shown that MSNs themselves can also play an active role in mediating 

biological systems. Therefore, the knowledge on cellular uptake mechanisms of SiNPs provides 

useful information for the design of efficient drug/gene delivery systems. 

2.4 Biological applications of SiNPs 

In 2001, MCM-41 type of SiNPs was firstly reported as a drug nanocarrier, which exhibited high 

drug loading and sustained drug release in simulated body fluid.
64

 Since then, the influence of 

structure parameters were extensively studied on ex vivo drug release performance.
65

 It was not 

until 2003 that drug delivery into cells using MSNs as a vehicle was reported.
55

  The bio-

applications of MSNs type of SiNPs have become one of the most attractive areas in nanomedicine. 

MSNs have been successfully developed as a multi-functional nanocarrier to deliver 

therapeutic/diagnostic agents (such as chemical drugs, genetic molecules, and imaging probes) into 

various cells or animal models. 
6,8,51

 

      2.4.1 Therapeutic agent delivery  

SiNPs with various structures have demonstrated the capacity of delivering different types of guest 

molecules, including pharmaceutical drugs, therapeutic genes and proteins (Figure 2.4).  
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Figure 2.4 SiNPs as versatile drug delivery systems for a variety of therapeutic agents including 

pharmaceutical drugs (ibuprofen, doxorubicin, and docetaxel), therapeutic genes (plasmid DNA, 

antisense oligonucleotides, and siRNA), and therapeutic proteins and peptides (cytochrome C and 

peptide).
6
 

2.4.1.1 Drug delivery 

SiNPs have been used as nanocarriers for various types of pharmaceutical drugs such as anti-

inflammatory drug ibuprofen,
64

 hydrophilic anticancer drug doxorubicin,
66

 hydrophobic 

camptothecin
67

 and curcumin.
68

 Take hydrophobic drugs for example, low aqueous solubility 

hampers the ability of drugs to be administered through the intravenous and oral routes. The 

intestinal permeability classification is based on a comparison to the intravenous injection.  Both 

solubility and permeability are highly important for orally administered drugs. According to the 

Biopharmaceutics Classification System (BCS), drugs can be divided into four classes: class I-high 

soluble and high permeable, class II-low soluble and high permeable, class III-high soluble and low 

permeable and class IV-low soluble and low permeable. The poor solubility and low dissolution 

rate of hydrophobic drugs in the aqueous gastrointestinal fluids often cause very low oral 

bioavailability. Especially for class II drugs, the bioavailability may be enhanced by increasing the 

solubility and dissolution rate of the drug in aqueous media. As for BCS class II drugs, 

bioavailability limiting is caused by low drug release rate from the dosage form and low solubility 

in the gastric fluids, not the insufficient absorption, thus solubility increase in turn enhances the 

bioavailability for BCS class II drugs. MSNs have been developed as efficient delivery systems for 

solubility enhancement. Lu et al. reported the first use of MCM-41 with pore diameter of 2 nm to 

deliver hydrophobic camptothecin (CPT, a class II drug) into various cell lines, which shown 

enhanced the cellular uptake of CPT compared to pure CPT in aqueous medium.
67

 However, the 
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solubility and oral bioavailability of CPT after confining in MCM-41 were not evaluated in this 

work. Mellaerts et al. utilized MSNs with a pore size of 7.3 nm as a carrier for poorly water-soluble 

drug itraconazole, a class II drug.
69

 After loading into MSNs, the oral bioavailability of itraconazole 

was significantly increased in rabbits and dogs, compared with the marketed product Sporanox


 

and pure itraconazole, due to the enhanced solubility and dissolution rate in aqueous environment. 

However, the pore size influence is not clear on the solubility enhancement of poorly water-soluble 

drugs. In a recent published report,
68

 by confining the hydrophobic anticancer drug curcumin, a 

class IV drug, into a serial of MCM-41 materials with adjustable pore sizes from 1.0 to 2.2 nm, its 

solubility increased with decreasing the pore size, reaching a maximum of 1.40 µg/ml (4.5 times of 

pure curcumin) at the optimal pore size of 1.70 nm. However, the curcumin solubility significantly 

deceased when the pore size of MCM-41 was further decreased from 1.7 to 1.0 nm, due to the 

failure of encapsulating curcumin into MCM-41 with small pore sizes. The further application of 

MCM-41 with finely controlled pore sizes is on the way to optimize the oral bioavailability of 

curcumin in rats.  

SiNPs have also been widely used to deliver another hydrophobic drug, photosensitizers (PSs), to 

improve the efficiency of photodynamic therapy (PDT). As an emerging new medical treatment, 

PDT has been used for both internal cancers (lung, stomach or bladder cancers)
70-72

 and surface skin 

diseases.
73

 It involves the use of low toxicity PSs and harmless visible light in combination with 

oxygen to produce cytotoxic reactive oxygen species (ROS) such as singlet oxygen (
1
O2), which 

oxidize cellular molecules and kill malignant cells.
74

 PSs described so far in literature have 

presented several disadvantages. Mainly, most existing PSs are hydrophobic and may aggregate in a 

physiological environment, which leads to the decrease of 
1
O2 quantum and limit their potential 

clinical applications.
75

 Moreover, ROS are also usually involved in the initiation, progression and 

metastasis of cancers, thus are considered oncogenic when applied in healthy cells.
76

 Therefore, PSs 

are required to selectively accumulate in tumor cells. Even though much efforts are focused on 

developing the third generation of PSs with a covalently link to target receptors over-expressed in 

cancer cells, very few have been evaluated for their clinical applications mainly because the in vivo 

selectivity is not high enough.
77

 In order to address this issue, many groups are trying to incorporate 

PSs into various biocompatible nanocarriers, such as liposomes,
78

 oligopeptide,
79

 polymeric 

micelles
80

 and SiNPs.
81-84

 Indeed, encapsulation had led to the administration of the PSs in 

monomeric form without loss of activity.
81

 Moreover, nano-scaled carriers tend to be entrapped 

within solid tumors due to leaky vasculature of the fast-growing tumor, which is called “enhanced 

permeation and retention effect” (EPR) or “passive” targeting.
85

 Among various nanoparticles, 

SiNPs have recently emerged as a promising vehicle for PDT applications. This is because the 
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porosity of porous silica nano-materials is not susceptible to swell or decompose with pH change. 

More importantly, the feasibility of surface modification of silica nanoparticles offers an 

opportunity to achieve “active” targeting to tumor cells, via conjugating with cell membrane 

receptor antibodies, peptides or other small cell surface ligands. Generally, PSs can be immobilized 

into the pores/surface of silica nanoparticles through covalent or non-covalent interactions, and both 

methods appear to be efficient in PDT.
81

 SiNPs functionalized with specific biomolecules for PDT 

applications have been reported (a monoclonal antibody,
86

 mannose,
87

 cRGDyK peptides,
88

 or folic 

acid
89

), in order to target various human cancer cells (breast cancer cells and human glioblastoma 

cells).  

2.4.1.2 Gene delivery 

   Gene therapy is a promising treatment where foreign genetic molecules (nucleic acids) are 

introduced into living cells to supplement or alter genes to treat various diseases.
90,91

 Therapeutic 

genes generally include small-interfering RNA (siRNA), plasmid DNA (pDNA) and antisense RNA 

during gene therapy. However, naked nucleic acids themselves cannot enter into cells and are easily 

degraded by nucleases in the blood,
92

 therefore, current research efforts are focused on the design of 

efficient carriers, which could compact and protect nucleic acids (DNA or RNA). Generally, gene 

delivery systems are divided into viral
93

 or non-viral vectors.
94

 Initial studies mainly focused on 

using viral carries, due to their high efficiency at delivering genetic agents. However, there are 

some issues associated with viral vectors, including toxicity, immunogenicity, inflammatory 

response, and carcinogenicity.
95-97

 Compared with viral vectors, synthetic gene delivery systems 

(Figure 2.5) including polymeric
98

 and liposomal
99

 agents, peptides
100

 and inorganic nanoparticles 

(such as gold, quantum dots, layer double hydroxides, calcium phosphate, carbon nanotubes, and 

silica) exhibit moderate gene delivery efficiency, but offer many  advantages, such as ease of 

preparation/functionalization, and reduced risk of immunogenicity. Over the years silica based 

nanocarriers have attracted increasing attention for gene delivery because of their unique properties, 

such as tunable particle/pore sizes, stable and rigid framework, feasibility of surface modification 

and low cost.
56,101-103

 

In 2000, Chen et al. firstly reported the application of solid SiNPs in gene delivery.
105

  The 

aminosilane modified solid silica nanoparticles were prepared with diameters of 10-100 nm, which 

demonstrated strong binding capacity toward pDNA and efficient protection against enzymatic 

degradation.
105

 Successful in vitro gene transfection induced by such nanoparticles was observed, 

especially in the presence of serum and chloroquine.
106

 At the same time, Luo et al. found that the 

unmodified solid silica nanoparticles can serve as mediators to enhance gene transfection efficiency.  
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Figure 2.5 Different types of nanoparticles which can be used for the transfer of nucleic acids into 

living cells.
104

 

In a three-component transfection system (i.e. unmodified solid silica nanoparticles-pDNA-

commercial transfection agent), the unmodified dense silica nanoparticles could enhance -

galactosidase protein expression by up to 750% over the commercial transfection reagents.
107

 The 

increment was attributed to increased accumulation of pDNA-transfection agent complexes at the 

cell surface. Moreover, the enhancement of gene transfection was dependent on the diameter of 

silica nanoparticles; the larger silica nanoparticles with a diameter of 225 nm increased the gene 

transfection more significantly than the smaller ones (25 and 50 nm in diameters), which was 

attributed to the faster settling of larger silica particles on cell surface.
108

  In 2004, MSNs with a 

diameter of about 180 nm were first used for pDNA delivery, in which a polyamidoamine 

dendrimer was covalently bound to the surface of MSNs to complex with the negatively charged 

pDNA while the mesopores carried a fluorescent dye as a drug model.
56

 This cationic MSNs 

exhibited higher transfection efficiency compared with several commercial cationic polymers. The 

particle sedimentation effect
108

 was introduced to explain the transfection enhancement. In 2005, 

Bharali et al. reported the application of organically modified silica (ORMOSIL) nanoparticles as 

vectors for efficient in vivo gene delivery.
109

 After stereotaxic injections of ORMOSIL 

nanoparticles complexed with pDNA encoding for EGFP, into the mouse brain, the results showed 

that the transfection efficiency of ORMOSIL equalled or exceeded that by using viral vector. This 



Chapter 2 Literature Review 

19 
 

success is a significant landmark in nonviral gene carries because of a comparable in vivo 

transfection efficiency compared with viral vectors. In 2011, Kim et al. demonstrated that aminated 

mono-dispersed mesoporous silica nanoparticles (MMSN) (250 nm in diameters) with large pores 

( 23 nm) showed a higher loading capacity for pDNA, significantly efficient protection from 

nuclease-mediated degradation and much higher transfection efficiency, compared to those with 

small pores (∼ 2 nm).
102

 This work emphasizes the significance of pore size of silica nanoparticles 

in gene transfection efficiency.  

 

Figure 2.6 The siRNA delivery system using a silica nanoparticle with a large pore diameter of 

about 23 nm.
110

 

Gene silencing via siRNA in particular has great potential in the treatment of various diseases 

due to its outstanding efficiency and target specificity.
112

 siRNAs are duplexes of 21-23 nucleotides 

with a size of approximately 7.52 nm,
113

 which can be synthesized and introduced into cells 

directly. The introduced siRNAs form complex with RNA-Induced Silencing Complex (RISC) in 

the cytoplasm and then unwind into single stranded RNAs which guide the RISCs to 

complementary RNA molecules, where the new synthetic double-stranded RNAs are cleaved by the 

Argonaute protein (AGO), and then the targeted mRNA is silenced.
114

 The negative charge and big 

molecular size of siRNA impair its accessibility to the cells. To achieve the gene silencing 

efficiency of siRNA, effective intracellular delivery systems are desired to exploit the therapeutic 

potential of siRNA. In 2009, polyethylenimine (PEI) functionalized MCM-41 was used for siRNA 

delivery, showing efficient knockdown of green fluorescent protein (GFP) and low cytotoxicity.
115
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Figure 2.7 Illustration of: a) the synthesis procedure, and, b) the comparison of cellular delivery 

performance between two nanocarriers. a) Sample 1 represents silica nanoparticles, which can be 

further modified with positively charged amine groups or polyethylenimine (PEI). Sample 2 

comprises the negatively charged silica nanoparticles with small diameters. Sample 3 was prepared 

by using amino-modified 1 as the core and 2 as the shell particles after calcination, which is 

modified with amine groups or PEI. b) Compared to smooth nanocarriers, rough ones exhibit both 

higher binding ability towards biomolecules (e.g., proteins and genetic molecules) and increased 

cellular uptake efficiency, independent of surface functionality.
111

 

In 2012, Na et al. reported the use of amine-functionalized MSNs with a large pore diameter of 23 

nm to deliver siRNA in in vitro and in vivo, which showed highly efficient knockdown efficiency of 

target proteins (vascular endothelial growth factor (VEGF) and GFP).
110

 Compared with 

commercial gene transfection agent, Lipofectamine 2000, this delivery vehicle demonstrated higher 

gene silencing efficiency and much lower cytotoxicity. As shown in Figure 2.6, this siRNA delivery 

vehicle was able to load siRNA molecules into the pores with high loading capacity and protection 

from nuclease, which could explain its high gene transfection efficiency. Hartono et al. also 

successfully prepared a poly-L-lysine functionalized large pore MSNs but with a cubic 

mesostructure for siRNA delivery, where the particle size was about 100-200 nm and the pore 

diameter was  28 nm.
116

 The authors chose PLK1 (polo-like kinase 1)-siRNA to investigate the 

gene delivery efficiency of the large pore MSNs. It has been well reported that PLK1 gene is highly 

expressed in osteosarcoma cells and knockdown of PLK1 proteins induces apoptosis.
117

 After 

adsorption of PLK1-siRNA into the inner pores, significant inhibition of osteosarcoma cancer cell 

viability was observed due to the efficient silence of PLK1 proteins. Apart from pore sizes, the 
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topology of SiNPs also plays a significant role in siRNA delivery efficiency. Recently, solid rough 

SiNPs mimicking viral surface topography showed enhanced siRNA delivery efficiency compared 

with smooth solid SiNPs.
111

  The rough surface enhanced the siRNA adsorption and cellular uptake 

performance, resulting in efficient gene silence. Furthermore, rough SiNPs exhibited both higher 

binding ability towards other biomolecules (e.g., proteins and DNA) and increased cellular uptake 

efficiency, independent of surface functionality, compared with smooth ones (Figure 2.7). 

Additionally, Li et al. developed a multifunctional MSNs-based siRNA delivery functionalized with 

magnetic nanoparticles, PEI and fusogenic peptide, which was highly effective for initiating 

targeted gene silencing both in in vitro and in vivo.
118

  

2.4.1.3 Peptide and protein delivery 

Furthermore, SiNPs held a promise as carriers for therapeutic peptides and proteins in many 

medical applications, including cancer treatment, vaccination and regenerative medicine.
119,120

 

Compared with gene therapy, protein-based treatments may be safer because permanent genetic 

changes are not involved, only transient alterations of proteins.  

 

Figure 2.8 Schematic process of a typical endocytic pathway for delivery vehicles with protein 

cargoes. (a) Cell-surface attachment of protein delivery vehicles; (b) internalization of delivery 

vehicles via endocytosis; (c) endosomal escape of delivery vehicles or (d) lysosomal degradation; (e) 

target protein diffuses into cytoplasm; (f) transport of target proteins to specific organelle; (g) 

participation in cellular functions such as signal transduction; (h) exocytosis of delivery vehicles.
120

 

Intracellular protein delivery is the main hurdle of protein-based approaches due to the large sizes, 

varying surface charges and fragility of most native and active proteins.
121

 The native proteins are 

unstable and rapidly degraded or inactivated in serum. Moreover, native proteins are membrane 

impermeable because of the electrostatic repulsions. Therefore, efficient delivery carriers for 
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protein cargoes are highly demanded. Additionally, the carriers are required to help the proteins to 

achieve endosomal escape (Figure 2.8), like the case in siRNA delivery. To successfully reach the 

desired subcellular compartments, the carriers/proteins must be able to escape from the endosome to 

avoid the clearance and degradation under harsh lysosomal conditions.
122

 In the past decade, 

various nanocarriers have been generated to deliver proteins into cells and have demonstrated 

promising efficacy in protein-based treatments, including liposomes, polymers, inorganic 

nanoparticles and protein-based carriers.
120

 The recently reported examples of nanocarriers for 

protein delivery are listed in Table 2.2.  It can be seen that nanosized SiNPs have proven the 

potential of immobilization and intracellular delivery of various types of proteins.
123,124

  Slowing et 

al. first reported the utilization of MSNs with a large pore diameter of 5.4 nm for intracellular 

delivery of cytochrome C.
123

 The authors quantitatively analysed enzymatic activity of the released 

protein in physiological buffer solutions and found that the enzymes released from the MSNs were 

still functional and highly active in catalyzing the oxidation of 2, 2’-azino-bis(3-

ethylbenzthiazoline-6-sulfonate) (ABTS) in the presence of hydrogen peroxide, which was identical 

compared to native cytochrome C. Moreover, it showed that MSNs with large pores was an 

efficient transmembrane delivery vehicle and achieved controlled release of the membrane-

impermeable protein of cytochrome C in human cervical cancer cells (HeLa). Bale et al. utilized the 

hydrophobic solid SiNPs functionalized with n-octadecyltrimethoxysilane (n-ODMS) (155 nm in 

diameter) to immobilize and effectively deliver proteins into a human breast cancer cell line (MCF-

7) and rat neural stem cells (NSCs) while retaining the biological activity of the delivered 

proteins.
124

 The authors demonstrated that delivery of ribonuclease A (RNase A) and the antibody 

to phospho-Akt (pAkt) resulted in the initiation of cell death. In contrast, delivery of control protein 

conjugates (e.g., those containing green fluorescent protein or goat antirabbit IgG) resulted in 

minimal cell death. Lim et al. reported the use of hollow mesoporous silica capsules (HMSCs) with 

large surface holes (25-50 nm) to effectively transport large functional proteins such as antibodies 

into HeLa cells.
125

  

Table 2.2 Summary of recently reported nanocarriers for the protein intracellular delivery. 
120

 

Types of nanocarriers Physical properties Delivered protein Cell lines used 

Lipid-

mediated 

Cationic lipid TFA-DODAPL:DOPE126 Positively charged Phycoerythrin α-chain, β-

chain; BSA; β-galactosidase; 

caspase-3; caspase 8; 

granzyme B; cytochrome c 

NIH-3T3; HeLa-S3; 

BHK-21; CHO-K1; B16-

F0; 293; MDCK; P19; 

Jurkat; Ki-Ras 267β1 

DOGS (dioctadecylglycylspermine)127 Size: 500–900 nm; BSA; β-galactosidase; 

IgG(anti-actin); IgG(anti-

CHO; BHK; Jurkat 
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Types of nanocarriers Physical properties Delivered protein Cell lines used 

positively charged tubulin); phycoerythrin 

FuGENE6™; BioPORTER™128 Positively charged β-Galactosidase; caspase-3 C6 glioma cells; rBCEC4 

Amphiphile (CholCSper)/DOPE129 Size: 200 nm; 

positively charged 

Phycoerythrin  BHK-21  

Polymeric-

based 

PEI-based attachment130-135 Positively charged RNase; eGFP; IgG; anti-

S100C; p53; simian virus 40 

large T-antigen 

NIH-3T3; KMS-6; 

OUMS-36; HEK293; 

HeLa; K562; HFL-1; 

Saos-2 

PPAAc-NH2/streptavidin136   Biotinylated anti-CD3 

antibody 

Jurkat 

Glucose-coated beads137 Size: 150 nm EGFP  mES; Hela 

pH-responsive core–shell 

nanoparticles
138

 

Size: 200 nm at pH 

7.4, 580 nm below pH 

6.8 

Ovalbumin (OVA) BMDCs; dendritic 

DC2.4 

Self-assembled cationic nanogels139,140 Size: 20–40 nm; 

positively charged 

BSA; β-galactosidase; Tat-

NLS-GFP; BoHc/A 

CHO-K1; cos-7; NIH-

3T3; HeLa; nasal 

mucosal dendritic cells 

Acid-degradable particles by inverse 

emulsion polymerization
141

 

Size: 200–500 nm OVA RAW309.1 CR 

macrophage 

Acid-degradable particles by double 

emulsion evaporation
142,143

 

Size: 250 nm OVA RAW309.1 CR 

macrophage 

Single-protein nanocapsules144-146 

Size: 8–20 nm; 

positively charged 

GFP; BSA; HRP; SOD; 

caspase-3; Klf4 

HeLa; MCF-7; CHO; 

MEF 

Charge-conversional polyion complex 

(PIC) micelles147 

Size: 50 nm; 

positively charged 

Cytochrome c; anti-NPC 

mouse IgG 

HuH-7  

Amphiphilic poly(amino acid) 

derivatives148 

Size: 250–300 nm; 

negatively charged 

OVA Immature DCs 

Inorganic-

based 

Single-walled carbon nanotubes 

(SWNT)149-151 

Size: 1–5 nm in 

diameter for SWNT 

BSA; streptavidin; 

cytochrome c 

HL60; Jurkat; CHO; 

NIH-3T3 

Quantum dots 152 Core diameter: 20 nm YFP; b-phycoerythrin HEK 293T/17; COS-1 
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Types of nanocarriers Physical properties Delivered protein Cell lines used 

Gold nanoparticles 153 Core diameter: 2.5 

nm; positively charged 

β-Galactosidase HeLa; COS-1; MCF-7; 

C2C12 

Mesoporous silica nanoparticles 

(MSNs)123 

Size: 200 nm; pore 

diameter: 5.4 nm 

Cytochrome c HeLa 

Hydrophobically functionalized silica 

nanoparticles
124

 

Size: 15 nm Anti-pAkt MCF-7; NSCs 

Magnetic nanoparticles
154

 Size: 300–400 nm; 

negatively charged; 

magnetic moment at 

saturation: 14.3 emu 

g−1 

SOD; catalase BAEC  

Protein-

mediated 

Polyomavirus-like nanoparticles
155

 Size: 35 nm GFP Swiss 3T3 

Superpositively charged GFP variants156 Positively charged Cre recombinase HeLa; BSR; NIH-3T3; 

IMCD PC12 

Engineered protein G system157   Goat anti-mouse IgG HeLa 

 

The authors found that the efficiency of protein delivery by HMSC was 3-22 folds higher than that 

of conventional MSNs.  

There are limited reports on the use of SiNPs as antigen carriers for vaccine delivery.
119

 The 

potential of MSNs as a vaccine delivery system was firstly reported by Mercuri et al. in 2006 where 

SBA-15 type MSNs was utilized as a carrier to carry, protect and deliver antigens, bacterial 

recombinant protein In1.
158

 The author demonstrated improved antibody responsiveness in mice.  

The ability of SBA-15 as an antigen carrier to elicit an immune response was further confirmed 

by Carvalho et al. in 2010.
159

 The authors evaluated the ability of SBA-15 to modulate the immune 

responsiveness of mice immunized with bovine serum albumin (BSA) encapsulated SBA-15 

through the intramuscular or oral route and compared with the responsiveness induced by BSA 

encapsulated aluminum hydroxide salts or emulsified Incomplete Freund adjuvant. The results 

shown that SBA-15 type MSNs improved the immunogenicity and repaired the responsiveness of 

the constitutively low responder individuals inducing both the IgG2a and the IgG1 isotypes. In 2012, 

Wang et al. investigated the vaccine delivery capacity of three different types of MSNs (S2, S1 and 

SBA-15) with different particle sizes (130, 430 nm and 1-2 μm), pore sizes and shapes by oral route 
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to find out the relationship between the silica architecture and immunological properties.
160

 Model 

antigen BSA was chosen to load into these MSNs. S2 shown highest level of IgG and IgA titers 

induced by loading BSA (S1>S2>SBA-15) due to its large honeycombed pores and the optimal 

particle diameter of 430 nm. The hollow structured MSNs (HMSN) were also studied as vaccine 

carriers by Guo et al.
161

 Porcine circovirus type-2 (PCV2) GST-ORF2-E protein was loaded into 

HMSNs and then injected into mice. HMSNs were found to have better binding capacity and 

delivery profile of protein. Importantly, the immune response induced by HMSN/PCV2 GST-

ORF2-E complex was maintained for a relatively long period of time. Recently, Mahony et al. 

investigated the immunization of model protein antigen ovalbumin (OVA) on MCM-41 for vaccine 

delivery vehicle in mice.
162

 The authors found that amino-functionalized MCM-41 (AM-41) 

showed enhanced binding capacity towards OVA, 1.5 times higher (72 mg OVA/g AM-41) than 

nonfunctionalized MCM-41 (29 mg OVA/g MCM-41). OVA adsorbed AM-41 induced both 

antibody and cell-mediated immune responses after subcutaneous injections. It is concluded that 

exciting progress has been achieved in the field of vaccine delivery using SiNPs in the last decade. 

2.4.1.4 Combination therapy 

Recently, combination therapy with complementary or synergistic effect has attracted increasing 

attention for various diseases treatment. It is highly desired to develop efficient delivery systems 

which could simultaneously carry two or more therapeutic agents in a coordinated manner. With 

advantages of tunable pore/particle sizes and large pore volume, MSNs have been proven to be 

promising co-delivery systems. 
101,163-168

 MSNs offer both internal and external surface for loading 

different cargoes to achieve co-delivery. In 2009, Zhao et al. designed boronic acid-functionalized 

MSNs (BA-MSN) to achieve glucose-responsive controlled release of both insulin immobilized on 

the exterior surface and cyclic adenosine monophosphate (cAMP) loaded in the interior mesopores. 

163
 Chen et al. utilized MSNs to co-deliver anticancer drug doxorubicin (Dox) and a siRNA (as a 

suppressor of cellular antiapoptotic defense) simultaneously into multidrug-resistant cancer cells for 

efficient cancer therapy.
101

 Specifically, Dox was encapsulated into the interior meopores of MSNs. 

Then the Dox loaded MSNs were modified with generation 2 (G2) amine-terminated 

polyamidoamine (PAMAM) dendrimers to efficiently complex with siRNAs targeted against 

mRNA encoding nonpump resistance Bcl-2 protein. The authors found that the complex can enter 

into multidrug-resistant A2780/AD human ovarian cancer cells to induce cell death. The anticancer 

efficacy of Dox increased 132 times compared to free Dox, because the simultaneously delivered 

siRNA efficiently overcome the nonpump resistance. Meng et al. further proved that co-delivery 

strategy is highly efficient to overcome multiple drug resistance (MDR) to improve cancer 

treatment.
167,168

 The authors used functionalized MSNs to effectively deliver anticancer drug Dox as 
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well as P-glycoprotein (Pgp) siRNA to a drug-resistant cancer cell line (KB-V1 cells) to accomplish 

cell killing in a synergistic manner.
167

 Recently, the authors further demonstrated that the dual 

delivery system resulted in synergistic inhibition of MDR breast cancer cells (MCF-7/MDR cells) 

in vitro as well as tumor growth in vivo.
168

 Zhu et al. for the first time designed an enzyme-triggered 

drug and gene co-delivery system by utilizing hollow mesoporous silica (HMS) modified with 

enzyme degradable PLL polymer as nanocarriers.
169

 Ashley et al. reported report MSNs-supported 

lipid bilayers (called protocells) to synergistically combine the advantages of liposomes and 

MSNs.
164

 After modification with a targeting peptide, protocells exhibited a 10,000-fold greater 

affinity for targeted human hepatocellular carcinoma than for hepatocytes, endothelial cells or 

immune cells. Furthermore, protocells can be loaded with therapeutic (drug cocktail, siRNA and 

toxins) and diagnostic (quantum dots) agents. The designed multi-functional protocells can 

efficiently cause a kill of drug-resistant human hepatocellular carcinoma cell, with a 10
6
-fold 

improvement over comparable liposomes. 

2.4.2 Targeted delivery 

It has been well documented that targeted delivery is vital for efficient cancer therapy because most 

anticancer drugs distribute throughout the body and can be harmful to healthy cells.
170

 To minimize 

side effects, it would be desirable to specifically increase therapeutic agents’ concentration at the 

target sites. Much efforts has been devoted to develop SiNPs modified with active targeting 

moieties, including specific ligands (such as folic acid,
171,172

 mannose
87

 and arginine-glycine-

aspartate (RGD)
173

), peptides,
88

 and antibodies.
54

 The abundant silanol groups (Si–OH) facilitate the 

modification of the above active moieties, thereby achieving active targeting of SiNPs to specific 

cancer cells. Active targeting action will enhance the cellular uptake of SiNPs in defective cells, 

leading to significant improvement in cancer therapy. 

Hyaluronic acid (HA) is a biodegradable, biocompatible and non-immunogenic 

glycosaminoglycan. As a major component of extracellular matrix, HA is essential for proper cell 

growth, organ structural stability and tissue organization,
174,175

 and has been extensively 

investigated for biomedical and pharmaceutical applications. In particular, researchers focused on 

the use of HA as a targeting moiety for cancer therapy, because many types of tumor cells over-

express HA receptors like CD44.
170

 Since HA has multiple functional groups available for chemical 

conjugation with anticancer drugs
170,176

 or nanocarriers of drugs/gene,
177,178

 HA-attached 

drugs/nanocarriers have been developed to increase therapeutic agent accumulation specifically in 

CD44 over-expressing cancer cells. In addition to the targeting function, HA modified delivery 

systems can enter cells more efficiently via the HA receptor-medicated endocytosis pathway. 

Utilizing CD44-HA specific affinity is therefore an attractive strategy for cancer targeting treatment. 
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Ma et al. firstly reported the design synthesis of MSNs-HA conjugate.
179

 After loading with CPT, 

HA-MSNs showed enhanced cytotoxicity to HeLa cells. However, the improvement in cell toxicity 

is not significant compared to free CPT. Although it was claimed in this report that CD44 positive 

HeLa cells were used, there is no evidence or literature support that the HeLa cells used in this work 

are CD-44 positive. Moreover, because HA coated at the outer surface of MSNs is very hydrophilic; 

the nature of drug may also have influence on the cytotoxicity. Therefore, more efforts are still 

needed to rationally design targeting moieties modified SiNPs to improve drug delivery efficiency 

at targeted cells/sites. 

2.4.3 2D and 3D in vitro models of tumors 

Most cancer and tumor biological studies of SiNPs are based on two-dimensional (2D) cell models 

(monolayers). However, the flat and hard plastic or glass substrates commonly used for monolayer 

cell cultures are not representative of multi-layer cellular environment in the real tissues. Such 

simplified conditions limit the potential of 2D cell culture model to predict the cellular responses of 

real organisms. In contrast, three-dimensional (3D) culture models more closely mimic the cell-to-

cell and cell-to-extracellular matrix (ECM) interactions as well as the topography found in in vivo 

tumor environment.
180

 

Many studies have demonstrated significant differences between 2D and 3D culture models in 

terms of gene expression, 
181

 cell physiology,
182

 chemosensitivity, 
183

 and survival advantages.
184

 To 

model solid tumors more effectively, various 3D culture systems have been established including 

cellular multilayers, matrix embedding cultures, hollow fiber bioreactor, ex vivo cultures and 

multicellular spheroids (MCSs).  

Cellular multilayer model is the simplest approach to generate 3D culture where the cells are 

cultured on porous membranes coated with collagen up to 20 layers. This model has been used for 

drug discovery and transport studies,
185,186

 which is convenient for the measurement of the mass 

transport depth.  It is particularly useful for cancer cell lines which do not form spherical clusters. 

However, it fails to take into account of the blood vessel barrier during the transport studies.  

In the hollow fiber bioreactor approach, cells form solid model in capillaries made of 

polyvinylidine fluoride (PVDF). This model has been utilized to investigate the metabolism and 

cancer cell resistance generated in solid tumors. The major drawback of this 3D model is the fiber 

wall influence on tumor growth.   

The ex vivo culture system is to culture tissue explants in vitro, which are closest to in vivo 

tumors. However, the availability and reproducibility of this approach is limited. 
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Table 2.3 Advantages of the techniques for self-assembly of MCSs.
187

 

 

MCSs are the most widely used 3D tumor models. In the absence of attachment substrates or 

scaffolds, cells aggregate and compact to form tightly bounded cellular spheres through the self-

assembly process. The spheroid creates the in vivo like microenvironment by forming molecular 

gradients, complex cell-to-cell interactions and cell-to-(ECM) interactions.
187

 Various methods have 

been developed to form spheroids, including pellet culture, spinner culture, handing drop, liquid 

overlay, rotating wall vessel, external force, cell sheets, microfluidics and micro-molded 

hydrogels.
187

 The advantages of these spheroid forming techniques are summarized in Table 2.3. It 

is important to note that not all cell lines readily form well-defined spheroids, and some cells have 

been demonstrated to form only loose aggregates. The sizes of spheroid tumors can be varied from 

20µm to larger than 1mm in diameter.
188

 The cells in the outer layer are exposed to nutrients, 

leading to a rapid proliferation. The enclosed layer consist of quiescent cells followed by a necrotic 

core. Compared to monolayer cancer cells, such 3D tumor structures have demonstrated 

significantly increased resistance to chemotherapeutic drugs, such as cisplatin and paclitaxel,
189,190

 

because the drugs have limited access to the necrotic core. Cellular adhesion in the 3D systems has 

also been found as another reason for increased resistance to therapeutics.
191,192

 Therefore, 

traditional 2D cell culture models have limitations for studying in vivo cell biology and cell 

physiology. Cells grown in a three-dimensional (3D) environment more closely represent cellular 

function of natural organs and tissues. 

There are increasing reports on the penetration ability evaluation of nanoparticles in 3D culture 

models.
193,194

 However, the behavior of SiNPs in 3D culture models has rarely been studied. More 

efforts are desired to investigate the penetration ability of SiNPs and subsequent delivery efficiency 

of therapeutic agents. 

      2.4.4 Cell imaging and sensing  
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Molecular imaging is the visualization, characterization, and measurement of biological processes 

at the molecular and cellular levels in humans and other living systems,
195

  which is very important 

to gain better understanding on mystery of  life. Due to the diversity, temporal-spatial variation of 

biological activities in cells and the whole body, the precise monitor and visualization of biological 

processes in highly changing. Therefore, the analysis techniques are required to be fast-response, 

high stable, in situ and in-real time. The functionalized fluorescent nanoparticles based cell imaging 

and sensing techniques are of great interest because they have great potential to meet such 

requirements.
196-199

 Taking advantage of their small sizes, nanoparticles-based imaging agents can 

offer unprecedented interactions with biomolecules on surface of/inside cells. More importantly, 

multi-functionality is the main advantage of fluorescent nanoparticles over traditional approaches. 

Nanoparticles can integrate targeting ligands, imaging labels, and other agents for targeted 

molecular imaging. Several types of nanoparticles have been employed for cell imaging and sensing 

applications, including quantum dots,
197

 Gold nanoparticles,
198

  carbon dots,
200

, dye-doped 

SiNPs
199,201

  etc. Of these agents, functionalized dye-doped SiNPs have widely used for intracellular 

sensing, tracking, cell surface reporter recognition and fluorescence imaging both in in vitro and in 

vivo (Figure 2.9), due to their stable fluorescent brightness, high chemical stability, excellent 

biocompability and flexible modification properties.
199

  

 

Figure 2.9 Functionalized fluorescent SiNPs in the applications of intracellular sensing and 

tracking, cell surface reporter recognition and fluorescence imaging in small animals.
199

 

     Generally, various luminescent organic or inorganic dye molecules can be encapsulated inside of 

silica matrix to form dye-doped SiNPs, which can produce a highly amplified signal and improve 

the imaging sensitivity, compared with a single dye molecule. In addition, functionalized 

fluorescent SiNPs can protect the biological environment from potentially toxic interaction between 
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cells and doped-dye SiNPs, also greatly reduce photobleaching and photodegradation of free dye 

molecules.  

2.4.4.1 Synthesis of fluorescent SiNPs  

There are two principal approaches to synthesize dye-doped SiNPs: the Stöber method and 

reverse microemulsion method.   

As introduced in Section 2.2.1, Stöber method is simple and efficient approach to produce mono-

dispersed solid SiNPs with a broad range of diameters from 50 nm to 2m. Van Blaaderen and co-

workers for the first time reported the covalent incorporation of organic fluorescent dye into Stöber 

silica spheres.
202

 In 2005, Wiesner and co-workers at Cornell University further extended this 

approach to develop water-soluble, non-toxic fluorescent core-shell silica nanoparticles (C dots) in 

a size range of 20-30 nm.
11

 The C dots as biological probes shown enhanced dye quantum 

efficiencies, brightness and stability and reduced energy transfer effects, because of the restricted 

rotational mobility of organic dyes entrapped in the core of the C dots and the protection from 

molecular quenchers and solvent effects.
203

 In 2009, the authors developed even smaller C-dots (7 

nm) and further modified with poly(ethylene glycol) (PEG), which showed efficient renal clearance 

in mice compared with unmodified C dots.
204

  Moreover, the C dots modified with the cyclic 

arginineglycine-aspartic acid (cRGD) peptide and radiolabeled with 124I showed its selective tumor 

targeting and real-time multimodal imaging in both small and large animal models.
12

 This work has 

led to C dots receiving the FDA investigational new drug approval for a first-in-human clinical trial 

in 2011. The researchers are about to launch their first-in-human clinical trial in melanoma patients 

using this silica based inorganic nanoparticle to be approved as a diagnostic agent.  

The second method to prepare dye-doped SiNPs is a water-in-oil reverse microemulsion 

protocol,
205

 which involves water, surfactant and oil. The hydrolysis and condensation of silica 

precursors and the formation of nanoparticles with dye trapped inside occur at the interface of 

surfactant stabilized water droplet inside the oil phase, to form fluorescent SiNPs. By changing the 

charge and packing properties of the surfactant in the micelles, water to surfactant ratio or the 

amount of free water and ammonium hydroxide concentration, the diameter of spherical and mono-

dispersed SiNPs can be adjusted from 20 to 500 nm.
206,207

 The monnodispersity of SiNPs with 

diameters of 30-60 nm obtained by reverse microemulsion method is superior compared to Stöber 

approach. However, the use of large amount of surfactants requires an extensive washing time, 

which limits the potential of microemulsion method for industrial/mass production.  
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At the beginning, the reverse microemulsion method can only be used to incorporate inorganic 

dyes, but the resultant inorganic-dye-doped SiNPs have limited fluorescence intensity, because 

inorganic dyes have lower quantum yields compared with organic fluorophores.
208,209

 Organic dye-

doped SiNPs are difficult to prepare using this method due to hydrophobic properties of the organic 

dyes compared with the hydrophilic surface of the SiNPs. In 2004, Tan and co-workers reported a 

modified microemulsion method to successfully incorporate the organic dye into SiNPs.
210

 Since 

then, various single-dye doped SiNPs and multiple-dye incorporated SiNPs can be generated using 

this method for ratiometric fluorescence probes or fluorescence resonance energy transfer (FRET) 

mediated large Stokes shifting fluorescence probes.
199

  In addition, hybrid SiNPs doped with 

quantum dots have also been reported for cell imaging using the microemulsion method.
211

 The 

coating of silica shell can reduce quantum dots’ toxicity and improve its water-solubility.  

In addition, Huo et al. developed an hybrid fluorescent SiNPs by micelle templating approach, 

where F127 micelles to template silica deposition in the hydrophilic PEO shell region in acidic 

solution, to form a robust silica cross-linked micellar core-shell nanoparticles with a ultrafine and 

uniform size of  12 nm.
44

  Recently, Wang et al. utilized this approach to obtain an ultra-small, 

high stable and sensitive dual nanosensor for imaging intracellular oxygen and pH in cytosol.
47

 

Furthermore, the fluorescent pH-sensitive small SiNPs doped in an agarose matrix demonstrated 

their potential in monitoring bacterial growth and metabolism.
48

   

Furthermore, hollow mesoporous silica nanoparticles (HMSNs) with a large cavity inside and 

mesopores in the silica walls have also been reported for optical imaging, positron emission 

tomography (PET), magnetic resonance imaging (MRI) and ultrasound imaging in both in vitro and 

in vivo models.
212

 

2.4.4.2 Fluorescent SiNPs for cell imaging  

Sensitive and selective labelling and tracking of cell surface receptors is significant for diagnosis of 

early stage diseases and monitoring biological processes. Antigen-antibody and ligand-receptor 

recognition processes offer specific affinity, thus dye-doped SiNPs as cell imaging agents were 

modified with different antibodies or targeting ligands to selectively and efficiently label antigens 

or receptors over-expressed in targeted cells. For example, Peng et al. utilized lactobionic acid 

(LA)-conjugated RuBpy-doped SiNPs to successfully identify live liver cancer cells in a mixed cell 

system and precisely label a few liver cancer cells in blood.
213

  Double labelling target cells have 

also been achieved by conjugating two different antibodies with fluorescent SiNPs.
214

 Because both 

anti-CEA antibody and anti-CK19 antibody can efficiently bond to MGC-803 gastric cancer cells, 

anti-CEA antibody-conjugated FITC doped SiNPs and anti-CK19 antibody-conjugated RuBPY 
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doped SiNPs were designed and applied  in both in vitro cultured MGC-803 cells and ex-vivo 

primary MGC-803 cells from the tumor tissues of mice bearing MGC-803 gastric cancer tumor 

xenografts. The MGC-803 gastric cancer cells were successfully double-labelled in both models. In 

addition, intracellular labelling and tracking have also been reported using functional fluorescent 

SiNPs.
215

 Shi et al. developed a long-lived lysosome labelling and tracking probes based on 

tetramethylrhodamine (TAMRA)-doped SiNPs.
215

 It showed that TAMRA-doped SiNPs selectively 

accumulated in lysosomes of HeLa cells and its photostability was about 30 times as long as that of 

LysoTracker Green. Compared to LysoTracker Green and Alexa 488-dextran, the fluorescence of 

TAMRA-doped SiNPs could be detected over a 5-day postrecultivation period and was quite stable 

and sensitive even in fixed cells. The lysosome labelling ability of TAMRA-doped SiNPs was 

further demonstrated in other cell lines.  

SiNPs are also a useful model to investigate biodistribution and the fate of SiNPs utilizing in vivo 

fluorescence imaging. For example, He et al. investigated the biodistribution and urinary excretion 

of SiNPs ( 45nm) with surface modification of OH, COOH and PEG functional groups in mice 

using doped RuBpy dye for an in vivo optical imaging probe.
216

 After intravenous injection of these 

SiNPs, the in vivo imaging results indicated that three types of SiNPs were all cleared from blood 

circulation, but the clearance time and subsequent biological organ deposition were dependent on 

the surface chemical modification of the SiNPs. The PEG-SiNPs exhibited relatively longer blood 

circulation times and lower uptake by liver than OH-SiNPs and COOH-SiNPs.  

2.4.4.3 Fluorescent SiNPs for cell sensing 

Fluorescent SiNPs have also been explored in the applications of intracellular sensing of oxygen, 

pH, temperature, carbon dioxide, and others.
201

 The real-time quantification of the intercellular 

analyte concentration using fluorescent probes is very important to provide insights into chemical 

microenvironment of sub-cellular compartments. In the following section, some examples are going 

to be introduced using fluorescent SiNPs to monitor typical analyte concentrations.  

     Oxygen sensing Kopelman and co-workers first reported SiNPs based nanosensors to achieve 

reliable, real-time measurements of intracellular oxygen in 2001.
217

  The SiNPs sensors were 

prepared by incorporating an oxygen-sensitive fluorescent dye, Ru(II)−tris(4,7-diphenyl-1,10-

phenanthroline) chloride ([Ru(dpp)3]
2+

), and a reference dye, Oregon Green 488-dextran for the 

purpose of ratiometric intensity measurements. The developed sensors were applied in rat C6 

glioma cells for real-time intracellular oxygen analysis with minimal physical and chemical 

perturbations to their biological functions. The results demonstrated that SiNPs protected the 

fluorescent dyes from interference by proteins in cells, achieving reliable in vivo chemical analysis, 
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compared with using free dyes for intracellular measurements. In 2004, the same group developed a 

new type of oxygen-sensitive nanosensors for dissolved oxygen based on ORMOSIL nanoparticles. 

The ORMOSIL nanoparticles included core particles formed by phenyltrimethoxysilane precursor 

and a coating layer formed by methyltrimethoxysilane precursor. The sensors incorporated the 

oxygen-sensitive platinum porphyrin dye as an indicator and an oxygen-insensitive dye as a 

reference for ratiometric intensity measurement. The sensors demonstrated an excellent sensitivity 

with an overall quenching response of 97%, and excellent linearity of the Stern−Volmer plot (r
2
 = 

0.999) over the tested dissolved oxygen concentrations. After injecting the nanosensors into rat C6 

glioma cells, intracellular changes of dissolved oxygen due to cell respiration were monitored.
218

  

pH sensing Wiesner group first reported pH-sensitive SiNPs by incorporating the reference dye 

tetramethylrhodamine and the pH-sensitive FITC in the core and shell of SiNPs, respectively for the 

ratiometric detection of pH.
203,219

 The authors investigated the intracellular pH sensing capability of 

the fluorescent SiNPs in rat basophilic leukemia mast cells (RBL-2H3).
219

 The confocal images 

showed a variation of pH values from 6.5 to 5.5, indicating the intracellular locations of SiNPs in 

early endosme and late endosome/lysosome, respectively.  The C dots
11

 developed by the same 

group was also utilized to monitor the pH in microbial biofilms
220

 and electrospun cellulose acetate 

fibers.
221

 Fluorescent MSNs was also utilized to monitor intracellular pH values by Chen et al.
222

 

The MSNs-based ratiometric pH-sensor demonstrated the capacity of mapping the location of the 

MSNs by monitoring the pH in HeLa cells. Positively charged MSNs was found to locate in higher 

pH region cytosol mostly while negatively charged MSNs in acidic endosomes. In addition, the 

hybrid ultra-small SiNPs synthesized by micelle templating method was also reported as pH sensors 

in normal rat kidney cells
47

 and bacteria.
48

 

Sensing of ionic species As the most abundant inorganic anion in living organisms, the chloride 

transport across both the plasma membrane and intracellular membranes is involved in several 

important physiological processes, such as cell volume regulation, organellar acidification, and 

neurotransmission.
223

 Dysfunctional chloride transport causes a number of diseases, including cystic 

fibrosis,
224

 myotonia congenita,
225

 and kidney stone diseases.
226

 Therefore, monitoring the 

intracellular chloride levels is of primary importance. Baù et al. reported a SiNPs based fluorescent 

probe (NanoChlor) for chloride.
227

 The chloride-sensitive dye 6-methoxyquinolinium and the 

reference dye fluorescein were covalently grafted on commercially available 20 nm SiNPs (Ludox 

AS-30), which was further modified with PEG group to improve water solubility and prevent 

nonspecific interactions with biomolecules. The capacity of NanoChlor to monitor the variations of 

chloride levels inside live cells was tested in hippocampal cells. NanoChlor displayed ratiometric 

response when different chemical stimuli were added into cells. There are many other ionic species 
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playing important roles in living organisms. Fluorescent SiNPs could incorporate with a specific ion 

sensitive dye for other ion detection (such as Ca
2+

, Zn
2+

, Cu
2+ 

and Pb
2+

) in living cells.
201

 

The unique characteristics of SiNPs including adjustable sizes, high loading capacity, and 

suitability for various modifications have enabled them to be efficient and sensitive agents for cell 

imaging and intracellular sensing at the cell and small animal levels. Ongoing and future efforts will 

be on the clinical applications of functional fluorescent SiNPs for molecular imaging, disease 

diagnose and treatment. There are still a number of challenges and opportunities in this area, such as 

facile and reproducible synthesis of functionalized SiNPs with desired structure parameters and 

functional groups, further understanding on the interaction between SiNPs and large animals.  

2.5 Conclusion 

The development of nanomaterials has profoundly affected nanomedicine in the fields of diseases 

diagnosis and treatment. SiNPs in biomedical nanotechnology have been regarded as promising 

candidates for drug/gene/protein delivery and cell imaging/sensoring, because of their versatile pore 

structure, particle size, morphology and functionality. However, more efforts are needed to enable a 

transition to clinical trials of this promising delivery platform. Although there have been 

tremendous efforts in the synthesis of mono-dispersed SiNPs for various applications, more efforts 

are still needed to develop facile, economic and environmentally friendly synthesis approaches for 

fabricating novel mono-dispersed SiNPs with desired particle size, nano-structure and functionality 

(Objective 1 in this thesis). The novel designed SiNPs are expected to expand their capacity in 

various biomedical applications. For example, SiNPs with ultra-small particle sizes and excellent 

monodispersity is expected to have much higher cell penetration ability in 3D spheroid models 

compared to conventional SiNPs (Objective 2). Besides small particle sizes, desired surface 

functionality is also crucial on cell penetration performance and subsequent anticancer drug/siRNA 

delivery efficiency. For example, surface modification of targeting moieties on SiNPs is an efficient 

approach to improve drug delivery at targeted cells (Objective 2). Furthermore, better understanding 

on the toxicity of SiNPs with various surface functionalities not only allows a better estimation of 

the potential risk, but also helps to find a balanced point between efficacy and safety. For example, 

PEI has been regarded as efficient cationic group, which has a higher endosomal escape capability, 

favoring a high gene silencing efficacy. However, the cytotoxicity of PEI is relatively high. A 

suitable dosage of PEI modified SiNPs should be chosen for siRNA delivery with maximal 

therapeutic efficiency and minimal toxic side-effects (Objective 3). Although plasmid DNA (pDNA) 

has also been extensively studied in SiNPs-based gene therapy, however, the influence of particle 

size of silica nanoparticles on pDNA transfection efficiency has not been reported (Objective 
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4).Thorough understanding on the interactions between SiNPs and pDNA is desired to fully utilize 

SiNPs for efficient gene therapy (Objective 4).  

More efforts are required to understand the relationship between sub-cellular organelle 

escape/target and structure and functionality of designed SiNPs. Efficient imaging cell activity by 

utilizing various SiNPs based sensors is very helpful for understanding the intracellular activities of 

designed SiNPs (Proposed study in the future).  

The research on SiNPs for biomedical applications is taking off and has demonstrated 

tremendously positive results. It is an encouraging advance in biomedicine applications of SiNPs 

that the C-dots developed by Wiesner group have reached the first-in-human clinical trial stage.  

Nevertheless, it is still a long way to translate SiNPs-based drug delivery systems or diagnostic 

agents into clinical market because more evidence needs to prove their efficacy and safety. Finally, 

the development of multifunctional SiNPs combing diagnostic and therapeutic capabilities is 

worthy of special efforts, which provides the great potential and opportunities for improving various 

disease diagnose and treatment. The opportunities could be ravelled out by combining 

interdisciplinary knowledge in chemistry, biology, material science and clinical medicine.  
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CChhaapptteerr  33    
     Methodology 

This chapter summarizes the strategies utilized in the whole PhD project, including synthetic 

methods for silica based nanoparticles and the techniques for material characterizations and 

biological evaluations. 

3.1 Material synthesis 

Three types of silica based nanoparticles (SiNPs) have been fabricated by controlling the nucleation 

and growth in the sol-gel process of silica precursors and its assembly process with structure 

directing agents (surfactants).
1
 (1) Mesoporous silica nanoparticles are obtained by utilizing cationic 

cetyltrimethylammonium bromide (CTAB) or cetyltrimethylammonium chloride (CTAC) as the 

templating surfactant, tetraethyl orthosilicate (TEOS) as the silica source and alkali or sodium 

acetate (NaAc) as a catalyst. During the sol-gel process, the silicate oligomers react with surfactants 

to form mesostructured silica nanoparticles. The complete condensation or pore diameter 

adjustment can be achieved by further hydrothermal treatment in an autoclave. After removing the 

surfactants by calcination process, the mesoporous silica nanoparticles are obtained. (2) Mono-

dispersed hybrid SiNPs with desired functional groups are synthesized using the tri-block 

copolymer EO106PO70EO106 [Pluronic F127, EO refers to poly(ethylene oxide), PO refers to 

poly(propylene oxide)] as the template, mixture of tetramethyl orthosilane (TMOS) and 

dimethoxydimethylsilane (DMDMS) [or diethoxy(3-glycidyloxypropyl)methylsilane (DGMS)] as 

silica sources, phosphate-citrate buffer solution as a catalyst. (3) Mono-dispersed solid SiNPs are 

synthesized by the hydrolysis and condensation of silicon alkoxides in a mixture of alcohol and 

water using ammonia as a catalyst. The silica particle diameter can be adjusted from 125 nm to 570 

nm, simply by varying the catalyst and precursor concentrations. 

3.1.1 Synthesis of monodisperse mesoporous silica nanospheres (MMSNs) 

In a typical synthesis, 53.4 g of water, 6.24 g of CTAC (25wt% solution), and 0.3 g of NaAc3H2O 

were mixed and stirred in a silicon oil bath at different temperatures (T = 40, 50, 60, 80 C) for 2 h. 

Then 4.35 mL of TEOS was added into the above mixture dropwise within 3 min under steady 

stirring at about 400RPM. The solution was stirred for 24 h before cooling to room temperature in 

silicon oil bath, then centrifuged at 20,000 RPM for 10 min to isolate the products from the 
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suspension. After washing with water for 3 times, the final products were obtained by calcination at 

650 C for 5 h, and denoted as MMSNs-T. For example, MMSNs-40 stands for the material 

prepared at a synthesis temperature of 40 C.  

In the preparation of MMSNs-60, the pH of mother solutions in three independent batches after 24 

h reaction since the addition of TEOS was adjusted to 10.0, 11.5, and 12.0, respectively, by adding 

2M NaOH solution. The mixture was then hydrothermally treated at 130 C in an autoclave for 3 

days. After that, MMSNs were collected by centrifugation at 20,000 RPM, and washed by water for 

three times. The final products were obtained by the same calcination process as described above, 

denoted MMSNs-60-B10.0, MMSNs-60-B11.5, MMSNs-60-B12.0, respectively (B refers to 

hydrothermal treatment under basic conditions). 

The as-synthesized product MMSNs-60 after washing was put into an autoclave containing 0.01 M 

HCl (pH2), and then hydrothermally treated at different temperatures (100, 130, 160 C) for 24 h. 

After hydrothermal treatment, the samples were centrifuged and washed with water for 2 times. The 

final products were obtained by calcination at 650 C for 5 h, and denoted MMSNs-60-A100, 

MMSNs-60-A130 and MMSNs-60-A160 (the latter number refers to the hydrothermal treatment 

temperature and A denotes hydrothermal treatment under acidic conditions). 

3.1.2 Synthesis and functionization of MCM-41 

MCM-41 was synthesized according to an approach reported in our previous work
2
 with slight 

modifications. In a typical synthesis, 1.0 g of CTAB was dissolved in 480 g of deionized water 

under stirring at room temperature followed by the addition of 3.5 mL of NaOH (2 M). The 

temperature of the solution was raised and kept at 80 °C. To this solution, 6.7 mL of TEOS was 

added. The mixture was continuously stirred for additional 2 h. The resultant products were 

collected by filtration and dried at room temperature. The templates were removed by calcination at 

550 °C for 5 h.  

Synthesis of hyaluronic acid (HA) conjugated MCM-41 (HA-MCM-41): First, 1.5 g of calcined 

MCM-41 was added to 60 mL of toluene and stirred for 6h before adding 1.0 mL of (3-

aminopropyl)triethoxysilane (APTES). After stirring at room temperature for 24 h, the particles 

were extensively washed with toluene and dried in fume-hood at room temperature (denoted NH2-

MCM-41). Next, in order to graft HA, the carboxyl group of HA was activated with N-

hydroxysuccinimide (NHS), using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride 

(EDC) as coupling agents. The activated carboxyl group of HA then combined with the amine end 

of NH2-MCM-41. Specifically, 1 g of the prepared NH2-MCM-41 powder was dispersed in 100mL 
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of deionized water. In another reaction vessel, 20mL of aqueous solution containing NHS (0.37g) 

and EDC (0.2g) were mixed with 60mL of HA (113 mg) deionized water solution. Finally the two 

solutions were mixed and the pH was adjusted to 9.0 using triethylamine as a catalyst. The mixture 

was stirred at 38 C overnight. The HA modified MCM-41 (HA-MCM-41) were obtained by 

centrifugation, washing three times by deionized water, and freeze-drying using Christ Alpha 2-

4LDplus (John Morris Scientific). 

FITC modification of MCM-41 and HA-MCM-41: Not all amino groups in NH2-MCM-41 reacted 

with HA, thus the remaining free NH2 moieties were utilized for labeling with FITC. The functional 

group of FITC, thiocyanate, is highly aminoreactive, therefore the prepared NH2-MCM-41 and HA-

MCM-41 can be conjugated with FITC. Specifically, 20mg of HA-MCM-41s or NH2-MCM-41 

powders were put in 3mL of deionized water, and mixed with 5mL of FITC ethanol solution 

(0.3mg/ml). After stirring in dark for 6 h, the nanoparticles were centrifuged and washed with 

ethanol for three times until the supernatants were colorless. 

3.1.3 Synthesis and functionization of ultra-small hybrid silica spheres (UHSS) 

Synthesis of UHSS and Epoxy-UHSS: For the synthesis of mono-dispersed ultra-small hybrid silica 

spheres (UHSS), 0.5g of F127 was dissolved in 30 ml of phosphate-citrate buffer solution (pH=4.6, 

46.6µM Na2HPO4, 26.7µM HAc) under stirring at room temperature. Then mixed silica sources of 

TMOS (0.6 ml) and DMDMS (0.59 ml) was added into the surfactant homogeneous solution under 

stirring. The reaction was continued at room temperature for 3 days. Afterwards, the clear solution 

was transferred into a dialysis membrane tube (Sigma-Aldrich, molecular weight cut off 14,000) 

and dialyzed in 1L of D.I. water for 3 days, to completely remove the salts, methanol and ethanol 

(resulted from the hydrolysis of TMOS and DMDMS). The D.I. water was refreshed twice per day. 

Finally the UHSS particles were stored in D.I. water for further use. 

For the synthesis of Epoxy-UHSS, the mixture of 0.8ml TMOS and 0.75ml DGMS was utilized as 

the silica source and the other synthesis procedures are the same as described above. 

Synthesis of RBTC-UHSS: For the synthesis Rhodamine B isothiocyanate (RBTC) modified UHSS 

(RBTC-UHSS), 4 mg of RBTC and 44µl of (3-aminopropyl)trimethoxysilane (APTMS) was 

dissolved in 1ml of ethanol and stirred at room temperature overnight in dark. Afterwards, the 

mixture was added into 30 ml of phosphate-citrate buffer solution (pH=4.6, 46.6µM Na2HPO4, 

26.7µM HAc) containing 0.5g of F127 under stirring at room temperature. After stirring for 2 

minutes, the mixed silica sources of TMOS (0.6 ml) and DMDMS (0.59 ml) was added into above 

solution and stirred for 3 days. Afterwards, the clear red colour solution was transferred into a 

dialysis membrane tube and dialyzed in 50% (v/v) ethanol D.I. water solution for 2 days in dark, to 
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completely remove the remaining RBTC, then dialyzed in D.I. water for another 3 days. The 50% 

ethanol solution or D.I. water was refreshed twice per day. Finally the RBTC-UHSS sample was 

stored in D.I. water for further use.  

Synthesis of PEI-UHSS: The conjugation process of polyethylenimine (PEI, M.W. 1800) on Epoxy-

UHSS was performed using a modified approach reported in a previously reported study.
3
 Typically, 

4 ml of Epoxy-UHSS solution prepared in the last step was added in to 8 ml of 2.5mg/ml PEI 

solution in carbonate buffer (NaHCO3-Na2CO3, Ct [CO3
2-

] = 50 mM, pH= 9.5) at room temperature, 

and the mixture stirred for 8 hours. After that, the final product was dialyzed in 1L of deionized 

water for 3 days using dialysis membrane tube, to complete remove the salts and free PEI molecules. 

The sample was denoted as PEI-UHSS. 

3.1.4 Synthesis of amine modified monodisperse silica Stöber spheres (NH2-SS) 

Mono-dispersed silica spheres were prepared by the modified Stöber method.
4
 In a typical 

experiment, two solutions were rapidly mixed together. The first solution was the mixture of TEOS 

and ethanol (EtOH), and the second solution was the mixture of 28 wt% ammonia, deionized water, 

and EtOH. The first solution was added to the second solution under stirring. The resulting mixture 

was further stirred for certain time. Finally, silica spheres were separated from the suspension by 

centrifugation and washed with ethanol twice, and further washed with water twice. The detailed 

chemical amount and synthesis condition are listed in Table 3.1. After drying in a 50C oven 

overnight, 0.1g of silica spheres were suspended in 40 ml of toluene. Then the mixture was refluxed 

in a three-neck flask under stirring at 110 C for 2h, followed by adding 93.6µl of APTES. After 

stirring for further 20h, the suspension was centrifuged and washed with ethanol and water. The 

final products were collected by drying process at 50C overnight, and denoted as NH2-SSx, where 

‘x’ stands for the particle diameters of amine modified Stöber spheres (NH2-SS) estimated by TEM 

analysis. For example, NH2-SS125 represents amine modified Stöber spheres with a diameter of 

125 nm.   

Table 3.1 Experimental conditions for the synthesis of silica Stöber spheres with different 

diameters  

Sample 

The first solution  The second solution  
T 

(C) 

t 

(h) EtOH 

(ml) 

TEOS 

(ml) 

H2O 

(ml) 

EtOH 

(ml) 

NH4OH 

(ml) 

NH2-SS125 22.2 2.8 6.8 17.6 0.700 25 13 

NH2-SS230 22.2 4.5 6.8 17.6 0.700 25 4.5 

NH2-SS330 45.5 5.0 16.25 24.75 9.0 25 2 

NH2-SS440 45.5 5.0 16.25 24.75 9.0 22 2 

NH2-SS570 45.5 5.0 16.25 24.75 9.0 15 2 
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T: reaction temperature; t: reaction time 

3.2 Characterization 

3.2.1 X-ray Diffraction (XRD) 

Small-angle XRD patterns of MMSNs and MCM-41 were recorded on a German Bruker D4 X-ray 

Diffractometer (40 kV, 30 mA) with Ni-filtered Cu Kα (λ = 0.15418 nm) Radiation at a scanning 

rate of 0.2˚ min
-1

 from 0.5˚ to 5.0˚.  

The interplanar spacing is calculated based on the following Bragg equation: 

2dhkl sinθ = nλ            

where dhkl is the interplanar distance  between a set of parallel planes described by the Miller 

indices (hkl) (nm), λ is the wavelength of Cu Kα ray (nm), θ is the angle of incident beam (˚), and n 

is integer determined by a given order.
5
 

3.2.2 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) images of the samples synthesized in this thesis were 

obtained with a JEOL 1010 operated at 100 kV, JEOL 2100 at 200 kV or FEI Tecnai F30 operated 

at 300 kV. The samples for TEM measurements were prepared by dispersing the powder samples in 

ethanol, after which they were dispersed and dried on carbon film on a Cu grid. 

3.2.3 Scanning Electron Microscopy (SEM) 

The morphologies of the samples MMNSs were observed using a JEOL6610 scanning electron 

microscope (SEM) operated at 5 kV. Samples were dispersed on a carbon tape with Pt/carbon 

coating. 

3.2.4 Nitrogen sorption 

Nitrogen adsorption/desorption isotherms were measured at 77 K by using a Micromeritics ASAP 

Tristar II 3020 system. The samples were degassed at 473 K overnight on a vacuum line. The pore 

size distribution curve was derived from the adsorption branch of the isotherm using the Barrett–

Joyner–Halanda (BJH) method. The Brunauer–Emmett–Teller (BET) method was utilized to 

calculate the specific surface areas. The total pore volume was calculated from the amount adsorbed 

at a maximum relative pressure (P/P0) of 0.99. 

3.2.5 Attenuated Total Reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy 
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Attenuated total reflectance (ATR) is a sampling technique used in conjunction with infrared 

spectroscopy which enables samples to be analyzed directly in solid or liquid state without further 

treatement. An attenuated total reflection accessory is to measure the changes occurring in a totally 

internally reflected infrared beam when the beam contacts with loaded sample (indicated in Figure 

3.1).
6
 An infrared beam passes through an optically dense crystal with a high refractive index at a 

certain angle. This internal reflectance generates an evanescent wave which extends into the sample 

on the surface of crystal. The penetration depth of this evanescent wave beyond crystal surface is 

only 0.5-5 μm. Consequently, this technology requires a good contact between the sample and the 

crystal surface. The evanescent wave will be attenuated or altered in the regions of the infrared 

spectrum where the sample absorbs specific energy. The attenuated energy from each evanescent 

wave is passed back to the IR beam, then to the detector in the IR spectrometer. Finally, an infrared 

spectrum is generated by this system. 

 

Figure 3.1 Schematic diagram of a multiple refection ATR system.
6
 

In this thesis, the ATR-FTIR was utilized to monitor the silica species in situ as the function of 

reaction time during the MMSNs synthesis process. The liquid samples were simply dropped onto 

the crystal to obtain optimal contact. The surface functional groups of MSNs, NH2-MSNs and HA-

MSNs in Chapter 7 were also investigated by ATR-FTIR. The silica nanoparticles were pressed 

down on the crystal to obtain good contact between samples and crystal. The ATR-FTIR spectra 

were collected with ThermoNicolet Nexus 6700 FTIR spectrometer equipped with Diamond ATR 

Crystal. For each spectrum, 32 scans were collected at a resolution of 4 cm
-1

 over the range 400–

3400 cm
-1

. 

3.2.6 Elemental Analysis (EA) 

In this project, elemental analysis was conducted on a CHNS-O Analyzer (Flash EA1112 Series, 

Thermo Electron Corporation) to determine the percentages of carbon (C), hydrogen (H) and 

nitrogen (N) in the samples of F127, Epoxy-UHSS and PEI-UHSS. In this analysis, several 
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milligrams of the sample is loaded in a tin capsule, and then dropped into a quartz tube at 1020°C 

with constant helium flow (carrier gas). Before the sample drops into the combustion tube, the 

stream is enriched with a measured amount of high purity oxygen to achieve a strong oxidizing 

environment which guarantees almost complete oxidation even of thermally resistant substances. 

The combustion gas mixture is driven through an oxidation catalyst (WO3) zone, then through a 

subsequent copper zone which reduces nitrogen oxides and sulphuric anhydride (SO3). The 

resulting four components of the combustion mixture are detected by a Thermal Conductivity 

detector in the sequence N2, CO2, H2O and SO2. In case of oxygen which is analyzed separately, the 

sample undergoes immediate pyrolysis in a Helium stream which ensures quantitative conversion of 

organic oxygen into carbon monoxide separated on a GC column packed with molecular sieves. 

3.2.7 Dynamic light scattering (DLS) 

Dynamic light scattering (DLS) is a non-invasive, well-established technique for particle size 

characterization of proteins, polymers and colloidal dispersions.
7
 The Brownian motion of particles 

or molecules in suspension causes laser light to be scattered at different intensities. Analysis of 

these intensity fluctuations yields the velocity of the Brownian motion and hence the particle size 

using the Stokes-Einstein relationship. The hydrodynamic sizes of particle samples in this PhD 

project were measured using DLS measurements on a Malvern NanoZS zetasizer at 25 C in 

ethanol or water solutions. The DLS data in this thesis were presented as number based data, 

because the number based distribution is biased to small particles synthesized in this thesis. 

3.2.8 Zeta potential analysis  

Zeta potential analysis is a technique for measuring of the surface charge of nanoparticles in 

solution (colloids). Nanoparticles with a surface charge attract a thin layer of ions with opposite 

charge to the nanoparticle surface. This double layer of ions travels with the nanoparticle as it 

diffuses throughout the solution. The electric potential at the boundary of the double layer is defined 

as the Zeta potential of the nanoparticles. In this thesis, zeta potential measurements were carried 

out on a Malvern NanoZS zetasizer at 25C in distilled water or PBS solution. 

3.2.9 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 

Inductively coupled plasma-optical emission spectrometry (ICP-OES) is an analytical technique 

used for the detection of trace metals.
8
 It uses the inductively coupled plasma to produce excited 

atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular 

element.
9
 The intensity of this emission is indicative of the concentration of the element within the 

sample. In this PhD project, ICP-OES technology was utilized to quantify the silicon concentrations 
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in cells after following treatment of cells. The HEK-293T cells were incubated with the NH2-

SS/plasmid DNA complexes for 4 hours, then washed with PBS and harvested with trypsin. After 

washing with PBS and centrifugation, cell lysis buffer was added to allow dissolution of cells under 

sonication process. The supernatants (containing cell components) were discarded after 

centrifugation, and the precipitates were washed with PBS, followed by drying at 50C overnight. 

Aqueous NaOH solution was then added to dissolve the silica nanoparticles. The silicon 

concentrations in the final solutions were measured by ICP-OES with a Vista-PRO instrument 

(Varian Inc, Australia). The mass of silicon in per cell was calculated based on the ICP-OES results 

and cell numbers by counting. 

3.2.10 
13

C nuclear magnetic resonance (NMR) spectroscopy 

13
C NMR spectroscopy was utilized to determine the organic groups in functional SiNPs (Chapter 

5-7 in this thesis).  
13

C NMR spectra of SiNPs were measured by solid state Bruker Avance III 

spectrometer with 7T (300MHz for 1H) magnet, Zirconia rotor, 4mm, rotated at 7 kHz. 

3.3 Biological techniques 

3.3.1 CellTiter-Blue assay 

The CellTiter-Blue® Cell Viability Assay is a simple and inexpensive approach that uses an 

optimized reagent containing resazurin.
10

 The reagent is added directly to the cultured cells at a 

recommended ratio of 20µl of reagent to 100µl of culture medium. The plates are then incubated at 

37°C for 1-4 hours to allow viable cells to convert resazurin to the fluorescent resorufin product. 

The conversion of resazurin to fluorescent resorufin is proportional to the number of metabolically 

active, viable cells. The signal is recorded using a standard plate reader. Because different cell types 

have different abilities to reduce resazurin, optimizing the length of incubation with the CellTiter-

Blue® Reagent can improve assay sensitivity. In this PhD project, the optimized incubation time 

after adding the regent was found to be 4 hours for the cytotoxicity of human colon cancer HCT-

116 cells in Chapter 7). HCT-116 cells were maintained in Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with fetal calf serum (10%, Sigma, MO), L-glutamine (2%), penicillin 

(1%), streptomycin (1%) in 5% CO2 at 37 °C. The medium was routinely changed every 2 days and 

the cells were separated by trypsinization before reaching confluency. In CellTiter-Blue assay, 

HCT-116 cells were seeded in a 96-well plate at a density of 210
4 

cells/well and cultured in 5% 

CO2 at 37 °C for 24 h. Then, free Dox, Dox-HA-MSNs, Dox-MSNs were added to the cells in 

DMEM medium at a different Dox concentration of 0.25, 0.125, 0.05μg/mL respectively, and the 

cells were further incubated in 5% CO2 at 37 °C for 24 h. Subsequently, 15 L of CellTiter-Blue 
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Reagent was added to each well, shaked for 10 seconds and then incubated at 37 C for 4 h. Then 

fluorescence readings were measured with excitation wavelength at 560 nm and emission 

wavelength of 590 nm using a microplate reader (SpectraMax M5, Bio-Strategy, Ltd). The cells 

incubated in the absence of particles were used as the control.  

3.3.2 CellTiter-Glo assay 

The CellTiter-Glo® Luminescent Cell Viability Assay is a homogeneous method to determine the 

number of viable cells. This method utilizes the luciferase reaction to measure the amount of ATP 

of viable cells. The amount of ATP in cells correlates with cell viability. The CellTiter-Glo® 

Reagent does three things after addition into cells. It lyses cell membranes to release ATP, inhibits 

endogenous ATPases, and provides luciferin, luciferase and other reagents necessary to measure 

ATP. The unique properties of a proprietary stable luciferase mutant enabled a robust, single-

addition reagent. The signal can be recorded with a luminometer, and generally has a half-life of 

five hours. The CellTiter-Glo® Assay is very sensitive and can detect as few as 10 cells. The 

luminescent signal can be detected as soon as 10 minutes after adding reagent, or several hours later, 

providing flexibility for batch processing of plates. In Chapter 6, this agent was utilized to evaluate 

the cell viability of osteosarcoma cell line (KHOS cells) after treated with functional siRNA. KHOS 

cells were maintained in DMEM supplemented with fetal calf serum (10%), L-glutamine (2%), 

penicillin (1%), streptomycin (1%) in 5% CO2 at 37 °C. The medium was routinely changed every 

2 days and the cells were separated by trypsinization before reaching confluency. To test the 

functional siRNA delivery, KHOS cells were seeded in a 96-well cell culture plate with a density of 

510
3
 cells/well in 100 μL of complete DMEM medium, and grew for 24h before treatment. The 

complexes of PLK1-siRNA/PEI-UHSS, and PLK1-siRNA/PEI were formed after mixing and 

incubating in PBS solution at 4C overnight, then were added to cells. After further incubation at 

37C for 48h, the silencing effect or cell viability was determined by Cell-Titer Glo method 

according to the protocol provided by the manufacturer. The cells incubated in the equal amount of 

PBS solution were used as the control. 

3.3.3 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay 

MTT assay is a simple, accurate and reproducible method to determine the activity of viable 

cultured cells.
11

 The MTT chemical is dissolved in a physiological buffer solution, then added to 

cells in culture, usually at a final concentration of 0.2-0.5mg/ml. The plates are incubated for 1 to 4 

hours. Viable cells with active metabolism can convert MTT into a purple colored formazan with an 

absorbance maximum near 570 nm. The quantity of formazan (presumably directly proportional to 

the number of viable cells) is measured by recording changes in absorbance at 570 nm using a plate 
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reader. In this thesis, MTT assay was used to evaluate the cell viability of human embryonic kidney 

293T (HEK 293T) cells treated with NH2-SS samples and human malignant brain tumour U87MG 

cells treated with UHSS. HEK 293T and U87MG cells were maintained in DMEM supplemented 

with fetal bovine serum, L-glutamine (2%), penicillin (1%), and streptomycin (1%) in a 5% CO2 

incubator at 37 °C. The medium was routinely changed every 2 days and the cells were separated 

by trypsinization before reaching confluency. The cytotoxicity of NH2-SS with different sizes in 

HEK 293T cells and UHSS in U87MG cells was evaluated as follows. HEK 293T or U87MG cells 

were seeded in a 96-well cell culture plate with a density of 510
3 

cells/well. After incubation for 

24 h, the cells were added with different concentrations of NH2-SS or UHSS PBS solution. After 48 

h, the media was removed, and 100 μl of fresh DMEM medium was added each well, followed by 

addition of 10 μL of MTT solution (5mg/ml). Plate was then incubated in the culture oven for 4 h 

before adding 100 μl of DMSO to each well for 0.5h. Then absorbance readings were measured at 

wavelength of 540 nm using a Synergy HT microplate reader, and background absorbance of media 

was subtracted. The cells incubated in the absence of particles were used as the control.  

3.3.4 Confocal Laser Scanning Microscopy (CLSM) 

Laser scanning confocal microscopy (CLSM) has become an invaluable tool for a wide range of 

investigations in the biological and medical sciences for imaging thin optical sections in living and 

fixed specimens ranging in thickness up to 100 micrometers. It is a technique to obtain high-

resolution optical images with selected depth.
12

 CLSM is normally equipped with 3-5 laser systems 

with a precise control in wavelength and excitation intensity. These microscopes coupled with 

photomultipliers are capable of detecting fluorescence emission ranging from 400 to 750 nm. In this 

thesis, all the confocal images of fixed cells were observed under a confocal microscope (LSM 

Zeiss 710). 

3.3.5 Flow Cytometry 

Flow cytometry is a laser-based, biophysical technology for cell counting, cell sorting, biomarker 

detection and protein engineering, by suspending cells in a stream of fluid and passing them by an 

electronic detection apparatus.
13

 It allows simultaneous multiparametric analysis of the physical and 

chemical characteristics of up to thousands of particles per second. Modern instruments usually 

have multiple lasers and fluorescence detectors, which can precisely identify and quantify target 

population by their fluorescent markers inside/on the surface of cells. In this thesis, the intracellular 

uptake of fluorescent silica nanoparticles and GFP transfected cells was quantified using a 

FACSAria Cell Sorter (Becton Dickinson BD).  

3.3.6 Nanodrop 1000 
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The Thermo Scientific NanoDrop 1000 is a full-spectrum UV-Vis spectrophotometer used to 

quantify nucleic acids, proteins, fluorescent dyes and other compounds.
14

 This instrument enables 

highly accurate analyses of 1-2µl samples with remarkable reproducibility. The concentration of 

plasmid DNA amplified in E. coil was determined by the Nanodrop 1000 based on the absence at 

260 nm. Also the quantification of adsorption amount of plasmid DNA was determined by the 

concentrations before and after incubation with NH2-SS samples measured on Nanodrop 1000. In 

Chapter 6, Nanodrop 1000 was utilized to evaluate the RNase A protection ability of PEI-UHSS. 

10g of PEI-UHSS and 50 pmol of PLK1-siRNA were mixed in RNase free water and incubated at 

room temperature for 30 minutes. Afterwards, 1g of RNase A was added into the complex solution 

with a total volume of 10l, then the absorbance at 260 nm (Abs260) was measured by a Nanodrop 

1000 with an incubation time of 0 and 30 minutes at room temperature. For the free PLK1-siRNA 

control, 50pmol of PLK1-siRNA and 1g of RNase A were mixed in RNase free water with a total 

volume of 10l, then the value of Abs260 was measured by Nanodrop after incubation at room 

temperature for 0 and 30 minutes. The increase percentage of Abs260 = [Abs260 (30 minutes) - 

Abs260 (0 minute)]/Abs260 (0 minute). 

3.3.7 Agarose gel electrophoresis 

Agarose gel electrophoresis is a technique used to separate and purify macromolecules (proteins 

and nucleic acids) with a different size, charge or conformation. It is one of most widely-used 

techniques in biochemistry and molecular biology.
15

 When charged molecules are placed in an 

electric field, they migrate toward the positive or negative pole opposite to their charge. For 

example, nucleic acids have a consistent negative charge imparted by their phosphate backbone; 

they migrate toward the anode when the electric field is applied to a nucleic acid loaded agarose gel 

in running buffer. In this PhD project, this technology was utilized to test the binding capacity of 

NH2-SS samples toward plasmid DNA in Chapter 8. The NH2-SS/pDNA complex was prepared by 

the following process. Briefly, 0.5 μg of pDNA was incubated with varying amounts of NH2-SS at 

4 C in 10 µl of PBS overnight. 2 µl of 6DNA loading buffer was added into each mixture, and 

then the mixtures were loaded on a 1% agarose gel containing 1 SYBR Safe. The electrophoresis 

was carried out at 80V for 1h in TAE buffer, and the bands were visualized on a UV trans-

illuminator (Bio-Rad reader). 

3.3.8 Western-blot analysis 

Western blot is an important method to separate and identify proteins.
16

 A mixture of proteins 

extracted from cells is separated based on molecular weight by gel electrophoresis. These results are 

transferred to a membrane producing a band for each protein. The membrane is then incubated with 
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antibodies specific to the protein of interest. The unbound antibody is washed off leaving only the 

bound antibody to the protein of interest, which are detected by developing the film. The antibodies 

only bind to the specific protein, thus only one band can be visible. The thickness of the band 

represents the amount of present protein. Specific protein knock down efficiency induced siRNA 

delivered by PEI-UHSS was evaluated by western blot analysis in Chapter 6. KHOS or HCT-116 

cells were seeded in 6-well plates at a seeding density of 110
5
 cells/well. After 24 h incubation, the 

complexes of siRNA/PEI-UHSS, control siRNA/PEI-UHSS, siRNA/PEI, siRNA/Oligofectamine, 

and control siRNA/Oligofectamine along with siRNA only were added into the cells. After further 

incubation at 37C for 48h, cells were washed with PBS, collected and lysed in cold RIPA buffer 

(50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EGTA, and 0.25% sodium deoxycholate). The lysates 

were incubated for 15 min at 4C and removed by centrifugation at 12,000 rpm for 15 min. 

Supernatants were analysed for protein concentrations using the Bradford assay (Bio-Rad, Hercules, 

USA). Equal amount (10 mg) of protein was subjected to electrophoresis on a polyacrylamide gel 

containing SDS and then transferred to nitrocellulose membranes. Afterwards, the membranes were 

blocked with tris-buffered saline (TBS) containing 5% (w/v) skimmed milk. After being washed 

with TBS, the membranes were incubated 4C overnight at with the first antibody (PLK1 Rabbit 

mAb, survivin Rabbit mAb and -Tubulin Rabbit mAb) diluted in TBS. After washing, the 

membranes were incubated at room temperature for 1 h with the second antibody (Anti-rabbit IgG, 

HRP-linked Antibody). Bands were detected by were visualized on a Bio-Rad reader. 

3.3.9 U87MG spheroids culture  

Compared to traditional two-dimensional (2D) cell models (monolayers), three-dimensional (3D) 

culture models more closely mimic the cell-to-cell and cell-to-extracellular matrix (ECM) 

interactions as well as the topography found in an in vivo tumour environment. Spheroids are the 

most widely used 3D tumour models. In the absence of attachment substrates or scaffold, cells 

aggregate and compact to form tightly bounded cellular spheres with a size from 50µm to 1mm. 

The penetration ability of UHSS was evaluated in glioblastoma U87MG spheroids in Chapter 5.  

The glioblastoma spheroids were developed using the modified liquid overlay technique.
17

 In brief, 

exponentially growing monolayer cells were trypsinized and 3×10
5
 cells were seeded in 1% agar-

coated 6-well plates containing Dulbecco modified Eagle medium (GIBCO) supplemented with 

FCS (10%), L-glutamine (2%), nonessential amino acids (4%) and penicillin/streptomycin (2%).  

The plates were incubated in a tissue culture incubator at 37°C (95% humidity, 95% air, and 5% 

CO2) and cultured for 3-5 days, until spheroids were formed. Half of the culture medium was 

replaced with fresh medium twice a week. After round spheroids were formed and those with 200 
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μm diameter were collected, transferred and culture in agarose-coated (0.1%) glass cover slip in 6-

well plates with same culture medium. 
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This chapter reported a new and facile approach to prepare monodisperse mesoporous silica 

nanospheres (MMSNs) with controlled particle sizes (50-100 nm) and pore diameters (2.8-4.0 nm). 

In this approach, MMSNs were synthesized simply in a sodium acetate solution without adding any 

other alkali or alcohol additives. After further investigations, a spherical micelle templating 

mechanism was proposed to explain the formation of MMSNs in this work, which is different from 

that of traditional highly ordered mesoporous silica nanoparticles (MCM-41). MMSNs developed in 

this part are expected to have potential applications in drug/gene delivery and cell imaging. 
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Figure S1 DLS measurements of calcined MMSNs-60-A100, MMSNs-60-A130 and MMSNs-60-A160 

 

 



Chapter 4 A Simple Approach to Prepare Monodisperse Mesoporous Silica Nanospheres with 

Adjustable Sizes  

76 

 

Figure S2 XRD patterns of MMSNs-B10.0, MMSNs-60-B11.5 and MMSNs-60-B12.0  

 

Figure S3 XRD patterns of MMSNs-A100, MMSNs-60-A130 and MMSNs-60-A160  

 

Comparison between theoretical and measured mesopore volume: In our proposed formation mechanism, 

the nano-sized composite micelles with a diameter of 6-7 nm are the basic building blocks, which randomly 

aggregate together to form the final mesostructured MMSNs. In order to calculate the structure parameters, 

we adopt a simple close-packing model, more specifically, a face-centered cubic (fcc) packing model. It is 

noted that for the fcc structure, there are two possible models. In the first model (left in Scheme S1), the fcc 

mesostructure is formed by a hard-sphere packing (HSP) model proposed in our previous work [1]. In this 

model, the hard spheres are silica coated composite spherical micelles. After removal of surfactants, it is 

indeed the packing of hollow spheres with both cage and cavity (the packing voids) as shown in Scheme S1, 

left. 

 

Scheme S1 Face-centered cubic (fcc) packing models for the calculation of mesopore volume of MMSNs. 

(Left) A HSP packing model. (Right) A conventional fcc packing model. 

 

In the HSP packing model, R is the radius of a composite micelle or hollow sphere in a calcined material, r 

represents the radius of cages and a is the cell parameter of the fcc structure. In the case of MMSNs-60, R = 
 

 
 =3.15 nm (d stands for the closest pore-to-pore distance, calculated from the XRD peak in Figure 3B), r = 
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 = 1.55 nm (3.1 nm is the mesopore diameter of MMSNs-60, determined by N2 sorption analysis in 

Figure 3C), a =     =                 .  

 

The number of spherical hollow nano-spheres belong to one fcc lattice is 4, so the internal pore volume (Vp) 

can be described as 

 

   
  

    

 
      

    

 

   
         

 
       

…………………………………………………………..(1) 

where R = 3.15 nm, r = 1.55 nm, a =       , ρSiO2= 2.2 g/cm3, then Vp= 0.24 cm3/g. 

 

The other model for an fcc mesostructure is similar to that of FDU-12 [2], where the spherical pores are the 

symmetrical points embedded in silica matrix (Scheme S1, right). Compared to the HSP model, the 

difference is that the cavities are filled by silica. The internal pore volume can be described as  

   
  

    

 

      
    

 
       

…………………………………………………………….(2), 

 

where a =       , r = 1.55 nm, a =       , ρSiO2= 2.2 g/cm3, thus Vp= 0.04 cm3/g.  

 

It should be pointed out that the internal pore volume calculated at P/P0 = 0.90 is 0.13 cm3/g (Table 1) in the 

N2 sorption analysis, which includes the micropore volume, mesopore volume and a small amount of pore 

volume from textural porosity. In order to calculate the mesopore volume contributed specifically by the 

cages (and cavities), the pore size distribution of MMSNs-60 in the range of 0-20 nm is shown in the 

following Figure S4, from which it can be seen that the cage (and cavity) size should be in the range of 1.4 

and 8.4 nm. The mesopore volume calculated from the difference between the cumulative pore volume 

values at 8.4 nm and 1.4 nm is 0.06 cm3/g. This experimentally determined value is comparable to that 

theoretically calculated based on the second densely packing model, supporting our proposed mechanism. 
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Figure S4 Pore size distribution of MMSNs-60 in the range of 0-20 nm 

 

 

Figure S5 High magnification TEM images of MMSNs-60 (left) and MMSNs-60-B12.0 (right). 

 

ATR-FTIR spectra collection of MCM-41 reaction solution: MCM-41 material was synthesized using the 

procedure reported in our previous work with slight modifications (using the same reaction temperature of 

MMSNs-60 instead of 80 °C)[3]. In a typical synthesis, 0.2g of CTAB (Cetyl trimethylammonium bromide, 

Aldrich) was dissolved in 96 g of distilled water with stirring at room temperature followed by the addition 

of 0.7 mL of NaOH (2 M) into the solution. The temperature of the solution was raised and kept at 60 °C. To 

this solution, 1.34 mL of TEOS was added. The mixture was continuously. A series of ATR-FTIR spectra 

were collected at different reaction times (10, 20, 30 min, 1, 2, 3h). The time was recorded from the addition 

of TEOS into the solution. Each spectrum was obtained against a background measured under diamond 

crystal.  
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Figure S6 ATR-FTIR spectra of the reaction mixtures as a function of time in MCM-41[3] reaction system 
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This chapter reported the synthesis of smaller mono-dispersed SiNPs (ultra-small hybrid silica 

spheres, UHSS) with a diameter of only  10 nm by a new and facile strategy under phosphate-

citrate buffer solution (pH = 4.6) at room temperature without addition of toxic additives. 

Compared to traditional MCM-41 nanomaterial, the designed novel UHSS showed enhanced 

penetration ability in three dimensional glioma spheroids. This work has been highlighted as back 

cover paper.  
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Experimental section  

Materials: Tetramethyl orthosilane (TMOS, 98%), Dimethoxydimethylsilane (DMDMS, 95%), 

Pluronic F127, Rhodamine B isothiocyanate (RBTC), (3-aminopropyl)trimethoxysilane (APTMS), 

fluoroshield with DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) and paraformaldehyde 

(PFA) were purchased from Sigma-Aldrich. Citric acid monohydrate (CA·H2O), dibasic sodium 

phosphate (Na2HPO4) were purchased from Ajax Finechem. Mouse melanoma B16F0 cell line was 

a kind gift of Dr. Barbara Rolfe from Australian Institute for Bioengineering and Nanotechnology, 

University of Queensland. Human malignant brain tumour U87MG cell was kindly provided by 

Prof. Marie-Odile Parat, School of Pharmacy, University of Queensland. Fetal calf serum (FCS) 

was purchased from Moregate Biotech, Australia. De-ionized (D.I.) water was generated using a 

Millipore Milli-Q system. 
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Synthesis of UHSS: For the synthesis of monodisperse ultra-small hybrid silica spheres (UHSS), 

0.5g of F127 was dissolved in 30 ml of phosphate-citrate buffer solution (pH=4.6, 46.6µM 

Na2HPO4, 26.7µM HAc) under stirring at room temperature. Then mixed silica sources of TMOS 

and DMDMS at different molar ratios (see details in Table S1) was added into the surfactant 

homogeneous solution under stirring. The reaction was continued at room temperature for 3 days. 

Afterwards, the clear solution was transferred into a dialysis membrane tube (Sigma-Aldrich, 

molecular weight cut off 14,000) and dialyzed in 1L of D.I. water for 3 days, to completely remove 

the salts, methanol and ethanol (resulted from the hydrolysis of TMOS and DMDMS). The D.I. 

water was refreshed twice per day. Finally the UHSS particles were stored in D.I. water for further 

use. 

Table S1 Experimental conditions for the synthesis of monodisperse ultras-mall hybrid silica 

spheres.  

Sample TMOS (mL) DMDMS (mL) TMOS molar percentage (%) DLS Size (nm) 

UHSS-1 0.2 0.96 16.3 5.5 

UHSS-2 0.4 0.77 32.5 7.0 

UHSS-3 0.5 0.68 40.1 11.5 

UHSS 0.6 0.59 48.8 10.1 

UHSS-4 0.7 0.49 56.9 18.6 

UHSS-5 0.8 0.40 65.0 557 

UHSS-6 1.23 0 100 577 

 

Synthesis of RBTC-UHSS: For the synthesis RBTC modified UHSS (RBTC-UHSS), 4 mg of 

RBTC and 44µl of APTMS was dissolved in 1ml of ethanol and stirred at room temperature 

overnight in dark. Afterwards, the mixture was added into 30 ml of phosphate-citrate buffer solution 

(pH=4.6, 46.6µM Na2HPO4, 26.7µM HAc) containing 0.5g of F127 under stirring at room 

temperature. After stirring for 2 minutes, the mixed silica sources of TMOS (0.6 ml) and DMDMS 

(0.59 ml) was added into above solution and stirred for 3 days. Afterwards, the clear red colour 

solution was transferred into a dialysis membrane tube and dialyzed in 50% (v/v) ethanol D.I. water 

solution for 2 days in dark, to completely remove the remaining RBTC, then dialyzed in D.I. water 

for another 3 days. The 50% ethanol solution or D.I. water was refreshed twice per day. Finally the 

RBTC-UHSS sample was stored in D.I. water for further use.  

Material Characterisation: Transmission electron microscopy (TEM) images were obtained with a 

FEI Tecnai F30 operated at 300 or JEOL 1010 operated at 100 kV. For TEM measurement 

preparation, the carbon coated Cu TEM grids were treated by glow discharge using 

CRESSINGTON 208 to make the TEM grids hydrophilic. Afterwards, the samples diluted in 
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deionized were dropped on the treated TEM grids for 2 minutes, after which the drops were 

absorbed by filter paper, and the samples dried on TEM grids in air. Nitrogen adsorption/desorption 

isotherms were measured at 77 K by using a Micromeritics ASAP Tristar II 3020 system. The 

samples were degassed at 473 K overnight on a vacuum line. The pore size distribution curve was 

derived from the adsorption branch of the isotherm using the Barrett–Joyner–Halanda (BJH) 

method. The Brunauer–Emmett–Teller (BET) method was utilized to calculate the specific surface 

areas. The total pore volume was calculated from the amount adsorbed at a maximum relative 

pressure (P/P0) of 0.99. Dynamic light scattering (DLS) studies were carried out on a Malvern 

NanoZS zetasizer at 25 C in ethanol. 
13

C CPMAS NMR spectra were measured by solid state 

Bruker Avance III spectrometer with 7T (300MHz for 1H) magnet, Zirconia rotor, 4mm, rotated at 

7 kHz.  

Cellular uptake of RBTC-UHSS in B16F0: B16F0 cells were maintained in Dulbecco's Modified 

Eagle Medium (DMEM) supplemented with FCS (10%), L-glutamine (2%), penicillin (1%), 

streptomycin (1%) in 5% CO2 at 37 °C. The medium was routinely changed every 2 days and the 

cells were separated by trypsinisation before reaching confluency. B16F0 cells were seeded in a 6-

well plate (110
5
 cells per well) and incubated for 24 h prior to cell uptake assay. Before adding 

RBTC-UHSS stock solution into a well of 6-well plates, the medium was replaced by 2.0 ml of 

fresh serum-free DMEM medium. After incubation for 4 h at 37C, the cells were washed twice 

with PBS to remove the remaining RBTC-UHSS, and dead cells. For fixed cell imaging, the cells 

were treated with 500 l of 4% PFA PBS solution for 30 min at 4 C, and their nuclei were stained 

with DAPI for 10 mins. Finally, the cells were observed under a confocal microscope (LSM Zeiss 

710).  

Culturing of U87MG cells and spheroids: U87MG cells grown in monolayer were maintained in 

DMEM supplemented with FCS (10%), L-glutamine (2%), penicillin (1%), streptomycin (1%) in 5% 

CO2 at 37 °C. The U87MG glioblastoma spheroids were developed using the modified liquid 

overlay technique.
1
 In brief, exponentially growing monolayer cells were trypsinized and 3×10

5
 

cells were seeded in 1% agar-coated 6-well plates containing Dulbecco modified Eagle medium 

(GIBCO) supplemented with FCS (10%), L-glutamine (2%), nonessential amino acids (4%) and 

penicillin/streptomycin (2%).  The plates were incubated in a tissue culture incubator at 37°C (95% 

humidity, 95% air, and 5% CO2) and cultured for 3-5 days, until spheroids were formed. Half of the 

culture medium was replaced with fresh medium twice a week. After round spheroids were formed 

and those with 200 μm diameter were collected, transferred and culture in agarose-coated (0.1%) 

glass cover slip in 6-well plates with same culture medium. 
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Cellular uptake of RBTC-UHSS in U87MG monolayer cells and spheroids: The monolayer 

U87MG cells and spheroid grown on plain glass and agar-coated cover slips respectively in 6 well 

plates were treated with RBTC-UHSS (or FITC-MCM-41). After 4 hours, plates were washed with 

PBS for 2 times and cells or spheroids were fixed with 4% PFA, washed with PBS. Nuclei were 

stained with a DAPI mount solution on glass slides. The cellular uptake of RBTC-UHSS by 

U87MG monolayer cells and multilayer spheroid were assessed using a confocal microscopy (LSM 

Zeiss 710). The software was used for obtaining confocal z-stacks for spheroid. Images were taken 

every 20 μm down through multilayer, visualizing tumour cells in the individual layers.  

Hemotoxylin-Eosin (H&E) staining of U87MG spheroid sections: U87MG spheroids were 

harvested (on 7th day) and fixed overnight in 4% PFA. Next day, spheroids were dehydrated with 

ethanol gradient started from 40% to 100% (1 hour each) followed by xylene (30 minutes) before 

impregnated in paraffin wax for 1 hour. The samples were then transferred and embedded into 

melted paraffin blocks (Thermo Scientific Embedding Centre). Solidified sample blocks were cut 

using a Hyrax M25 Rotary Microtome into 8 mm paraffin ribbons containing spheroid slices and 

collected on glass slides. During staining process, the U87MG spheroid sections were de-

paraffinized and rehydrated in water and stained with hematoxylin (2 min) followed by eosin (2 

min). The sections then went through an ethanol gradient for dehydration, clearing in xylene and 

coverslipped with DPX mounting medium. Morphology of the cells was observed by optical 

microscopy (Nikon Eclipse E200) and images were captured.  

Cell viability of UHSS in U87MG cells: The cytotoxicity of UHSS in U87MG monolayer cells was 

tested by MTT assay. U87MG cells were seeded in a 96-well cell culture plate with a density of 

510
3
 cells/well. After 24 hours, the cells were treated with different concentrations of UHSS 

solution for 4 hour. Afterwards, the cell viability was measured by adding MTT agent and reading 

the absorbance at 570 nm using a Synergy HT microplate reader. The cells incubated in the absence 

of particles were used as the control. All the experiments were performed in triplicates for each 

group. The statistical data were shown as mean(SD). 
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Fig. S1 Solid state 
13

C NMR spectra of UHSS before (a) and after (b) calcination. 

The solid state 
13

carbon cross-polarization magic angle spinning nuclear magnetic resonance (
13

C 

CPMAS NMR) spectrum of as-synthesized UHSS (Fig. S1 a) shows a intense peak at 70.76 ppm, 

assigned to methylene carbons in EO units of F127, and a less defined peak at 75.81 ppm to the 

methylene carbons of PO units.
2
 A weak peak at 17.4 ppm is attributed to methyl carbons of PO 

units, while the distinct peak at 0.58 ppm reveals the presence of methyl carbons connected to 

silicon atoms coming from the methyl-silane. In the spectrum of calcined UHSS at 350C (Fig. S1 

b), all the peaks attributed to surfactant F127 disappear. The only intense peak at -2.18pm can be 

detected, which can be assigned to methyl carbons to silicon atoms in the silica wall. This result 

indicates that the surfactant F127 in UHSS can be completely removed while retaining the methyl 

groups in the silica wall, as what observed in our previous report.
3
 

 

 

Fig. S2 TEM image of calcined UHSS. 

 

UHSS-1 to UHSS-6 synthesized at different TMOS molar percentages 

To understand the influence of molar ratio of reactive silica source to termination agent on the final 

structure and monodispersity of UHSS, UHSS-1 to UHSS-6 were synthesized at different TMOS 
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molar percentages (from 16.3% to 100%) while keeping the total molar amount same (see details in 

Table S1).  As shown in Fig. S3, a clear transparent solution and Tyndall effect can be observed for 

the samples with a TMOS molar percentage equal to or less than 56.9% (UHSS-1, UHSS-2, UHSS-

3 and UHSS-4). In contrast, when the TMOS amount further increases to 65.0% (UHSS-5), a milky 

solution can be seen, suggesting that the aggregation between small particles occur. When TMOS 

only was used as the silica source without addition of DMDMS, the reaction solution turns to be 

white, indicating a severe aggregation among silica particles. To further confirm the structures of 

UHSS-1 to UHSS-6, TEM and DLS techniques were used. From the TEM images (Fig. S4 a-c), it 

can be seen that UHSS-1, UHSS-2 and UHSS-3 synthesized at lower TMOS molar percentage than 

that in UHSS, show monodisperse spherical hollow spheres with a diameter of about 5, 7, 11 nm 

respectively. Their narrow DLS size distribution curves in ethanol further confirm their 

monodispersity (Fig. S5), and the average diameter of UHSS-1, UHSS-2, and UHSS-4 measured by 

DLS is 5.5, 7.0, 11.5 respectively (Fig. S5 and Table S1), which is consistent with TEM observation. 

When TMOS molar percentage increases to 56.9% (higher than that in UHSS), slight aggregation 

can be observed between small particles from the TEM image shown in Fig. S4 d, even though 

UHSS-4 aqueous solution is very clear and transparent. The diameter of UHSS-4 determined by 

DLS measurement is  18.6 nm, larger than a single small sphere size (10-11 nm), further confirms 

its slight aggregation.  When the TMOS amount further increases to 65.0% and 100%, a bigger 

clusters aggregated by small particles can be detected in the TEM images (Fig. S4 e-f). Also the 

diameters determined by DLS measurements are in hundreds of nanometers.  

The dried samples of UHSS-1 to UHSS-5 were further characterized by TEM. From Fig.S6, it can 

be seen that when TMOS molar percentage is lower that 40%, aggregated ultra-small hollow 

spheres and nonporous bulk amorphous silica co-exist in the dried samples UHSS-1 (Fig. S6 a) and 

UHSS-2 (Fig. S6 b). For the other samples (Fig. S6 c-e), only aggregated ultra-small hollow spheres 

can be observed. All the results indicate that the optimized TMOS molar percentage is 40% to 50% 

to obtain high yield of monodisperse UHSS.  

The termination agent used here is a silane coupling agent (CH3)2Si(OCH3)2 having only two 

reactive methoxy groups. The hydrolysis and condensation of the organosilane coupling agent is 

slower than the other more reactive silica source Si(O`CH3)4 with four methoxy groups. As 

demonstrated in Scheme S1, during the formation of silica hybrid block copolymer micelles, silica 

oligomers derived from reactive Si(OCH3)4 first deposit between the PPO core and PEO shell, 

followed by the deposition of silica oligomers with methyl groups coming from the termination 

agent (CH3)2Si(OCH3)2 to inhibit the interaction between small silica hybrid particles. When 
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Si(OCH3)4 (TMOS) amount decreases, the silica deposition coming from TMOS was less and 

stopped earlier by methyl group modified silica deposition on the surface coming from increased 

(CH3)2Si(OCH3)2, leading to a smaller size of UHSS and extra silica oligomers. This deposition 

completion between two types of silica oligomers gives rise to different sizes of UHSS. 

 

Fig. S3 Digital images of samples of UHSS-1, UHSS-2, UHSS-3, UHSS-4, UHSS-5, and UHSS-6. 
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Fig. S4  TEM images of (a) UHSS-1, (b) UHSS-2, (c) UHSS-3, (d) UHSS-4, (e) UHSS-5, and (f) 

UHSS-6. 

 

 

Fig. S5 DLS measurements of UHSS-1, UHSS-2, UHSS-3, UHSS-4, UHSS-5, and UHSS-6. 

 

Fig. S6 TEM images of calcined UHSS-1(a), UHSS-2(b), UHSS-3(c), UHSS-4(d), and UHSS-5(e). 
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Scheme S1 Illustration of the formation mechanism of UHSS with different diameters by adjusting 

the molar ratio of DMDMS/TMOS.  

UHSS synthesized in HCl solution with a pH4.6 

In order to understand the influence of phosphate-citrate buffer on the structure of UHSS, we 

synthesized UHSS in HCl solution with same pH of 4.6 while keep the other synthesis process same. 

The sample is denoted as UHSS-HCl. From Fig S7 (a), it can be seen that UHSS-HCl have a similar 

core-shell structure as UHSS but with a bigger size of  14 nm, compared with UHSS in Fig.1. The 

average diameter measured by DLS measurement (Fig. S7 b) is 14.4 nm, which is consistent with 

the TEM observation.  

The active silica source (TMOS) and citrate could form Si-citrate complex
4
  during the formation 

process of UHSS. Complexation process may slow down the deposition of silica deposition coming 

from TMOS in PEO shell of surfactant, leading to a smaller size of UHSS compared with that 

obtained in HCl solution. 

    

  

Fig. S7 (a) TEM image and (b) DLS result of UHSS-HCl.  
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Fig. S8 (a) TEM image, (b) digital image of RBTC-UHSS sample after dialysis. 
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Fig.  S9 Confocal microscopy images of B16F0 cells treated with RBTC-UHSS at 0µg/ml (first 

row), 50µg/ml (second row) and 100µg/ml (third row). Red fluorescence arises from RBTC dyes 

that are conjugated to UHSS and nuclei are stained with DAPI, showing blue fluorescence. 
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Fig. S10 Confocal microscopy images of monolayer of U87MG cells treated with RBTC-UHSS at 

0µg/ml (first row), 50µg/ml (second row) and 100µg/ml (third row). 
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Fig. S11 Hemotoxylin-Eosin (H&E) staining image of U87MG spheroid section from the middle.  

Hematoxylin and eosin (H&E) staining of sectioned U87MG 3D spheroids was used for 

morphological and structural study. Fig. S11 showed a peripheral multi layers concentric rim of 

cells with inner cellular network connections throughout the centre of the spheroids. The spheroidal 

cells maintain their undifferentiated astrocytic phenotype and adjacent cellular connections. This 

spheroidal cell-cell and cell-extracellular matrix (ECM) interactions in multilayer mimic the 

characteristics of 3-D solid tumours, which is absent in conventional monolayer culture of tumour 

cells. 
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Fig.  S12 Z-stack images of spheroid of U87MG cells treated without RBTC-UHSS. All scale bars 

are 20 µm. 

 

Fig.  S13 TEM image of FITC-MCM-41.  



Chapter 5 Facile synthesis of ultra-small hybrid silica spheres for enhanced penetration of 3D 

glioma spheroids   

99 

 

 

Fig.  S14 Z-stack images of spheroid of U87MG cells treated with FITC-MCM-41at 10µg/ml. All 

scale bars are 20 µm. 

 

Fig.  S15 Cell viability of U87MG cells after treated with of UHSS at different Concentrations. 
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This chapter reported the designed synthesis of epoxysilane functionalized UHSS (Epoxy-UHSS) 

with a diameter of  10 nm under similar synthesis conditions as what descripted in Chapter 5, 

which can be easily covalently conjugated with cationic polyethylenimine (PEI) (PEI-UHSS). This 

designed positively charged PEI-UHSS demonstrated excellent delivery efficiency of functional 

siRNA against polo-like kinase 1 (PLK1-siRNA) in osteosarcoma cancer cells (KHOS) and 

survivin-siRNA in human colon cancer cells (HCT-116) by inducing a significant cell inhibition, 

which is comparable with commercial agents. These results indicated that suitable functionality of 

SiNPs is significant to achieve efficient gene delivery.  
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Experimental section  

Materials: Tetramethyl orthosilane (TMOS, 98%), diethoxy(3-glycidyloxypropyl)methylsilane 

(DGMS, 97%), (3-Glycidyloxypropyl)trimethoxysilane (GPTMS, 97%), Pluronic F127, 

fluoroshield with DAPI (4',6-diamidino-2-phenylindole, dihydrochloride), dimethylsulfoxide 

(DMSO), paraformaldehyde (PFA), twenty-one-nucleotide (oligo) DNA conjugated with cyanine 

dye (Cy-3), antifade fluorescent mounting medium with 4’-6-diamidino-2-phenylindole (DAPI) and 

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) were purchased from Sigma-

Aldrich. Citric acid monohydrate (CA·H2O), dibasic sodium phosphate (Na2HPO4) were purchased 

from Ajax Finechem. Polyethylneimine, (branched, M.W. 1800, 99%) was purchased from Alfa 

Aesar. A Cell-Titer-Glo cell viability assay kit was purchased from Promega. Osteosarcoma cell 

line KHOS/NP (CRL-1544) was purchased from ATCC (American Type Culture Collection). Fetal 

calf serum was purchased from Moregate Biotech, Australia. De-ionized (D.I.) water was generated 

using a Millipore Milli-Q system. 

The sequences of human PLK1-siRNA (Sigma-Aldrich) are PLK1-S: 5’-

CCAUUAACGAGCUGCUUAATT-3’ and PLK1-AS: 5’-UUAAGCAGCUCGUUAAUGGTT-3’. 



Chapter 6 An approach to prepare polyethylenimine functionalized silica-based spheres with small 

size for siRNA delivery   

108 

 

The sequences of synthetic S10-siRNA (Sigma-Aldrich) are as follows: S10-S, 5’-

GCAACAGUUACUGCGACGUUU-3’ and S10-AS, 5’-ACGUCGCAGUAACUGUUGCUU- 3’.  

Survivin siRNA (h) (sc-29499) and negative control siRNA were purchased from Santa Cruz 

Biotechnology. The primary antibodies of Survivin (71G4B7) Rabbit mAb, -Tubulin (9F3) Rabbit 

mAb and PLK1(208G4) Rabbit mAb and the secondary antibody Anti-rabbit IgG, HRP-linked 

Antibody were purchased from Cell Sigaling Technology.  

Synthesis of Epoxy-UHSS: For the synthesis of monodisperse epoxy group modified ultrasmall 

hybrid silica spheres (Epoxy-UHSS), 0.5g of F127 was dissolved in 30 ml of phosphate-citrate 

buffer solution (pH=4.6, 46.6µM Na2HPO4, 26.7µM HAc) under stirring at room temperature. Then 

a mixed silica sources of 0.8ml TMOS and 0.75ml DGMS was added into the surfactant 

homogeneous solution under stirring. The reaction was continued at room temperature for 3 days. 

Afterwards, the clear solution was transferred into a dialysis membrane tube (Sigma-Aldrich, 

molecular weight cut off 14,000) and dialyzed in 1L of D.I. water for 3 days, to completely remove 

the salts, methanol and ethanol (resulted from the hydrolysis of TMOS and DGMS). The D.I. water 

was refreshed twice per day. Finally the Epoxy-UHSS particles were stored in deionized water for 

further use.    

Synthesis of PEI-UHSS: The conjugation process of polyethyleneimine (PEI, M.W. 1800) on 

Epoxy-UHSS was performed using a modified approach reported in our previous study.
1
 Typically, 

4 ml of Epoxy-UHSS solution prepared in the last step was added in to 8 ml of 2.5mg/ml PEI 

solution in carbonate buffer (NaHCO3-Na2CO3, Ct [CO3
2-

] = 50 mM, pH= 9.5) at room temperature, 

and the mixture stirred for 8 hours. After that, the final product was dialyzed in 1L of deionized 

water for 3 days using dialysis membrane tube, to complete remove the salts and free PEI molecules. 

The sample was denoted as PEI-UHSS. 

Material Characterisation: Transmission electron microscopy (TEM) images were obtained with a 

FEI Tecnai F30 operated at 300. For TEM measurement preparation, the carbon coated Cu TEM 

grids were treated by glow discharge using CRESSINGTON 208 to make the TEM grids 

hydrophilic. Afterwards, the samples diluted in deionized were dropped on the treated TEM grids 

for 2 minutes, after which the drops were absorbed by filter paper, and the samples dried on TEM 

grids in air. Dynamic light scattering (DLS) studies and zeta potential measurements were carried 

out on a Malvern NanoZS zetasizer at 25 C in deionized water solution. 
13

C CPMAS NMR spectra 

were measured by solid state Bruker Avance III spectrometer with 7T (300MHz for 1H) magnet, 

Zirconia rotor, 4mm, rotated at 7 kHz. Elemental Analyses were determined by CHNS-O Analyzer 

(Flash EA1112 Series, Thermo Electron Corporation).  

Cell culture: KHOS and HCT-116 cells were maintained in Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with fetal calf serum (10%), L-glutamine (2%), penicillin (1%), 

streptomycin (1%) in 5% CO2 at 37 °C. The medium was routinely changed every 2 days and the 

cells were separated by trypsinisation before reaching confluency. 

Cellular uptake of Cy3-oligoDNA/PEI-UHSS: KHOS cells were seeded in a 6-well plate (110
5
 

cells per well) and incubated for 24 h prior to cell uptake assay. 50 µg of PEI-UHSS and 2 µl of 100 

µM Cy3-oligoDNA was mixed in 100 µl of phosphate buffered saline (PBS) solution and incubated 

at 4C overnight. After incubation, the mixture was added to a well of 6-well plates containing 2.0 

ml of serum-free DMEM medium, and the final concentration of PEI-UHSS and Cy3-oligoDNA 
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was 25µg/ml and 100nM, respectively. After incubation for 4 h at 37C, the cells were washed 

twice with PBS to remove the remaining nanoparticles, free Cy3-oligoDNA and dead cells. For 

fixed cell imaging, the cells were treated with 500 l of 4% PFA PBS solution for 30 min at 4 C, 

and their nuclei were stained with DAPI for 10 mins. Finally, the cells were observed under a 

confocal microscope (LSM Zeiss 710).  

RNase A protection assay: 10g of PEI-UHSS and 50pmol of PLK1-siRNA were mixed in RNase 

free water and incubated at room temperature for 30 minutes. Afterwards, 1g of RNase A was 

added into the complex solution with a total volume of 10l, then the absorbance at 260 nm (Abs260) 

was measured by a Nanodrop 1000 with an incubation time of 0 and 30 minutes at room 

temperature. For the free PLK1-siRNA control, 50pmol of PLK1-siRNA and 1g of RNase A were 

mixed in RNase free water with a total volume of 10l, then the value of Abs260 was measured by 

Nanodrop after incubation at room temperature for 0 and 30 minutes. The increase percentage of 

Abs260 = [Abs260 (30 minutes) - Abs260 (0 minute)]/Abs260 (0 minute). 

Cell viability test of PEI-UHSS: The cytotoxicity of PEI-UHSS in KHOS and HCT-116 cells was 

tested by Cell-Titer Glo assay and MTT method, respectively. KHOS or HCT-116 cells were 

seeded in a 96-well cell culture plate with a density of 510
3
 cells/well. After incubation for 24 h, 

the cells were treated with different concentrations of PEI-UHSS solution. After incubation at 37C 

for 48h, the cell viability was measured according to the protocol provided by the manufacturer. 

The cells incubated in the absence of particles were used as the control. All the experiments were 

performed in triplicates for each group. The statistical data were shown as mean (SD). 

Functional siRNA delivery: To test siRNA delivery efficiency of PEI-UHSS particles, PLK1-

siRNA was chosen as functional molecules to treat PLK1 over-expressing KHOS cells. S10-siRNA 

was used as a negative control, because it is effective against human papillomavirus (HPV) type 16 

E6 gene, which is low-expressed in KHOS cells. The cells were seeded in a 96-well cell culture 

plate with a density of 510
3
 cells/well in 100 μL of complete DMEM medium, and grew for 24h 

before treatment. The complexes of PLK1-siRNA/PEI-UHSS, and PLK1-siRNA/PEI were formed 

after mixing and incubating in PBS solution at 4C overnight, then were added to cells. After 

further incubation at 37C for 48h, the silencing effect or cell viability was determined by Cell-Titer 

Glo method. The cells incubated in the equal amount of PBS solution were used as the control. All 

the experiments were performed in triplicates for each group. The statistical data were shown as 

mean (SD). The delivery of survivin siRNA and negative control siRNA into HCT-116 cells was 

performed as what describe above. Finally, the cell viability was measured by adding MTT agent 

and reading the absorbance at 570 nm using a Synergy HT microplate reader.   

 

Western-blot analysis: KHOS or HCT-116 cells were seeded in 6-well plates at a seeding density 

of 110
5
 cells/well. After 24 h incubation, the complexes of survivin-siRNA/PEI-UHSS, control 

siRNA/PEI-UHSS, survivin siRNA/PEI, survivin siRNA/Oligofectamine, control siRNA/ 

Oligofectamine along with survivin siRNA only were added into the cells. After further incubation 

at 37C for 48h, cells were washed with PBS, collected and lysed in cold RIPA buffer (50 mM Tris, 

pH 8.0, 150 mM NaCl, 1 mM EGTA, and 0.25% sodium deoxycholate). The lysates were incubated 
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for 15 min at 4C and removed by centrifugation at 12,000 rpm for 15 min. Supernatants were 

analysed for protein concentrations using the Bradford assay (Bio-Rad, Hercules, USA). Equal 

amount (10 mg) of protein was subjected to electrophoresis on a polyacrylamide gel containing 

SDS and then transferred to nitrocellulose membranes. Afterwards, the membranes were blocked 

with tris-buffered saline (TBS) containing 5% (w/v) skimmed milk. After being washed with TBS, 

the membranes were incubated 4C overnight at with the first antibody (PLK1 Rabbit mAb, 

survivin Rabbit mAb and -Tubulin Rabbit mAb) diluted in TBS. After washing, the membranes 

were incubated at room temperature for 1 h with the second antibody (Anti-rabbit IgG, HRP-linked 

Antibody). Bands were detected by were visualized on a Bio-Rad reader. 

 

 

 

 

 

 

Figure S1 (a) diameter distribution measured by TEM, (b)DLS measurement (left) and (c) digital 

image of Epoxy-UHSS. 

 

 

Figure S2 Chemical structures of DGMS and GPTMS.  
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Scheme S1 The chemical reaction between the epoxy moiety of Epoxy-UHSS and PEI.  

 

Figure S3 TEM image of epoxysilane functionalized small particles synthesized by using (3-

Glycidyloxypropyl)trimethoxysilane and TMOS as silica source.  

 

 

 

Figure S4 DLS measurement of PEI-UHSS 
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Figure S5 Zeta potential distribution curves of Epoxy-UHSS and PEI-UHSS. 

The surface features of Epoxy-UHSS and PEI-UHSS was studied using Zeta potential 

measurement. As shown in Figure S5, Epoxy-UHSS has a slightly positive charge of +7.1 mV, 

indicating the existence of protection groups of methyl and epoxy groups, because pure silica 

nanoparticles with a similar diameter show a negatively charged surface ( -40 mV).
2
 The 

introduction of cationic PEI leads to a high positive potential value of +28.0 mV for PEI-UHSS. 

 

Table S1 Percentages of carbon (C), hydrogen (H) and nitrogen (N) of F127, Epoxy-UHSS and 

PEI-UHSS. 

 N (%) C (%) H (%) 

F127 0 55.250.10 9.200.16 

Epoxy-UHSS 0 31.480.58 5.260.03 

PEI-UHSS 3.750.17 50.780.42 8.680.04 

 

The contents of carbon, nitrogen and hydrogen of pure F127, Epoxy-UHSS and PEI-UHSS are 

listed in Table S1. The carbon and hydrogen percentages of F127 measured by elemental analysis 

are in agreement with their theoretical values from the chemical structure of F127. Epoxy-UHSS 

sample does not contain any nitrogen, thus the nitrogen coming from PEI contributes the nitrogen in 

the sample PEI-UHSS. Based on the measured nitrogen percentage of PEI-UHSS (3.75%) and 
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theoretical nitrogen percentage of pure PEI (32.56%), it is easy to calculate the amount of PEI 

modified onto silica hybrid particles, about 11.52%. 

 

 

Figure S6 Confocal microscopy images of KHOS cells with the treatment of free Cy3-oligoDNA. 

The cells without any treatment are as a control. 

 

 

Figure S7 Degradation of free PLK1-siRNA and its complex with PEI-UHSS after treated with 

RNase A monitored by the percent increase in absorbance at 260 nm.  
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This chapter reported the designed synthesis of hyaluronic acid (HA) modified mesoporous silica 

nanoparticles (MSNs), which possess specific affinity to CD44 over expressed on the surface of a 

specific cancer cell line, HCT-116 (human colon cancer cells). Compared to bare MSNs, HA-MSNs 

exhibited a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, 

doxorubicin hydrochloride (Dox), was loaded into MSNs and HA-MSNs. Dox loaded HA-MSNs 

showed greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced 

cell internalization behaviour of HA-MSNs. These results indicated that desired surface 

functionality is also crucial to improve drug delivery efficiency.  This work has been highlighted as 

inside cover paper.    
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Apart from surface functionality, the particle size of SiNPs is expected to have significant effect on 

gene delivery efficiency. In this chapter, amine modified mono-dispersed Stöber spheres (NH2-SS) 

with various diameters of 125, 230, 330, 440 and 570 nm were synthesized. The in vitro 

transfection efficiencies of NH2-SS were studied in HEK293T cells by delivering plasmid DNA 

encoding green fluorescent protein (GFP) (pcDNA3-EGFP, abbreviated as pcDNA, 6.1kbp).  It was 

found that an optimized particle size of 330 nm exhibited the highest expression of GFP. The 

mechanistic study showed that the binding affinity of pcDNA/NH2-SS complexes decreased while 

the cellular uptake ability increased with NH2-SS size increasing from 125 to 570 nm. The opposite 

effects lead to an optimal NH2-SS size of 330 nm that provides the maximum gene delivery 

efficiency. A similar size-dependent gene delivery relationship was further demonstrated in another 

plasmid DNA with a bigger size of 8.9 kbp. This work for the first time demonstrates the significant 

role of particle size of cationic silica nano-carriers on gene delivery efficiency. The knowledge 

obtained from this work is crucial for the rational design of synthetic gene delivery systems with 

improved efficiency for gene therapy. This work has been resubmitted to ACS Nano.  
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Table S1: Experimental conditions for the synthesis of silica Stöber spheres with different 

diameters. 

Sample 
The first solution                       The second solution 

T(C) t(h) 
EtOH(ml) TEOS(ml) H2O(ml) EtOH(ml) NH4OH(ml) 

NH2-SS125 22.2 2.8 6.8 17.6 0.7 25 13 

NH2-SS230 22.2 4.5 6.8 17.6 0.7 25 4.5 

NH2-SS330 45.5 5.0 16.25 24.75 9.0 25 2 

NH2-SS440 45.5 5.0 16.25 24.75 9.0 22 2 

NH2-SS570 45.5 5.0 16.25 24.75 9.0 15 2 

T: reaction temperature; t: reaction time 
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Figure S1. Particle size distribution curves measured by DLS method of NH2-SS125, NH2-SS230, 

NH2-SS330, NH2-SS440, NH2-SS570 and their complexes with pcDNA or H1. 

 

 

 

Figure S2. GFP expression levels in HEK 293T cells by flow cytometry, after treated with 

PEI/pcDNA complexes with different N/P ratios. The Y value of fluorescence intensity of GFP = 

GFP positive cell percentage  GFP mean intensity per GFP positive cell. 
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Table S2: Elemental analysis results of NH2-SS and the calculated N/P ratios of NH2-SS/DNA 

complexes with different w/w ratios. 

Sample N (%)  

N/P ratio*          

w/w = 40 w/w = 120 w/w = 160 w/w = 200 

NH2-SS125 0.846 3.6 10.8 14.4 17.8 

NH2-SS230 

NH2-SS330 

NH2-SS440 

NH2-SS570 

0.834 

0.218 

0.121 

0.099 

3.6 

0.9 

0.5 

0.4 

10.7 

2.8 

1.6 

1.3 

14.2 

3.7 

2.1 

1.7 

17.7 

4.6 

2.6 

2.1 

*:  N/P ratio = 330/31× w/w × N %, assuming an average molecular weight of 330g/mol of nucleotide. 

 

 

Figure S3. Confocal images indicating expressed GFP in HEK 293T cells, after treated with naked 

pcDNA, NH2-SS125/pcDNA, NH2-SS230/pcDNA, NH2-SS330/pcDNA, NH2-SS440/pcDNA and 

NH2-SS570/pcDNA. 
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Figure S4. Particle size distribution curve of pcDNA measured by DLS method.  

 

Table S3: The comparison of NH2-SS binding affinity toward pcDNA measured by Nanodrop and 

gel retardation assay. 

Sample 
Binding capacity measured 

by Nanodrop (ng/g)  
WN (g) WR(g) WR-N (g) 

NH2-SS125 27.7 18.0 40 22.0 

NH2-SS230 

NH2-SS330 

NH2-SS440 

NH2-SS570 

12.7 

15.0 

12.1 

10.0 

39.4 

33.3 

41.3 

50.0 

80-120 

80-120 

80-120 

 120 

40.6-80.6 

40.6-80.6 

40.6-80.6 

 70.0 

WN: NH2-SS amount needed to completely bind 0.5g pcDNA determined by Nanodrop; WR: NH2-

SS amount needed to completely bind 0.5g pcDNA determined by gel retardation assay; WR-N = 

WR-WN. 
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Figure S5. Cell viability of HEK 293T after treated with NH2-SS particles at different 

concentrations (100, 200, 300µg/ml). 

 

 

 

Figure S6. GFP expression levels in HEK 293T cells by flow cytometry, after treated with PEI/H1 

complexes with different N/P ratios. The Y value of fluorescence intensity of GFP = GFP positive 

cell percentage GFP mean intensity per GFP positive cell. 
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Figure S7. Confocal images indicating expressed GFP in HEK 293T cells, after treated with naked 

H1, NH2-SS125/H1, NH2-SS230/H1, NH2-SS330/H1, NH2-SS440/H1 and NH2-SS570/H1. 
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CChhaapptteerr  99  

General discussion and outlook 

  

9.1 General discussion 

     Silica based nanoparticles (SiNPs) with excellent biocompatibility, tunable pore/ particle size and 

controllable surface chemistry have attracted enormous research interest in various bio-applications, 

including cell imaging, diagnosis and bioanalysis, and drug/gene delivery into various cells or 

animal models.1-3 SiNPs with a small size ( 100 nm) and high monodispersity possess advantages 

in cell endocytosis process, which is vital to achieve high efficiency in biomedical applications.4,5 

There have been tremendous efforts in the synthesis of mono-dispersed nanometer-sized SiNPs,6-9 

but still more efforts are highly desired to develop facile, economic and environmentally friendly 

synthesis approaches for fabricating novel mono-dispersed SiNPs with desired particle size and 

nano-structure. Thus the first aim of this thesis was to develop facile approaches to synthesize 

various types of highly mono-dispersed SiNPs with finely controlled pore structure and particle size 

(10-100 nm). Chapter 4 described a new and facile approach to prepare monodisperse mesoporous 

silica nanospheres (MMSNs) with controlled particle sizes (50-100 nm) and pore diameters (2.8-4.0 

nm) where NaAc was utilized as a catalyst to initiate the hydrolysis and condensation of silicon 

alkoxides without any harsh conditions in previous reports (e.g. strong acids or alkali). As we 

hypothesized, the salt of NaAc of a weak acid and a strong base could slow down the hydrolysis 

and condensation of silica sources of tetraethoxysilane (TEOS). The derived hydrophobic group of 

Si–OCH2CH3 on the surface of silica nanoparticles during the reaction protects silica nanoparticle 

from further random aggregation, finally leading to mono-dispersed nanoparticles. However, it is 

hard to synthesize highly mono-dispersed MMSNs with smaller than 50 nm. In chapter 5, even 

smaller mono-dispersed SiNPs (ultra-small hybrid silica spheres, UHSS) with a diameter of only  

10 nm were developed by a new and facile strategy under phosphate-citrate buffer solution (pH = 

4.6) at room temperature without addition of toxic additives. As expected, this biological buffer 

with a near neutral pH slows down the deposition of mixed silica sources of tetramethyl orthosilane 

(TMOS) and dimethoxydimethylsilane (DMDMS) on the shell of tri-block copolymer 
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EO106PO70EO106 [Pluronic F127, EO refers to poly(ethylene oxide), PO refers to poly(propylene 

oxide)] micelles.  

     Most reported biological studies of SiNPs are based on two-dimensional (2D) cell models 

(monolayers). However, such simplified conditions in monolayer cell cultures are not representative 

of multi-layer cellular environment in the real tissues, limiting the potential of 2D cell culture model 

to predict the cellular responses of real organisms. In contrast, three-dimensional (3D) culture 

models more closely mimic the cell-to-cell and cell-to-extracellular matrix (ECM) interactions as 

well as the topography found in an in vivo tumor environment.10 Therefore, the second aim of this 

thesis is to evaluate the influence of particle size and mono-dispersity of SiNPs on cell penetration 

ability in both monolayer and three dimensional spheroid models of various types of cells. In 

Chapter 5, the penetration ability of novel designed UHSS was evaluated in 3D glioma spheroids. It 

was found UHSS show enhanced cellular uptake performance and more uniform distribution in the 

cytoplasm of the cells both in monolayer and three dimensional spheroid models, compared to 

conventional SiNPs (MCM-41). The relatively large particle size (100 nm in diameter) and limited 

dispersity of MCM-41 in aqueous solution hindered its uniform penetration ability in 3D glioma 

spheroids. Additionally, it was reported that cyclic RGD peptide modification was essential for 

uniform distribution of organic nanoparticles throughout the entire glioma spheroid, otherwise, the 

organic nanoparticles had limited ability to penetrate the core area of glioma spheroids.11 UHSS 

without modification of any targeting moiety demonstrated a comparable glioma tissue penetration 

capability with organic nanoparticles with a specific ligand.  

    Apart from particle sizes and monodispersity, surface property is another key factor affecting the 

efficacy of SiNPs in bio-applications. SiNPs modified with desired functional groups have 

demonstrated improved adsorption capacities to bioactive molecules/drugs, increased targeting 

ability to desired sites, enhanced biocompatibility, demanded release of cargos, etc.1 For example, 

to facilitate the cellular uptake of the negatively charged siRNA, SiNPs need to be functionalized 

with positively charged amine groups,12 poly-L-lysine (PLL),13 or polyethylenimine (PEI).14 

Compared to other cationic groups, PEI has a higher endosomal escape capability, favoring a high 

gene silencing efficacy.14,15  

Chapter 6 extended the synthesis approach developed in Chapter 5, where epoxysilane 

functionalized UHSS (Epoxy-UHSS) with a same diameter of 10 nm were designed under similar 

synthesis condition, but a new precursor diethoxy(3-glycidyloxypropyl)methylsilane was utilized 

instead of dimethyl-silane in Chapter 5, leading to the grafting of both an inert alkyl group and a 

reactive group (epoxy). Eventually the obtained Epoxy-UHSS can be easily covalently conjugated 
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with cationic PEI by nucleophilic addition to the epoxy groups. As hypothesized, this designed 

positively charged PEI-UHSS demonstrated excellent delivery efficiency of functional siRNA, by 

taking advantages of ultra-small particle size, excellent monodispersity and desired surface 

functionality of PEI. The delivery results are comparable to commercial agents. This work is the 

first report on utilizing mono-dispersef SiNPs with ultra-small sizes for siRNA delivery.  

Another beneficial surface functionality of SiNPs is targeting delivery, which is vital for efficient 

cancer therapy because most anticancer drugs distribute throughout the body and can be harmful to 

healthy cells.16 To minimize side effects, it would be highly desirable to specifically increase 

therapeutic agents’ concentration at the target sites. Many efforts have been devoted to develop 

SiNPs modified with targeting moieties, including specific ligands (such as folic acid,17,18 

mannose19 and arginine-glycine-aspartate (RGD)20), peptides,21 and antibodies.22 The abundant 

silanol groups (Si–OH) facilitate the modification of the above targeting moieties, thereby 

achieving targeting of SiNPs to specific cancer cells. Targeting delivery will enhance the cellular 

uptake of SiNPs in defective cells, leading to significant improvement in cancer therapy. 

Hyaluronic acid (HA) is a biodegradable, biocompatible and non-immunogenic 

glycosaminoglycan.23,24 HA has been widely utilized as a targeting moiety for cancer therapy, 

because many types of tumor cells over-express HA receptors like CD44.16 Utilizing CD44-HA 

specific affinity is therefore an attractive strategy for cancer targeting treatment. Ma et al. firstly 

reported the designed synthesis of MSNs-HA conjugate.25 After loading with CPT, HA-MSNs 

showed enhanced cytotoxicity to HeLa cells. However, the improvement in cell toxicity is not 

significant compared to free CPT. Because HA coated on the outer surface of MSNs is very 

hydrophilic; the nature of drug may also have influence on the cytotoxicity. Therefore, more efforts 

are still needed to rationally design targeting moieties modified SiNPs to improve drug deliveries at 

targeted cells.  

In Chapter 7, HA modified SiNPs were designed, which possess specific affinity to CD44 over 

expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). A 

hydrophilic anticancer drug, doxorubicin hydrochloride (Dox), loaded HA-SiNPs showed greater 

cytotoxicity to HCT-116 cells than free Dox and Dox-SiNPs due to the enhanced cell internalization 

behavior of HA-SiNPs. As expected, the desired surface functionality is also crucial to improve 

drug delivery efficiency by modification of biodegradable and biocompatible targeting ligand of 

HA on the surface of SiNPs.  

The results presented in Chapters 6 and 7 confirm that surface functionality of SiNPs play an 

important role in delivery efficiency of both siRNA and anticancer drugs. Different from such small 
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cargoes, plasmid DNA (pDNA) is much larger and the length of pDNA could be in micrometre 

scale. The influences of structure parameters of SiNPs on pDNA delivery efficiency are expected to 

be significantly different from those on small cargoes. For example, it has been well documented 

that small SiNPs less than 100 nm are beneficial for cellular delivery of small molecules. However 

it is not clear how the particle size of SiNPs would affect pDNA delivery. Therefore, the fourth aim 

of this thesis is to gain insight of the role of particle size of highly mono-dispersed SiNPs on large 

pDNA transfection efficiency by deeply investigating the interaction between SiNPs and pDNA and 

the cellular uptake performance. The results presented in Chapter 8 suggest that an optimized 

particle size of SiNPs is 330 nm for the highest expression of GFP by delivering the large pDNA 

(6.1 and 8.9 kbp). As hypothesized, it was found that pDNA would affect the sizes of SiNPs and 

subsequent cellular uptake after forming complexes due to its large size. The transfection efficiency 

was found as a compromise between the binding capacity and cellular uptake performance of SiNPs 

and pDNA conjugates. This work demonstrates for the first time the significance of particle size on 

gene transfection efficiency in silica based gene delivery systems. These findings are crucial to the 

rational design of synthetic vectors for gene therapy.  

 In summary, the development of SiNPs has profoundly affected their applications in drug/gene 

delivery. The desired structure parameters of SiNPs are of great significance to enhance their 

biological efficacy, including monodispersity, particle sizes and surface functionality. This thesis 

provides novel facile synthesis approaches to fabricate highly mono-dispersed SiNPs with tunable 

particle sizes and new nanostructures, avoiding any harsh conditions (e.g. strong acids, alkali or 

organic solvents). These designed SiNPs with desired particle size, monodispersity and surface 

functionality have shown their enhanced capacity in penetration in three dimensional spheroid 

models, improved cellular drug/gene delivery efficiency. 

9.2 Outlook 

There are more space to exploit the capacity of highly mono-dispersed SiNPs developed in this 

thesis using the novel and facile approaches in other biomedical applications, as exampled below.  

1)  Combination therapy using MMSNs to deliver both photosensitizers (PSs) and siRNA.  

As introduced in Chapter 2, photodynamic therapy (PDT) is one of the promising approaches for 

cancer treatments; it utilizes photosensitizers (PSs) and visible light together with oxygen to 

produce cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, most PSs are 

hydrophobic; this can cause aggregation in the physiological environment, limiting their clinical 

applications. Therefore, enhancing the cellular bioavailability of PSs is a big challenge in PDT. In 
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live cancer cells, excess ROS are normally degraded by anti-oxidizing agents triggered by the 

cellular defense system. Thus, suppression of antioxidant activity is an alternative way to increase 

the cytotoxicity of ROS and subsequently enhance PDT efficiency. These issues represent the 

hurdles of developing effective PDT treatments. 

 An integrated approach based on MMSNs with high pore volume could be utilized to address the 

above issues, enhancing PDT efficiency. The key strategies include: 1) using MMSNs (<100 nm) as 

nano-carriers to deliver hydrophobic PSs to enhance their bioavailability; 2) modification of 

MMSNs with PEI to deliver specific siRNA to knock down antioxidant enzymes for further 

enhancing ROS production. The combination therapy provides great promising for improving PDT 

efficiency by co-delivering PSs and siRNA using MMSNs as nano-carriers. The outcomes of this 

design would lead to new more effective therapeutic tools.  

2) Multi-functional UHSS for effective in vivo imaging. 

It has been well documented that the bared SiNPs with negatively charged surface would easily 

interact with serum, and then be rapidly cleared from circulation by macrophages in 

reticuloendothelial system (RES) during the in vivo studies. The most efficient approach to address 

this issue is PEGylation modification on the surface of SiNPs. The hydrophilic PEG layers could 

greatly enhance the circulation time of SiNPs.  Therefore, novel PEG-UHSS could be designed by 

utilizing PEG-silane as silica sources instead of dimethyl-siliane used in Chapter 5.  At the same 

time the fluorescent dye can be incorporated into the PEG-UHSS utilizing the protocol in Chapter 5. 

Taking their unique advantages of excellent monodispersity and stability in aqueous media, this 

designed multi-functional UHSS are expected to be a promising probe in in vivo imaging.     

3) Fluorescent UHSS for cell sensing 

As introduced in Chapter 2, the real-time quantification of the intercellular analyte concentration 

using fluorescent probes is very important to provide insights into chemical microenvironment of 

sub-cellular compartments. UHSS developed in Chapter 5 are expected to be utilized as efficient 

nano-carriers to incorporate sensing dyes and a reference dye for intracellular detections of oxygen, 

pH, or ionic species. Not limited in drug/gene delivery and sensing/imaging, more applications of 

the developed highly mono-dispersed silica nanostructures in this thesis could be exploited in other 

fields of nanomedicine.    
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