
CAR-TR-816CS-TR-3609 DEFG02-95ER25237IRI-92-16970February 1996Surface Modeling Using QuadtreesRon SivanComputer Vision LaboratoryCenter for Automation ResearchUniversity of MarylandCollege Park, MD 20742-3275AbstractTwo quadtree variants e�ective in modeling 212 -D surfaces are presented. The restrictedquadtree can handle regularly sampled data. For irregular data, embedding a TIN insidea PMR quadtree is suggested. Together, these schemes facilitate the handling of mosttypes of input within a single framework. Algorithms for the construction of both datastructures from their respective data formats are described and analyzed. The possibleapplication of each of the models to the problem of visibility determination is consideredand its performance is theoretically evaluated.
The support of the Department of Energy under Grant DEFG02-95ER25237 and the National ScienceFoundation under Grant IRI-92-16970 is gratefully acknowledged, as is the help of Sandy German in preparingthis paper.

PrefaceThis dissertation deals with modeling of surfaces, i.e., data structures that can facilitate thestorage and manipulation of objects resembling topographical surfaces using computers.Such surfaces, also known as 212 -dimensional (212 -D) data, arise frequently in GIS ap-plications (hence the term Digital Terrain Modeling (DTM) [Fowl79] is often applied tothis process), but is not restricted to them. DTMs may be used wherever a continuoussingle-valued function of two variables adequately describes the objects of interest.Where appropriate, computers may be used to manipulate the surface in ways thatheretofore were done mostly manually. Graphical display, surface intersection, map produc-tion, visibility determination, path �nding, locating basins and divides, are all examples ofproblems whose solution is facilitated using computers.One common technique of modeling 212 -D surfaces employs a polyhedral approximation:the curved, complex reality is approximated by a set of planar polygons connected in three-dimensional (3-D) space. The elevation at any point of the surface is then either explicitlystored or can be interpolated from the values stored for nearby points. The space require-ments are thereby reduced. By adjusting the density (i.e., number and size) of the polygons,many applications can be adequately handled. The density need not be uniform across thesurface but instead can be adaptive, calculated at each point to accommodate the variabilitythat the surface exhibits there.Quadtrees (e.g., [Same90a]) are such an adaptive data structure in which a planar shapeis recursively subdivided according to some rule. By adjusting their decomposition rules,quadtrees have been found useful in many spatial applications. However, the classic re-gion quadtree su�ers from an inherent de�ciency which makes it inappropriate for surfacemodeling. In this dissertation we will describes two quadtree variants which have been modi-�ed to overcome this de�ciency and accommodate surface modeling: the restricted quadtree(RQT) [VonH89] for regularly-sampled surface data and the PMR quadtree [Nels86a] forirregularly-sampled data. Both these structures have been previously described, but havenot been previously studied in the context of surface modeling. It is felt that quadtrees maybe able to handle both regular and irregular data su�ciently well to allow their combinedprocessing, a goal which so far seems to have eluded other techniques.In order to verify the theoretical analysis of the RQT and PMR structures as surfacemodels, both were implemented using a common quadtree engine, developed within theframework of the QUILT project [Shaf90b]. It is hoped that any de�ciencies this enginemay su�er from a�ect both models more or less equally. As a result, any di�erences inperformance between the models can be attributed more to the intrinsics of their operationsthan to implementation details. To compare the models' performance, both were applied toii

the problem of the horizon, which determines the visible portion of a given surface from agiven point.This dissertation is organized as follows: Chapter 1 briey reviews some theoreticalaspects of surface modeling and attempts to establish criteria for DTM classi�cation basedon the approach each takes towards this task. This is followed by a brief survey of DTMs inthe scienti�c literature (Chapter 2), with special attention given to data structures similarto those discussed here. Chapter 3 describes the restricted quadtree approach in greaterdetail, including a comparison between two di�erent ways of constructing such a model fromraster data. Chapter 4 describes the other quadtree type, the PMR quadtree, and includes adiscussion of several other operations, such as windowing and nearest neighbor �nding, whichmake the PMR quadtree useful for other purposes as well. Chapter 5 focuses on TriangulatedIrregular Networks (TINs) [Peuc75] stored inside PMR quadtrees as surface models suitablefor irregular data. The case study of horizon extraction is described in Chapter 6, wherethe performance of both models is compared. Finally, conclusions are drawn and furtherresearch is suggested in Chapter 7.

iii

AcknowledgementsI wish to thank the many people that have given me their help and support in the course ofthis undertaking.First, thanks go to my advisor, Prof. Hanan Samet, whose understanding and judgmentproved invaluable for this work. His diligence and uncompromising rigor could always berelied upon. He maintained an environment conducive to research and insisted that I madeuse of it. I do appreciate his putting up with me for all these years.Thanks are due to the other members of my committee: Profs. Larry Davis, AzrielRosenfeld, Samuel Goward (who made himself available on very short notice), and DaveMount, from whom I have learned a great deal about computational geometry and evenmore about teaching.I would like to thank Drs. Lee Schneyer and Sam Steppel for helping me through the moredi�cult stretches of this journey. Being familiar with the hardships involved in obtaining agraduate degree as well as many other aspects of life, their advice has been invaluable.Students toiling under the demands of their own programs have often found time to helpme with the many di�culties that can beset one during research: from �nding a reference tounderstanding the bizarre workings of LaTEX. I wish to thank Drs. Mike Dillencourt, WalidAref, Selene Bestul, Enrico Puppo and David Doermann. Just as helpful were soon-to-bePhDs Erik Hoel, Claudio Esperan�ca, and Gisli Hjaltason. Special thanks go to Ehud Rivlinand, last but far from least, Aya So�er, whose \just do it" attitude was often the thing thatgot me to do it.All this would not have been possible without the unagging support of my family: Myparents, my daughters, and most of all, my wife, who put me on this path initially and sawme through it to the end.
iv

Table of ContentsSection PageList of Tables viiiList of Figures ix1 Theoretical Overview 11.1 Issues Raised by Surface Modeling : 11.2 Classi�cation Criteria : 21.2.1 Area Subdivision : 31.2.2 Function Set : 51.2.3 Hierarchy : 51.3 Triangulations : 61.3.1 More about Area Subdivisions as Planar Graphs : : : : : : : : : : : : 71.3.2 Triangles Are Advantageous : 81.3.3 Triangulated Irregular Networks : 81.3.4 Triangular Decompositions : 92 Previous Work 112.1 Regular Polyhedral Models : 112.1.1 Data Compression : 112.1.2 Triangular Bintrees : 122.1.3 Planetary Relief : 142.1.4 Semi-regular Model : 162.2 Irregular Polyhedral Models : 172.2.1 Triangulated Irregular Networks : 172.2.2 Hierarchical TINs : 182.2.3 Cartographic Coherence : 202.3 Non-Polyhedral Models : 212.3.1 Curved Surfaces : 212.3.2 Fractals : 22v

3 The Restricted Quadtree 243.1 Introduction : 243.2 De�nitions : 243.2.1 Restricted Quadtree De�nition : 243.2.2 Restricted Quadtree Variants : 253.2.3 Related Concepts : 263.3 Implementation : 283.3.1 Assumptions : 283.3.2 Atomic Nodes : 293.4 RQT Construction Algorithms : 313.4.1 The bottom-up Construction Algorithm : : : : : : : : : : : : : : : : 323.4.2 The top-down Construction Algorithm : : : : : : : : : : : : : : : : : 353.4.3 Experimental Results : 454 The PMR Quadtree 504.1 Introduction : 504.2 De�nition : 504.3 Nearest Object : 514.3.1 Motivation : 514.3.2 The Principle : 514.3.3 The Expanded Block List : 524.3.4 The Algorithm : 544.3.5 Nearest Object in 3-D : 564.3.6 Nearest Object in Arbitrary Dimensions : : : : : : : : : : : : : : : : 564.4 Windowing : 614.4.1 Previous Work : 614.4.2 The Algorithm : 625 Irregular Triangulations and Quadtrees 715.1 Motivation : 715.2 Implementation : 715.2.1 Decomposition Rule : 725.2.2 Object-Block Intersection Rule : 726 Field of View: a Test Case 746.1 Field Of View : 746.2 Priming : 756.3 A Data Structure For Horizon Modeling : 776.3.1 The Wings : 77vi

6.3.2 Processing a Surface Facet : 786.4 Sorting the Facets : 816.4.1 Common Issues : 816.4.2 Sorting the Facets in the RQT Model : : : : : : : : : : : : : : : : : : 816.4.3 Sorting the Facets in the QTN Model : : : : : : : : : : : : : : : : : : 836.5 Experimental Results : 867 Conclusions and Future Research 90Bibliography 91

vii

List of TablesNumber Page3.1 Costs associated with the di�erent scenarios a node may be subject to inprocedure restrict. : 403.2 Timings of the RQT bottom-up and top-down constructions. : : : : : : : : : 464.1 The volume of a d-dimensional hypersphere having unit diameter. : : : : : : 584.2 A comparison of the size of the core and expanded block lists for variousdimensions. : 606.1 Experimental results of �eld of view determination. : : : : : : : : : : : : : : 86

viii

List of FiguresNumber Page1.1 Surface discontinuity resulting from non-shared vertices. : : : : : : : : : : : 41.2 Conditions under which cracks are likely. : 51.3 Proof that maximal planar graphs have no non-shared vertices. : : : : : : : : 71.4 Example of the di�culty slivers present in interpolation. : : : : : : : : : : : 91.5 Examples of triangle decomposition. : 92.1 Triangular bintree: example of construction. : : : : : : : : : : : : : : : : : : 122.2 Cascading splits in a triangular bintree. : 132.3 Triangular bintree correspondence with a binary tree. : : : : : : : : : : : : : 132.4 Decomposition in the Geodesic Elevation Model. : : : : : : : : : : : : : : : : 152.5 Traditional quaternary decomposition. : 162.6 Semi-regular decomposition derived from an irregular dataset. : : : : : : : : 172.7 A Delaunay triangulation of a superset of points is not necessarily a re�nementof the triangulation of the original point set. : : : : : : : : : : : : : : : : : : 192.8 Triangulation with and without cartographic coherence. : : : : : : : : : : : : 202.9 The ways to split a triangle with cartographic coherence. : : : : : : : : : : : 213.1 Restricted and non-restricted versions of a sample quadtree. : : : : : : : : : 253.2 Restricted quadtree node relationships. : 263.3 Mandatory vs. optional vertices in RQT nodes. : : : : : : : : : : : : : : : : 263.4 The 16 possible con�gurations of an RQT node. : : : : : : : : : : : : : : : : 273.5 Inherited vertices in RQT nodes. : 273.6 Bad cases of arbitrary datasets embedded into an RQT square. : : : : : : : : 293.7 Re�nement does not monotonically lead to better models. : : : : : : : : : : 303.8 The construction of atomic nodes from raw input data : : : : : : : : : : : : 313.9 Expected complexities of the bottom-up vs. top-down algorithms. : : : : : : 323.10 bottom-up construction algorithm in pseudo-code. : : : : : : : : : : : : : : : 333.11 Required conditions for merging nodes in an RQT. : : : : : : : : : : : : : : 343.12 Merging RQT nodes : 35ix

3.13 top-down construction algorithm: location of uninherited vertices : : : : : : 363.14 Example of node insertion when using the top-down algorithm : : : : : : : : 373.15 Steps in the execution of procedure incorporate. : : : : : : : : : : : : : : : : 383.16 Procedure incorporate which incorporates a node into an RQT. : : : : : : : 393.17 Procedure top-down which constructs a RQT from raster data. : : : : : : : : 403.18 Procedure load which loads input data into an empty RQT. : : : : : : : : : 413.19 Procedure restrict: convert a non-restricted model into an RQT. : : : : : : : 423.20 Procedure backtrack: recursively handles large marked nodes. : : : : : : : : 433.21 Procedure split-�le: splits the input into sub�les small enough to �t in RAM. 443.22 top-down construction algorithm: out-of-core version. : : : : : : : : : : : : : 453.23 Construction times of map \Salisbury east 2,0". : : : : : : : : : : : : : : : : 473.24 Construction times of map \data". : 473.25 Construction times of map \Reno west 0,0". : : : : : : : : : : : : : : : : : : 483.26 Perspective display of the 513 � 513 surface \Salisbury east 2,0". : : : : : : : 483.27 Perspective display of the 513 � 513 surface \data". : : : : : : : : : : : : : : 493.28 Perspective display of the 513 � 513 surface \Reno west 0,0". : : : : : : : : : 494.1 Scope of search for a nearest object in a PMR quadtree. : : : : : : : : : : : 524.2 Di�erent cases of search spheres in a 2-d PMR quadtree. : : : : : : : : : : : 534.3 Blocks that should be searched in a 2-D PMR quadtree. : : : : : : : : : : : 544.4 Algorithm to �nd the object nearest to a point in a PMR quadtree. : : : : : 554.5 Blocks that should be searched in a 3-D PMR quadtree. : : : : : : : : : : : 564.6 Algorithm to produce expanded block list in 3-D. : : : : : : : : : : : : : : : 574.7 The list of blocks to traverse to �nd nearest objects in 3-D. : : : : : : : : : : 594.8 Various ways of interpreting a windowing operation. : : : : : : : : : : : : : : 614.9 Algorithm window to �nd the objects intersecting a window. : : : : : : : : : 644.10 Algorithm window-block: extract windowed objects from a block. : : : : : : 654.11 A walk through the operation of window at levels 0 and 1. : : : : : : : : : : 664.12 A walk through the operation of window: level 2. : : : : : : : : : : : : : : : 674.13 A walk through the operation of window: level 3. : : : : : : : : : : : : : : : 684.14 A walk through the operation of window: level 4. : : : : : : : : : : : : : : : 694.15 A walk through the operation of window: conclusion. : : : : : : : : : : : : : 705.1 Touching objects in a bucket PMR quadtree : : : : : : : : : : : : : : : : : : 736.1 Algorithm �eld-of-view: determine the visible part of a surface. : : : : : : : : 756.2 Possible con�gurations of the viewpoint and its incident facets. : : : : : : : : 766.3 Possible combinations of surface facet distance and size. : : : : : : : : : : : : 776.4 The four wings onto which surface facets are projected. : : : : : : : : : : : : 78x

6.5 Algorithm horizon: (1) Initial state. : 796.6 Algorithm horizon: (2) Projecting a facet onto the \wing". : : : : : : : : : : 796.7 Algorithm horizon: (3) The impact a facet has on the horizon. : : : : : : : : 806.8 Algorithm horizon: (4) projecting the visible portion onto the facet. : : : : : 806.9 An example of a set of triangles defying spatial sorting. : : : : : : : : : : : : 826.10 The zones induced by a viewpoint for RQT block sorting. : : : : : : : : : : : 826.11 The eight possible orientations of a block w/r to the viewpoint. : : : : : : : 836.12 Algorithm rqt-sort to sort the facets of an RQT. : : : : : : : : : : : : : : : : 846.13 Algorithm qtn-sort: stages in the development of the active border. : : : : : 856.14 Algorithm qtn-sort incremental step: possible con�gurations. : : : : : : : : : 856.15 Algorithm qtn-sort to sort the facets of a QTN. : : : : : : : : : : : : : : : : 886.16 �eld-of-view algorithm execution times vs. model size. : : : : : : : : : : : : : 896.17 �eld-of-view algorithm execution times vs. model tolerance. : : : : : : : : : : 89

xi

xii

Chapter 1Theoretical OverviewThe modeling of surfaces for use in digital computers is known as Digital Terrain Modeling(DTM) [Fowl79]. The term \terrain" is used due to the frequent application of DTMs toproblems of topography. However, DTMs may be used wherever a continuous single-valuedfunction of two variables adequately describes the objects of interest. Where appropriate,computers may be used to manipulate the surface in ways that heretofore were done mostlymanually. Graphical display, surface intersection, map production, visibility determination,path �nding, locating basins and divides, are all examples of problems whose solution isfacilitated using computers.Many di�erent approaches to surface modeling have been put forward in the literature inthe last two decades. It is useful to classify them and �nd how the present research relatesto other work in the �eld. Surface modeling raises several issues that every solution mustconfront. Section 1.1 focuses on those issues �rst so that they only need to be hinted atwhen discussing the ways the various DTMs address them. Section 1.2 lists the classi�cationcriteria and some of the choices DTMs make in that regard. Due to the important role oftriangles in DTMs, Section 1.3 provides an overview of, and a justi�cation for, triangulationsin general and TINs in particular.1.1 Issues Raised by Surface ModelingA model of a surface should, as a minimum, be able to predict the elevation1 of the surfaceat any (x; y) location. However, it is impossible to completely describe a continuous entitysuch as a surface using the discrete-mathematical capabilities of computers. Only surfacesconforming (at least piecewise) to some concisely-expressible analytical function can even bede�ned completely, and natural surfaces are seldom, if ever, manifestations of such functions.Surface modeling, then, is essentially a process of approximation. In principle, we arelooking for a function or a �nite set of functions which collectively provide a su�cientlyaccurate description of the surface for the task at hand. Every DTM, therefore, is associated1In keeping with the metaphor of terrain, the values of the surface function will be referred to as \ele-vations", although elevation may not be the only variable for which a DTM is used even in applications totopography. Also, we will assume a Cartesian coordinate system, and refer to elevation sometimes as a zvalue, although the ideas presented here do not depend on the coordinate system used.1

with a tolerance value which indicates the maximum allowable deviation between the actualsurface and the model.If, as is usually the case, the surface cannot be characterized precisely in mathematicalterms, then the only way to de�ne it is by specifying its elevation at certain locations, in-formation normally obtained as a result of some sampling process applied to the surface.The sampling may be done manually or be produced by an automatic acquisition system.Elevations may be speci�ed at regular intervals or only at some irregularly distributed loca-tions. The choice between the two signi�es more than a method for selecting sample points.An irregular sampling process is usually driven by the shape of the surface being modeled,measuring its elevation at points where its trend changes, such as at peaks, pits, ridges,valleys, and saddle points. A regular scheme, on the other hand, samples at points tied tothe space the surface occupies. As a result, irregular descriptions are invariant to rotationsand translations of the surface, while regular descriptions are not.The distribution of the available raw data, therefore, has an impact on the types of DTMswhich may be successfully constructed from it. As will be demonstrated below, some DTMschemes, such as the restricted quadtree, are amenable to a regular grid of samples, whereasothers, such as the TIN, are satis�ed with randomly distributed samples. Once a DTM ofthe surface is created, the model itself can be queried to produce one sampling set given theother, but the accuracy of this procedure is obviously limited by the accuracy of the modelitself.In general, the more sample points provided, the better the surface description. Bysampling the surface at a high enough spatial density, any level of accuracy can be supported.The problem is that such a representation can prove too voluminous to be of any use. Oneof the main goals of our study of DTMs is to �nd ways to minimize the space required tomodel a surface to a given tolerance.1.2 Classi�cation CriteriaAs hinted above, mathematical functions can provide the elevation at any point on a surfacegiven only a handful of parameters, providing a very concise description for many typesof surfaces. DTMs almost invariably harness this capability to achieve data compressionby splitting the surface area into a set of sub-areas, each of which is small enough to beadequately described by such mathematical forms. Each sub-area is then covered with apatch whose 3-d shape can be made to conform, within the DTM tolerance, to the pieceof the surface being modeled. Often, the smaller the sub-areas, the smaller the toleranceswhich can be met, at the obvious expense of an increase in the number of sub-areas whichneed to be maintained.Many applications require access to the same surface at several accuracy levels within asingle task. Searches, for example, can often be better accommodated by accessing a low-resolution representation �rst (where the search space may be smaller) and moving to higherresolutions only after a general location has been veri�ed and the search space pruned.Almost any scheme which can describe a surface to a given tolerance can be expandedto stack several representations of the surface using a variety of tolerances. The addedtime invested in constructing such multi-resolution data structures can pay o� when, at2

run time, access to the various representations is readily available. However, to make thevertical movement among descriptions of di�erent resolutions e�ective, it is often essentialthat high-resolution descriptions be re�nements of lower-resolution ones, i.e., every patch in ahigh-resolution description is spatially covered by exactly one patch in every lower resolution.A multi-resolution stack having this relationship among its layers is known as a hierarchicalstructure.The multitude of data structures proposed for digitally representing surfaces may beclassi�ed by their approaches to the tasks identi�ed above:1. Area subdivision: the choice of scheme for subdividing the surface into sub areas.2. Function set: the family of functions from which patch descriptions are chosen.3. Hierarchy: its presence or absence.The choices made by a modeling scheme in these categories are not independent of eachother. Planar patches are compatible with triangles, for instance, whereas 2-D splines workbetter with quadrilaterals. These choices also determine the suitability of the DTM to regularor irregular sample data.1.2.1 Area SubdivisionArea subdivision is a scheme for generating a �nite set of mutually exclusive sub-areas whichcollectively cover the surface being modeled. To simplify their description, such schemes oftendecompose the relevant part of the x-y plane and the resulting subdivision is then projectedonto the curved surface. The term \subdivision" refers to both the planar subdivision andthe induced subdivision of the surface when no ambiguity arises.This induced subdivision of the x-y plane has the property that its edges do not intersect(other than at vertices). This is a result of the fact that the surface being modeled is 212 -dimensional, i.e. that every parallel to the z-axis intersects the surface at most once. Thisis also true of any polyhedral model of the surface, if its tolerance is su�ciently small, andof the model's edges in particular. If the projections onto the x-y plane of two of theseedges were to intersect, the z-axis parallel passing through the intersection point would beviolating the posited 212 -dimensionality of the model. In graph theory, graphs whose edgesdo not intersect are known as planar [Hara69]. The fact that area subdivisions are planar isrelevant to the discussion of triangulations (Section 1.3).One of the most important features of a subdivision scheme is its adaptability. Anadaptive subdivision scheme will generate smaller sub-areas to cover the more rugged regionsof the surface, while using larger patches to describe the parts of the surface where deviationfrom a linear �t is more moderate.2 Adaptive subdivision schemes exhibit improved storageutilization when compared with non-adaptive schemes, whose sampling density is una�ectedby the variability of surface elevation, and therefore may oversample in areas of slow change.2This support of variable resolution is distinct from that of a hierarchy, in which descriptions of the samesurface region with di�erent resolutions are accommodated. For more details see Section 1.2.3.3

Moreover, when a non-adaptive scheme is employed, a cap on the resolution must be �xedbefore construction can begin, while adaptive schemes allow resolution to increase locallyduring the construction process if variation in surface elevation mandates it.Unfortunately, subdivision schemes successful in decomposing the plane for other pur-poses, e.g. area maps, encounter di�culties when applied to 212 -D surfaces. In particular,schemes often achieve adaptability by allowing sub-areas of di�erent sizes to freely bor-der each other. For example, consider Figure 1.1 which shows a part of a quadtree (ascheme in which each square can be subdivided into four squares of half its side length[Same90a, Same90b]). On the boundary between two nodes of di�erent size, at least onevertex, say B, of the smaller node is not a vertex of its larger neighbor. Since elevation datais stored only in vertices, the elevation of B in the larger node is assumed to be interpolatedfrom the elevations of the other vertices in that node, namely A and C. On the other hand,B is a vertex in the smaller node, where elevation is stored. These two elevation valuesare associated with the same location but need not coincide, thereby causing a \crack", asshown in the �gure.
"Cracks"

C
B

AFigure 1.1: Surface discontinuity resulting from edges not meeting at their vertices.Such cracks may form in places where polygons of the subdivision which share an edge donot share a vertex of that edge. We call such vertices non-shared vertices. Non-shared verticesare common in adaptive decompositions, in which the sizes of the subdivision polygons aredetermined locally by the ruggedness of the surface being modeled (Section 1.2.1). In thecourse of constructing a model for a given surface, there could clearly be a case wherere�nement is mandated for one polygon but not for its neighbor. This may introduce a non-shared vertex on their common edge, one which belongs only to the decomposed polygon,as in Figure 1.2. 4

(b)(a)Figure 1.2: Conditions under which cracks are likely. (a) Adjacent polygons in a subdivision.(b) Only the left polygon is decomposed, introducing a non-shared vertex on the boundarybetween the polygons. A crack of the kind depicted in Figure 1.1 can now form.1.2.2 Function SetThe simplest patch approximation is a plane: each patch is covered by a polygon which canbe embedded in a plane. The polygon's shape, 3-D position, and orientation are designedto approximate the actual surface as known through its sampling. The resulting model isa polyhedron if care is taken to insure continuity along the boundaries between polygons.Most of the work done on DTMs, including this dissertation, deal with continuous polyhedralapproximations.Non-planar patch approximation functions are more versatile in that they can follow thecurves of a meandering surface to a certain extent. Such patches, called splines, are describedby a mathematical function, often a polynomial. The parameters of a particular patch areset so that the values it takes at the sample points agree with the measured elevations, andits derivatives at these points are equal to the derivatives of all other neighboring patches.Thus both the surface and its derivatives are continuous throughout the whole describedarea, yielding a smooth representation. Such models may be more realistic in some applica-tions where the creases formed between the planar faces of a polyhedral representation areunacceptable. It is also conceivable that a non-planar patch can, on average, explain a largerpiece of the terrain, thereby reducing the total number of patches required for a completemodel, and possibly o�set the added complexity such patches introduce.A third category of functions attempts to simulate the surface rather than to faithfullydescribe it. Fractals have been used to generate pseudo-panoramas of terrain with stunningrealism [Four82, Herb84]. By studying a surface and extracting its fractal parameters, onecould �ll the gaps between sampled points with generated data which may have no relationto the actual surface but nonetheless retains its texture and appearance, which for someapplications, such as display, may be more important than the accuracy of the elevationvalues.1.2.3 HierarchyMany applications using DTMs may require elevation information for a single region withdi�erent tolerances or resolutions at di�erent stages of processing. For example, while ren-dering scenery in real time, a ight simulator needs good resolution for nearby objects but5

can do with coarse descriptions of those farther away. Another example is surface intersec-tion: judging by rough renditions of the surfaces, intersection can be precluded in all buta reduced number of areas, where a �nal determination is then made based on the higherresolution descriptions.The desirability of a multiple-resolution surface model is prompted by the observationthat most DTMs exhibit resolution vs. access time tradeo�: a low resolution surface descrip-tion is often smaller in size and quicker in access than a high resolution one. Therefore,when an algorithm can either make do with a low resolution, or else requires the informationquickly, the low resolution capability can be used e�ectively, resorting to the time-consuminghigh resolution only when necessary.A DTM is said to be hierarchical if it can support multiple resolution descriptions of asurface. This amounts to more than having several replicas of the complete data structure,each built with a di�erent tolerance. From the examples above it can be seen that animportant feature of a hierarchy is the ability to navigate through it, quickly moving amongthe di�erent-resolution descriptions of the same part of the surface. Approaching a locationon the ight simulator's screen, increasingly higher resolutions of a decreasing portion of thesurface are called for in rapid succession. The ability to cut vertically through the di�erentresolutions is therefore central to the hierarchical DTM.Such vertical navigation is simpli�ed when the relationship between the di�erent-resolutiondescriptions can be described by a tree, i.e., each subarea at any level of resolution (otherthan the lowest) is completely contained in single subarea of its predecessor, the next lowerresolution description. In this case, there is a simple fanout of subareas when moving fromlower to higher resolutions, which can be directly encoded into the data structure. Thereare hierarchies, such as the Delaunay Pyramid [DeFl89], where this is not the case and theirsuggested implementation is correspondingly more complex.Some algorithms, when calling for lower-resolution information, are not as demanding asis the ight simulator. For surface intersection, for instance, bounding-box information issu�cient to preclude intersection when the boxes are disjoint. To produce the horizon as seenby an observer on the surface, after closer areas have been scanned and an initial skylineformed, maximum and minimum elevations in a subarea are su�cient to decide whetherthat subarea can possibly be seen (see Chapter 6). Thus, the hierarchical requirements ofthese and other algorithms can be accommodated with a less than complete low-resolutiondescription of the surface. As will be seen later, many DTMs can naturally store suchsummary information, and will be labeled \partially hierarchical".1.3 TriangulationsAn area subdivision whose internal faces are all triangles is known as a triangu- lation. Due toreasons listed below, triangles and triangulations have a special role in surface modeling. Sec-tion 1.3.1 explains how triangulations appear naturally in polyhedral models. Section 1.3.2provides additional incentives for using triangles. Section 1.3.3 de�nes the Triangulated Ir-regular Network (TIN), which is a common structure used with irregular data, includingone presented here. Section 1.3.4 describes the major schemes by which adaptability andhierarchy are introduced in triangle-based models.6

1.3.1 More about Area Subdivisions as Planar GraphsAs was shown above, area subdivisions induced by models of 212 -dimensional surfaces, whenregarded as graphs, are planar (Section 1.2.1). Of particular interest are maximal planargraphs, which are planar graphs to which no edge may be added without violating theirplanarity. It is easy to see that all the faces3 of a maximal planar graphs are triangular. Ifthis were not so, and a maximal graph had a non-triangular face, that face would have atleast one diagonal. That diagonal, although clearly not an edge of the graph, could be addedwithout violating the graph's planarity, in contradiction to the assumption that the graphis maximal.Recall that one of the pitfalls area subdivisions should avoid is non-shared vertices (Sec-tion 1.2.1), which are locations where cracks in the model may form. Area subdivisions thatare also maximal planar graphs are remarkable in that they have no non-shared vertices. Tosee that, assume the contrary: let vertex V of a maximal planar graph (see Figure 1.3) benon-shared, incident on polygon P of the �gure but not belonging to it. V must be some-where in the middle of an edge of P , or else it would itself be a vertex of P . The endpointsof the edge V is on constitute two of P 's vertices. However, P must have at least threevertices (since a triangle is the simplest polygon), so there exists a vertex of P , say W , thatdoes not share an edge with V . The edge VW can be added to the graph without violatingits planarity, again in contradiction to the assumption the the graph was maximal.
W

P

VFigure 1.3: Proof that maximal planar graphs have no non-shared vertices. Each vertex ismarked by a circle; the portion of the circle included in polygons that contain the vertex is�lled. A non shared vertex, then, is denoted by a circle that is not totally solid.It is clear, then, that one way to avoid non-shared vertices in a subdivision is to use onlythose that are also maximal planar graphs, which are, in particular, triangulations. This ishow triangles arise naturally in surface modeling.3To be precise, the statement is true of all internal faces. Sometimes the face made up of the outermostedges of the graph (and including the in�nitely distant boundary of the plane) is also considered a face ofthe graph, called the external face. A graph has only one external face, and it is not necessarily triangulareven in a maximal planar graph. 7

1.3.2 Triangles Are AdvantageousTriangulations are appealing also for other reasons. Any three distinct non-collinear pointsde�ne a plane, and also de�ne a non-degenerate triangle. There is a correspondence, there-fore, between planes and non-degenerate triangles that more complex polygons do not enjoy.If the faces of a polyhedral DTM, in which each surface patch is approximated by a at(planar) face, are constrained to be triangular, face planarity is automatic. PolyhedralDTMs allowing non-triangular faces may require a test for each face in order to guaranteeits atness.Triangles are also always convex, an attribute which simpli�es the task of �nding the faceof a DTM which contains a given query point, for example. Moreover, when the DTM isused for display purposes, many shading algorithms (e.g., Gouraud shading [Gour71]) exhibitdiscontinuities when applied to non-convex polygons.As a result, most polyhedral DTMs, including both schemes presented here, use trianglesas their basic building blocks.1.3.3 Triangulated Irregular NetworksWhen irregular sample data is triangulated as described in Section 1.3.2, the result is termeda Triangulated Irregular Network or TIN [Peuc75]. Most irregular models either consist ofa TIN implementation or use a TIN as part of a larger structure, including the irregularmodel described in this dissertation. TINs are appealing because they have the potential ofminimizing the number of vertices required to represent a given surface with a given accuracy.This is because there are no external constraints on the placement of vertices in a TIN, sothey can be placed where their informational content is maximized.The issue of choosing the vertices for the triangulation in a TIN is, therefore, a central one.It can determine the surface locations where elevation should be sampled. More frequently,though, the process involves selecting a subset of the sample points in a given dataset suchthat the elevations at the remaining points may be regenerated with su�cient accuracy. Asit turns out, points coinciding with dominant surface features, such as local extrema andexing points, tend to be picked as representative of the surface by many algorithms.Another issue is how to triangulate the vertices, once they have been chosen. Arbitrarytriangulations are in general undesirable because they tend to result in triangles which arelong and narrow, sometimes called slivers. When interpolating the elevation at a point inthe interior of a sliver triangle, the data stored at its vertices is used, when there are likelyto be closer vertices that are nonetheless ignored, as illustrated in Figure 1.4.To avoid the formation of slivers as much as possible, a triangulation known as a Delau-nay Triangulation is often used [Prep85]. This extensively studied geometrical constructionhas been shown to produce triangulations whose smallest angle is maximized, thus makingsure that all its triangles are as equilateral (as opposed to long and thin) as possible. De-launay triangulations have other attractive properties, such as that their triangles can besorted for visibility from any point, a fact which is essential for some �eld-of-view algorithms(Section 6.4).One problemwith the Delaunay triangulation is that it is a 2-D structure, dealing not withthe triangular facets of a polyhedral surface approximation but with the projections of these8

B

D

E

X
A CFigure 1.4: Example of the di�culty slivers present in interpolation. The elevation at pointX is estimated based on the values known at points A, B and C, while points D and E, whichare much closer to X, are ignored.facets on the xy plane. It is becoming apparent that equiangularity of those projections doesnot guarantee optimality of the surface approximation, because of edges of the triangulationwhich may be drawn contrary to trends on the surface being modeled. As mentioned above,TINs are often based on points which represent locations where the surface trends changedirection, such as peaks, pits and saddles. The edges of the subsequent triangulation can thenbe made to follow the linear features of the surface, such as valleys and ridges, a propertyshown to be advantageous [Scar92, Poli92]. These considerations are anchored in the 3-Ddata and are lost when projected on the plane to be Delaunay triangulated.1.3.4 Triangular DecompositionsAs was shown in Sections 1.2.1 and 1.2.3, the ability of a DTM to have its faces decompose ina regular fashion is helpful in supporting the adaptability and hierarchical properties of themodel. Triangles can conveniently be decomposed in one of two ways, known as ternary andquaternary. Ternary decomposition splits a triangle into three smaller ones by connectingan interior point with the vertices of the original triangle, as in Figure 1.5a. Quaternarydecomposition produces four descendants by connecting points on each edge, as seen inFigure 1.5b.

level:

(a) (b)

1st

2nd

3rdFigure 1.5: Examples of triangle decomposition: (a) ternary decomposition; (b) quaternarydecomposition.In the ternary scheme, the angles of the original triangle are subdivided at each de-composition step, very quickly producing triangles with very acute angles, the hallmark ofthe undesired slivers. The quaternary approach does not exhibit this problem. In fact, ifpoints on the edges are chosen so that they split the edges in a �xed ratio (such as the edge9

midpoints), all triangles will be similar to the original one, di�ering only in size. However,quaternary decomposition can cause edges to split unilaterally, i.e. triangles on both sides ofan edge are not synchronized to split together, thus creating non-shared vertices which maycause surface discontinuities or \cracks" (see Section 1.2.1).

10

Chapter 2Previous WorkMost of the work surveyed here deals, as expected, with polyhedral surface models. Sec-tion 2.1 describes regular polyhedral models, while Section 2.2 deals with irregular models.Some attention is given to models which are non-polyhedral in Section 2.3.2.1 Regular Polyhedral Models2.1.1 Data Compression | [Barr87]A simple quadtree-based DTM whose main purpose in data compression is presented in[Barr87]. It assumes regular sampling of a square plot having 2m + 1 samples on a sidefor some integer m. A method of scanning the data and choosing values for storage in aquadtree is described. Care is taken to insure that values selected to be skipped can still beretrieved (within a given tolerance) from the data structure. Compression ratios depend onthe shape of the terrain modeled. On their test data, the authors were able to demonstrateover 50% reduction even with a tight tolerance.The input is scanned several times, with each pass taking a larger subsample of the data.In the �rst pass, only nine elevations are considered: the extreme corners, the side midpoints,and the center of the area being modeled. The resolution is doubled with each subsequentiteration, until, after m steps, all data values have been considered.Each input elevation in turn is compared with the average of its ancestors, which aresome of the locations closest to it in the previous, sparser iteration. The current value isstored in the quadtree being constructed only if it di�ers signi�cantly (by more than thepredetermined tolerance) from that average. The authors suggest several ancestry schemeswhich di�er in the numbers of points that are considered ancestors of a given value and inthe way their average is calculated. Empirically, the choice of scheme seems to have only asmall impact on the �nal outcome.As implemented, the elevation values are stored sequentially in a at �le, similar to theway the input is organized. However, since some of the elevation values have been eliminated,it is no longer possible to tell the (x; y) location of a value from its placement in the �le.A quadtree is employed to keep track of these locations. Implemented with pointers, thequadtree gray nodes are available for storing summary information such as the number ofnon-discarded points and the maximum and minimum elevations within the area spanned by11

the node. Also, since the cost of storing a point in the �le as well as the overhead incurredif it is removed are predictable, a data point is physically discarded only when eliminatingit will result in an overall reduction of storage space. Otherwise, even interpolatable pointsare retained.During construction, the input data is accessed in an order which is unlikely to correspondto the way in which the data is stored. Since this DTM is geared mostly towards datacompression, construction time may be of lesser importance if the resulting compressed datais used many times. However, little is provided in the form of a mechanism for e�cientretrieval.2.1.2 Triangular Bintrees | [VonH89]The triangular bintree ([VonH89]) is a compact data structure for triangulation of regularsample data. The structure can be implemented as binary tree, hence its name.Initially, the square plot is divided by one of its diagonals into a pair of right triangles.The diagonal serves as the hypotenuse of both triangles. Triangle pairs can be subdividedby splitting their shared hypotenuse, forming two pairs of triangles which are similar to theoriginal ones, i.e. they are isosceles right triangles. Note that with the exception of triangleson the exterior boundary of the area of interest, the triangles of the new pairs share theirhypotenuses as well, so the process may continue recursively. Boundary triangles may besplit individually. See Figure 2.1.
Figure 2.1: Triangular bintree: example of construction. At each step, the last edge to beadded is highlighted.The restriction that only pairs of triangles having their hypotenuses in common may splitgives the splitting of a triangle the potential to cascade, bringing about further splits. If thehypotenuse of the triangle targeted for splitting coincides with another triangle's leg, thesmaller triangle cannot be split before the larger triangle is split. The same may be true for12

the larger triangle as well, so the split may cascade recursively. Termination is guaranteed,however, since the triangles involved increase in size by p2 at each step, requiring only a�nite number to reach the size of one of the two initial triangles, which can always be splitunconditionally. For an example, see Figure 2.2.
:

(a) (b) (c) (d) (e)Figure 2.2: Cascading splits in a triangular bintree. (a) A triangular bintree with the nexttriangle targeted for splitting marked (solid gray). (b){(d) Steps in preparing the desiredsplit. (e) Finally, splitting the desired triangle.The above scheme tiles the xy plane with isosceles right triangles, which are about asgood as equilateral triangles in terms of the absence of slivers. Also, each triangle is in oneof two possible orientations: either its legs or its hypotenuse are parallel to the axes. Thisproperty in turn simpli�es the procedure for �nding which triangle contains a given point.Splitting triangles in pairs also eliminates the discontinuities that plague other schemes whichallow edges to meet at points other than their vertices.To construct a surface model, the elevations at the vertices of the �rst triangle pair aredetermined, assigning an interpolated elevation value to each point in the area described.If any of these values deviates signi�cantly from the elevation speci�ed in the input, thetriangle in which this deviation occurs is split. This process continues until the interpolatedvalues at all locations are su�ciently close to those indicated in the input.When implemented as a binary tree, every node corresponds to a triangle. If and whenthat triangle is split, the leaf node representing it is given a pair of children, each corre-sponding to one of the smaller triangles the original one was split into, as is Figure 2.3. Ifinformation such as the minimum and maximumelevation in each triangle is maintained, theinternal nodes can retain their previous values when they are split, providing a hierarchicalquality to the data structure.
Figure 2.3: Triangular bintree correspondence with a binary tree.13

2.1.3 Planetary Relief | [Dutt84, Feke90]So far, only DTMs for essentially at terrain have been discussed. A scheme ambitiousenough to encompass the whole globe must be able to model a sphere rather than a plane,where elevations are measured along the sphere's radius rather than along the z axis. Severalsuch systems have been proposed, permitting the accumulation and integration of elevationdata for many areas on the globe in a single data structure.One such model, called the Geodesic Elevation Model or GEM for short, is presentedin [Dutt84]. The model starts out with an octahedron, with two of its vertices coincidingwith the poles of the globe and the other four vertices located on the globe's equator. Thetriangular faces are then subdivided into smaller triangles in a regular fashion.At each level, the triangular faces are decomposed into smaller triangles whose areasare one third of that of the triangle being decomposed. Statistically, then, the number oftriangles increases threefold at each decomposition step. The details are a bit involved,however, because �rst-generation descendants extend into neighboring faces. Instead ofdecomposing a face into three triangles, as would be the case in a strict ternary hierarchy,the area of a face is shared among six child triangles. The face covers only half the areaof each child triangle, the other half being covered by a neighbor of the original face. SeeFigure 2.4b.However, after two decomposition steps, the grandchild triangles obey a strict hierarchyrelationship with their grandparents: nine triangles cover their grandparent exactly. Thisrelationship is represented in two nonary trees, one for the odd levels of the hierarchy andone for the even ones. To track the hierarchy, the two trees need to be visited alternatingly.The subdivision provides a natural way to encode the faces: assigning a number to eachdescendant (between 1 and 9, for instance), the sequence of faces visited on the way to thedesired location constitutes a geocode which uniquely identi�es it. On the face of the Earth,eight or nine digits are su�cient to specify areas smaller than most postal zones and censustracts.Elevation is encoded in this model by using only one bit per face. If this bit is clear it is anindication that the associated face has the same elevation as its parent. Conversely, settingthe bit denotes that the elevation of the face deviates from that of its parent. Whether it ishigher or lower depends on the tree it is in. If the face is part of the odd-levels tree (the onehaving the initial octahedron at its root) it is assumed to be higher than its parent when itselevation bit is set. Faces in the other tree, the one with the even levels, are assumed to belower than their parents. The amount by which they are higher or lower depends on theirlevel within the hierarchy: it decreases (by p3) from level to level. Such a scheme has alimit on the maximum deviation from sphericity which can be expressed, but it is certainlyadequate for the Earth: while the highest mountain peak is less than 9 kilometers above sealevel, whereas elevations as great as 500 kilometers can be expressed using this scheme.The scheme has the advantage shared by scienti�c number notation: The depth of thetree (like the number of digits in a decimal fraction) indicates both the value conveyed andits accuracy. A datum inserted into a GEM database will trickle down the trees only to adepth commensurate with its accuracy. If the database is initialized with possibly coarsebut accurate data covering the complete sphere, subsequent attempts to load erroneous data14

(a)

(b)

(c)

decomposition
level

y

x

Figure 2.4: Decomposition in the Geodesic Elevation Model. (a) A triangular face.(b) First-generation descendants: six triangles, each shared equally with one of the neighborsof the original triangle. (c) Second-generation descendants: the children of only one face(the one highlighted in (b)) are shown. Three of these are completely contained inside theirgrandparent. Other faces in (b) contribute additional triangles, totaling 9 which cover thetotal area of the original face.can be automatically agged as suspicious by the database.This model has a few problems as well. The shapes of faces projected onto the sphereare not �xed, but depend on their location relative to the original octahedron. Anotherproblem has to do with systematic deviations from sphericity that planets, Earth included,often have. [Dutt84] suggests that a global framework, representing the �rst few levels ofa hierarchy, be agreed upon by all users. This framework can represent the deviation ofthe globe from perfect sphericity su�ciently well. However, such a scheme depends on anuncommon level of cooperation among software developers, agencies and users.Another attempt to describe a sphere, this time with a quadtree, is made in [Feke90].The initial shape is an icosahedron, the platonic solid with the greatest number of faces.Each of the icosahedron's twenty triangular faces is subdivided into four triangular subfaces15

by connecting the edges' midpoints (quaternary subdivision).Having four descendants makes quadtrees appropriate for the representation of this struc-ture. A complete representation consists of a forest of twenty quadtrees, each stemming fromone face of the original icosahedron. Faces, or trixels, are labeled within a quadtree in a sim-ilar way to that described in [Dutt84], but only four possible values are needed rather thannine. Naming vertices is a bit more involved, since vertices are shared among six trixels(except for the twelve vertices of the original icosahedron, which are shared only by �ve).For uniqueness, the lexicographically smallest among the �ve or six synonyms is selected.For the quadtree representation, a host of established algorithms can be adopted to �ndneighbors, connected components, and other useful properties. The naming conventionsmake it possible to determine adjacency by examining only the names of candidate trixels.Although a quadtree describes only a single icosahedron face, extending the algorithms tothe whole sphere is not very di�cult.2.1.4 Semi-regular Model | [Gome79]In one of the early attempts to formulate a DTM [Gome79], the hope was expressed thatif an irregular dataset is su�ciently dense, it should support a regular decomposition. Theattempt was based on recursive quaternary decomposition of triangles.
(a) (b)Figure 2.5: Traditional quaternary decomposition. (a) A triangle. (b) The same triangledecomposed into four smaller triangles formed by connecting the midpoints of the edges.Traditionally, quaternary decomposition of a triangle is achieved by connecting the mid-points of its three edges, as shown in Figure 2.5. The new vertices introduced in the process(the edges' midpoints) are not likely to be related to the input data. [Gome79] suggests usingactual data points which fall close to the desired edge midpoints instead (see Figure 2.6).Thus the model is topologically isomorphic to a quaternary model but is not quite identicalwith it. As a result, there could be parts on the outskirts of the surface being modeled thatmay remain unexpressed due to errors resulting from this deviations in vertex positioning.Solutions to this and other problems raised by the model are o�ered, but notably no solutionis o�ered to the issue of crack formation, which is assumed not to be serious [Gome79]. An-other di�culty is the fact that no two of the triangular faces are alike. In applications wherethese problems are not important, this approach has the combined appeal of both regularand irregular models. 16

++

+

+

+

+

+

+

+
+

+

+

+
+

+

+ +

+ +

+

+
+ +

+
+ +

+

+
+

+

+

+

+

+

++

+

+

+

++
+ ++

+
+

+
+
+
+

+
+ +

+

+

+

+
+++

+ ++
+

+
+ +

+

+++

+ ++

++

+

+

Figure 2.6: Semi-regular quaternary decomposition derived from an irregular dataset.2.2 Irregular Polyhedral Models2.2.1 Triangulated Irregular Networks (TINs) | [DeFl84, DeFl85]A ternary adaptable TIN is described in [DeFl84, DeFl85]. The construction and a few repre-sentative applications are studied and the results are compared with Delaunay triangulationof the same dataset.The input to this model is assumed to be an irregular sample of the surface to be modeled.The purpose of the model is to select points from this dataset and triangulate them so thatthe error associated with the induced polyhedron is smaller than some prede�ned value. Theerror is measured as the maximum distance between a face of the polyhedron and the actualsurface. Since the surface is known only through the dataset, the error can be measured onlyat locations for which data is provided in the input.The algorithm presented assumes that the given dataset is triangulated. Any triangula-tion of the convex hull of the dataset is acceptable. The triangles of that triangulation arethen sorted according to their error value, and the one with the highest error is processed�rst. The point in its interior with the greatest error is found and a ternary decomposition isinduced by connecting that point to the triangle's vertices. The new triangle set is resortedand the above step is repeated. The process iterates until all triangles have errors within agiven tolerance. Several ways to minimize the cost of the sorting phase, either by means ofa heap or by threading the triangles in order of decreasing error values, are presented. It isshown that if the initial set contains n points, of which m (m � n) are ultimately selectedto represent the rest, then the construction of the model takes O(mn) time in the worst caseand O(m log n) time on the average.Three de�ciencies of this model are pointed out by the authors:1. There is no guarantee that the smallest number of points which can support the giventolerance will actually be selected. In the course of re�ning the initial triangulation,the algorithm only adds points, and never deletes any. It is possible that the initialtriangulation already contains ine�cient points that would not be included in an op-timal triangulation. By refraining from removing any points, it is impossible for the17

algorithm to transform such initial triangulations into optimal ones. It is conjecturedthat �nding the optimal model is NP-complete, since it seems that all �nm� selectionsfor all 1 � m � n must be examined in order to �nd it.2. A small change in the underlying data does not necessarily translate into a minorupdate of the model stemming from this data. A change in a single input valuemay necessitate reconstruction of the model from scratch, making incremental changesdi�cult to introduce. This is not too serious a handicap where terrain is considered,since terrain seldom changes, but it could be a problem for other applications of DTMs.3. There is no guarantee that the tree describing the model is balanced; it is possible, inthe worst case, that only one descendant at any level ever gets subdivided. As a result,search time can increase to O(m). In the average case, however, it is expected to beO(logm).The di�culties caused by the many long, thin triangles this model is likely to containare only hinted at, when it is mentioned that this triangulation is inferior to Delaunaytriangulation if contour lines are desired. It is suggested that the selected point set beretriangulated by a Delaunay algorithm for that purpose when the need arises [DeFl84].Most of the tests of this model have been based on data generated by randomly samplingsurfaces representing analytical functions, such as a sphere. Only one actual terrain sampleis used in [DeFl85].2.2.2 Hierarchical TINs | [DeFl89, DeFl92b]To alleviate some of the problems raised in the ternary TIN described in Section 2.2.1, the au-thors suggest a TIN based on Delaunay triangulations, which they term a Delaunay pyramid.Delaunay triangulations do not lend themselves to hierarchical structures. This is becausethe Delaunay triangulation of a given set of points is not necessarily a re�nement of theDelaunay triangulation of any subset of that set. If a given point set is Delaunay triangulated,then as additional points are added and the augmented set is retriangulated, some edges willbe added but some may also be removed, as seen in Figure 2.7. Consequently, �ner mesheswhich represent higher accuracies can no longer be produced from coarser ones just bydecomposing triangles individually, as was possible in the scheme described in Section 2.2.1.However, the fact that the Delaunay triangulation of a re�ned point set is not necessarilya re�nement of the original point set does not mean that the two triangulations are unrelated.Since the edges of a Delaunay triangulation are determined based on local criteria, the e�ectof adding a point to a point set and retriangulating it is con�ned to a vicinity of the newpoint. It is possible to identify a polygon of inuence of the added point, a region to whichthe changes induced by the added point are con�ned. On average, a polygon of inuenceconsists of only six triangles [Sibs78]. The sets of triangles covered by this polygon in theoriginal and new triangulations have a many-to-many relationship, but these \many"s arebounded and in fact are quite small.It is practical, then, as suggested in [DeFl89], to maintain bidirectional pointers betweentriangles in di�erent triangulations which have a non-empty intersection. Through these18

(a) (b) (c)Figure 2.7: A Delaunay triangulation of a superset of points is not necessarily a re�nementof the triangulation of the original point set. (a) A Delaunay triangulation of a four-pointset to which a �fth point is added. (b) A re�nement of the triangulation in (a) whichincorporates the extra point. (c) A Delaunay triangulation of the �ve-point set. Note thatit is not a re�nement of the triangulation in (a).pointers, algorithms can move between triangulations that represent di�erent resolutions ofthe same part of the surface. As a result, the complete structure becomes a true hierarchyin the sense of Section 1.2.3. Regarding these pointers as directed, leading from the rootto the leaves, the tree of the ternary TIN can be seen as being replaced here by a directedacyclic graph (DAG).A construction algorithm very similar to the one suggested for the ternary TIN can nowbe employed. Starting with some initial choice of points from the input, their Delaunaytriangulation forms the root of the hierarchy. Of the points not yet selected, the one as-sociated with the largest error is found and added to the existing point set, which is thenretriangulated. Normally, most triangles are una�ected by this addition, so their occurrencesin the old and new triangulations are simply linked. Multiple links are established betweenthe a�ected triangles in the old triangulation and those replacing them in the new one. Thisstep is repeated until all points are used or the error of the triangulation as a whole dropsbelow a prede�ned tolerance value.The most basic function of a DTM is to predict the elevation of the modeled surfaceat a location for which no input value is speci�ed. In the present model, however, thisoperation is not as straightforward. As with TINs (Section 2.2.1), the hierarchy needs tobe traversed until a triangle containing the query point with a small enough error is found,where the elevation at the point can be interpolated. However, since now the trace is ofa DAG, there could be levels between which there is no fanout, so no progress is made.Moreover, even when a triangle on one level is linked with more than one triangle on thenext lower level, there is no guarantee that these lower-level triangles are any smaller, againlimiting the possibility of re�nement. In the worst case, it is possible for a hierarchy to beO(n) deep, where n is the number of points. This must be compared with the somewhatsimilar K-Structure [Kirk83] which is guaranteed to be no deeper than O(log n).On the other hand, the Delaunay pyramid is a hierarchical surface model in the sensedescribed in Section 1.2.3: it accommodates several descriptions of the same surface withdi�erent degrees of accuracy. Moreover, each of these descriptions is a Delaunay triangula-tion, which has many advantageous properties (Section 1.3.3). It also allows an application19

to store in higher levels summary data about lower levels, often allowing for faster searches.An improvement on the Delaunay pyramid, the Hierarchical Delaunay TIN, is presentedin [DeFl92b]. A strict hierarchy is imposed on the Delaunay triangulations by shifting thefocus from vertices to triangles. Here, at each construction step, a triangle is selected fordecomposition, rather than a point from the input being chosen for insertion. The edges ofthe selected triangle are decomposed �rst by adding vertices at positions where the di�er-ences between the measured and interpolated elevations are greatest. Once the boundaryof a selected triangle is described with a better accuracy, its interior can be Delaunay tri-angulated with that accuracy without a�ecting any of the neighboring triangles. To avoidsurface discontinuities, all the triangles whose edges are a�ected must be retriangulated.The fanout in this structure is indeterminate, and depends on the variability of the surface.The important aspect is, though, that edges are never removed when moving from a coarsetriangulation to a re�ned one, so this hierarchy is again a tree rather than a DAG.2.2.3 Cartographic Coherence | [Scar92]As discussed in Section 1.3.3, there is no agreement on whether equiangularity of the facesis an overriding property of a good triangulation. In [Scar92] it is argued that for certainsurface formations, triangles with very acute angles may be natural. Triangulations in whichthe edges do not disregard the linear features of the terrain, called cartographically coherent,may outperform those in which equiangularity is the sole consideration (e.g. Delaunay tri-angulations).For example, consider Figure 2.8. If a ridge happens to be crossing the area covered bythe triangle, elevation measurements are likely to be made along the summits, producing aconcentration of points as seen in Figure 2.8a. If each of these points is added in turn usinga ternary decomposition rule, as in Figure 2.8b, many more faces are formed than if thecartographic coherence approach is adopted, as in Figure 2.8c.
(a) (b) (c)

o oo
o o o

o o oo
o o o

o o oo
o o o

o

1st

2nd

3rd

Level:

Figure 2.8: Comparison of triangulations with and without cartographic coherence (after[Scar92]). (a) A triangle and the data points in its interior; (b) a likely decompositionwithout cartographic coherence; (c) the proposed way to decompose the triangle.As in the TIN models discussed earlier, a face in the triangulation is selected for decom-position based on the size of the error associated with it. Here, however, the decompositionis sensitive to the location of the point (or locations of the points) with large errors withinthe triangle. For each triangle, four points with maximal error are found: one with overall20

maximum error and one on each edge. Depending on whether there is a peak within thetriangle, and on how many edges have signi�cant errors on them, one of �ve basic ways inwhich a triangle may be decomposed is selected. The rules and the conditions for choosingthem are shown in Figure 2.9.
(a) (b) (c)

(d) (e)

o o

o o

o

o

o

o

oFigure 2.9: The �ve ways in which a triangle is split with cartographic coherence (after[Scar92]). (a) Split in center; (b) split on one edge with a signi�cant center; (c) split onone edge without a signi�cant center; (d) split on two edges; (e) split on all three edges.In experiments using several small datasets, the performance of this approach was equalto and sometimes better than that of some Delaunay triangulation approaches in terms ofnumber of faces, data compression ratio, and even absence of slivers.2.3 Non-Polyhedral Models2.3.1 Curved Surfaces | [Schm86]The technique of adaptive subdivision employed for polyhedral surface approximation canalso be applied when the patches of the proposed model are not planar. In [Schm86] aquadtree-like structure is described using curved patches to model a surface. Since suchpatches are not constrained to be planar, di�erent-size patches may freely border each otherwith no danger of forming cracks. Consequently, quadtrees can be used freely in this envi-ronment.This technique was developed to support an automatic data acquisition system which cansample the surface of an object placed in it at close to 30000 readings per second. Faced withsuch an abundance of data, the need for a data compression facility was great. However, apolyhedral approximation was rejected as inappropriate for modeling the smooth-surfaced,man-made objects the system was designed for.The method uses bicubic splines patched together while keeping the surface continuousand di�erentiable (G1 continuity). In the representation used, each patch is controlled by a4 � 4 array of points whose position a�ects the shape of the patch. The patch interpolates(actually passes through) only the four points at the corners. Continuity between two patches21

is assured if the positions of the control points on the boundary of one patch match those onthe other. A set of additional constraints (which include the non-boundary points as well)is developed to guarantee the continuity also of the tangents at patch boundaries.Like many other methods, processing starts out with a coarse approximation of themodeled surface; there is nothing to preclude the use of a single patch as an initial state.The algorithm iterates through all patches in the current model, accepts those which can bemade to �t the data su�ciently well, and subdivides the rest. The task is complete whenthe distance between model and data points is within tolerance throughout the model, orwhen the resolution limits of the input data are reached.To subdivide a patch, its area is split into four smaller patches, and the additional controlpoints required to describe their 3-D shapes are computed. Imitating planar quadtrees, inwhich a square is subdivided into four squares by connecting the centers of its opposite sides,a patch is subdivided along lines passing through its center. The data point closest to thenew vertex formed at the center of the patch is found and is used, along with the points atthe four corners of the patch, as a basis for the control point arrays for the new patches. Thedata in the vicinity of the new vertex is tested to obtain the likely inclination of the tangentplane there, determining the directions the tangents along the new patch boundaries aresupposed to follow. Once the new patches are established, they are compared to the inputdata and accepted if close enough, or subdivided if not.The mathematics involved in the formulation of splines and their Bernstein-B�ezier rep-resentation is very di�erent from that of the other models discussed here, but the surfacemodeling principles are the same.2.3.2 Fractals | [Four82]As we have seen, one of the central motivations for DTMs is data compression. This isachieved by utilizing succinct mathematical forms to express shapes that when describednumerically require a lot of space. So far, we have discussed deterministic models, in whichthe elevation at each point is either the result of a measurement made on the actual surfaceor an interpolation obtained from such measurements.A completely di�erent approach to surface modeling is presented in [Four82], based on thework of Mandelbrot [Mand68]. Instead of attempting to deterministically capture the exactshape of a surface, the surface is simulated by a stochastic process. Like planar polygons andcurved splines, such processes can be completely described by a handful of parameters, andyet produce the elevations on a complete, continuous surface patch. In fact, just as the useof deterministic patches promises only an approximation of the true surface, so do stochasticrenditions of it. However, the latter have several advantages that, for some applications,may be very attractive.First, since elevation values between sample points are computed by a random process,new surface details can be generated at every magni�cation level, allowing inde�nite zoomsonto the surface. Since these details are fabricated, the simulation can be run up to thelevel required for display but no further. This means that when the surface is viewed froma distance, computation can be limited to producing su�cient detail to make the surfacerecognizable. For close-up views, more detail can be generated, but only in the area being22

viewed (which due to the screen's physical size, cannot be large), again limiting the amountof computation needed. This situation contrasts with that of a deterministic model, whichon the one hand cannot provide meaningful detail when a zoom-in exceeds its resolution,and on the other hand still has to sift through all the data, even when a zoom-out makesmost of it irrelevant.Second, such surface simulations have been shown to be capable of producing pleasingor even striking images of terrain [Herb84]. The visual test is not an unimportant one, sincein many applications (e.g., ight simulators) the realism of the graphic display is of primeimportance. Moreover, deterministic models are empirical, and do not represent theoreticalunderstanding of terrain formation; they are therefore not necessarily more profound.The basic algorithm is quite simple: the space between locations for which elevationsare speci�ed in the input is subdivided, and new elevation values are inserted. However,instead of using the average of the known elevations (as would be the case in a polyhedralmodel) or some polynomial function of them (as when splines are used), the value obtainedby any of these methods is further perturbed by a random amount, controlled by a so-calledfractional Brownian motion (fBm).FBm is related to ordinary Brownian motion, which is the continuous counterpart of arandom walk, by taking a moving average of the latter, weighted by a factor. The factor isdependent on a parameter, called the self-similarity of the function, which controls the widthof the aperture through which the moving average is taken. Di�erent surfaces have di�erentself-similarities, and the best value for an application must be determined empirically.Two properties crucial for a patch-generating function to be useful in piecewise surfacemodeling are the so-called internal consistency and external consistency [Four82]. Internalconsistency assures that a patch can be regenerated consistently at di�erent positions, orien-tations and magni�cations (i.e., it is independent of the coordinate system and resolution).External consistency guarantees that adjacent patches agree on the elevations of points ontheir common boundary. In deterministic models, internal consistency is an automatic by-product of the patch-generating functions. External consistency is just a generalization ofthe need to avoid cracks (Section 1.2.2). Nondeterministic algorithms, however, must payspecial attention to both these issues. No generally applicable approach is o�ered; eachrandom generating function (such as the fBm) must be studied and a scheme to maintaininternal and external consistencies must be individually tailored for it.Fractals are by no means limited to modeling of surfaces; they are applicable to anyobjects, and even to time-varying phenomena, which are too complex to predict or describenumerically. Coastlines (in one dimension) and smoke (in three dimensions) are examplesof non-surface objects to which fractals can be applied. Fractals can also be used to deter-mine aspects other than surface elevation, such as color or motion. Fractals are probablythe technique of choice in applications where realism and speed outweigh �delity to someprede�ned shape. 23

Chapter 3The Restricted Quadtree3.1 IntroductionQuadtrees have been shown to be useful in many spatial applications [Same90b]. However,quadtree-like decompositions are not immune to non-shared vertices. (A non-shared vertexis one that does not belong to all the polygons it is incident on; see Section 1.2.1.) Whensubdividing an area for use in surface modeling, non-shared vertices are sites where cracksin the surface model may form.A quadtree variant called the restricted quadtree or RQT, presented in [VonH89], adaptsquadtree decomposition to surface modeling by restricting the number of potential non-shared vertices per edge. Each quadtree node is then triangulated, forming between fourand eight triangles, depending on the number of non-shared vertices it actually possesses.The �nal result is a quadtree-like decomposition which employs only shared vertices. TheRQT is formally de�ned in Section 3.2.Various issues regarding the implementation of the RQT are dealt with in Section 3.3.Special attention is given to the construction of RQTs from raster data. Two algorithms arepresented using the classic bottom-up and top-down paradigms. The details of their imple-mentation, analysis of their performance, and experimental resulls are given in Section 3.4.3.2 De�nitions3.2.1 Restricted Quadtree De�nitionThe two-dimensional restricted quadtree [VonH89] (also known as a 1-irregular mesh [Bank83]or balanced quadtree [Bern90]) is one in which the lengths of the sides of neighboring squaresdi�er at most a factor of two. As an example, the decomposition depicted in Figure 3.1brepresents the RQT corresponding to the non-restricted quadtree shown in part (a) of the�gure. While the number of non-shared vertices per edge (denoted by half-solid circles) in anon-restricted quadtree is unlimited (as seen at point X in the �gure), in an RQT there isat most one.When implemented as a tree, this restricts neighboring leaf nodes to be at most one levelapart, thereby moderating the depth variation in the tree. As a result, while a node in anon-restricted quadtree may be decomposed independently of all other nodes, splitting a24

X

(a) (b)Figure 3.1: Comparing the restricted and non-restricted versions of a sample quadtree.Vertices are marked by circles; the portion of the circle included in nodes that contain thevertex is �lled. A non-shared vertex, then, is denoted by a circle that is not totally solid.(a) A non-restricted quadtree. Note that the number of non-shared vertices (half �lledcircles) per edge is unbounded (e.g., at X). (b) the restricted version of the quadtree.Edges that were added to make the quadtree restricted are marked by dashed lines. Thereis at most one non-shared vertex per edge in an RQT.node in an RQT can cascade, a�ecting neighboring nodes as well. However, it is shown in[Moor92, pp. 39{40] that an RQT contains no more than eight times as many nodes as itsnon-restricted counterpart. In big O notation the space complexity of the restricted versionof a quadtree is equivalent to that of the non-restricted one.To deal with the non-shared vertices that do occur in an RQT, each node is triangulated.The triangulation is done �rst by means of its two diagonals, forming four triangles. If anyof these triangles faces a smaller node, it is incident on a non-shared vertex. That vertex isincorporated into the triangle by splitting the latter into two triangles. Since this is done oneach of the four sides independently, the original node may end up with anywhere from fourtriangles, if no splits occur, to eight, if splits occur on all sides. Figure 3.2 depicts a node ina RQT along with neighbors of all possible sizes: equal to the node (along sides A and C),half as large (along side B) and twice as large (along side D).3.2.2 Restricted Quadtree VariantsThe boundaries between equal-sized nodes may or may not be split; the decomposition rulesdescribed so far neither require nor preclude such splits. Deciding one way or the otherprovides for two variants of the RQT, known as the 4-triangle and 8-triangle rules. Thenames are derived from the number of triangles that each node would have if all nodes hadthe same size. The 4-triangle rule, which mandates that the boundary between equal-sizednodes be kept in one piece, provides for a more concise tree with fewer triangles. Conversely,the 8-triangle rule, which splits nodes into as many triangles as possible without violatingthe other rules, is likely to produce a better-�tting surface because it incorporates more25

B

D

A

CFigure 3.2: Restricted quadtree node relationships. The edge neighboring smaller nodes (B)is split; the edge facing a larger node (D) is not. On the sides where equal-sized neighborsare found, the node is split only if the 8-triangle rule is in e�ect (C), and it is not split ifthe 4-triangle rule is used (A).data points. Figure 3.2 shows the result of applying the 4-triangle rule on side A and the8-triangle rule on side C.3.2.3 Related ConceptsBelow we describe some concepts relevant to the way RQTs operate. They are describedhere in detail so that later they can be referred to concisely.Mandatory and optional vertices: As mentioned above, an RQT node can consist of asfew as four or as many as eight triangles, depending on the sizes of the nodes surrounding it.A node with the minimal con�guration of four triangles has �ve vertices: four at the cornersand one at the center (Figure 3.3a). All RQT nodes have these vertices as a minimum, sowe shall refer to them as mandatory. A node with a maximal con�guration of eight triangles(Figure 3.3b) has, in addition to the �ve mandatory ones, four optional vertices: one at thecenter of each edge.
(b)(a)Figure 3.3: Mandatory vs. optional vertices in RQT nodes. Circles denote mandatory ver-tices; diamonds denote optional vertices. (a) Minimal con�guration of four triangles, usingonly mandatory vertices. (b) Maximal con�guration of eight triangles, using all possiblevertices, mandatory and optional. 26

The di�erent selections of the four optional vertices give rise to 24 = 16 con�gurationsan RQT node can have, as shown in Figure 3.4.
Figure 3.4: The 16 possible con�gurations of an RQT node.Inherited and uninherited vertices: Every non-root node in an RQT shares some ver-tices with its immediate parent. Such vertices are denoted as inherited. The vertices atthe four corners of a node q are inherited, while the vertex at q's center and those at themidpoints of q's edges are not (See Figure 3.5). Vertices that are not inherited are calleduninherited. Note that the vertices at the corners of the node are both mandatory andinherited, and that the midpoints of the edges are both uninherited and optional. Only thenode at the center of the node is uninherited yet mandatory.The de�nition above pertains to non-root nodes only. For completeness we categorize thevertices of the root node as well. Since the root itself has no parents and therefore cannotinherit anything, we de�ne all its vertices as uninherited.

Figure 3.5: Inherited vertices in RQT nodes are denoted by solid circles, while uninheritedvertices are denoted by empty circles. Thin lines correspond to the edges of the node, whilethe heavy lines correspond to the edges of the node's parent. The uninherited vertices of thenode are positioned where its parent cannot have any vertices.Stored elevations are the elevations at the vertices of an RQT node. The stored valuesdetermine the inclinations of all the triangular faces of the node. Stored values normallycorrespond to values read from the input representing actual measurements made on thereal surface. The implementation guarantees access to these values at retrieval time, hencethe label \stored". Note that only elevations stored in the inherited vertices of a node q are27

also stored values in q's parent; the elevation at an uninherited vertex of q is necessarily acomputed one (see next de�nition) in the parent of q.Computed elevations are those produced by the surface model for points other thanvertices by interpolation of the relevant stored elevations. These are therefore not inputvalues and may di�er from the actual elevation of the surface at the same location. However,it is assumed that the data points in the input are su�ciently dense so that the chances ofsuch a discrepancy being signi�cant are slim. This assumption is not speci�c to RQT modelsbut is true in general for all sampled models.Any non-vertex point within a node occurs in some triangle of the node (perhaps morethan one, if it is on an edge). The computed elevation is obtained by interpolating thestored values found at the three vertices of that triangle. For a point common to two ormore triangles, the elevation can be computed from any of the triangles the point is incidenton; the result is guaranteed to be independent of this choice.3.3 Implementation3.3.1 AssumptionsEmbedding arbitrary datasets in RQT: Like the region quadtree, the RQT describes atwo-dimensional square area whose side is a power of 2. Arbitrary datasets can be embeddedin an appropriate square (one whose side is the smallest power of 2 to exceed both dimensionsof the dataset) by zero padding. This transformation allows us to consider only datasets ofsize (2m + 1) � (2m + 1) for some positive integer m with no loss of generality.This transformation for arbitrary datasets may, in the worst case, induce considerableoverhead in terms of empty, zero-�lled RQT nodes whose presence is nevertheless mandatedby the RQT decomposition rules. For example, the dataset depicted in Figure 3.6a coversan area of 2S pixels but incurs an overhead of 6S + 3 log S � 6 empty blocks. This wouldindeed be ine�cient, since there are three empty blocks for each pixel in the area of interest,regardless of size.However, DTMs usually span an area having the shape of an upright rectangle. Theworst-case behavior of such an area is depicted in Figure 3.6b. Here the dataset dimensionsexceed a power of 2 by a small amount, thereby requiring a padding area almost three timesas large as the dataset. The overhead in this case is only 4S + 3 log S � 4 compared to thedataset area of (S + 1)2 pixels. The ratio between the two is inversely proportional to S, soit improves with the size of the dataset.Monotonicity of re�nement: As explained in Section 1.1, associated with any surfacemodel is a tolerance, which bounds the di�erence between the elevation values reported inthe input and those computed by the model for any location. It may be assumed that sincesmall nodes can express terrain variation with greater detail and �delity than larger ones,decomposing a large node into its smaller descendants can only improve the tolerance of theresulting model. Although this is the general trend, it is not universally true. In particular,28

(a) (b)Figure 3.6: Bad cases of arbitrary datasets embedded into an RQT square. (a) Absolutelyworst case. (b) Worst case involving upright rectangular datasets.in certain cases a node split may in fact degrade the model's accuracy. It should be notedthat this phenomenon is related to the way the model's accuracy is measured. If, for example,average deviation were used in Figure 3.7 instead of maximumdeviation, monotonicity wouldhave been retained. However, one could devise a case where monotonicity breaks down forthat method as well.As an example of this phenomenon, consider Figure 3.7, where the problem is shownin a one-dimensional setting for simplicity. The �rst-cut model, depicted in Figure 3.7b,is acceptable for some prede�ned tolerance (denoted by the dashed lines). However, themodel fails the tolerance test when one more data point is added to it (Figure 3.7c). Furtherre�nement (see Figure 3.7d) makes the model acceptable again. This last model is alsobetter than the �rst as a tighter tolerance can now be supported, thereby demonstrating thegeneral trend of improving model accuracy with re�nement.In this study it was assumed that every re�nement improves the quality of the resultingmodel, disregarding the above examples to the contrary. The algorithms can be changed toaccount for these exceptions. Alternatively, a distinction can be made between two tolerancevalues: the input tolerance, which is a parameter of the RQT construction process, and theoutput tolerance, which is the maximum di�erence between the elevations given by themodel and the input for the same location (i.e., the sense in which the term \tolerance" hasbeen used so far). These two values are correlated but may di�er, due to the phenomenondescribed above. Experimentation with varied datasets shows that only a small fractionof blocks contain points outside the input tolerance, regardless of the actual value used.However, di�erent datasets may develop di�erent output tolerances when constructed withthe same input tolerance. Moreover, as we shall see, the top-down construction algorithmappears to produce better results in this regard than the bottom-up algorithm does.3.3.2 Atomic NodesIn terms of implementation, the relationship between the smallest nodes and the input needsclari�cation. The elevations stored at the vertices of RQT nodes, in the ideal case, are theactual input values. However, it is possible to store interpolated values, corresponding to29

E
LE

V
A

T
IO

N

LOCATION

E
LE

V
A

T
IO

N

LOCATION

E
LE

V
A

T
IO

N

LOCATION

E
LE

V
A

T
IO

N

LOCATION

(c)

(a)

(d)

(b)

Figure 3.7: Re�nement does not monotonically lead to better models. (a) A few consecutiveelevation samples along a one-dimensional terrain. (b) A �rst-cut model of the terrain. Thedashed lines indicate the range of values the model tolerance permits the data to take. (c) Are�nement of the model in (b). Clearly, some data points (marked by solid circles) that earlierwere within tolerance are now outside of it. (d) A further re�nement of the model. Nowall samples are again within tolerance. In fact, the tolerance can now be reduced almostthreefold.virtual data points, at locations that are not in the original dataset (i.e., non-grid points).The following are three possible atomic node construction schemes:1. A node is built around each data value, making it the center vertex of the node andassigning interpolated values to the other vertices (Figure 3.8a). Each atomic nodeconsumes a data point exclusively, so covering the input area requires as many atomicnodes as there are data points.2. Every four input data values whose positions form a unit grid square are used as thebasis for an atomic node. The four elevations are stored in the atomic node's fourcorner vertices while the elevation at its center vertex is interpolated from the otherfour (Figure 3.8b). Each atomic node shares four elevation samples, but each datasample is shared among four atomic nodes. Therefore, on the average, there are still4� 14 = 1 data points per atomic node.3. Atomic nodes may be constructed from a 3 � 3 subgrid (Figure 3.8c). Here all ninevertices are associated with actual input data values. Each atomic node uses one datasample exclusively (the center vertex) and shares eight others: four (the edge mid-points) with another node and four (at the corners) with three other nodes. Summingup, we get 1� 1 + 4� 12 + 4� 14 = 4 data points per atomic node on the average.30

(a) (b) (c)Figure 3.8: The construction of atomic nodes from raw input data. The solid circles representthe grid; the open circles are virtual data points whose values are interpolated. The ratios ofinput values per atomic node are (a) 1:1 centered; (b) 1:1 shared; (c) 4:1 shared. Note thatwhen nodes merge to form larger nodes, only scheme (a) ends up with persistent interpolatedvalues.Approach (a) simpli�es the relationship between the input data and the resulting tree. Inthis case, however, most of the elevation values that are eventually stored do not correspondto actual input elevation data samples. Instead, they are averages of two or four adjacentlocations. Moreover, when adjacent nodes merge, the true data points are not propagatedto the resulting node. It is therefore possible for the �nal model to contain only interpolatedelevations. This may cause smoothing and other undesirable e�ects.In approach (b), only one computed elevation value is stored in each atomic node, andthat value is dropped completely when four atomic nodes are merged to form the smallestnon-atomic node. The danger of the model ending up with many interpolated elevationvalues is therefore diminished considerably.Approach (c) su�ers from none of the above maladies, since atomic nodes constructedin this way do not call for any interpolated values at all. However, more input values gointo the construction of a single node than in the previous schemes. As a result, di�cultiesmay arise at the boundary of the data set if the number of rows or columns is not odd.Nevertheless, this is the approach that is used in the present implementation.3.4 RQT Construction AlgorithmsIn this section we discuss the process by which an RQT model is constructed from raster(DTM) input. We present bottom-up and top-down algorithms. The bottom-up algorithmstarts out with the most re�ned, and hence the largest RQT possible. It then prunes it asmuch as possible without the accuracy dropping below the prede�ned tolerance value. Thetop-down algorithm, on the other hand, starts with a single node and recursively decomposesit until the model's accuracy reaches that tolerance.Both algorithms create nodes and then, if they are inadequate for the �nal model, destroythem. However, the bottom-up algorithm creates and destroys only nodes which could besubordinated to the leaves of the �nal result, while the top-down algorithm only goes throughnodes which are superior to the leaves of the result. Due to the tree property of exponential31

growth, it is expected that the top-down algorithm should run faster than the bottom-upalgorithm. This was corroborated by our experiments.
BREADTH BREADTH

(a) (b)

D
E

P
T

H

D
E

P
T

HFigure 3.9: A comparison between the expected complexity of the bottom-up and top-downalgorithms. For simplicity, the two-dimensional sprawl of the tree is depicted here in onedimension. The heavy line represents the leaf nodes of the RQT ultimately constructed.(a) Descendant nodes generated by the bottom-up algorithm. (b) Internal nodes that aregenerated by the top-down algorithm.Below we describe the implementation of both algorithms in greater detail. Section 3.4.1and Section 3.4.2 describe the bottom-up and the top-down algorithms, respectively. Exper-imental results are provided in Section 3.4.3.3.4.1 The bottom-up Construction AlgorithmAt the start we build an RQT which consists only of atomic nodes, representing the inputdata at the greatest level of detail possible for the given tree depth. Next, we merge adjacentnodes where doing so would violate neither the accuracy of the model nor the restrictionson neighbor sizes (Figure 3.10).Step 2 in Figure 3.10, called the input phase of the algorithm, is where input is readand the atomic nodes are constructed. Depending on the implementation of atomic nodes interms of data samples (as discussed in Section 3.3.2), the input is read in either row by rowor two rows at a time. Note that this is done in the input's natural order. Since all atomicnodes have the same size, the resulting model obeys the RQT restrictions on neighbor sizesand therefore is an RQT.Steps 5 and 6 of Figure 3.10 form the merge phase. In this phase each level of the tree,starting with the one just above the one constructed in the input phase, is visited in turn. Ateach level, every leaf node is tested for mergibility. If a node is mergible, then it is coalescedwith the three other nodes with which it shares a parent. The four siblings are then deletedfrom the tree and replaced by their parent node. A leaf node is mergible if all the conditionsin Figure 3.11 are met.The algorithm terminates once all the nodes at a given level have been processed andno more merges can be performed. Termination is guaranteed since once the root level isreached, no more merges can take place.Analysis: We assume that the dataset describes a square patch of s � s equally spaceddata points, where s = 2m + 1 for some integer m (see Section 3.3.1 for justi�cation). Let32

Bottom Up RQT Construction Algorithm1. R empty RQT.2. Read input elevations in sequence, create an atomic nodefor each elevation and insert it into R.3. S size of atomic node.4. while S is less than the size of the area covered by theRQT do begin5. for each block B of size S doif B is mergible (see Figure 3.11 for mergibilityconditions) thencoalesce it with its siblings.6. if no nodes were merged during the execution of theloop in step 5 thenstopelseS 2S.endFigure 3.10: Algorithm to construct an RQT from raster data using the bottom-up approach.N denote the total number of points in the dataset, so N = s2. Let e denote the number ofelevation values which are used in the speci�cation of single atomic nodes (depending on thede�nition, e could be either 1 or 4; see Section 3.3.2). The number of atomic nodes formed inthe input phase is N=e. The only I/O associated with establishing an atomic node involvesreading the input (Tinput) and inserting the complete node into the RQT (Tinsert). Therefore,the time to perform the input phase is given byTinput�phase = N � Tinput + Ne � Tinsert = N(Tinput + Tinsert=e):At each level, each node is tested. Each test operation involves retrieving the node, itsthree siblings and no more than eight of their collective neighbors (if they have more thaneight neighbors combined, at least one of them must be small enough to block the merge).If the node passes the test, the four siblings are deleted and their parent inserted. Themaximum time to process a merge is given byTmerge = 12 � Tretrieve + 4 � Tdelete + Tinsert :33

Conditions for Merging Nodes1. The node is the north-west child of its immediate parent.This condition guarantees that each merge is consideredonly once, when the first eligible leaf is encountered.2. The size of the node is equal to the sizes of itscurrently existing east, south and south-east neighbors.3. The node and its three siblings have no optional vertices(those at the midpoints of their edges) or any suchvertices that do exist may be eliminated. This can bedone only if the elevation stored in any optional vertexis within tolerance of the elevation computed for the samelocation in its absence (Figure 3.12b).4. The elevation values stored at the uninherited vertices ofthe nodes being merged must be within tolerance of thevalues computed for their locations in a parent node whenit is created (Figure 3.12c).5. Neither the node nor its three siblings have anysmaller-sized neighbors. Note that if any such neighbor qexisted, and the proposed merge were to proceed, then themerge would yield a node four times larger than q in q'sneighborhood, in violation of the RQT definition.Figure 3.11: Required conditions for merging nodes in an RQT.The number of iterations made in the merge phase is dependent on the actual data. Theworst case is that of a completely at surface, which can be represented by an RQT with asingle node. In this case, the bottom-up algorithm will need to merge all the nodes in thetree, incurring the greatest overhead. Conversely, the best case is represented by a surfacewhose variation is so great that no merging is possible at all. In such a case the algorithmcan stop after one pass over the atomic nodes. Realistic running times should fall betweenthose computed for these two extremes.In the best case, the atomic nodes formed in the input phase are scanned but all fail themerge test. The quarter of the atomic nodes that are north-west siblings which do not failrequirement 1 of Figure 3.11 will fail requirement 4 (by assumption of best case). Althoughsatisfaction of requirement 1 may be determined without any I/O, checking requirement 4requires the retrieval of four siblings, thereby incurring a cost of 4�Tretrieve time units. Given34

(a) (b) (c) (d)Figure 3.12: Merging nodes: heavy lines denote node extent, light lines denote internal nodedecomposition. (a) Initial four leaf nodes; (b) Intermediate stage I: open circles denoteoptional vertices. Such vertices must be removed for the merge to proceed. A vertex can beeliminated if the elevation it stores falls within tolerance of the computed value for the samelocation. (c) Intermediate stage II: Open circles denote uninherited vertices, which mustalso be removed. (d) Resulting merged node.that there are N=e atomic nodes, the total time for best case merge phase isT bestmerge�phase = Ne � 14 � 4� Tretrieve = N(Tretrieve=e):In the worst case, all possible internal nodes are formed at some point. Since internalnodes total one third of the number of leaf nodes, with worst case the time needed to executethe merge phase is given byTworstmerge�phase = 13 � Ne � Tmerge = N(Tmerge=3e):Therefore, the execution time Tbottom�up of the bottom-up algorithm satis�es the followinginequality: Tinput�phase + T bestmerge�phase � Tbottom�up � Tinput�phase + Tworstmerge�phase :The execution times associated with RQT operations (e.g., Tretrieve , Tdelete , Tinsert) areall related to the depth of the RQT, which is log4(N) = log2(N)=2. Therefore, the abovebounds are both O(N logN), which means that the running time of the bottom-up algorithmis also O(N logN). Note that this time is for any RQT, irrespective of the actual elevationvalues or the size of the resulting RQT.3.4.2 The top-down Construction AlgorithmThis algorithm attempts to adapt the ideas of the predictive quadtree construction algorithmdescribed in [Shaf87a]. In the course of constructing an area quadtree from raster data, thepredictive algorithm only splits nodes|it never merges any. The algorithm is thereforeoptimal in the sense that the work it does is proportional to the size of the eventual output.To accomplish this, the algorithm maintains a partially-constructed minimal quadtree thatis consistent with the data read so far by making optimistic assumptions about the unreadportion of the input. As data is read in, only the minimal changes required to regain35

consistency with the new input are applied to the quadtree. When all the input has beenprocessed, the result is the desired quadtree.Like the predictive quadtree construction algorithm, the top-down construction algorithmmaintains a partially constructed RQT which is consistent with the data processed so far.However, the order in which the construction proceeds is driven by the levels in the treerather than the order of the input.The �rst step is to construct the root node, using the input elevation values associatedwith the locations indicated in Figure 3.13a. Once this has been done, and throughoutthe construction process, an elevation value is associated with every point within the map'sextent, reecting either an input (stored) value or an interpolated (computed) value. Initially,these values will probably represent only a poor approximation of the surface since only ninevalues are stored and the rest are computed. However, as more nodes are inserted, thecomputed values approach those of the desired surface.
(a) (b) (c) (d)Figure 3.13: Locations of uninherited vertices in the �rst few levels of an RQT: (a) rootlevel; (b), (c), and (d) levels 1, 2, and 3, respectively. The square represents the extent ofthe RQT.On each level after the �rst, each possible node is considered in turn. For each node, theuninherited vertices are determined. The locations of these vertices for levels 1, 2, and 3 areshown in Figures 3.13b, 3.13c, and 3.13d, respectively. The elevation given in the input foreach such uninherited vertex is compared with the value computed from the current tree. Ifthe two values are su�ciently di�erent, the node is constructed and inserted into the currenttree.However, in contrast to the bottom-up algorithm, the tree may need some preprocessingbefore the node can be inserted. Not all of the node's siblings and ancestors that aremandated by quadtree structure need be present at the time the insertion is attempted.They must be generated and inserted �rst.To see how this may come about, consider Figure 3.14. Figure 3.14a depicts a node inthe tree being constructed, say at level `. It is possible that a pass over the next level, `+1,will not yield any discrepancy with the input within the bounds of this node, as seen inFigure 3.14b. In the next step, at level ` + 2, an input value which di�ers su�ciently fromthe computed elevation for that location is detected (solid triangle in Figure 3.14c). Thenode at level `+2 which contains this point should now be inserted. However, it is too smallto be inserted directly, since its neighbors would be larger than twice its size. Therefore, itsparent node on level `+1 needs to be inserted �rst, along with its siblings, as in Figure 3.14d.Only once this has been done can the small node be inserted (Figure 3.14e).36

(a) (b) (c)

(d) (e)Figure 3.14: Example of node insertion when using the top-down algorithm: Solid circlesdenote stored elevation values while open circles denote locations where the input and com-puted values were found to be in agreement. (a) Initial state of a node q; (b) the situationafter the construction pass over the level immediately below the one containing q; (c) thestate when, during the pass over the second level below q, an input value (marked by atriangle) which signi�cantly di�ers from the elevation computed for the same location isencountered; (d) �rst split; (e) �nal split.Procedure incorporate manages these insertions in the implementation of the top-downalgorithm. Figure 3.15 illustrates how procedure incorporate works. Assume a partiallyconstructed RQT (Figure 3.15a) is decomposed when a small block B (highlighted in Fig-ure 3.15b) needs to be incorporated into the tree. First, the smallest ancestor of B in thetree, call it A, is located and deleted (Figure 3.15c). Next, all the descendants of A which donot cover B are generated and inserted into the tree (Figure 3.15d). This process is repeatedwith the descendant of A which does cover B (Figure 3.15e). The process stops when Aequals B, at which time B may be inserted (Figure 3.15f). Figure 3.16 shows procedureincorporate in pseudo-code.The top level control structure of the top-down algorithm is shown in Figure 3.17. Loadingthe input data, following the general logic outlined above, is achieved by procedure load(Figure 3.18). It produces a quadtree with su�ciently many stored values to support theinput tolerance. However, this quadtree is not necessarily restricted. Procedure restrict(Figure 3.19) converts the quadtree into an RQT. This approach produces simpler code andalso supports the out-of-core version of the algorithm to be described below.Procedure restrict operates on the output of procedure load in a separate pass. To keeptrack of the nodes it has already processed it maintains a bit per node called the mark bit.At any time during the execution of this procedure, the population of marked nodes doesnot violate the rules of restricted quadtrees. Unfortunately, marking a node q may not be37

(e)(c)(b)(a) (d) (f)Figure 3.15: Steps in the execution of procedure incorporate. (a) A partially constructedRQT. (b) A small block (highlighted) needs to be incorporated into the tree. (c) Thenew block's ancestor is deleted from the tree. (d) The ancestor's descendants which donot cover the new block are inserted. (e) The process repeats at the next lower level.(f) Termination: the level of the new block has been reached and it can be safely insertedinto the tree.the last time node q is processed. Some unprocessed neighbor of q, say r, may exist thatis too small to remain in q's neighborhood. This will force q to decompose later, when ris processed. In reprocessing marked nodes procedure restrict is helped by the recursiveprocedure backtrack (Figure 3.20).Analysis: We adopt the same assumptions and notation used in the analysis of the bottom-upalgorithm (Section 3.4.1)|that is, N = s2 is the total number of data points in an inputof s � s array where s is one more than a perfect power of two. In addition, let L�nal bethe number of nodes in the RQT that is ultimately constructed. Also, only disk I/O isconsidered in our analysis.The total running time of the top-down algorithm, Ttop�down , consists of the time spentexamining the input (Texamine), constructing the result (Tconstruct), and restricting the result-ing quadtree to form a RQT (Trestrict). The tasks of examining the input and inserting nodesinto the resultant RQT are common to all constructions, and their complexity depends onlyon the size of the surface being modeled, not its shape. On the other hand, the cost ofconverting the quadtree into a RQT depends on the shape of the surface.Ttop�down = Texamine + Tconstruct + Trestrict (3:1)Examining the input is done in the load phase (step 2 of Figure 3.17, and given in greaterdetail by procedure load in Figure 3.18). The entire input dataset is scanned, at least toverify that the model is consistent with the data, even if no nodes are generated as a result.Each block at each level is examined in turn, a total of 4N=3 blocks. Examining a blockentails reading the nine elevation values corresponding to its vertices from the input. Notethat the nine input values are unlikely to be found in consecutive locations on the inputmedium, and thus obtaining them may be expensive. The total time spent reading the inputis given by Texamine = 4N3 9� Tinput (3:2)Operations that result in the insertion and deletion of nodes are scattered throughoutboth the load and restrict phases, but calculating the time spent executing them is straight-forward. Unlike procedure bottom-up, in procedure top-down nodes are never merged. Other38

Incorporate Node N Into Quadtree R1. BA the smallest block in R which covers N.2. delete BA from R.3. while BA is larger than N do begin4. for each child block BC of BA which does not cover Ndo begin5. NC the RQT node whose extent is BC and elevationdata obtained from the input.6. insert NC into R.end7. BA the child block of BA which does cover N.end8. insert N into R.Figure 3.16: Procedure incorporate which incorporates a node into an RQT. It is an auxiliaryroutine for the top-down algorithm.than the root, nodes are inserted only when their parents are decomposed. Since their totalnumber is known, the amount of work they require can be computed. If the �nal resultcontains L�nal leaf nodes, then (L�nal � 1)=3 internal nodes must have been present at vari-ous times during its construction. Each node was replaced by its four children when it wasdeleted. Rounding up this number to L�nal=3 we �nd that constructing the RQT actuallytakes Tconstruct = L�nal3 (Tdelete + 4 � Tinsert) (3:3)In the worst case, any single operation on the RQT requires a traversal of a path fromthe root to a leaf node, having a cost of log L�nal . For simplicity we assume that all ofTretrieve , Tinsert and Tdelete are proportional to logL�nal . Therefore, the above expression canbe rewritten as Tconstruct / L�nal log L�nal (3:4)The third term contributing to Ttop�down , the time required to restrict the quadtree(procedure restrict), is di�cult to gauge exactly since it depends on the shape of the surfacebeing modeled. However, it can be assessed using amortization analysis. Note that sincenodes are never merged in the course of top-down construction, all deletions and insertions39

Top Down Construction1. R an empty RQT structure.2. Load input data into R (see Figure 3.18).3. Restrict R (see Figure 3.19).Figure 3.17: Procedure top-down which constructs a RQT from raster data.of nodes, including those performed by procedure restrict, have been accounted for in thecalculation of Tconstruct . However, restrict also retrieves nodes from the partially constructedtree to determine the size ratios of neighboring nodes. We will show that although somenodes may be retrieved multiple times, on the average a node is examined a constant numberof times.Table 3.1: Costs associated with the di�erent scenarios a node may be subject to in procedurerestrict. scenario retrievals unmarked marked1 8 +3 02 4 +4 {13 8 {1 +1Let M denote the number of marked nodes and U the number of unmarked nodes atany given time during the execution of procedure restrict. Examination of the code revealsthat when a node B is processed, there are only three possible outcomes, summarized inTable 3.1:1. B has neighbors that are too small to coexist with it (line 4 in Figure 3.19). As many aseight neighbor nodes must be retrieved. B is then replaced with its four children. Sinceboth B and its new children are unmarked, this operation's net result is to increase Uby three, while leaving M una�ected.2. B gets processed by the helper procedure backtrack (line 5 in Figure 3.19 and line 1in Figure 3.20). Since this procedure is applied only to marked nodes, it follows Bis marked. Procedure backtrack �rst searches for any neighbors that are larger thanB. Since on any given side of a node, a larger neighbor must be the sole neighbor,only four retrievals are necessary to locate all of B's larger neighbors. The procedurecontinues by replacing the marked node B with its unmarked children. Consequently,U is increased by four and M is reduced by one.40

Load Data Into an Empty Quadtree R1. for S ranging through all permitted block sizes (from thesize of the input down to size of an atomic node) do begin2. for each possible block B of size S do begin3. ND the RQT node whose extents are B and whoseelevations are obtained from the input.4. if B is the root block theninsert ND into Relse begin5. NI the RQT node whose extents are B butwhose elevations are computed from R.6. if ND and NI disagree on elevation at any point bymore than the predefined tolerance thenincorporate ND into R (see Figure 3.15).endendendFigure 3.18: Procedure load which loads input data into an empty RQT.3. B is compatible with its neighbors and requires no updating (only lines 6 and 7 ofFigure 3.19 get executed). Again, as many as eight neighbors of B need to be retrievedto verify this. Subsequently, B is marked, reducing U by one and increasingM by one.Let K1 be the number of times scenario 1 is encountered in the course of processing asurface, and let K2 and K3 be de�ned similarly. The total number of retrievals Kretrievalsperformed by procedure restrict is given byKretrievals = 8K1 + 4K2 + 8K3 (3:5)Let Lintermediate denote the number of nodes in the quadtree produced by procedure load,and, as above, let L�nal be the number of nodes in the �nal, restricted quadtree. InitiallyU = Lintermediate and M = 0, since all the nodes start out as unmarked. Following theexecution of procedure restrict, U = 0 andM = L�nal . Equation 3.6 restates these conditionsfor U while Equation 3.7 restates them for M :Lintermediate + 3K1 + 4K2 �K3 = 0 (3:6)41

Restrict quadtree R1. R an unrestricted quadtree with all its blocksinitially unmarked.2. for each unmarked block B in R do begin3. locate all of B's neighbors in R.4. if the size of any of B's neighbors is smallerthan half the size of B thendelete B and insert its four unmarked children.else begin5. apply procedure backtrack to any of B's markedneighbors that is larger than twice the size of B(see Figure 3.20).6. adjust the configuration of B and that of itsneighbors to conform with the desired RQT(4-triangle or 8-triangle rules; see Section 3.2).7. mark B.endendFigure 3.19: Procedure restrict which converts a non-restricted surface model into an RQT.K3 �K2 = L�nal (3:7)Eliminating K2 we get K1 +K3 = 13(4L�nal � Lintermediate) (3:8)From Equations 3.7 and 3.8 we haveK2 < K3 < K1 +K3 = 13(4L�nal � Lintermediate) (3:9)K1 +K2 +K3 < 23(4L�nal � Lintermediate) (3:10)Recalling Equation 3.5:Kretrievals < 8(K1 +K2 +K3) < 163 (4L�nal � Lintermediate) (3:11)42

Backtrack Over Marked Node N1. Apply procedure backtrack (this procedure) to any of N'sneighbors that is larger than twice the size of N.2. Delete N from R.3. Insert the 4 unmarked children of N into R.Figure 3.20: Procedure backtrack which recursively handles large marked nodes. It is anauxiliary routine for procedure restrict.In the worst (and practically impossible) case of Lintermediate = 0, the number of retrievalsdone by procedure restrict is no more than 643 L�nal . This is a very crude approximation, butit is su�cient to show that Kretrievals is O(L�nal). Assuming again that Tretrieve is O(log L�nal),the total time required to restrict the quadtree isTrestrict / L�nal logL�nal (3:12)The total running time for the top-down algorithm can now be stated asTtop�down = Texamine + Tconstruct + Trestrict = O(NTinput + L�nal logL�nal) (3:13)This seems to be the optimal result that the top-down algorithm was designed to attain|an execution time proportional to the size of the output produced rather than the size of theinput (if not for the term containing N). It is interesting to observe that analyses of sub-linear algorithms often ignore the fact that, in principle, the input size may be driving thealgorithm's execution time. It is usually assumed that modern operating systems are capableof reducing the overhead in making the input available to the point that it is negligible whencompared with the other tasks performed by the algorithm being studied. However, in ourcase this assumption fails: the algorithm accesses input in an unpredictable manner. In fact,Tinput can entail a physical disk access, and therefore cannot be ignored.Clearly, the above concerns do not apply if su�cient random-access memory (RAM) isavailable to store the entire input dataset. The input values can then be accessed in any orderwithout penalty. In order to handle real-world applications that are likely to involve largerdatasets, we propose to decompose the input into blocks, along the lines of the decompositionthat the �rst few levels of a quadtree would follow. The data relevant to each such blockwould be placed in a separate disk-based sub�le in DTM format, using procedure split-�leof Figure 3.21. The number of levels used is chosen based on the amount of available RAM;each such sub�le should �t entirely into a RAM bu�er.Procedure split-�le must obviously read every input item and then write it out, so essen-tially it moves 2N items. However, since consecutive data transfers are the most e�cient, a43

Split Input into Subfiles1. n the side of the input.2. d the depth of subfile decomposition. There will be 4dsubfiles generated, arranged in a 2d � 2d array.3. m n=2d + 1 (the dimension of a subfile).4. for m1 = 1 through 2d do begin5. for r = 1 through m do begin6. read a row from the input.7. for m2 = 1 through 2d do begin8. write the next m items from the row intosubfile [m2;m1].endendendFigure 3.21: Procedure split-�le which splits the input �le into sub�les, each small enoughto �t entirely into the available RAM.better measure of execution time is the number of such transfers initiated. Each row in eachsub�le requires a separate transfer since a row is the longest chunk of data the algorithmcan move without interruption. If the input �le (of n�n items) is split into 4d sub�les, thenn(1 + 2d) consecutive data transfers are required.The main penalty of splitting the input into many smaller �les is not time but space.Not only the input �le and the result RQT need to be accommodated, but the sub�les aswell. The sub�les take as much space as the input does, which could be considerable. On theother hand, the input can easily be reconstructed from the sub�les, so if space is an issue,the original input �le may be discarded after it is split and its space released.Procedure load of Figure 3.18 is then run on each sub�le, either in sequence or, if theappropriate hardware is available, in parallel. The output from all the invocations of loadis accumulated in a single RQT structure. This can be done because the part of the surfaceprocessed by each such invocation is disjoint from the part used by any other, and so are theextents of the resulting RQT nodes. The output streams from di�erent invocations of loadtherefore do not interfere with each other.After the entire input is processed, the RQT that has been built contains all the eleva-44

tion data. However, in fact it is not an RQT; blocks of di�erent sizes may freely bordereach other in violation of neighbor restrictions. This occurs not only inside sub�les, butmostly on the boundaries between sub�les. The nodes on both sides of such boundariesare created by di�erent invocations of load which do not communicate and cannot resolvesuch inconsistencies. Here is where the utility of having the restrictions imposed in a secondpass on the output comes in handy. Procedure restrict can now be run once on the totaloutput, reforming it into a true RQT. This out-of-core version of the top-down procedure isdescribed in Figure 3.22. Out-of-core Top Down Construction1. R an empty RQT structure.2. for each subfile SF do begin3. read subfile SF into a RAM buffer.4. load the contents of SF into R using procedure load(see Figure 3.18).end5. restrict R (see Figure 3.19).Figure 3.22: The out-of-core version of procedure top-down with the code of Figure 3.17upgraded to work with very large datasets.3.4.3 Experimental ResultsThe construction algorithms were tested on three datasets, each a raster of 513� 513 eleva-tions:1. \Salisbury east 2,0" is part of an area on Maryland's eastern shore which is essentiallyvery at (Figure 3.26). Elevations on this map are between 0 and 5 meters.2. \data", a map of unknown origin. It describes terrain of moderate variability (Fig-ure 3.27). Its elevations range between 0 and 206 meters.3. \Reno west 0,0" is a portion of an area near Reno, Nevada, in the midst of the RockyMountains, that is quite rugged (Figure 3.28). Its elevations reach 3244 meters.The �rst and third maps are from the USGS 1-degree DTED DEM collection [USGS90].They are both sections of size 513 � 513 cut from an original USGS sheet, which measures1201 � 1201. 45

The results of construction times are summarized in Table 3.2 and shown graphicallyin Figures 3.23, 3.24 and 3.25. It is clear that the top-down algorithm is faster than thebottom-up most of the time, as expected. The bottom-up algorithm outperforms the otheronly for very low tolerances, where the �nal result is is very close to a complete tree. In thatcase, as explained in Section 3.4, the bottom-up algorithm can terminate shortly after itsinput phase, whereas the top-down algorithm must go through all the intermediate nodes�rst, and then perform an equivalent of the input phase.Table 3.2: Experimental results of constructing various maps, using the 8-triangle rule.Execution times on a SUN SPARCstation 5 are given in seconds.map name map size algorithm tolerance1 3 10 30 100 300Salisbury 513 � 513 top-down 220 197 170 171 172 173east 2,0 bottom-up 1100 1073 1046 1040 1037 1035data 513 � 513 top-down 299 233 207 192 174bottom-up 1106 1032 1038 1027 1040 1046Reno 513 � 513 top-down 1337 1250 876 413 256 204west 0,0 bottom-up 1424 1696 1500 1166 1119 1079An interesting phenomenon involves the behavior of the running times for the bottom-upalgorithm. It was expected that its execution time would increase with the tolerance ofthe map being constructed, since for larger tolerances more nodes need to be merged. Ex-perimentation shows that this is true initially, but then the time trends downward, just astop-down does.The reason for this behavior stems from the inhomogeneity of the terrain. It would notoccur if the terrain were evenly at or evenly rugged, and is particularly pronounced in mapsthat have spots of great variability as well as relatively at areas, such as \Reno west 0,0".When building with low tolerance, the �rst pass of the bottom-up algorithm ends up mergingjust a few nodes, leaving the leaf layer of the RQT very populated. In an inhomogeneousmap, however, there are some regions of slow variability which require several passes to fullyconstruct. (Recall that the bottom-up algorithm processes a single layer in each pass.) Asa result, the relatively populated leaf layer of the RQT gets traversed several times. On theother hand, when the construction is done using a high tolerance, many of the nodes getmerged directly in the algorithm's �rst pass, leaving fewer nodes to process in each of thesubsequent passes.
46

0

500

1000

1500

2000

1 3 10 30 100 300 1000

bu
ild

 ti
m

e
(s

ec
.)

tolerance (meters)

bottom up
top down

Figure 3.23: Construction times of map \Salisbury east 2,0" using bottom-up and top-downalgorithms.
0

500

1000

1500

2000

1 3 10 30 100 300 1000

bu
ild

 ti
m

e
(s

ec
.)

tolerance (meters)

bottom up
top down

Figure 3.24: Construction times of map \data" using bottom-up and top-down algorithms.47

0

500

1000

1500

2000

1 3 10 30 100 300 1000

bu
ild

 ti
m

e
(s

ec
.)

tolerance (meters)

bottom up
top down

Figure 3.25: Construction times of map \Reno west 0,0" using bottom-up and top-downalgorithms.

Figure 3.26: Perspective display of the 513 � 513 surface \Salisbury east 2,0". This is anexample of a tame surface with little variation. Range of elevations: 0 { 5 meters.48

Figure 3.27: Perspective display of the 513� 513 surface \data". This is a moderate surfaceexample, whose elevation range between 0 and 206 meters.

Figure 3.28: Perspective display of the 513�513 surface \Reno west 0,0". This is an exampleof rugged terrain. Range of elevations: 1341 { 3244 meters.49

Chapter 4The PMR Quadtree4.1 IntroductionThe PMR quadtree is a quadtree variant with many applications. In this dissertation it isused to support surfaces modeled by arbitrary triangulations (see Chapter 5). In the courseof its implementation, however, some issues have come up that are interesting in their ownright, and they will be covered in this chapter.This chapter is organized as follows: After describing the PMR quadtree and what itis that makes it di�erent from other quadtree variants (Section 4.2), algorithms for twooperations that we have implemented are described: �nding a nearest object to a givenpoint in Section 4.3, and reporting all the objects found within a speci�ed region of space inSection 4.4.4.2 De�nitionThe PMR quadtree is a spatial data structure that manages spatial objects symbolically. Itis e�ective in limiting searches to a vicinity of the search point to determine the existenceof objects. Unlike the area quadtree, however, it is less suitable for queries involving theextents of objects.While an area quadtree actually codes the extents of the objects it contains (by means ofa raster), the PMR quadtree manipulates labels which identify objects, placing each in theparts of space in which the labeled object resides. This symbolic approach allows for greaterexibility. Thus the PMR quadtree can store objects whose descriptions are arbitrary (i.e.,not con�ned to being a raster), and objects of di�erent types can be combined in a singlestructure. The dimensionalities of the stored objects may be di�erent from that of the spacethey are in (e.g. line segments embedded in the plane), and their extents may overlap.The PMR quadtree decomposes space recursively into blocks, possibly of di�ering sizes.Each block is associated with the descriptions of the objects that spatially intersect it.Objects which span several blocks have their identi�ers associated with each block that theyintersect. The decomposition is carried out so that the number of objects associated withany block is bounded.More speci�cally, the construction of a PMR quadtree is controlled by a parameter knownas its splitting threshold (or simply threshold). If, following the insertion of a new object,50

the number of objects associated with a block exceeds this threshold, the block is splitonce but only once. Although it is possible that the number of objects in one or severalof the resulting child blocks still exceeds the threshold, they are not decomposed duringthis insertion cycle. There is no guarantee, therefore, that the number of objects associatedwith a block does not exceed the threshold. This nondeterministic approach has been foundin practice to be quite e�ective [Nels86a]. Its drawback is that the structure of the treeis somewhat random (alluded to by the `R' in \PMR") and is dependent on the order inwhich the objects are inserted. The PMR quadtree was presented in [Nels86a], where theapplication of such a structure to a collection of line segments in the plane was described(and the term \PMR"coined).A PMR quadtree is de�ned as follows:1. When inserting a new spatial object, associate it with each quadtree block spanned bythe object.2. If, as a result of insertion, the number of objects associated with a block exceeds theprede�ned threshold, split that block once.3. Following the deletion of an object, all sets of sibling blocks whose combined populationdrops below the threshold are merged. In contrast with the case of insertion, mergingis carried out recursively to completion.4.3 Nearest Object4.3.1 MotivationSince the PMR quadtree keeps track of the spatial locations of objects, �nding the nearestobject to a given location (called the search point) is a natural query to pose. Such aquery arises frequently in applications such as vector quantization ([Arya94]) and statisticalpattern recognition ([Same94a]). The problem of �nding the nearest line segment in two-dimensional space was studied in [Hoel91]. However, the principles of that algorithm applyto higher dimensions as well. The three-dimensional version of the algorithm is describedbelow.4.3.2 The PrincipleDue to its construction, any non-leaf block in a PMR quadtree must contain at least athreshold number of objects. This is because the construction rules dictate that a block isdecomposed (ceasing to be a leaf) only if its population exceeds the threshold. Conversely,when the population of a non-leaf block falls below the threshold the block's descendantsare repeatedly merged until it becomes a leaf.As a minimum, it may be assumed that a PMR quadtree's threshold is at least one. (Asmaller threshold would entail a block splitting with every insertion, and would prevent blocksfrom merging on deletion. With enough objects, such a PMR quadtree will deteriorate into51

a grid of atomic-sized blocks.) Combining the two results, it is guaranteed that any non-leafblock of every PMR quadtree contains at least one object.This lower bound on density places an upper bound on the distance from any search pointand the object nearest to it, when measured in block sizes. Let the leaf block containing thesearch point be the base block and its immediate ancestor be the parent block. The parentblock contains the search point by virtue of containing the base block. From the argumentmade above, the parent block is guaranteed also to contain an object (since it is not a leaf).Let this object be the limiting object. Since both the limiting object and the search pointare inside the parent block, the distance between them cannot exceed the longest diagonal ofthat block. There may be other objects, perhaps in neighboring blocks, that could very wellbe nearer the search point than the limiting object, but this diagonal represents an upperbound. The search can therefore be limited to the volume of a sphere centered about thesearch point and having a radius equal to the longest parent block diagonal (Figure 4.1).
AFigure 4.1: The scope of search for a nearest object in a PMR quadtree can be limited toa sphere whose radius is the distance between the search point (A) and the furthest pointfrom it in the parent block (the parent of the block containing A).It should be noted that this limit is on the number of blocks traversed, not on thenumber of objects tested. Since quadtrees are a method for decomposing space, algorithmcomplexity may be measured in terms of the number of quadtree blocks accessed. Assuminga 1-1 correspondence between block accesses and disk accesses, the number of blocks accessedcan be a good predictor of execution time. From a geometric standpoint, a better idea wouldbe to measure the work done in terms of the number of objects from which a nearest one mustbe chosen. However, using such a measure depends on establishing a connection between thenumber of objects in the space and the number of blocks needed to adequately cover themin a PMR quadtree. It is di�cult to obtain such relationships in general, and the randomcharacter of the PMR quadtree makes it even more di�cult; hence no attempt will be madeto use such a measure here.4.3.3 The Expanded Block ListThis limit on the search region is given in terms of the search point and a radius, quantitiesthat are unrelated to the elements of the PMR quadtree, i.e. blocks. Expressing this volume52

in terms of quadtree blocks depends on the metric being used. The most convenient in thisregard is the L1 (i.e., chessboard) metric, in which the locus of all points equidistant froma given point resembles a PMR quadtree block. However, in reality, the metric used mostoften is the Euclidean one (L2) in which this locus (a sphere) is quite di�erent from a block.Assuming the more practical case of the Euclidean metric, it is helpful to determine whichblocks intersect the search sphere in order to search only those. Such a list will be referredto as an expanded block list to di�erentiate it from a more concise list to be proposed later.Invariably, many of the blocks in the expanded list will only be partially inside the searchsphere, so the volume covered by the union of all the list's blocks is larger than that ofthe search sphere. However, specifying the search region in terms of blocks considerablysimpli�es the access to the PMR quadtree.To simplify the generation of the expanded block list, it is assumed that the PMR quad-tree is populated with blocks of a single size, equal to the size of the parent block. Thespace to be searched is delineated by listing those equal-sized blocks that are in it, specifyingtheir coordinates relative to the base block. In reality, a PMR quadtree will seldom be souniform, and the algorithm must be able to handle mismatches between the blocks in thelist and those actually found in the PMR quadtree (Figure 4.4). But under a uniform objectdistribution, this approach strikes a balance between covering too much space beyond thesearch sphere and making the list too long. As we shall see, even this list of uniform blockscan become prohibitively long in high dimensions.
X

W

(a) (b)Figure 4.2: Di�erent cases of search spheres in a two-dimensional PMR quadtree. (a) Thesphere with the largest radius. (b) A di�erent case, showing that the largest sphere doesnot subsume all other cases. The gray square indicates the base block.It would be best if the expensive step of generating the expanded block list could be doneonce and for all, to cover all cases. Note that the union of the search spheres induced by allpossible search points is not in itself a sphere. For example, consider Figure 4.2. The spherewith the largest radius results when the search point is at the extreme corner of the parentblock W (Figure 4.2a). A smaller sphere is generated if the search point is X of Figure 4.2b,but nevertheless it is not subsumed by the larger sphere. The union of all such spheresis indicated by the light gray area in Figure 4.3. Note that the set of blocks which cover53

this general search area is identical to the set required to cover only the maximal sphere.Consequently, the list of blocks to traverse is independent of the speci�c placement of thesearch point and hence is known prior to performing the search. Figure 4.3 shows in mediumgray the blocks that need to be visited in the two-dimensional case. In the worst case, twelveblocks equal in size to that of the parent block must be accessed.
Figure 4.3: Blocks that should be searched in a two-dimensional PMR quadtree. The darkgray square is the base block. The light gray area shows the union of all possible searchspheres. Medium gray indicates the blocks on the expanded block list.4.3.4 The AlgorithmGiven an expanded block list, the algorithm described in Figure 4.4 can be applied. It scansthe list and determines the nearest of all the objects found in any of them. This is fasterthan scanning the complete PMR quadtree from which the list was drawn.Several heuristics can be applied to improve the algorithm even further. The blocks inthe list should be sorted according to their distances from the search point. That way thealgorithm can terminate before the list is exhausted, in case it reaches a block whose distancefrom the search point is greater than that of the nearest object found so far (variable D ofFigure 4.4).The problem with keeping the expanded block list sorted is that the list can no longer begeneric, as the block order depends on the actual location of the search point. Moreover, asort is required each time step 7b of the algorithm is executed since at that point new blocksare added to the list. This latter di�culty can be minimized by sorting only the set of newblocks and then merging it with the main list, which is already sorted.54

Find Nearest Object1. P the search point.2. R � /* the result */.3. D the distance between P and the vertex of the parentblock farthest from it.4. L the expanded list with all its blocks marked"unprocessed".5. if all the blocks in L are processed thenoutput R and stop.6. S the first unprocessed block in L.7. Search the PMR quadtree for block S. Let F be the blockactually found. There are three possibilities:aa. S = F: go to step 8.b. S � F: replace the reference to S in the expandedlist with references to all of its descendants. Markthem them all as "unprocessed" and go to step 6.c. S � F: scan the unprocessed blocks in L and removereferences to any block which also falls inside F.(This is done to avoid redundant visits to the sameblock.) Then go to step 8.8. for each object r in block F do begin9. d the distance between r and P.10. if d = D thenR R [frg.else if d < D then beginR r.D d.endend11. Go to step 6.aNote that for any two quadtree blocks A and B, exactly one of the following relationsholds: A \B = A, A \B = B or A \B = �.Figure 4.4: Algorithm for �nding the object nearest to a given point in a PMR quadtree.55

4.3.5 Nearest Object in 3-DThe list of blocks intersecting the search sphere in the case of three dimensions is illustratedin Figure 4.5 and drawn algorithmically in Figure 4.6.
A

BFigure 4.5: Blocks that should be searched in a three-dimensional PMR quadtree. A denotesthe base block, while B denotes the parent block.4.3.6 Nearest Object in Arbitrary DimensionsThere is a theoretical di�culty in conducting nearest neighbor searches in higher dimen-sions. The amount of space overhead (i.e. of space traversed even though it is outside thesearch sphere) can grow quite large as the dimensionality of the space increases. This isbecause the number of \corners" (i.e., the sections of a block near its vertices into which thecircumscribed hypersphere cannot reach) grows exponentially with dimension. As a result,the ratio between the volume of a hypersphere and that of its circumscribing hypercubedecreases exponentially with dimension. This property of spaces of high dimensions makessearching them particularly time-consuming [Spro91].Table 4.1 contains the actual values of this ratio for dimensions ranging from 1 to 14.Equation 4.1 is the formula for calculating the volume of a d-dimensional hypersphere ofdiameter D (from, for instance, [Apos69, pp. 411{412]).Vd(D) = � d2�(d2 + 1) �D2 �d (4:1)56

expanded block list for 3-DLet P denote the vertex shared by the base and the parentblocks (there is exactly one such vertex);1. The parent block.2. All blocks sharing one of the parent block's faces whichare incident on P (at most three).3. All blocks sharing one of the parent block's edges whichare incident on P and have not been listed already (atmost three).4. All blocks incident on P that have not been listed already(at most one).5. All blocks sharing a face with any of the blocks listed initems 1, 2, 3 and 4 (at most 24).6. All blocks sharing an edge with any of the blocks listedin items 1, 2, 3 and 4, excluding blocks listed in item 5(at most 24).All blocks in the expanded list have the same size as theparent block.Figure 4.6: Algorithm to �nd the blocks in the expanded search list for a three-dimensionalPMR quadtree.Equation 4.1 can be simpli�ed (avoiding the � function notation) if odd and even dimen-sions are calculated separately. Equation 4.2 can be used for odd dimensions, while Equation4.3 applies to even ones.V oddd (D) = 2� d�12 (d+12)!(d + 1)! Dd = � d�12d+12 � (d+12 + 1) � (d+12 + 2) � : : : � dDd (4:2)V evend (D) = � d22d(d2)!Dd = � d24 � 8 � 12 � : : : � 2dDd (4:3)The scheme described in Section 4.3.4 may be extended to an arbitrary number of dimen-sions provided the list of blocks covering the search sphere can be produced automatically.Tabulating an expanded block list in advance can reduce the ine�ciency inherent in high-dimensional searches. Although generating such a list even o�-line is a lengthy process, it57

Table 4.1: The volume of a d-dimensional hypersphere having unit diameter.dim formula volume dim formula volume1 1 1.00000 2 �4 0.785403 �2�3 0.52360 4 �24�8 0.308435 �23�4�5 0.16450 6 �34�8�12 0.080757 �34�5�6�7 0.03691 8 �44�8�12�16 0.015859 �45�6�7�8�9 0.00644 10 �54�8�12�16�20 0.0024911 �56�7�8�9�10�11 0.00092 12 �64�8�12�16�20�24 0.0003313 �67�8�9�10�11�12�13 0.00011 14 �74�8�12�16�20�24�28 0.00004needs to be done only once per dimension: once completed, it can be applied to any PMRquadtree of the associated dimension.One way to create an expanded block list is to determine a part of space that is guaranteedto contain all possible search spheres (this can be done since the search radius is boundeda priori), and then to exhaustively test all blocks within it. Any block situated so that itcould be part of some search sphere is included in the list.The di�culty with this approach lies in the sheer size of the resulting list, which at higherdimensions can become prohibitive. The ratio Sd between the volume of the search sphereand that of the parent block provides a lower bound on the size of the expanded block list.Since the union of the listed blocks covers the search sphere, their total volume must be atleast as large as that of the sphere. From the fact that the radius of the search sphere isthe longest diagonal of the parent block, and hence proportional to the square root of thedimension, and Equation 4.1, an expression for this ratio Sd can be written:Sd = � d2�(d2 + 1)(pd)d (4:4)Using Stirling's approximation for the � function,�(x+ 1) � p2�xxxe�x (4:5)Equation 4.4 can be approximated as Sd � (2�e) d2p�d (4:6)which is
(2d). Moreover, in order to obtain the expanded block list we may have to inspectall the blocks within a cube circumscribing the search sphere. A search sphere of radius pd iscircumscribed by a cube whose volume is 2pdd, which can pack O(dd) blocks of parent-blocksize. Fortunately, the number of symmetries embedded in the geometry of this constructiono�ers several heuristics which drastically reduce both the size of the expanded block list andthe amount of computation involved. 58

The only factor determining whether a block should be included in the expanded blocklist is its distance from the search point. Euclidean distance is computed by summing squaresof coordinate values. The distance function is therefore invariant to changes in the signs ofthe coordinates (since they are squared) as well as to permutations they may undergo (sincesumming is commutative). A given set of coordinates can represent several distinct points,all equidistant from the search point, if their signs and order are allowed to change. It istherefore possible to generate a core list, in which each block is representative of many blocksappearing in the the expanded block list (hence the term \expanded"). Speci�cally, a blockBc in the core list represents any block Be whose coordinates can be derived from those ofBc by permuting their order and changing their signs. Since any block so derived has thesame distance (from the search point) as Bc, if the latter intersects the search sphere so willall the derived blocks. If the blocks in the core list are sorted by their distances from thesearch point, then this property facilitates the generation of the expanded block list directlyin sorted order as well; we simply add to the expanded block list all the blocks derived froma single block in the core list before processing any subsequent core list blocks.The size of the core list also grows exponentially with dimension, but it is several ordersof magnitude smaller than the corresponding expanded list. Table 4.2 compares the size ofthe core list with that of the expanded block list, as well as with the size of the search sphere(expressed in terms of parent block volumes).core list for any dimension d1. R the radius of the maximal search sphere (= pd).2. Nest d loops, one per coordinate; each loop starts withthe current value of its predecessor loop, as follows:for (c1 = 0 to R) dofor (c2 = c1 to R) dofor (c3 = c2 to R) do...for (cd = cd�1 to R) doif (Pdi=1 c2i < d) thenadd (c1; c2; : : : ; cd) to the core list3. stop.Figure 4.7: The list of PMR quadtree blocks to traverse to �nd nearest objects in the caseof three dimensions.Figure 4.7 provides the details of the algorithm used to derive the core list. It uses astack of nested for-loops whose depth is determined at run time. In practice, this can be59

Table 4.2: A comparison of the size of the core and expanded block lists for various dimen-sions. The volume of the search sphere (in units of parent block volume) is provided as abenchmark for the shortest expanded list theoretically possible.core expanded volume ofdim list block list search sphere1 1 2 2.002 2 12 6.283 3 56 21.764 4 240 78.955 6 1152 294.256 8 6336 1116.237 10 35968 4287.698 12 196352 16624.59 15 1031168 64924.610 19 5384192 25501612 27 1:569 � 108 3:987 � 10614 38 4:751 � 109 6:317 � 10716 50 1:419 � 1011 1:010 � 10918 67 4:296 � 1012 1:629 � 101020 87 1:313 � 1014 2:643 � 101125 156 6:867 � 1017 2:854 � 101430 265 3:665 � 1021 3:145 � 101735 422 1:984 � 1025 3:513 � 102040 648 1:081 � 1029 3:963 � 102345 963 5:975 � 1032 4:507 � 102650 1394 3:312 � 1036 5:156 � 102960 2742 1:032 � 1044 6:845 � 103570 5037 3:261 � 1051 9:214 � 104180 8779 1:041 � 1059 1:253 � 104890 14671 3:349 � 1066 1:717 � 1054100 23672 1:084 � 1074 2:368 � 1060achieved by a recursive function, where each invocation represents one loop. It is also usefulto include in each loop (or in the single recursive function) a test to check if the sum of thesquares of all the coordinates �xed so far (in all enclosing loops, including the present one)already exceeds the space dimension, in which case we break out of the present loop. Thistest, although not necessary for correctness, cuts the running time by 99.9% in dimension70, for example. 60

4.4 WindowingAnother useful operation supported by the PMR quadtree is windowing (also known as rangequery), which is concerned with determining which objects are included in a given region ofspace. The semantics of the query can either be exclusive, selecting only objects completelycontained in the window region, (Figure 4.8b), or inclusive, where all objects having a non-empty intersection with the query region qualify (Figure 4.8c). In the inclusive case there isthe further choice of reporting objects only partially in the region in their entirety or clippingthem to the region (Figure 4.8d).
(a)

(b) (c) (d)Figure 4.8: Various ways of interpreting a windowing operation. (a) A section of a PMRquadtree containing a query window. (b) Exclusive: only objects completely contained inthe window are selected. (c) Inclusive: all objects intersecting the window are output intheir entirety. (d) Clipped: objects not completely contained in the window are clipped.The mechanics of any of the windowing algorithms depends on the PMR quadtree well ason the properties of objects included in the query window. To determine whether an objectis completely contained inside the query window, or to clip it against that window if it isnot (operations called for by the inclusive and clipped versions of the algorithm), a completedescription of an object is required. We con�ne the present discussion to that part of thealgorithm that is common to all three approaches, which pertains only to the PMR quadtreeand is independent of the actual objects involved.4.4.1 Previous WorkPractical PMR quadtrees are large enough to be disk resident, so each block read may, inreality, involve a disk access. A good algorithm, then, would attempt to minimize the numberof PMR quadtree blocks accessed and the number of times each one of them is read. Ideally,blocks having non-empty intersections with the window should each be read once, and otherblocks not at all.An algorithm having such optimal behavior is described in [Aref92c]. It is limited torectangular query regions that are axis-aligned (i.e., rectangles whose edges are parallelto the major axes). It uses the region quadtree decomposition ([Same90a]) of the windowitself. The blocks that comprise this decomposition window drive the search for blocks inthe underlying quadtree where the objects are stored.61

The algorithm in [Aref92c] is therefore not limited to a speci�c quadtree type or a partic-ular query. When focusing on PMR quadtrees, however, several assumptions can safely bemade that are not true in general. We revisit this algorithm with these assumptions to yieldsimpler code, without sacri�cing the bene�t of accessing blocks that overlap the window onceand others not at all.The algorithm [Aref92c] employs three support data structures in addition to the PMRquadtree being windowed:1. A quadtree decomposition of the window, implemented as a linked list of blocks.2. An active border to keep track of the part of the window already processed. Theactive border is implemented with two linked lists representing the western and easternboundaries of the area covered. Note that the northern border is immaterial and thesouthern one is taken care of directly in the algorithm.3. An unspeci�ed mechanism for returning the result of the window query back to theuser.The algorithm presented here provides a mechanism for returning the result (anotherPMR quadtree). It also removes the restrictions on the shape and alignment of the querywindow.4.4.2 The AlgorithmAlgorithmwindow described here accepts a collection of objects arranged in a PMR quadtree,labeled source, and a region of space serving as a window represented in any suitable way.The algorithm eventually produces the subset of objects which intersect the window. Thewindow may have any shape and the algorithm is applicable to spaces of any dimensionality.The role of returning the result of the window query is carried out in the present imple-mentation by another PMR quadtree, labeled result. Although convenient from an imple-mentation standpoint, this places an additional requirement on the algorithm which is notshared by the one in [Aref92c]. In particular, in addition to listing the objects found in thewindow, our algorithm window must also provide the appropriate PMR quadtree decompo-sition of the space that they occupy. Fortunately, this decomposition is closely related tothat of the source quadtree, as explained below, so that the overhead incurred is usuallysmall.Observation: if block s 2 source and parent(s) � window then s 2 result. Theblock decomposition of any non-degenerate subtree of the result quadtree is identical tothat of the corresponding subtree in the source quadtree whenever its root is completelycontained within the query region. This follows from the property of the PMR quadtreediscussed in Section 4.3.2 which states that the number of objects in a non-terminal PMRquadtree block is at least as large as the threshold. If the parent of a block is completelycontained within the window, then all the objects it contains are included in the result.Since block decomposition in the PMR quadtree is driven only by the distribution of objects62

within it, the conditions which led to the particular decomposition of the source quadtreefor this block are also present in the corresponding result quadtree. Blocks of this naturecan account for the bulk of the query window if it is large in terms of the sizes of the sourcequadtree blocks that it overlaps.The algorithm scans all the blocks (terminal and non-terminal) that are found in a treerepresentation of the source quadtree. In reality, it is not essential that a tree representationbe used; this is assumed here only for the purpose of facilitating the description of thealgorithm's operation. The blocks of the source quadtree are classi�ed as follows:� blocks completely outside the window,� blocks completely inside the window, and� the remaining blocks: those which intersect the window boundary.Blocks residing outside the window can be safely ignored, since nothing they (or theirdescendants) may contain can be relevant to the result. Non-terminal blocks completelyinside the window, according to the observation above, serve as roots of subtrees whichare replicated in the result verbatim. Terminal blocks inside the window and any blockintersecting the boundary require further consideration: the former since their presence inthe result is not guaranteed, the latter because they may contain objects that are not in thewindow at all.Speci�cally, the algorithm performs a top-down depth-�rst traversal of the source quad-tree. Any block falling outside the window is discarded. Any non-terminal block insidethe window is copied, along with all its descendants, into the result quadtree. Boundarynon-terminal blocks are decomposed and this classi�cation is applied recursively to theirchildren.Eventually, only terminal blocks remain. Those outside the window are discarded. Therest are examined for the objects they contain, which are placed in an auxiliary list. Blockscompletely inside the window contribute all their objects to the list, while the objects inboundary leaves must be tested individually, since such leaves may conceivably containobjects that are outside the window.Once the traversal of the source quadtree is done, a partial result quadtree has beengenerated as well, consisting of the subtrees rooted in blocks completely inside the window. Inaddition, any objects that may still be missing from the result are available in the object listmentioned above. Inserting the objects on the object list into the result quadtree completesthe production of the desired result. It is assumed that the insertion methods of both theresult quadtree and the object list eliminate duplicates, so that an object residing on theboundary of two or more blocks does not end up being inserted multiple times.Pseudo code for the top-level control structure of the window algorithm is given in Fig-ure 4.9 and its recursive component, window-block, in Figure 4.10. The algorithm presentedhere has the semantics of inclusive windowing, as depicted in Figure 4.8c. However, simplechanges can accommodate the other variants. Changing step 5 of window (Figure 4.9) toclip each object against the window before it is inserted into the result quadtree will resultin the clipped version of the query, as in Figure 4.8d. Objects introduced into the result63

via direct copy cannot require clipping, at least not in that part, since only blocks that arecompletely inside the window are copied. Likewise, if step 1 of Figure 4.10 is changed toread \is contained in" instead of \intersects", the algorithm should produce the exclusivewindowing version, as in Figure 4.8b.Build a PMR quadtree From Objects in Window1. L an empty list of objects.2. R an empty PMR quadtree with the parameters of thesource quadtree.3. B the root block of the source quadtree.4. window-block(B, L, R) (see Figure 4.10).5. for each object O in L doInsert O into R.6. Free L, return R and stop.Figure 4.9: Algorithm window: �nd all the objects in a PMR quadtree intersecting a givenwindow.Figures 4.11 through 4.15 demonstrate the operation of the window algorithm by goingthrough an example. Starting with the object set and the window shown in Figure 4.11a,each of the �gures (except the �rst and last) shows the operation at one level of the tree.The blocks being considered at each level are marked by the heavy lines, while the thinlines show the block decomposition of the underlying source quadtree. The portions of thespace the algorithm has �nished processing are marked by a hatched pattern. The �guresare split into three columns: the left column displays the source quadtree and the status ofits processing; the middle column shows the increments made to the result quadtree; theobjects being accumulated on the object list are shown in the left column.After considering the root block (Figure 4.11b) and �nding that it cannot be classi�edas either inside or outside the window, the algorithm turns to its children (Figure 4.11c).Level 1 of the tree is still too coarse, so another level is attempted (Figure 4.12d). Here someblocks can already be classi�ed; those on the right are outside the window and are discarded(Figure 4.12e). Two blocks are found inside the window (Figure 4.12f) and are copied tothe result (Figure 4.12g). Objects in the leaves encountered (top right and bottom left ofFigure 4.12h) are stored on the object list (Figure 4.12j).The process is repeated for levels 3 and 4 in Figures 4.13 and 4.14, respectively. In level4 no blocks were found to be completely inside the window so no additions were made tothe result quadtree at that step. 64

Get Windowed Objects in Block B1. if B intersects boundary of window thenbegin2. if B is a leaf block in the source quadtree thenbegin3. for each object O in B do4. if O intersects the window thenAdd O to the object list L.endelse5. for each child C of B dowindow-block (C, L, R).end6. else if B is contained in the window thenbegin7. if B is a leaf block in the source quadtree then8. for each object O in BAdd O to the object list L.else9. incorporate(B, R) (see Figure 3.16).endFigure 4.10: Algorithm window-block which extracts the objects in the block that are alsoin the query window.When processing of the source quadtree is complete, we have obtained the partiallyconstructed result quadtree and the object list. Figure 4.15 repeats the relevant panels fromthe previous �gures and shows the products of their accumulation. Finally, the objects inthe list are inserted into the result quadtree to produce the �nal result in Figure 4.15v.65

the window - discarded.

Partial Result Object List

with which the source is
examined at the current level

Grid indicating the resolution

(c)

(a)

(b)

Terminal blocks outside

Non-terminal blocks inside the
window - decomposition and
objects copied to result structure.

Terminal blocks intersecting

collected in list.
the window - objects

Spatial objects

Query window

LEGEND

Figure 4.11: A walk through the operation of window at levels 0 and 1. The PMR splittingthreshold is 2. Notice the use of solid decomposition lines to indicate the level of the PMRquadtree that is being examined. (a) The original dataset and query window. (b) Level0|inspecting the root block. (c) Level 1. 66

the window - discarded.

examined at the current level
with which the source is
Grid indicating the resolution

Object ListPartial Result

(i)

(g)

(h)

(f)

(e)

(d)

LEGEND

Terminal blocks outside

Non-terminal blocks inside the
window - decomposition and
objects copied to result structure.

Terminal blocks intersecting

collected in list.
the window - objects

Spatial objects

Query window

Figure 4.12: A walk through the operation of window: level 2. (d) Level 2 grid of blocks toinspect. (e) Objects in terminal blocks outside the window are discarded. (f) Non-terminalblocks inside the window are copied to the result. Both the objects and the underlyingdecomposition are recorded. (g) The information extracted in (f) is copied to the result.(h) Terminal blocks intersecting the window are examined. Any objects they contain whichthemselves intersect the window are copied to the object list. (i) The objects found in (h)are added to the object list. 67

the window - discarded.

examined at the current level
with which the source is
Grid indicating the resolution

Object ListPartial Result

(o)(n)

(l) (m)

(k)

(j)

LEGEND

Terminal blocks outside

Non-terminal blocks inside the
window - decomposition and
objects copied to result structure.

Terminal blocks intersecting

collected in list.
the window - objects

Spatial objects

Query window

Figure 4.13: A walk through the operation of window: level 3. (j) Level 3 grid of blocks toinspect. (k) Objects in terminal blocks outside the window are discarded. (l) Non-terminalblocks inside the window are copied to the result. Both the objects and the underlyingdecomposition are recorded. (m) The information extracted in (l) is copied to the result.(n) Terminal blocks intersecting the window are examined. Any objects they contain whichthemselves intersect the window are copied to the object list. (o) The objects found in (n)are added to the object list. 68

the window - discarded.

with which the source is
examined at the current level

Grid indicating the resolution

Object ListPartial Result

(r)

(q)

(p)

(s)

LEGEND

Terminal blocks outside

Non-terminal blocks inside the
window - decomposition and
objects copied to result structure.

Terminal blocks intersecting

collected in list.
the window - objects

Spatial objects

Query window

Figure 4.14: A walk through the operation of window: level 4. (p) Level 4 grid of blocksto inspect. (q) Objects in terminal blocks outside the window are discarded. Note thatthere are no more non-terminal blocks inside the window at this stage, so the step of copyingthem into the result is skipped. (r) Terminal blocks intersecting the window are examined.Any objects they contain which themselves intersect the window are copied to the objectlist. (s) The objects found in (r) are added to the object list.69

(v)(u)(t)

(s)

(o)(m)

(i)(g)

Figure 4.15: A walk through the operation of window: conclusion. Note that panels (g), (i),(m), (o) and (s) are just copied from the previous �gures. (t) The result quadtree afterprocessing the source quadtree but without the elements in the object list. (u) The objectlist. (v) The �nal query result as produced by the union of (t) and (u).70

Chapter 5Irregular Triangulations and Quadtrees5.1 MotivationThe triangulations used in Chapter 3 for surface modeling were in registration with the un-derlying quadtree; the triangles were constrained in shape, size and placement so they neatly�t into the quadtree blocks. It is also possible to use quadtrees for arbitrary triangulations.A common surface model utilizing arbitrary triangulations is the Triangulated IrregularNetwork or TIN [Peuc75]. TINs are described in Section 1.3.3, but for the purpose of thepresent discussion, the particulars of the TIN utilized are secondary to the application madeof the quadtree structure. For simplicity, TINs representing Delaunay triangulations [Prep85]of DTMs are used.The lack of registration of the triangle boundaries with those of the blocks of the under-lying quadtree does make a di�erence. The restricted quadtree of Chapter 3 is inapplicableas it has no support for triangles spanning quadtree blocks. The region quadtree [Same90a],in which a region is described by enumerating its interior at some resolution, su�ers from allthe di�culties associated with rasterizing vector-based entities (triangles in this case) dueto the information lost in the process.We propose to use the PMR quadtree described in Chapter 4, which can organize arbi-trary objects in space. This chapter describes this adaptation of PMR quadtrees to surfacemodeling.5.2 ImplementationAs described in Section 4.2, the PMR quadtree is capable of organizing any collection ofobjects in space. Two aspects of this organization, however, are deliberately left open andmust be determined for each collection:� The decomposition rule: under what circumstances should a PMR quadtree block bedecomposed into its descendants?� Object-block intersection: when do a given object and a given PMR block intersect?In practice, either aspect is too complex to be conveyed to a generic implementationof a PMR quadtree using a single parameter, or even a set of parameters. In the present71

implementation, user-de�ned functions are used to describe the desired behavior in bothcases.5.2.1 Decomposition RuleA PMR quadtree implementation bases its decomposition rule on object density, helpingto control the population of objects associated with any one block in the structure. Thisenables PMR quadtree blocks to be realized in a limited amount of space, and also caps thetime required to �nd an object within a block. A single block, then, can be implemented inboth time and space complexities of O(1).The bucket PMR quadtree sets a �xed limit to the number of objects a block maycontain, and splits any block containing more than that number of objects, known as thebucket capacity. This would achieve both goals stated above: a �xed amount of storage anda �xed block searching time. In some situations, however, such a rule may be problematic.For example, consider a collection of line segments, m of which share a common endpointp. Assume further that this collection is stored in a bucket PMR quadtree using a bucketcapacity of c. The PMR quadtree block that eventually contains point p must also containall the m line segments incident on p. If c < m, that block violates the decomposition ruleand no amount of splitting will rid the structure of it.The PMR quadtree, as originally described in [Nels86a], overcomes this problem by re-quiring that the implementation support overpopulated blocks. Also, instead of a bucketcapacity it uses a concept of a splitting threshold de�ned as follows: a block that exceedsits splitting threshold (as a result of an insertion) is split once and only once. No furtheraction is taken even if some of the resulting sub-blocks remain overpopulated. This avoidsthe excessive decomposition resulting from the PMR quadtree's futile attempt to localizeinseparable objects, such as the line segments incident on point p in the example above.Collections of line segments may or may not have many occurrences of such inseparableobjects. However, this situation exists for virtually all triangles of a triangulation; otherthan the triangles on the perimeter of the area described, every triangle is incident on atleast six more triangles. To help further reduce unnecessary splitting we propose to regardall touching objects as a single object when counted towards meeting the splitting threshold.Only objects that have no edges or vertices in common are regarded as distinct in thiscontext.Consider Figure 5.1a where three touching objects are depicted. With a splitting thresh-old of 2 and no consideration for touching objects, decomposition will proceed until blocksof the smallest size possible are generated. The block within which the objects meet willinevitably contain three labels, more than permitted by the splitting threshold. On the otherhand, when touching objects are counted as one, as in Figure 5.1b, only one big block isgenerated, which, admittedly, contains more than the splitting threshold of labels, but as wehave seen, this cannot be avoided.5.2.2 Object-Block Intersection RuleAnother choice the user of a PMR quadtree must make has to do with the object-blockintersection conditions, which determine when objects need to be associated with a PMR72

(a) (b)Figure 5.1: Touching objects in a bucket PMR quadtree. (a) No special consideration;(b) touching objects considered as one. The tree depth is 5 and the splitting threshold is 2in both cases.quadtree block. Again, di�culties may arise around boundary situations. A common ap-proach to quadtrees in general posits that two of a block's borders, say north and west, areclosed, whereas the other two are open. Such a scheme gives ownership of any point in spaceto one and only one block, a desirable property.However, in its application to TINs, blocks having open boundaries may cause problems.A block which has only the vertex of a triangle on its border will not be associated withthat triangle if the border in question is an open one. If the neighbors of the triangle needto be found, care must be taken to look for them in the block which contains the vertex inquestion on its closed boundary. This may complicate the design of algorithms and is anopening for programming errors.The disadvantage of having all of the block's boundaries closed is that objects thatotherwise would be associated with one block must now be associated with two. However,objects are invariably associated with multiple blocks in a PMR quadtree because arbitraryobjects are not likely to be placed neatly inside blocks' interiors. Most implementationswhich use PMR quadtrees to store complex objects do not store the objects themselvesinside the tree, but store only pointers to them to avoid the data duplication that wouldotherwise result. Since the occurrence of vertices on boundaries is in general a relatively rareevent, the small amount of added storage does not seem signi�cant.
73

Chapter 6Field of View: a Test Case6.1 Field Of ViewAn interesting application of surface models is the automatic determination of visibility:identifying the parts of the surface that are visible from a given a point. The need for suchdetermination arises both when visibility is desirable as well as when it is not. For example,placing broadcasting towers or surveillance posts can be economized by �nding a minimalset of locations from which every point on the surface can be seen. Conversely, stealthnavigation involves �nding a path not visible from any known observation point. Both ofthese and many similar tasks can make use of automated �eld of view generation.The �eld of view algorithm (�eld-of-view) presented here is su�ciently general to supportany polyhedral surface model. Since the algorithm is introduced speci�cally in order to testthe two approaches to surface modeling discussed in this work, it was important not to rely onany idiosyncrasies peculiar to only one of them. The choice of algorithm and implementationdetails reect this by maximizing encapsulation, not performance. As a result, �eld-of-viewis not necessarily the fastest �eld of view algorithm possible, but it can be used with boththe RQT and QTN quadtree surface representations with no adaptation.Determining the �eld of view may be regarded as the converse of the process involved inproducing an image of the surface. The purpose in the graphical display case is to generate animage, keeping no track of the individual surface facets contributing to it. When generatinga �eld of view, it is precisely the extent of those facets that is recorded, while an image isproduced, if at all, only as a byproduct.An often-used graphical display algorithm is the depth sort algorithm [Newe72]. (A sim-pler variant of this algorithm is called the \painter's algorithm" [Fole90, p. 673].) In thisalgorithm, the components of the scene are projected onto the display device in decreasingdistance from the viewpoint. Nearer objects are painted after, and therefore over, moredistant ones, simulating the visualization process as it occurs in reality.In determining the �eld of view, a reverse process can be used. Beginning with the surfacefacets nearest to the viewpoint, the \shadow" each casts is accumulated. As more distantfacets are considered, only the part that is not obscured by the collective shadow is viewable.The main di�erence in processing is the order in which the surface facets are sorted: farthest�rst while displaying, nearest �rst in �eld-of-view.This sorting utilizes the special capabilities of the surface models. It is therefore done74

di�erently in the cases of the RQT and the QTN quadtrees. Section 6.4 delves into thedetails of the sort step of the algorithm.Another di�erence between �eld-of-view and the depth sort algorithms is that while theresult of the graphic display can conveniently be integrated on the display device itself,there is nothing that can naturally play this role in the case of �eld-of-view. A special datastructure, horizon, is devised for this purpose and is described in Section 6.3. In line with thephilosophy of encapsulation stated above, most of the computation involved in calculatingthe �eld of view is done inside this horizon structure. The �eld-of-view algorithm is describedin pseudo code in Figure 6.1. Field of View1. FOV an empty field-of-view.2. H an empty horizon.3. Determine the smallest polygon P made of surface facetssurrounding the viewpoint (Section 6.2).4. Use P to initialize H and FOV .5. for each facet F in sorted order (Section 6.4) dobegin6. V visible part of F (Section 6.3).7. Update H to reflect the impact of F (Section 6.3).8. FOV FOV [V .endFigure 6.1: Algorithm �eld-of-view: determine the part of the surface visible from a givenviewpoint.Finally, results of test runs made with actual surfaces are presented in Section 6.5. Surfacedata was obtained from the USGS representing several locations in the US. Both relativelyat (east coast) and rugged (Rocky Mountains) terrain examples are included.6.2 PrimingThe �rst step of the algorithm involves the initialization of the �eld of view and horizon struc-tures. Assuming that the viewpoint is somewhat elevated above the surface, all the facetsthat are incident on it are completely visible. Consequently, there is no need for occlusion75

calculations when considering these facets. They are added to the result of �eld-of-view with-out further processing. They are also used to initialize the horizon structure. The smallestpolygon surrounding the viewpoint that is made of surface facets is found and used to formthe initial horizon.In the simple case the viewpoint is inside one of the facets, as is shown in Figure 6.2a. Thefacet containing the viewpoint can then serve to form the initial horizon. If the viewpoint issituated on an edge between two facets (Figure 6.2b) or on a vertex of the triangulation (Fig-ure 6.2c), some additional processing is called for. To form a polygon to which the viewpointis internal, the edges of all the surface facets incident on the viewpoint are combined intoa list. The desired polygon is formed from all the edges in the list that are not themselvesincident on the viewpoint. The polygons generated in each case are marked by heavy linesin Figure 6.2.
(a) (b) (c)Figure 6.2: The possible relationships between the viewpoint and the surface facets incidenton it. (a) The viewpoint is interior to a single facet. (b) The viewpoint is on an edgebetween two facets. (c) The viewpoint is on a vertex, incident on many facets.In practice, the algorithm uses the fact that any edge incident on the viewpoint mustappear in the list twice.1 This is because any edge in the surface rendition belongs to twofacets, those on each of its sides. When all the edges are placed in a list, each one of thesefacets contributes an instance. Consequently, the algorithm removes all the edges that havemultiple appearances in the list and retains only the singletons. The list is then sorted toform the desired polygon.The next step of the algorithm (Section 6.3.2) requires the existence of a complete hori-zon, one that provides an elevation value in every direction from the viewpoint. Since theviewpoint is internal to the initial horizon polygon, any ray emanating from the viewpointmust intersect one of its edges. Hence the projection of those edges onto the wings (seeSection 6.3.1) forms a complete horizon.Once the initial horizon is in place, the viewpoint is external to all subsequent surfacefacets. The projection of a surface facet onto the wings extends, therefore, only a single wing,or two if it is situated somewhere along the axes bisectors. In extreme cases, facets that areboth large and close to the viewpoint may extend three wings; see facet 3 in Figure 6.3.1This argument assumes the viewpoint is not on the very edge of the map. However, in case it is, theedge it is on must be included even though it is incident on the viewpoint, so the algorithm presented willstill perform correctly. 76

P

1

2

3Figure 6.3: Possible combinations of surface facet distance and size, resulting in the projec-tion being con�ned to a single wing (1), two wings (2), or three wings (3).6.3 A Data Structure For Horizon ModelingAs stated above, the purpose of the horizon data structure is to facilitate incremental �eldof view generation. As each surface facet is presented to the horizon data structure, thelatter computes which parts of this facet, if any, are visible. It also integrates the impactthis surface facet has with that of all the previous ones, preparing the structure for the nextsurface facet. For the structure to actually perform correctly, however, it is essential that nosurface facet be presented if it can possibly obscure a facet that has already been presented.The responsibility for sorting the surface facets lies with the user of the horizon.6.3.1 The WingsIn order to represent the horizon, the structure employs a screen onto which the edges ofthe facets of the surface model are projected. These projections delineate, in each direction,the highest line of sight that still grazes the part of the surface seen so far. Ideally, a unitsphere about the viewpoint would provide the least distorted image of the horizon. However,projecting onto a curved surface is computationally di�cult, so a at screen was choseninstead. In fact, in order to avoid potential singularities, four at screens, called wings, areused, one in each principal direction at unit distance from the viewpoint (Figure 6.4). Thehorizon is accumulated in the form of four contiguous lists of line segments, one for eachwing.Since the wings are at unit distances from the viewpoint, each wing is two units wide. Ifa Cartesian coordinate system is constructed with the viewpoint as its origin, the north andsouth wings are parallel to the x axis, spanning the range [�1; 1]. The east and west wingsspan the same range along the y axis. These bounded ranges are the reason four wings areused. All wings span all values of z, but unless the viewpoint is positioned at the very edgeof a cli�, these values are bounded as well. 77

Y

XFigure 6.4: The four wings onto which surface facets are projected, accumulating the horizon.The black dot in the center represents the viewpoint.6.3.2 Processing a Surface FacetProcessing a facet involves two related activities. The �rst determines what part of thefacet, if any, is visible from the viewpoint. The second calculates the shadow the currentfacet casts on those farther away. The two results are clearly related: a facet casts a shadowif and only if some of it is visible. The shadow is used to update the internal representationof the horizon to reect the impact the current facet has had, thus preparing the structurefor the processing of the next facet. The calculated visible portion of the facet is returnedto the caller. The process is described in greater detail in Figures 6.5 through 6.8.First, the current facet, whose location and orientation are arbitrary, is projected ontothe appropriate upright wing (Figure 6.6). If the facet's projection extends two or threewings (see Figure 6.3), each a�ected wing is processed in turn.Next, the facet's wing projection is compared with the current state of the horizon on thatwing. If any part of the projection protrudes above the horizon line, the polygon(s) boundedby the horizon and the parts of the projection that are above it are found (Figure 6.7).To update the horizon line, the edges of these polygons are added to it, to form the newhorizon. This maintains the horizon's property of delineating the highest lines of sight in alldirections.The polygons are also used to determine the visible part of the current facet. Each isprojected back onto the plane of the facet, de�ning the parts of its facet that are visible(Figure 6.8).In practice, the algorithm uses several heuristics to avoid redundant tests. A facet of themodel facing away from the viewpoint (i.e., if the viewpoint is below the plane the facet isin) is not considered, for example. It is assumed that the surface is continuous and any edgeof such a facet, if indeed visible, must belong also to a facet that is directed towards theviewpoint, and will eventually be registered when that other facet is processed.78

POV

W

H

SF

Figure 6.5: A walk through the operation of horizon. (1) Initial state, being presented witha new surface facet. pov|the viewpoint. w|the projection plane. For simplicity, onlyone of the wings is shown. h|current horizon. sf|a surface facet.
Figure 6.6: A walk through the operation of horizon. (2) Projecting the facet onto theprojection plane (\wing").

79

Figure 6.7: A walk through the operation of horizon. (3) The impact this facet has on thehorizon.

Figure 6.8: A walk through the operation of horizon. (4) project the visible portion backonto the facet. 80

6.4 Sorting the FacetsFor the horizon data structure to produce the �eld of view correctly, the facets of the surfacemodel must be presented to it in order of occlusion; a facet may not occlude a facet thathas already been processed. This can be accomplished by a special sort pass over the facetsof the model, producing a list of the facets in the required sequence. Note that occlusiondepends on the viewpoint, so that even for the same surface, computing the �eld of viewfrom di�erent viewpoints requires separate sorting phases.However, the very purpose of spatial indices is to make such special processing unnec-essary. Both the RQT and QTN surface models can be made to generate the facets in therequired sequence without an explicit sort phase by relying on their spatial indexing capa-bilities. Due to the di�erent approach the two structures take to indexing, however, the waythis is done is speci�c to the model. The way the RQT surface model sorts the facets isdiscussed in Section 6.4.2 and the counterpart procedure for the QTN model is described inSection 6.4.3. Issues common to both schemes are discussed in Section 6.4.1.6.4.1 Common IssuesObservation: Three-dimensional occlusion may be excluded based on two-dimensional considerations. Let P be a viewpoint and f1 and f2 be two facets of asurface model in three-dimensional space. Furthermore, let P 0, f 01 and f 02 be their corre-sponding projections on the x-y plane. f1 may occlude f2 when viewed from P only if f 01occludes f 02 when viewed from P 0, i.e., there is a point Q0 on f 02 such that P 0Q0 intersects f 01.This is because if f1 occludes f2 there is a line of sight from P to a point Q on facet f2 thatis frustrated by f1. The projection of that line is P 0Q0.Consequently, if the partition of the x-y plane induced by projecting the surface modelonto it can be sorted, then that order is a sorting of the corresponding three-dimensionalfacets as well. This property allows the algorithms to make all their determinations basedon the two-dimensional projection of the surface model, thus simplifying the sorting task.It is important to note that it is not always possible to sort the facets of a model.Arbitrary triangulations may produce occlusion cycles, such as the one depicted in Figure 6.9.For the situation shown in Figure 6.9b to occur, the surface would have to contort in a waythat our continuous, 212 -D surfaces are incapable of, but the con�guration in Figure 6.9ais possible in arbitrary triangulations. It is proved in [DeFl91], however, that Delaunaytriangulations are immune to such cycles. Therefore, we restrict the QTN model to surfacemodels derived from Delaunay triangulations.6.4.2 Sorting the Facets in the RQT ModelThe restricted quadtree surface model (RQT) is special in that all its facets �t neatly intothe square blocks of the underlying quadtree. It is therefore possible to sort the blocks �rstand then sort the facets within each block later.The blocks are sorted through a traversal of the internal nodes of the quadtree. The spacecovered by the surface is divided into four zones with respect to the viewpoint (Figure 6.10)81

(a) (b)

3

γ

β

α

1

3

2

2

1Figure 6.9: An example of a set of triangles defying spatial sorting. (a) An arrangement ofthree triangles on the plane that cannot be sorted with respect to the given viewpoint (solidcircle). Along line-of-sight �, triangle 1 precedes triangle 2; along �, 2 precedes 3; and along, 3 precedes 1. (b) An image of three unsortable triangles.formed by parallels to the x and y axes passing through the viewpoint. If the center of aninternal node is inside, say, the north-west zone, then clearly all the facets in its descendantmarked 1 in the �gure are nearer the viewpoint P than any in the other descendants. Thatproperty holds for all the zones, with the exception of the descendants marked 2 and 3, whichare at equal distance and could be interchanged.
NW

4

13

2

1

2

3

4

NE

13

4 2

1

2

3

4

SESW

P

Figure 6.10: The zones induced by a viewpoint for RQT block sorting. The order in whichdescendants are processed in each zone is indicated by the numbers in the sample blocks.Similarly, the facets within a terminal node are sorted according to the orientations theymay have with respect to the viewpoint. The eight possible orientations and the orderingeach induces among the possible facets are shown in Figure 6.11.Figure 6.11 assumes blocks with eight facets each, but an RQT block may be con�guredwith fewer facets (see Section 3.2.3, Figure 3.4). In that case, some (or all) of the facetsare larger, each covering two adjacent facets of the size shown in the �gure. When suchcon�gurations are encountered, a large facet takes the place the �rst (in sorting order) small82

1

2

2

1

1

2

1

2

1 212

12 1 2

WN

WS

NW NE

EN

ES

SESW

2

3

3

4

4

5

2

3

4 5

4

3

2

3

34

5

4

2

3 4

5

4

3

2

3 4

5

4

33

4

5

4 3

2

2

3

45

4

3 2

3

4 5

4

3Figure 6.11: The eight orientations a block may have with respect to the viewpoint and theordering each orientation induces among the facets in the block. Similarly numbered zonesmay be scanned in any order.facet it covers would have taken.Given the classi�cations of internal and terminal nodes described above, the formulationof the sorting algorithm is straightforward and is given in Figure 6.12.The performance of algorithm rqt-sort depends on the implementation chosen for therepresentation of the quadtree. Each node, internal and terminal, is visited once, as well aseach facet. The number of internal nodes is smaller than the number of terminal nodes inany tree of �xed degree. Moreover, since the number of facets per node is bounded fromabove and from below, the number of terminal nodes is smaller than the number of facets.If �nding a descendant of a given node is an O(1) operation, then the sorting can be donein time proportional to the number of facets in the model.6.4.3 Sorting the Facets in the QTN ModelUnlike the RQT case, the facets in the QTNmodel are not in registration with the boundariesof the nodes of the underlying quadtree, so sorting them is not helpful in this case. Algorithmqtn-sort is an adaptation of one presented in [DeFl89a] for sorting Delaunay triangulationsin general. It has been modi�ed to make use of the spatial index the QTN model has too�er.Algorithm qtn-sort maintains an active border which is always star-shaped about the83

RQT-Sort(RQT R, viewpoint P)1. B root of R.2. if B is an internal node then begin3. Z the zone B is in with respect to P (Figure 6.10).4. for each descendant C of B, in the order defined by ZdoSort(C, P).end5. else begin // B is a terminal node6. O the orientation B is in wrt P (Figure 6.11).7. for each facet F in B, in the order defined by O doProcess FendFigure 6.12: Algorithm rqt-sort to sort the facets of an RQT surface model according totheir distances from a given viewpoint. The processing of facets done in line 7 is in thesorted order.viewpoint. Its edges are also edges of the triangulation, i.e. the projection of the surfacemodel onto the x-y plane. It thus separates the triangles that have been processed fromthose that have yet to be. Initially, the active border is set to be the boundary of the initialpolygon, described in Section 6.2. The algorithm then picks an edge on the active borderat random, and considers the unprocessed triangle the edge is incident upon. If certainconditions hold (see Figure 6.15), the triangle is processed and its edge (or edges) that werenot part of the active border replace the edges (or edge) that were. A theorem from [DeFl91]guarantees that, provided the triangulation is Delaunay, there is always a triangle for whichthe conditions are true. This step is repeated until all triangles are processed. Figure 6.13shows a sample Delaunay triangulation and several possible stages in the development of theactive border.At each step, algorithm qtn-sort picks an edge, say E, from the current active border atrandom. Unless the edge is at the boundary of the surface, it is incident on an unprocessedtriangle T by virtue of the fact that the active border is at the boundary between theprocessed triangles and the unprocessed ones. There are three possible cases, depicted inFigure 6.14:1. Another edge of T is included in the active border, as in Figure 6.14a. (Clearly, E and84

P

Figure 6.13: A sample Delaunay triangulation and several stages in the development of theactive border during the execution of qtn-sort.
(a) (b) (c)

P

A

B
C

E

J
F

G

H

P

A

B
C

E

J
F

G

H

P

A

B
C

E

J
F

G

H

D DDFigure 6.14: Algorithm qtn-sort incremental step: the three possible con�gurations.(a) qtn-sort selected GH . 4GHJ is acceptable since two if its edges, GH and HJ areboth on the active border. (b) qtn-sort selected EG. 4EFG is acceptable because PFintersects the selected edge EG. (c) qtn-sort selected AB. 4ABC is not acceptable sincePC does not intersects the selected edge AB, indicating that there is a triangle (4BCD inthis case) that is closer to P .E 0 must be adjacent on the active border, a fact which simpli�es testing this case.) Tis acceptable and may be processed next. Then E 00, T 's remaining edge, replaces bothE and E 0 on the active border.2. Both of the T 's remaining edges E 0 and E 00 are not part of the active border, hence Thas a vertex V that is not on the border as well. If PV intersects E, as in Figure 6.14b,again the triangle is acceptable and may be processed next. E 0 and E 00 then replace Eon the active border.3. The triangle is as described in item 2 except that PV does not intersects E, as in Fig-ure 6.14c. In this case, there is an unprocessed triangle that is closer to the viewpointthan T and must be processed �rst. T is therefore rejected and this step is wasted.85

Algorithm qtn-sort is given in pseudo-code in Figure 6.15.In implementing algorithm qtn-sort, provision must be made for maintaining the activeborder since it does not �t into the QTN model. The spatial index comes in handy when thetriangles incident on a particular border edge are sought. If the surface model contains Ntriangles, each triangle takes O(logN) time to search. The total search involves processingall triangles, which requires a minimum of O(N logN), if the con�guration described in case3 never occurs. In the worst case, a complete scan of the active border yields one acceptabletriangle. If triangle distribution is uniform, the active border is expected to have O(pN)segments since it represents the perimeters of O(N) triangles. The worst case behavior ofthis algorithm could then be O(N 32 logN).6.5 Experimental ResultsThe �eld-of-view algorithm was implemented and tried out on several actual datasets. Inaddition to the datasets \Reno west 0,0", \data" and \Salisbury east 2,0" described in Sec-tion 3.4.3, tests were performed on a 129�129 section of the \data" map. The tests consistedof measuring the time required to determine the viewable area from various viewpoints. Mapsconstructed from the various datasets at several tolerance values were employed. The resultsare summarized in Table 6.1. Each number in the table represents an average of severalmeasurements taken from di�erent viewpoints.Table 6.1: Experimental results of �eld of view determination. The results represent averagestaken over several viewpoints. Execution times are in seconds.RQT QTNtolerance facet execution time/facet facet execution time/facet(meters) count time (sec) (milisec) count time (sec) (milisec)Salisbury east 2,0 (513 � 513)1 3178 372 117 336 55.2 1643 666 64.5 97 78 13.4 172Data (129 � 129)3 17728 1181 67 8540 1017 1195 12268 537 44 4462 489 11010 4806 294 61 1532 176 11530 1090 27 25 250 45 180100 4 .5 125 4 2.3 575Reno west 0,0 (513 � 513)100 7769 570 73 2067 742 359300 926 65.5 71 325 177 544To compare the e�ciency of the RQT and QTN surface models, the timing data wasprocessed in two ways. One interpretation measures the time required to process a single86

facet of the model. Since the �eld-of-view algorithm examines every triangle of the model,larger models with more facets are expected to take longer to process. To eliminate the e�ectof size, the ratio of total execution time to the number of facets in the model is computed.It is argued that the time to process a facet has a generic component, the time spent in thecommon horizon structure (Section 6.3), and a model speci�c component, the time taken tosort the triangles (Section 6.4). It is assumed that over a large number of trials the di�erencebetween this time-per-facet �gure for the two models is attributable to the model speci�ccomponent, and indicates the model's relative e�ectiveness in carrying out the requiredsorting task. Execution time results are plotted against model size in Figure 6.16The other interpretation of the results compares the performance of maps of the twotypes constructed from identical data sets using the same tolerance. Also, the same set ofviewpoints is used in the testing the two models. The results of execution time as a functionof model tolerance are plotted for the smaller \data" map in Figure 6.17.Execution times per triangle are consistently lower for the RQT. This should mean thatthe RQT is able to sort triangles faster than the QTN can. This result is to be expected,since the RQT performs the sort by manipulating the blocks which contain them, avoidingthe overhead involved in accessing the individual triangles.On the other hand, the triangles in a TIN are not constrained by the underlying quadtreeas the RQT triangles are, and thus may have a higher information content. Consequently,a QTN can model a given surface to a given tolerance with fewer triangles than an RQTwould require.These two capabilities are in competition, and can make either model outperform theother, depending on the nature of the surface. For surfaces whose variation is moderate, anRQT model may be burdened with many unnecessary faces, mandated by the restriction onthe sizes of neighboring blocks. This compounds the RQT's propensity to produce largermodels. As a result, RQT models display poorer performance in this case, as seen from theresults for \Salisbury east 2,0".The RQT model seems to be doing better for surfaces with great variability, on the otherhand. When the ruggedness of the surface requires many triangles to faithfully model it, thedisadvantages of the RQT model are not as pronounced, and its faster processing can leadit to outperform the QTN model, as seen in the results for \Reno west 0,0".For the \data" map, which exhibits moderate variation in elevation, the results for thetwo models are quite close, lending support to the argument made above.
87

QTN-Sort(QTN Q, viewpoint P)1. L list of the edges of the initial polygon(Section 6.2).2. while there is an edge in L that is not on the map'sboundary do begin3. E an edge in L that is not on the map's boundary.4. T the triangle incident on E farthest from P.5. if two of the edges of T are in L then begin6. Remove from L the edges of T it contains.7. Add to L the edge of T it did not contain.8. Process T.endelse begin9. Q the vertex of T not incident on any edge in L.10. if the line from P to Q intersects E then begin11. Remove E from L.12. Add to L the edges of T other than E.13. Process T.endendendFigure 6.15: Algorithm qtn-sort to sort the facets of a QTN surface model according to theirdistance from a given viewpoint. The triangles processing done in line 8 and 13 is done insorted order. 88

1

10

100

1000

10000

1 10 100 1000 10000 100000

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Model Size (triangles)

QTN
RQT

Figure 6.16: �eld-of-view algorithm execution times vs. model size.
0

200

400

600

800

1000

1200

1 10 100

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Model Tolerance (meters)

‘data’ QTN
‘data’ RQT

‘Salisbury’ QTN
‘Salisbury’ RQT

‘Reno’ QTN
‘Reno’ RQT

Figure 6.17: �eld-of-view algorithm execution times vs. model tolerance.89

Chapter 7Conclusions and Future ResearchWe have studied two ways in which polyhedral models of 212 -D surfaces can be embeddedinto quadtree spatial indices. The restricted quadtree was found to be useful in supportingregular elevation grids such as are found in DEMs. Two algorithms for constructing restrictedquadtrees from DEM data were presented, and the conditions under which each of them maybe preferable were shown. For irregular data, such as found in TINs, using a PMR quadtreewas found to be appropriate.A �eld of view algorithm that can be used with both surface models was presented. Itwas used to exercise the two implementations and determine when it is better to use theone or the other. It was found that the RQT model can perform individual tasks fasterthan the QTN. The TIN, however, can model a given surface to a given tolerance with fewertriangles than the RQT . In balance, it was found that the QTN's relative slowness can becompensated for by its smaller size for more moderate maps, but that the RQT outperformsit when modeling more rugged terrain.Further study is required to �nd what applications could use RQTs to their advantage.It seems that applications which operate on two or more surfaces de�ned over the samearea could be helped by the consistency provided by a common registration of the models.For example, operations involving comparison or intersection of two surfaces simultaneouslyrequire the parts of the surfaces that project to the same area in the xy plane. Those partswould correspond in particularly simple ways if they are both nodes in registered quadtrees,as would be the case if RQTs were used.In the course of this research, a testbed for comparing the RQT and QTN was imple-mented, utilizing to a great extent shared object-oriented code. Other surface applicationsthat can be implemented in these terms, such as perspective display, could be used to furthertest the appropriateness of these two surface models for various tasks.
90

Bibliography[Apos69] T.M. Apostol. Calculus, volume II. John Wiley & Sons, New York, secondedition, 1969.[Aref92c] W.G. Aref and H. Samet. An e�cient window retrieval algorithm for spatialquery processing. Computer Science Department TR-2866, University of Mary-land, College Park, MD, March 1992.[Arya94] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu. An optimalalgorithm for approximate nearest neighbor searching. In Proceedings of theFifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 573{582,Arlington, VA, January 1994.[Bank83] R.E. Bank, A.H. Sherman, and A. Weiser. Re�nement algorithms and datastructures for regular local mesh re�nement. In R. Stepleman et al., editor,Scienti�c Computing, pages 3{17. IMACS/North Holland Publishing Company,1983.[Barr87] R. Barrera and A. Hinojosa. Compression methods for terrain relief. EngineeringProjects Section, Department of Electrical Engineering CINEVESTAV|IPN,Polytechnic University of Mexico, Mexico City, 1987.[Bern90] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. InProceedings of the Thirty-�rst Annual IEEE Symposium on the Foundations ofComputer Science, pages 231{241, St. Louis, MO, October 1990.[DeFl84] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. A hierarchical structurefor surface approximation. Computers & Graphics, 8(2):183{193, 1984.[DeFl85] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. E�cient selection,storage and retrieval of irregularly distributed elevation data. Computers andGeosciences, 11(6):667{673, 1985.[DeFl89] L. De Floriani. A pyramidal data structure for triangle-based surface descrip-tion. IEEE Computer Graphics and Applications, 9(2):67{78, March 1989.[DeFl89a] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. Polyhedral terraindescription using visibility criteria. Unpublished, October 1989.[DeFl91] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting triangles ina Delaunay tessellation. Algorithmica, 6(4):522{532, 1991.91

[DeFl92b] L. De Floriani and E. Puppo. A hierarchical triangle-based model for terraindescription. In A. Frank, I. Campari, and U. Formentini, editors, InternationalConference, GIS|From Space to Territory: Theory and Methods of Spatio-Temporal Reasoning, Pisa, Italy, September 1992. Springer Verlag, Berlin.[Dutt84] G. Dutton. Geodesic modelling of planetary relief. Cartographica, 21(2{3):188{207, Summer { Autumn 1984.[Feke90] G. Fekete. Rendering and managing spherical data with sphere quadtrees. InProceedings of Visualization 90, pages 176{186, San Francisco, CA, October1990.[Fole90] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics:Principles and Practice. Addison-Wesley, Reading, MA, second edition, 1990.[Four82] A. Fournier, D. Fussell, and L. Carpenter. Computer rendering of stochasticmodels. Communications of the ACM, 25(6):371{384, June 1982.[Fowl79] R.J. Fowler and J.J. Little. Automatic extraction of irregular digital terrainmodels. Computer Graphics, 13(2):199{207, August 1979. Also Proceedings ofthe SIGGRAPH '79 Conference, Chicago, IL, August 1979.[Gome79] D. Gomez and A. Guzman. Digital model for three-dimensional surface repre-sentation. Geo-Processing, 1:53{70, 1979.[Gour71] H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions onComputers, 20(6):623{629, June 1971.[Hara69] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.[Herb84] F. Herbert. Fractal landscape modelling using octrees. IEEE Computer Graph-ics and Applications, 4(11):4{5, November 1984.[Hoel91] E.G. Hoel and H. Samet. E�cient processing of spatial queries in line seg-ment databases. In O. G�unther and H.J. Schek, editors, Advances in SpatialDatabases|2nd Symposium, SSD'91, pages 237{256. Springer-Verlag, Berlin,1991. (Lecture Notes in Computer Science 525.)[Kirk83] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Com-puting, 12(1):28{35, February 1983.[Mand68] B.B. Mandelbrot and J.W. Van Ness. Fractional brownian motions, fractionalnoises and applications. SIAM Review, 10(4):422{437, October 1968.[Moor92] D.W. Moore. Simplicial Mesh Generation with Applications. PhD thesis, Cor-nell University, Department of Computer Science, Ithaca, NY, December 1992.(Cornell University Technical Report 92-1322.)92

[Nels86a] R.C. Nelson and H. Samet. A consistent hierarchical representation for vectordata. Computer Graphics, 20(4):197{206, August 1986. Also Proceedings of theSIGGRAPH'86 Conference, Dallas, TX, August 1986.[Newe72] M.E. Newell, R.G. Newell, and T.L. Sancha. A solution to the hidden surfaceproblem. In Proceedings of the ACM National Conference, pages 443{450, 1972.[Peuc75] T. Peucker and N. Chrisman. Cartographic data structures. American Cartog-rapher, 2(2):55{69, April 1975.[Poli92] M.F. Polis and Jr. D.M. McKeown. Iterative TIN generation from digital eleva-tion models. In Proceedings of Computer Vision and Pattern Recognition '92,pages 787{790, Champaign, IL, March 1992.[Prep85] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.Springer{Verlag, New York, 1985.[Same90a] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,Reading, MA, 1990.[Same90b] H. Samet. Applications of Spatial Data Structures: Computer Graphics, ImageProcessing, and GIS. Addison-Wesley, Reading, MA, 1990.[Same94a] H. Samet and A. So�er. Automatic interpretation of oor plans using spatialindexing. In S. Impedovo, editor, Progress in Image Analysis and ProcessingIII, pages 233{240. World Scienti�c, Singapore, 1994.[Scar92] L. Scarlatos and T. Pavlidis. Hierarchical triangulation using cartographic co-herence. CVGIP: Graphical Models and Image Processing, 54(2):147{161, March1992.[Schm86] F.J.M. Schmitt, B.A. Barsky, and W.H. Du. An adaptive subdivision method forsurface-�tting from sampled data. Computer Graphics, 20(4):179{188, August1986. Also Proceedings of the SIGGRAPH'86 Conference, Dallas, TX, August1986.[Shaf87a] C.A. Sha�er and H. Samet. Optimal quadtree construction algorithms. Com-puter Vision, Graphics, and Image Processing, 37(3):402{419, March 1987.[Shaf90b] C.A. Sha�er, H. Samet, and R.C. Nelson. QUILT: a geographic informationsystem based on quadtrees. International Journal of Geographical InformationSystems, 4(2):103{131, April-June 1990. (Also University of Maryland Com-puter Science TR-1885.1).[Sibs78] R. Sibson. Local equiangular triangulations. Computer Journal, 21(3):243{245,August 1978.[Spro91] R.F. Sproull. Re�nements to nearest-neighbor searching in k-dimensional trees.Algorithmica, 6(4):579{589, 1991.93

[USGS90] U.S. Geological Survey, Department of the Interior, Reston, VA. Digital Eleva-tion Models, data users guide, �fth edition, 1990.[VonH89] B. Von Herzen. Applications of Surface Networks to Sampling Problems inComputer Graphics. PhD thesis, California Institute of Technology, Pasadena,CA, July 1989.

94

