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Abstract

Two quadtree variants effective in modeling 2%—D surfaces are presented. The restricted
quadtree can handle regularly sampled data. For irregular data, embedding a TIN inside
a PMR quadtree is suggested. Together, these schemes facilitate the handling of most
types of input within a single framework. Algorithms for the construction of both data

structures from their respective data formats are described and analyzed. The possible
application of each of the models to the problem of visibility determination is considered

and its performance is theoretically evaluated.
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Preface

This dissertation deals with modeling of surfaces, i.e., data structures that can facilitate the
storage and manipulation of objects resembling topographical surfaces using computers.

Such surfaces, also known as 2%—dimensional (2%—D) data, arise frequently in GIS ap-
plications (hence the term Digital Terrain Modeling (DTM) [Fowl79] is often applied to
this process), but is not restricted to them. DTMs may be used wherever a continuous
single-valued function of two variables adequately describes the objects of interest.

Where appropriate, computers may be used to manipulate the surface in ways that
heretofore were done mostly manually. Graphical display, surface intersection, map produc-
tion, visibility determination, path finding, locating basins and divides, are all examples of
problems whose solution is facilitated using computers.

One common technique of modeling 2%—D surfaces employs a polyhedral approximation:
the curved, complex reality is approximated by a set of planar polygons connected in three-
dimensional (3-D) space. The elevation at any point of the surface is then either explicitly
stored or can be interpolated from the values stored for nearby points. The space require-
ments are thereby reduced. By adjusting the density (i.e., number and size) of the polygons,
many applications can be adequately handled. The density need not be uniform across the
surface but instead can be adaptive, calculated at each point to accommodate the variability
that the surface exhibits there.

Quadtrees (e.g., [Same90a]) are such an adaptive data structure in which a planar shape
is recursively subdivided according to some rule. By adjusting their decomposition rules,
quadtrees have been found useful in many spatial applications. However, the classic re-
gion quadtree suffers from an inherent deficiency which makes it inappropriate for surface
modeling. In this dissertation we will describes two quadtree variants which have been modi-
fied to overcome this deficiency and accommodate surface modeling: the restricted quadtree
(RQT) [VonH89] for regularly-sampled surface data and the PMR quadtree [Nels86a] for

irregularly-sampled data. Both these structures have been previously described, but have

not been previously studied in the context of surface modeling. It is felt that quadtrees may
be able to handle both regular and irregular data sufficiently well to allow their combined
processing, a goal which so far seems to have eluded other techniques.

In order to verify the theoretical analysis of the RQT and PMR structures as surface
models, both were implemented using a common quadtree engine, developed within the
framework of the QUILT project [Shaf90b]. It is hoped that any deficiencies this engine
may suffer from affect both models more or less equally. As a result, any differences in
performance between the models can be attributed more to the intrinsics of their operations
than to implementation details. To compare the models’ performance, both were applied to
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the problem of the horizon, which determines the visible portion of a given surface from a
given point.

This dissertation is organized as follows: Chapter 1 briefly reviews some theoretical
aspects of surface modeling and attempts to establish criteria for DTM classification based
on the approach each takes towards this task. This is followed by a brief survey of DTMs in
the scientific literature (Chapter 2), with special attention given to data structures similar
to those discussed here. Chapter 3 describes the restricted quadtree approach in greater
detail, including a comparison between two different ways of constructing such a model from
raster data. Chapter 4 describes the other quadtree type, the PMR quadtree, and includes a
discussion of several other operations, such as windowing and nearest neighbor finding, which
make the PMR quadtree useful for other purposes as well. Chapter 5 focuses on Triangulated
Irregular Networks (TINs) [Peuc75] stored inside PMR quadtrees as surface models suitable
for irregular data. The case study of horizon extraction is described in Chapter 6, where
the performance of both models is compared. Finally, conclusions are drawn and further
research is suggested in Chapter 7.
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Chapter 1

Theoretical Overview

The modeling of surfaces for use in digital computers is known as Digital Terrain Modeling
(DTM) [Fowl79]. The term “terrain” is used due to the frequent application of DTMs to
problems of topography. However, DTMs may be used wherever a continuous single-valued
function of two variables adequately describes the objects of interest. Where appropriate,
computers may be used to manipulate the surface in ways that heretofore were done mostly
manually. Graphical display, surface intersection, map production, visibility determination,
path finding, locating basins and divides, are all examples of problems whose solution is
facilitated using computers.

Many different approaches to surface modeling have been put forward in the literature in
the last two decades. It is useful to classify them and find how the present research relates
to other work in the field. Surface modeling raises several issues that every solution must
confront. Section 1.1 focuses on those issues first so that they only need to be hinted at
when discussing the ways the various DTMs address them. Section 1.2 lists the classification
criteria and some of the choices DTMs make in that regard. Due to the important role of
triangles in DTMs, Section 1.3 provides an overview of, and a justification for, triangulations
in general and TINs in particular.

1.1 Issues Raised by Surface Modeling

A model of a surface should, as a minimum, be able to predict the elevation! of the surface
at any (x,y) location. However, it is impossible to completely describe a continuous entity
such as a surface using the discrete-mathematical capabilities of computers. Only surfaces
conforming (at least piecewise) to some concisely-expressible analytical function can even be
defined completely, and natural surfaces are seldom, if ever, manifestations of such functions.

Surface modeling, then, is essentially a process of approximation. In principle, we are
looking for a function or a finite set of functions which collectively provide a sufficiently
accurate description of the surface for the task at hand. Every DTM, therefore, is associated

'In keeping with the metaphor of terrain, the values of the surface function will be referred to as “ele-
vations”, although elevation may not be the only variable for which a DTM is used even in applications to
topography. Also, we will assume a Cartesian coordinate system, and refer to elevation sometimes as a z
value, although the ideas presented here do not depend on the coordinate system used.



with a tolerance value which indicates the maximum allowable deviation between the actual
surface and the model.

If, as is usually the case, the surface cannot be characterized precisely in mathematical
terms, then the only way to define it is by specifying its elevation at certain locations, in-
formation normally obtained as a result of some sampling process applied to the surface.
The sampling may be done manually or be produced by an automatic acquisition system.
Elevations may be specified at regular intervals or only at some irregularly distributed loca-
tions. The choice between the two signifies more than a method for selecting sample points.
An irregular sampling process is usually driven by the shape of the surface being modeled,
measuring its elevation at points where its trend changes, such as at peaks, pits, ridges,
valleys, and saddle points. A regular scheme, on the other hand, samples at points tied to
the space the surface occupies. As a result, irregular descriptions are invariant to rotations
and translations of the surface, while regular descriptions are not.

The distribution of the available raw data, therefore, has an impact on the types of DT Ms
which may be successfully constructed from it. As will be demonstrated below, some DTM
schemes, such as the restricted quadtree, are amenable to a regular grid of samples, whereas
others, such as the TIN, are satisfied with randomly distributed samples. Once a DTM of
the surface is created, the model itself can be queried to produce one sampling set given the
other, but the accuracy of this procedure is obviously limited by the accuracy of the model
itself.

In general, the more sample points provided, the better the surface description. By
sampling the surface at a high enough spatial density, any level of accuracy can be supported.
The problem is that such a representation can prove too voluminous to be of any use. One
of the main goals of our study of DTMs is to find ways to minimize the space required to
model a surface to a given tolerance.

1.2 Classification Criteria

As hinted above, mathematical functions can provide the elevation at any point on a surface
given only a handful of parameters, providing a very concise description for many types
of surfaces. DTMs almost invariably harness this capability to achieve data compression
by splitting the surface area into a set of sub-areas, each of which is small enough to be
adequately described by such mathematical forms. Each sub-area is then covered with a
patch whose 3-d shape can be made to conform, within the DTM tolerance, to the piece
of the surface being modeled. Often, the smaller the sub-areas, the smaller the tolerances
which can be met, at the obvious expense of an increase in the number of sub-areas which
need to be maintained.

Many applications require access to the same surface at several accuracy levels within a
single task. Searches, for example, can often be better accommodated by accessing a low-
resolution representation first (where the search space may be smaller) and moving to higher
resolutions only after a general location has been verified and the search space pruned.
Almost any scheme which can describe a surface to a given tolerance can be expanded
to stack several representations of the surface using a variety of tolerances. The added
time invested in constructing such multi-resolution data structures can pay off when, at
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run time, access to the various representations is readily available. However, to make the
vertical movement among descriptions of different resolutions effective, it is often essential
that high-resolution descriptions be refinements of lower-resolution ones, i.e., every patch in a
high-resolution description is spatially covered by exactly one patch in every lower resolution.
A multi-resolution stack having this relationship among its layers is known as a hierarchical
structure.

The multitude of data structures proposed for digitally representing surfaces may be
classified by their approaches to the tasks identified above:

1. Area subdivision: the choice of scheme for subdividing the surface into sub areas.
2. Function set: the family of functions from which patch descriptions are chosen.

3. Hierarchy: its presence or absence.

The choices made by a modeling scheme in these categories are not independent of each
other. Planar patches are compatible with triangles, for instance, whereas 2-D splines work
better with quadrilaterals. These choices also determine the suitability of the DTM to regular
or irregular sample data.

1.2.1 Area Subdivision

Area subdivision is a scheme for generating a finite set of mutually exclusive sub-areas which
collectively cover the surface being modeled. To simplify their description, such schemes often
decompose the relevant part of the z-y plane and the resulting subdivision is then projected
onto the curved surface. The term “subdivision” refers to both the planar subdivision and
the induced subdivision of the surface when no ambiguity arises.

This induced subdivision of the z-y plane has the property that its edges do not intersect
(other than at vertices). This is a result of the fact that the surface being modeled is 2%—
dimensional, i.e. that every parallel to the z-axis intersects the surface at most once. This
is also true of any polyhedral model of the surface, if its tolerance is sufficiently small, and
of the model’s edges in particular. If the projections onto the z-y plane of two of these
edges were to intersect, the z-axis parallel passing through the intersection point would be
violating the posited 2%—dimensionality of the model. In graph theory, graphs whose edges
do not intersect are known as planar [Hara69]. The fact that area subdivisions are planar is

relevant to the discussion of triangulations (Section 1.3).

One of the most important features of a subdivision scheme is its adaptability. An
adaptive subdivision scheme will generate smaller sub-areas to cover the more rugged regions
of the surface, while using larger patches to describe the parts of the surface where deviation
from a linear fit is more moderate.? Adaptive subdivision schemes exhibit improved storage
utilization when compared with non-adaptive schemes, whose sampling density is unaffected
by the variability of surface elevation, and therefore may oversample in areas of slow change.

2This support of variable resolution is distinct from that of a hierarchy, in which descriptions of the same
surface region with different resolutions are accommodated. For more details see Section 1.2.3.



Moreover, when a non-adaptive scheme is employed, a cap on the resolution must be fixed
before construction can begin, while adaptive schemes allow resolution to increase locally
during the construction process if variation in surface elevation mandates it.

Unfortunately, subdivision schemes successful in decomposing the plane for other pur-
poses, e.g. area maps, encounter difficulties when applied to 2%—D surfaces. In particular,
schemes often achieve adaptability by allowing sub-areas of different sizes to freely bor-
der each other. For example, consider Figure 1.1 which shows a part of a quadtree (a
scheme in which each square can be subdivided into four squares of half its side length
[Same90a, Same90b]). On the boundary between two nodes of different size, at least one
vertex, say B, of the smaller node is not a vertex of its larger neighbor. Since elevation data
is stored only in vertices, the elevation of B in the larger node is assumed to be interpolated
from the elevations of the other vertices in that node, namely A and . On the other hand,
B is a vertex in the smaller node, where elevation is stored. These two elevation values
are associated with the same location but need not coincide, thereby causing a “crack”, as
shown in the figure.

Figure 1.1: Surface discontinuity resulting from edges not meeting at their vertices.

Such cracks may form in places where polygons of the subdivision which share an edge do
not share a vertex of that edge. We call such vertices non-shared vertices. Non-shared vertices
are common in adaptive decompositions, in which the sizes of the subdivision polygons are
determined locally by the ruggedness of the surface being modeled (Section 1.2.1). In the
course of constructing a model for a given surface, there could clearly be a case where
refinement is mandated for one polygon but not for its neighbor. This may introduce a non-
shared vertex on their common edge, one which belongs only to the decomposed polygon,
as in Figure 1.2.



(@) (b)

Figure 1.2: Conditions under which cracks are likely. (a) Adjacent polygons in a subdivision.
(b) Only the left polygon is decomposed, introducing a non-shared vertex on the boundary
between the polygons. A crack of the kind depicted in Figure 1.1 can now form.

1.2.2 Function Set

The simplest patch approximation is a plane: each patch is covered by a polygon which can
be embedded in a plane. The polygon’s shape, 3-D position, and orientation are designed
to approximate the actual surface as known through its sampling. The resulting model is
a polyhedron if care is taken to insure continuity along the boundaries between polygons.
Most of the work done on DTMs, including this dissertation, deal with continuous polyhedral
approximations.

Non-planar patch approximation functions are more versatile in that they can follow the
curves of a meandering surface to a certain extent. Such patches, called splines, are described
by a mathematical function, often a polynomial. The parameters of a particular patch are
set so that the values it takes at the sample points agree with the measured elevations, and
its derivatives at these points are equal to the derivatives of all other neighboring patches.

Thus both the surface and its derivatives are continuous throughout the whole described
area, yielding a smooth representation. Such models may be more realistic in some applica-
tions where the creases formed between the planar faces of a polyhedral representation are
unacceptable. It is also conceivable that a non-planar patch can, on average, explain a larger
piece of the terrain, thereby reducing the total number of patches required for a complete
model, and possibly offset the added complexity such patches introduce.

A third category of functions attempts to simulate the surface rather than to faithfully
describe it. Fractals have been used to generate pseudo-panoramas of terrain with stunning
realism [Four82, Herb84]. By studying a surface and extracting its fractal parameters, one
could fill the gaps between sampled points with generated data which may have no relation
to the actual surface but nonetheless retains its texture and appearance, which for some
applications, such as display, may be more important than the accuracy of the elevation
values.

1.2.3 Hierarchy

Many applications using DTMs may require elevation information for a single region with
different tolerances or resolutions at different stages of processing. For example, while ren-
dering scenery in real time, a flight simulator needs good resolution for nearby objects but
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can do with coarse descriptions of those farther away. Another example is surface intersec-
tion: judging by rough renditions of the surfaces, intersection can be precluded in all but
a reduced number of areas, where a final determination is then made based on the higher
resolution descriptions.

The desirability of a multiple-resolution surface model is prompted by the observation
that most DTMs exhibit resolution vs. access time tradeoff: a low resolution surface descrip-
tion is often smaller in size and quicker in access than a high resolution one. Therefore,
when an algorithm can either make do with a low resolution, or else requires the information
quickly, the low resolution capability can be used effectively, resorting to the time-consuming
high resolution only when necessary.

A DTM is said to be hierarchical if it can support multiple resolution descriptions of a
surface. This amounts to more than having several replicas of the complete data structure,
each built with a different tolerance. From the examples above it can be seen that an
important feature of a hierarchy is the ability to navigate through it, quickly moving among
the different-resolution descriptions of the same part of the surface. Approaching a location
on the flight simulator’s screen, increasingly higher resolutions of a decreasing portion of the
surface are called for in rapid succession. The ability to cut vertically through the different
resolutions is therefore central to the hierarchical DTM.

Such vertical navigation is simplified when the relationship between the different-resolution
descriptions can be described by a tree, i.e., each subarea at any level of resolution (other
than the lowest) is completely contained in single subarea of its predecessor, the next lower
resolution description. In this case, there is a simple fanout of subareas when moving from
lower to higher resolutions, which can be directly encoded into the data structure. There
are hierarchies, such as the Delaunay Pyramid [DeF189], where this is not the case and their
suggested implementation is correspondingly more complex.

Some algorithms, when calling for lower-resolution information, are not as demanding as
is the flight simulator. For surface intersection, for instance, bounding-box information is
sufficient to preclude intersection when the boxes are disjoint. To produce the horizon as seen
by an observer on the surface, after closer areas have been scanned and an initial skyline
formed, maximum and minimum elevations in a subarea are sufficient to decide whether
that subarea can possibly be seen (see Chapter 6). Thus, the hierarchical requirements of
these and other algorithms can be accommodated with a less than complete low-resolution
description of the surface. As will be seen later, many DTMs can naturally store such
summary information, and will be labeled “partially hierarchical”.

1.3 Triangulations

An area subdivision whose internal faces are all triangles is known as a triangu- lation. Due to
reasons listed below, triangles and triangulations have a special role in surface modeling. Sec-
tion 1.3.1 explains how triangulations appear naturally in polyhedral models. Section 1.3.2
provides additional incentives for using triangles. Section 1.3.3 defines the Triangulated Ir-
regular Network (TIN), which is a common structure used with irregular data, including
one presented here. Section 1.3.4 describes the major schemes by which adaptability and
hierarchy are introduced in triangle-based models.

6



1.3.1 More about Area Subdivisions as Planar Graphs

As was shown above, area subdivisions induced by models of 2%—dimensional surfaces, when
regarded as graphs, are planar (Section 1.2.1). Of particular interest are maximal planar
graphs, which are planar graphs to which no edge may be added without violating their
planarity. It is easy to see that all the faces® of a maximal planar graphs are triangular. If
this were not so, and a maximal graph had a non-triangular face, that face would have at
least one diagonal. That diagonal, although clearly not an edge of the graph, could be added
without violating the graph’s planarity, in contradiction to the assumption that the graph
is maximal.

Recall that one of the pitfalls area subdivisions should avoid is non-shared vertices (Sec-
tion 1.2.1), which are locations where cracks in the model may form. Area subdivisions that
are also maximal planar graphs are remarkable in that they have no non-shared vertices. To
see that, assume the contrary: let vertex V of a maximal planar graph (see Figure 1.3) be
non-shared, incident on polygon P of the figure but not belonging to it. V' must be some-
where in the middle of an edge of P, or else it would itself be a vertex of P. The endpoints
of the edge V is on constitute two of P’s vertices. However, P must have at least three
vertices (since a triangle is the simplest polygon), so there exists a vertex of P, say W, that
does not share an edge with V. The edge VW can be added to the graph without violating
its planarity, again in contradiction to the assumption the the graph was maximal.

Figure 1.3: Proof that maximal planar graphs have no non-shared vertices. Each vertex is
marked by a circle; the portion of the circle included in polygons that contain the vertex is
filled. A non shared vertex, then, is denoted by a circle that is not totally solid.

It is clear, then, that one way to avoid non-shared vertices in a subdivision is to use only
those that are also maximal planar graphs, which are, in particular, triangulations. This is
how triangles arise naturally in surface modeling.

3To be precise, the statement is true of all internal faces. Sometimes the face made up of the outermost
edges of the graph (and including the infinitely distant boundary of the plane) is also considered a face of
the graph, called the external face. A graph has only one external face, and it is not necessarily triangular

even in a maximal planar graph.



1.3.2 Triangles Are Advantageous

Triangulations are appealing also for other reasons. Any three distinct non-collinear points
define a plane, and also define a non-degenerate triangle. There is a correspondence, there-
fore, between planes and non-degenerate triangles that more complex polygons do not enjoy.
If the faces of a polyhedral DTM, in which each surface patch is approximated by a flat
(planar) face, are constrained to be triangular, face planarity is automatic. Polyhedral
DTMs allowing non-triangular faces may require a test for each face in order to guarantee
its flatness.

Triangles are also always convex, an attribute which simplifies the task of finding the face
of a DTM which contains a given query point, for example. Moreover, when the DTM is
used for display purposes, many shading algorithms (e.g., Gouraud shading [Gour71]) exhibit
discontinuities when applied to non-convex polygons.

As a result, most polyhedral DTMs, including both schemes presented here, use triangles
as their basic building blocks.

1.3.3 Triangulated Irregular Networks

When irregular sample data is triangulated as described in Section 1.3.2, the result is termed
a Triangulated Irregular Network or TIN [Peuc75]. Most irregular models either consist of
a TIN implementation or use a TIN as part of a larger structure, including the irregular
model described in this dissertation. TINs are appealing because they have the potential of
minimizing the number of vertices required to represent a given surface with a given accuracy.
This is because there are no external constraints on the placement of vertices in a TIN, so
they can be placed where their informational content is maximized.

The issue of choosing the vertices for the triangulation in a TIN is, therefore, a central one.
It can determine the surface locations where elevation should be sampled. More frequently,
though, the process involves selecting a subset of the sample points in a given dataset such
that the elevations at the remaining points may be regenerated with sufficient accuracy. As
it turns out, points coinciding with dominant surface features, such as local extrema and
flexing points, tend to be picked as representative of the surface by many algorithms.

Another issue is how to triangulate the vertices, once they have been chosen. Arbitrary
triangulations are in general undesirable because they tend to result in triangles which are
long and narrow, sometimes called slivers. When interpolating the elevation at a point in
the interior of a sliver triangle, the data stored at its vertices is used, when there are likely
to be closer vertices that are nonetheless ignored, as illustrated in Figure 1.4.

To avoid the formation of slivers as much as possible, a triangulation known as a Delau-
nay Triangulation is often used [Prep85]. This extensively studied geometrical construction
has been shown to produce triangulations whose smallest angle is maximized, thus making
sure that all its triangles are as equilateral (as opposed to long and thin) as possible. De-
launay triangulations have other attractive properties, such as that their triangles can be
sorted for visibility from any point, a fact which is essential for some field-of-view algorithms
(Section 6.4).

One problem with the Delaunay triangulation is that it is a 2-D structure, dealing not with
the triangular facets of a polyhedral surface approximation but with the projections of these
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Figure 1.4: Example of the difficulty slivers present in interpolation. The elevation at point
X is estimated based on the values known at points A, B and C, while points D and E, which
are much closer to X, are ignored.

facets on the xy plane. It is becoming apparent that equiangularity of those projections does
not guarantee optimality of the surface approximation, because of edges of the triangulation
which may be drawn contrary to trends on the surface being modeled. As mentioned above,
TINs are often based on points which represent locations where the surface trends change
direction, such as peaks, pits and saddles. The edges of the subsequent triangulation can then
be made to follow the linear features of the surface, such as valleys and ridges, a property
shown to be advantageous [Scar92, Poli92]. These considerations are anchored in the 3-D
data and are lost when projected on the plane to be Delaunay triangulated.

1.3.4 Triangular Decompositions

As was shown in Sections 1.2.1 and 1.2.3, the ability of a DTM to have its faces decompose in
a regular fashion is helpful in supporting the adaptability and hierarchical properties of the
model. Triangles can conveniently be decomposed in one of two ways, known as ternary and

quaternary. Ternary decomposition splits a triangle into three smaller ones by connecting
an interior point with the vertices of the original triangle, as in Figure 1.5a. Quaternary
decomposition produces four descendants by connecting points on each edge, as seen in

Figure 1.5b.

(@) (b)

Figure 1.5: Examples of triangle decomposition: (a) ternary decomposition; (b) quaternary
decomposition.

In the ternary scheme, the angles of the original triangle are subdivided at each de-
composition step, very quickly producing triangles with very acute angles, the hallmark of
the undesired slivers. The quaternary approach does not exhibit this problem. In fact, if
points on the edges are chosen so that they split the edges in a fixed ratio (such as the edge
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midpoints), all triangles will be similar to the original one, differing only in size. However,
quaternary decomposition can cause edges to split unilaterally, i.e. triangles on both sides of
an edge are not synchronized to split together, thus creating non-shared vertices which may
cause surface discontinuities or “cracks” (see Section 1.2.1).
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Chapter 2

Previous Work

Most of the work surveyed here deals, as expected, with polyhedral surface models. Sec-
tion 2.1 describes regular polyhedral models, while Section 2.2 deals with irregular models.
Some attention is given to models which are non-polyhedral in Section 2.3.

2.1 Regular Polyhedral Models

2.1.1 Data Compression — [Barr87]

A simple quadtree-based DTM whose main purpose in data compression is presented in
[Barr87]. It assumes regular sampling of a square plot having 2™ 4 1 samples on a side
for some integer m. A method of scanning the data and choosing values for storage in a
quadtree is described. Care is taken to insure that values selected to be skipped can still be
retrieved (within a given tolerance) from the data structure. Compression ratios depend on
the shape of the terrain modeled. On their test data, the authors were able to demonstrate
over 50% reduction even with a tight tolerance.

The input is scanned several times, with each pass taking a larger subsample of the data.
In the first pass, only nine elevations are considered: the extreme corners, the side midpoints,
and the center of the area being modeled. The resolution is doubled with each subsequent
iteration, until, after m steps, all data values have been considered.

Each input elevation in turn is compared with the average of its ancestors, which are
some of the locations closest to it in the previous, sparser iteration. The current value is
stored in the quadtree being constructed only if it differs significantly (by more than the
predetermined tolerance) from that average. The authors suggest several ancestry schemes
which differ in the numbers of points that are considered ancestors of a given value and in
the way their average is calculated. Empirically, the choice of scheme seems to have only a
small impact on the final outcome.

As implemented, the elevation values are stored sequentially in a flat file, similar to the
way the input is organized. However, since some of the elevation values have been eliminated,
it is no longer possible to tell the (z,y) location of a value from its placement in the file.
A quadtree is employed to keep track of these locations. Implemented with pointers, the
quadtree gray nodes are available for storing summary information such as the number of
non-discarded points and the maximum and minimum elevations within the area spanned by
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the node. Also, since the cost of storing a point in the file as well as the overhead incurred
if it is removed are predictable, a data point is physically discarded only when eliminating
it will result in an overall reduction of storage space. Otherwise, even interpolatable points
are retained.

During construction, the input data is accessed in an order which is unlikely to correspond
to the way in which the data is stored. Since this DTM is geared mostly towards data
compression, construction time may be of lesser importance if the resulting compressed data
is used many times. However, little is provided in the form of a mechanism for efficient
retrieval.

2.1.2 Triangular Bintrees — [VonH89]

The triangular bintree ([VonH89]) is a compact data structure for triangulation of regular
sample data. The structure can be implemented as binary tree, hence its name.

Initially, the square plot is divided by one of its diagonals into a pair of right triangles.
The diagonal serves as the hypotenuse of both triangles. Triangle pairs can be subdivided
by splitting their shared hypotenuse, forming two pairs of triangles which are similar to the
original ones, i.e. they are isosceles right triangles. Note that with the exception of triangles
on the exterior boundary of the area of interest, the triangles of the new pairs share their
hypotenuses as well, so the process may continue recursively. Boundary triangles may be
split individually. See Figure 2.1.

—»> —»> »> — > —
> —-»> —-»> —-»> —
—»> —»> —»> >

Figure 2.1: Triangular bintree: example of construction. At each step, the last edge to be

added is highlighted.

The restriction that only pairs of triangles having their hypotenuses in common may split
gives the splitting of a triangle the potential to cascade, bringing about further splits. If the
hypotenuse of the triangle targeted for splitting coincides with another triangle’s leg, the
smaller triangle cannot be split before the larger triangle is split. The same may be true for
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the larger triangle as well, so the split may cascade recursively. Termination is guaranteed,
however, since the triangles involved increase in size by /2 at each step, requiring only a
finite number to reach the size of one of the two initial triangles, which can always be split
unconditionally. For an example, see Figure 2.2.

@) (b) (© (d) (e)

Figure 2.2: Cascading splits in a triangular bintree. (a) A triangular bintree with the next
triangle targeted for splitting marked (solid gray). (b)—(d) Steps in preparing the desired
split. (e) Finally, splitting the desired triangle.

The above scheme tiles the zy plane with isosceles right triangles, which are about as
good as equilateral triangles in terms of the absence of slivers. Also, each triangle is in one
of two possible orientations: either its legs or its hypotenuse are parallel to the axes. This
property in turn simplifies the procedure for finding which triangle contains a given point.
Splitting triangles in pairs also eliminates the discontinuities that plague other schemes which
allow edges to meet at points other than their vertices.

To construct a surface model, the elevations at the vertices of the first triangle pair are
determined, assigning an interpolated elevation value to each point in the area described.
It any of these values deviates significantly from the elevation specified in the input, the
triangle in which this deviation occurs is split. This process continues until the interpolated
values at all locations are sufficiently close to those indicated in the input.

When implemented as a binary tree, every node corresponds to a triangle. If and when
that triangle is split, the leaf node representing it is given a pair of children, each corre-
sponding to one of the smaller triangles the original one was split into, as is Figure 2.3. If
information such as the minimum and maximum elevation in each triangle is maintained, the
internal nodes can retain their previous values when they are split, providing a hierarchical
quality to the data structure.

VYV

Figure 2.3: Triangular bintree correspondence with a binary tree.
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2.1.3 Planetary Relief — [Dutt84, Feke90]

So far, only DTMs for essentially flat terrain have been discussed. A scheme ambitious
enough to encompass the whole globe must be able to model a sphere rather than a plane,
where elevations are measured along the sphere’s radius rather than along the z axis. Several
such systems have been proposed, permitting the accumulation and integration of elevation
data for many areas on the globe in a single data structure.

One such model, called the Geodesic Elevation Model or GEM for short, is presented
in [Dutt84]. The model starts out with an octahedron, with two of its vertices coinciding
with the poles of the globe and the other four vertices located on the globe’s equator. The
triangular faces are then subdivided into smaller triangles in a regular fashion.

At each level, the triangular faces are decomposed into smaller triangles whose areas
are one third of that of the triangle being decomposed. Statistically, then, the number of
triangles increases threefold at each decomposition step. The details are a bit involved,
however, because first-generation descendants extend into neighboring faces. Instead of
decomposing a face into three triangles, as would be the case in a strict ternary hierarchy,
the area of a face is shared among six child triangles. The face covers only half the area
of each child triangle, the other half being covered by a neighbor of the original face. See
Figure 2.4b.

However, after two decomposition steps, the grandchild triangles obey a strict hierarchy
relationship with their grandparents: nine triangles cover their grandparent exactly. This
relationship is represented in two nonary trees, one for the odd levels of the hierarchy and
one for the even ones. To track the hierarchy, the two trees need to be visited alternatingly.

The subdivision provides a natural way to encode the faces: assigning a number to each
descendant (between 1 and 9, for instance), the sequence of faces visited on the way to the
desired location constitutes a geocode which uniquely identifies it. On the face of the Earth,
eight or nine digits are sufficient to specify areas smaller than most postal zones and census
tracts.

Elevation is encoded in this model by using only one bit per face. If this bit is clear it is an
indication that the associated face has the same elevation as its parent. Conversely, setting
the bit denotes that the elevation of the face deviates from that of its parent. Whether it is
higher or lower depends on the tree it is in. If the face is part of the odd-levels tree (the one
having the initial octahedron at its root) it is assumed to be higher than its parent when its
elevation bit is set. Faces in the other tree, the one with the even levels, are assumed to be
lower than their parents. The amount by which they are higher or lower depends on their
level within the hierarchy: it decreases (by v/3) from level to level. Such a scheme has a
limit on the maximum deviation from sphericity which can be expressed, but it is certainly
adequate for the Farth: while the highest mountain peak is less than 9 kilometers above sea
level, whereas elevations as great as H00 kilometers can be expressed using this scheme.

The scheme has the advantage shared by scientific number notation: The depth of the
tree (like the number of digits in a decimal fraction) indicates both the value conveyed and
its accuracy. A datum inserted into a GEM database will trickle down the trees only to a
depth commensurate with its accuracy. If the database is initialized with possibly coarse
but accurate data covering the complete sphere, subsequent attempts to load erroneous data
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Figure 2.4: Decomposition in the Geodesic Elevation Model. (a) A triangular face.
(b) First-generation descendants: six triangles, each shared equally with one of the neighbors
of the original triangle. (c) Second-generation descendants: the children of only one face
(the one highlighted in (b)) are shown. Three of these are completely contained inside their
grandparent. Other faces in (b) contribute additional triangles, totaling 9 which cover the
total area of the original face.

can be automatically flagged as suspicious by the database.

This model has a few problems as well. The shapes of faces projected onto the sphere
are not fixed, but depend on their location relative to the original octahedron. Another
problem has to do with systematic deviations from sphericity that planets, Earth included,
often have. [Dutt84] suggests that a global framework, representing the first few levels of
a hierarchy, be agreed upon by all users. This framework can represent the deviation of
the globe from perfect sphericity sufficiently well. However, such a scheme depends on an
uncommon level of cooperation among software developers, agencies and users.

Another attempt to describe a sphere, this time with a quadtree, is made in [Feke90].
The initial shape is an icosahedron, the platonic solid with the greatest number of faces.
Each of the icosahedron’s twenty triangular faces is subdivided into four triangular subfaces
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by connecting the edges” midpoints (quaternary subdivision).

Having four descendants makes quadtrees appropriate for the representation of this struc-
ture. A complete representation consists of a forest of twenty quadtrees, each stemming from
one face of the original icosahedron. Faces, or trixels, are labeled within a quadtree in a sim-
ilar way to that described in [Dutt84], but only four possible values are needed rather than
nine. Naming vertices is a bit more involved, since vertices are shared among six trixels
(except for the twelve vertices of the original icosahedron, which are shared only by five).
For uniqueness, the lexicographically smallest among the five or six synonyms is selected.

For the quadtree representation, a host of established algorithms can be adopted to find
neighbors, connected components, and other useful properties. The naming conventions
make it possible to determine adjacency by examining only the names of candidate trixels.
Although a quadtree describes only a single icosahedron face, extending the algorithms to
the whole sphere is not very difficult.

2.1.4 Semi-regular Model — [GomeT79]

In one of the early attempts to formulate a DTM [GomeT79], the hope was expressed that
if an irregular dataset is sufficiently dense, it should support a regular decomposition. The
attempt was based on recursive quaternary decomposition of triangles.

@) (b)

Figure 2.5: Traditional quaternary decomposition. (a) A triangle. (b) The same triangle
decomposed into four smaller triangles formed by connecting the midpoints of the edges.

Traditionally, quaternary decomposition of a triangle is achieved by connecting the mid-
points of its three edges, as shown in Figure 2.5. The new vertices introduced in the process
(the edges’ midpoints) are not likely to be related to the input data. [GomeT79] suggests using
actual data points which fall close to the desired edge midpoints instead (see Figure 2.6).
Thus the model is topologically isomorphic to a quaternary model but is not quite identical
with it. As a result, there could be parts on the outskirts of the surface being modeled that
may remain unexpressed due to errors resulting from this deviations in vertex positioning.
Solutions to this and other problems raised by the model are offered, but notably no solution
is offered to the issue of crack formation, which is assumed not to be serious [Gome79]. An-
other difficulty is the fact that no two of the triangular faces are alike. In applications where
these problems are not important, this approach has the combined appeal of both regular
and irregular models.
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Figure 2.6: Semi-regular quaternary decomposition derived from an irregular dataset.

2.2 Irregular Polyhedral Models

2.2.1 Triangulated Irregular Networks (TINs) — [DeF184, DeF185]

A ternary adaptable TIN is described in [DeF184, DeF185]. The construction and a few repre-
sentative applications are studied and the results are compared with Delaunay triangulation
of the same dataset.

The input to this model is assumed to be an irregular sample of the surface to be modeled.
The purpose of the model is to select points from this dataset and triangulate them so that
the error associated with the induced polyhedron is smaller than some predefined value. The
error is measured as the maximum distance between a face of the polyhedron and the actual
surface. Since the surface is known only through the dataset, the error can be measured only
at locations for which data is provided in the input.

The algorithm presented assumes that the given dataset is triangulated. Any triangula-
tion of the convex hull of the dataset is acceptable. The triangles of that triangulation are
then sorted according to their error value, and the one with the highest error is processed
first. The point in its interior with the greatest error is found and a ternary decomposition is
induced by connecting that point to the triangle’s vertices. The new triangle set is resorted
and the above step is repeated. The process iterates until all triangles have errors within a
given tolerance. Several ways to minimize the cost of the sorting phase, either by means of
a heap or by threading the triangles in order of decreasing error values, are presented. It is
shown that if the initial set contains n points, of which m (m < n) are ultimately selected
to represent the rest, then the construction of the model takes O(mn) time in the worst case
and O(mlogn) time on the average.

Three deficiencies of this model are pointed out by the authors:

1. There is no guarantee that the smallest number of points which can support the given
tolerance will actually be selected. In the course of refining the initial triangulation,
the algorithm only adds points, and never deletes any. It is possible that the initial
triangulation already contains inefficient points that would not be included in an op-
timal triangulation. By refraining from removing any points, it is impossible for the
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algorithm to transform such initial triangulations into optimal ones. It is conjectured
that finding the optimal model is NP-complete, since it seems that all (:L) selections
for all 1 < m < n must be examined in order to find it.

2. A small change in the underlying data does not necessarily translate into a minor
update of the model stemming from this data. A change in a single input value
may necessitate reconstruction of the model from scratch, making incremental changes
difficult to introduce. This is not too serious a handicap where terrain is considered,
since terrain seldom changes, but it could be a problem for other applications of DT Ms.

3. There is no guarantee that the tree describing the model is balanced; it is possible, in
the worst case, that only one descendant at any level ever gets subdivided. As a result,
search time can increase to O(m). In the average case, however, it is expected to be

O(log m).

The difficulties caused by the many long, thin triangles this model is likely to contain
are only hinted at, when it is mentioned that this triangulation is inferior to Delaunay
triangulation if contour lines are desired. It is suggested that the selected point set be
retriangulated by a Delaunay algorithm for that purpose when the need arises [DeF184].

Most of the tests of this model have been based on data generated by randomly sampling
surfaces representing analytical functions, such as a sphere. Only one actual terrain sample

is used in [DeF185].

2.2.2 Hierarchical TINs — [DeF189, DeF192b)]

To alleviate some of the problems raised in the ternary TIN described in Section 2.2.1, the au-
thors suggest a TIN based on Delaunay triangulations, which they term a Delaunay pyramid.

Delaunay triangulations do not lend themselves to hierarchical structures. This is because
the Delaunay triangulation of a given set of points is not necessarily a refinement of the
Delaunay triangulation of any subset of that set. It a given point set is Delaunay triangulated,
then as additional points are added and the augmented set is retriangulated, some edges will
be added but some may also be removed, as seen in Figure 2.7. Consequently, finer meshes
which represent higher accuracies can no longer be produced from coarser ones just by
decomposing triangles individually, as was possible in the scheme described in Section 2.2.1.

However, the fact that the Delaunay triangulation of a refined point set is not necessarily
a refinement of the original point set does not mean that the two triangulations are unrelated.
Since the edges of a Delaunay triangulation are determined based on local criteria, the effect
of adding a point to a point set and retriangulating it is confined to a vicinity of the new
point. It is possible to identify a polygon of influence of the added point, a region to which
the changes induced by the added point are confined. On average, a polygon of influence
consists of only six triangles [Sibs78]. The sets of triangles covered by this polygon in the

original and new triangulations have a many-to-many relationship, but these “many”s are
bounded and in fact are quite small.

It is practical, then, as suggested in [DeF189], to maintain bidirectional pointers between
triangles in different triangulations which have a non-empty intersection. Through these
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Figure 2.7: A Delaunay triangulation of a superset of points is not necessarily a refinement
of the triangulation of the original point set. (a) A Delaunay triangulation of a four-point
set to which a fifth point is added.  (b) A refinement of the triangulation in (a) which
incorporates the extra point. (c) A Delaunay triangulation of the five-point set. Note that
it is not a refinement of the triangulation in (a).

pointers, algorithms can move between triangulations that represent different resolutions of
the same part of the surface. As a result, the complete structure becomes a true hierarchy
in the sense of Section 1.2.3. Regarding these pointers as directed, leading from the root
to the leaves, the tree of the ternary TIN can be seen as being replaced here by a directed
acyclic graph (DAG).

A construction algorithm very similar to the one suggested for the ternary TIN can now
be employed. Starting with some initial choice of points from the input, their Delaunay
triangulation forms the root of the hierarchy. Of the points not yet selected, the one as-
sociated with the largest error is found and added to the existing point set, which is then
retriangulated. Normally, most triangles are unaffected by this addition, so their occurrences
in the old and new triangulations are simply linked. Multiple links are established between
the affected triangles in the old triangulation and those replacing them in the new one. This
step is repeated until all points are used or the error of the triangulation as a whole drops
below a predefined tolerance value.

The most basic function of a DTM is to predict the elevation of the modeled surface
at a location for which no input value is specified. In the present model, however, this
operation is not as straightforward. As with TINs (Section 2.2.1), the hierarchy needs to
be traversed until a triangle containing the query point with a small enough error is found,
where the elevation at the point can be interpolated. However, since now the trace is of
a DAG, there could be levels between which there is no fanout, so no progress is made.
Moreover, even when a triangle on one level is linked with more than one triangle on the
next lower level, there is no guarantee that these lower-level triangles are any smaller, again
limiting the possibility of refinement. In the worst case, it is possible for a hierarchy to be
O(n) deep, where n is the number of points. This must be compared with the somewhat
similar K-Structure [Kirk83] which is guaranteed to be no deeper than O(logn).

On the other hand, the Delaunay pyramid is a hierarchical surface model in the sense
described in Section 1.2.3: it accommodates several descriptions of the same surface with
different degrees of accuracy. Moreover, each of these descriptions is a Delaunay triangula-
tion, which has many advantageous properties (Section 1.3.3). It also allows an application
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to store in higher levels summary data about lower levels, often allowing for faster searches.

An improvement on the Delaunay pyramid, the Hierarchical Delaunay TIN, is presented
in [DeF192b]. A strict hierarchy is imposed on the Delaunay triangulations by shifting the

focus from vertices to triangles. Here, at each construction step, a triangle is selected for
decomposition, rather than a point from the input being chosen for insertion. The edges of
the selected triangle are decomposed first by adding vertices at positions where the differ-
ences between the measured and interpolated elevations are greatest. Once the boundary
of a selected triangle is described with a better accuracy, its interior can be Delaunay tri-
angulated with that accuracy without affecting any of the neighboring triangles. To avoid
surface discontinuities, all the triangles whose edges are affected must be retriangulated.
The fanout in this structure is indeterminate, and depends on the variability of the surface.
The important aspect is, though, that edges are never removed when moving from a coarse
triangulation to a refined one, so this hierarchy is again a tree rather than a DAG.

2.2.3 Cartographic Coherence — [Scar92]

As discussed in Section 1.3.3, there is no agreement on whether equiangularity of the faces
is an overriding property of a good triangulation. In [Scar92] it is argued that for certain
surface formations, triangles with very acute angles may be natural. Triangulations in which
the edges do not disregard the linear features of the terrain, called cartographically coherent,
may outperform those in which equiangularity is the sole consideration (e.g. Delaunay tri-
angulations).

For example, consider Figure 2.8. If a ridge happens to be crossing the area covered by
the triangle, elevation measurements are likely to be made along the summits, producing a
concentration of points as seen in Figure 2.8a. If each of these points is added in turn using
a ternary decomposition rule, as in Figure 2.8b, many more faces are formed than if the
cartographic coherence approach is adopted, as in Figure 2.8c.

@) (b) (©

Figure 2.8: Comparison of triangulations with and without cartographic coherence (after
[Scar92]). (a) A triangle and the data points in its interior; (b) a likely decomposition
without cartographic coherence; (c) the proposed way to decompose the triangle.

As in the TIN models discussed earlier, a face in the triangulation is selected for decom-
position based on the size of the error associated with it. Here, however, the decomposition
is sensitive to the location of the point (or locations of the points) with large errors within
the triangle. For each triangle, four points with maximal error are found: one with overall
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maximum error and one on each edge. Depending on whether there is a peak within the
triangle, and on how many edges have significant errors on them, one of five basic ways in
which a triangle may be decomposed is selected. The rules and the conditions for choosing
them are shown in Figure 2.9.

(a) (b) (©
(d) (e)

Figure 2.9: The five ways in which a triangle is split with cartographic coherence (after
[Scar92]). (a) Split in center; (b) split on one edge with a significant center; (c) split on
one edge without a significant center; (d) split on two edges; (e) split on all three edges.

In experiments using several small datasets, the performance of this approach was equal
to and sometimes better than that of some Delaunay triangulation approaches in terms of
number of faces, data compression ratio, and even absence of slivers.

2.3 Non-Polyhedral Models

2.3.1 Curved Surfaces — [Schm86]

The technique of adaptive subdivision employed for polyhedral surface approximation can
also be applied when the patches of the proposed model are not planar. In [Schm86] a
quadtree-like structure is described using curved patches to model a surface. Since such
patches are not constrained to be planar, different-size patches may freely border each other
with no danger of forming cracks. Consequently, quadtrees can be used freely in this envi-
ronment.

This technique was developed to support an automatic data acquisition system which can
sample the surface of an object placed in it at close to 30000 readings per second. Faced with
such an abundance of data, the need for a data compression facility was great. However, a
polyhedral approximation was rejected as inappropriate for modeling the smooth-surfaced,
man-made objects the system was designed for.

The method uses bicubic splines patched together while keeping the surface continuous
and differentiable (G’ continuity). In the representation used, each patch is controlled by a
4 x 4 array of points whose position affects the shape of the patch. The patch interpolates
(actually passes through) only the four points at the corners. Continuity between two patches
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is assured if the positions of the control points on the boundary of one patch match those on
the other. A set of additional constraints (which include the non-boundary points as well)
is developed to guarantee the continuity also of the tangents at patch boundaries.

Like many other methods, processing starts out with a coarse approximation of the
modeled surface; there is nothing to preclude the use of a single patch as an initial state.
The algorithm iterates through all patches in the current model, accepts those which can be
made to fit the data sufficiently well, and subdivides the rest. The task is complete when
the distance between model and data points is within tolerance throughout the model, or
when the resolution limits of the input data are reached.

To subdivide a patch, its area is split into four smaller patches, and the additional control
points required to describe their 3-D shapes are computed. Imitating planar quadtrees, in
which a square is subdivided into four squares by connecting the centers of its opposite sides,
a patch is subdivided along lines passing through its center. The data point closest to the
new vertex formed at the center of the patch is found and is used, along with the points at
the four corners of the patch, as a basis for the control point arrays for the new patches. The
data in the vicinity of the new vertex is tested to obtain the likely inclination of the tangent
plane there, determining the directions the tangents along the new patch boundaries are
supposed to follow. Once the new patches are established, they are compared to the input
data and accepted if close enough, or subdivided if not.

The mathematics involved in the formulation of splines and their Bernstein-Bézier rep-
resentation is very different from that of the other models discussed here, but the surface
modeling principles are the same.

2.3.2 Fractals — [Four82]

As we have seen, one of the central motivations for DTMs is data compression. This is
achieved by utilizing succinct mathematical forms to express shapes that when described
numerically require a lot of space. So far, we have discussed deterministic models, in which
the elevation at each point is either the result of a measurement made on the actual surface
or an interpolation obtained from such measurements.

A completely different approach to surface modeling is presented in [Four82], based on the
work of Mandelbrot [Mand68]. Instead of attempting to deterministically capture the exact
shape of a surface, the surface is simulated by a stochastic process. Like planar polygons and
curved splines, such processes can be completely described by a handful of parameters, and
yet produce the elevations on a complete, continuous surface patch. In fact, just as the use
of deterministic patches promises only an approximation of the true surface, so do stochastic
renditions of it. However, the latter have several advantages that, for some applications,
may be very attractive.

First, since elevation values between sample points are computed by a random process,
new surface details can be generated at every magnification level, allowing indefinite zooms
onto the surface. Since these details are fabricated, the simulation can be run up to the
level required for display but no further. This means that when the surface is viewed from
a distance, computation can be limited to producing sufficient detail to make the surface
recognizable. For close-up views, more detail can be generated, but only in the area being
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viewed (which due to the screen’s physical size, cannot be large), again limiting the amount
of computation needed. This situation contrasts with that of a deterministic model, which
on the one hand cannot provide meaningful detail when a zoom-in exceeds its resolution,
and on the other hand still has to sift through all the data, even when a zoom-out makes
most of it irrelevant.

Second, such surface simulations have been shown to be capable of producing pleasing
or even striking images of terrain [Herb84]. The visual test is not an unimportant one, since
in many applications (e.g., flight simulators) the realism of the graphic display is of prime
importance. Moreover, deterministic models are empirical, and do not represent theoretical
understanding of terrain formation; they are therefore not necessarily more profound.

The basic algorithm is quite simple: the space between locations for which elevations
are specified in the input is subdivided, and new elevation values are inserted. However,
instead of using the average of the known elevations (as would be the case in a polyhedral
model) or some polynomial function of them (as when splines are used), the value obtained
by any of these methods is further perturbed by a random amount, controlled by a so-called
fractional Brownian motion (fBm).

FBm is related to ordinary Brownian motion, which is the continuous counterpart of a
random walk, by taking a moving average of the latter, weighted by a factor. The factor is
dependent on a parameter, called the self-similarity of the function, which controls the width
of the aperture through which the moving average is taken. Different surfaces have different
self-similarities, and the best value for an application must be determined empirically.

Two properties crucial for a patch-generating function to be useful in piecewise surface
modeling are the so-called internal consistency and external consistency [Four82]. Internal
consistency assures that a patch can be regenerated consistently at different positions, orien-
tations and magnifications (i.e., it is independent of the coordinate system and resolution).
External consistency guarantees that adjacent patches agree on the elevations of points on
their common boundary. In deterministic models, internal consistency is an automatic by-
product of the patch-generating functions. External consistency is just a generalization of
the need to avoid cracks (Section 1.2.2). Nondeterministic algorithms, however, must pay
special attention to both these issues. No generally applicable approach is offered; each
random generating function (such as the fBm) must be studied and a scheme to maintain
internal and external consistencies must be individually tailored for it.

Fractals are by no means limited to modeling of surfaces; they are applicable to any
objects, and even to time-varying phenomena, which are too complex to predict or describe
numerically. Coastlines (in one dimension) and smoke (in three dimensions) are examples
of non-surface objects to which fractals can be applied. Fractals can also be used to deter-
mine aspects other than surface elevation, such as color or motion. Fractals are probably
the technique of choice in applications where realism and speed outweigh fidelity to some
predefined shape.
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Chapter 3

The Restricted Quadtree

3.1 Introduction

Quadtrees have been shown to be useful in many spatial applications [Same90b]. However,
quadtree-like decompositions are not immune to non-shared vertices. (A non-shared vertex
is one that does not belong to all the polygons it is incident on; see Section 1.2.1.) When
subdividing an area for use in surface modeling, non-shared vertices are sites where cracks
in the surface model may form.

A quadtree variant called the restricted quadtree or RQT, presented in [VonH89], adapts
quadtree decomposition to surface modeling by restricting the number of potential non-
shared vertices per edge. Each quadtree node is then triangulated, forming between four
and eight triangles, depending on the number of non-shared vertices it actually possesses.
The final result is a quadtree-like decomposition which employs only shared vertices. The

RQT is formally defined in Section 3.2.

Various issues regarding the implementation of the RQT are dealt with in Section 3.3.

Special attention is given to the construction of RQTs from raster data. Two algorithms are
presented using the classic bottom-up and top-down paradigms. The details of their imple-
mentation, analysis of their performance, and experimental resulls are given in Section 3.4.

3.2 Definitions

3.2.1 Restricted Quadtree Definition

The two-dimensional restricted quadtree [VonH89] (also known as a 1-irregular mesh [Bank83]
or balanced quadtree [Bern90]) is one in which the lengths of the sides of neighboring squares
differ at most a factor of two. As an example, the decomposition depicted in Figure 3.1b
represents the RQT corresponding to the non-restricted quadtree shown in part (a) of the
figure. While the number of non-shared vertices per edge (denoted by half-solid circles) in a
non-restricted quadtree is unlimited (as seen at point X in the figure), in an RQT there is
at most one.

When implemented as a tree, this restricts neighboring leaf nodes to be at most one level
apart, thereby moderating the depth variation in the tree. As a result, while a node in a
non-restricted quadtree may be decomposed independently of all other nodes, splitting a
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Figure 3.1: Comparing the restricted and non-restricted versions of a sample quadtree.
Vertices are marked by circles; the portion of the circle included in nodes that contain the
vertex is filled. A non-shared vertex, then, is denoted by a circle that is not totally solid.
(a) A non-restricted quadtree. Note that the number of non-shared vertices (half filled
circles) per edge is unbounded (e.g., at X).  (b) the restricted version of the quadtree.
Edges that were added to make the quadtree restricted are marked by dashed lines. There
is at most one non-shared vertex per edge in an RQT.

node in an RQT can cascade, affecting neighboring nodes as well. However, it is shown in
[Moor92, pp. 39-40] that an RQT contains no more than eight times as many nodes as its
non-restricted counterpart. In big O notation the space complexity of the restricted version
of a quadtree is equivalent to that of the non-restricted one.

To deal with the non-shared vertices that do occur in an RQT, each node is triangulated.
The triangulation is done first by means of its two diagonals, forming four triangles. If any
of these triangles faces a smaller node, it is incident on a non-shared vertex. That vertex is
incorporated into the triangle by splitting the latter into two triangles. Since this is done on
each of the four sides independently, the original node may end up with anywhere from four
triangles, if no splits occur, to eight, it splits occur on all sides. Figure 3.2 depicts a node in
a RQT along with neighbors of all possible sizes: equal to the node (along sides A and '),
half as large (along side B) and twice as large (along side D).

3.2.2 Restricted Quadtree Variants

The boundaries between equal-sized nodes may or may not be split; the decomposition rules
described so far neither require nor preclude such splits. Deciding one way or the other
provides for two variants of the RQT, known as the 4-triangle and 8-triangle rules. The
names are derived from the number of triangles that each node would have if all nodes had

the same size. The 4-triangle rule, which mandates that the boundary between equal-sized
nodes be kept in one piece, provides for a more concise tree with fewer triangles. Conversely,
the 8-triangle rule, which splits nodes into as many triangles as possible without violating
the other rules, is likely to produce a better-fitting surface because it incorporates more

25



Figure 3.2: Restricted quadtree node relationships. The edge neighboring smaller nodes (B)
is split; the edge facing a larger node (D) is not. On the sides where equal-sized neighbors
are found, the node is split only if the 8-triangle rule is in effect (C'), and it is not split if
the 4-triangle rule is used (A).

data points. Figure 3.2 shows the result of applying the 4-triangle rule on side A and the
8-triangle rule on side C'.

3.2.3 Related Concepts

Below we describe some concepts relevant to the way RQTs operate. They are described
here in detail so that later they can be referred to concisely.

Mandatory and optional vertices: As mentioned above, an RQT node can consist of as
few as four or as many as eight triangles, depending on the sizes of the nodes surrounding it.
A node with the minimal configuration of four triangles has five vertices: four at the corners
and one at the center (Figure 3.3a). All RQT nodes have these vertices as a minimum, so
we shall refer to them as mandatory. A node with a maximal configuration of eight triangles
(Figure 3.3b) has, in addition to the five mandatory ones, four optional vertices: one at the
center of each edge.

(@) (b)

Figure 3.3: Mandatory vs. optional vertices in RQT nodes. Circles denote mandatory ver-
tices; diamonds denote optional vertices. (a) Minimal configuration of four triangles, using
only mandatory vertices. (b) Maximal configuration of eight triangles, using all possible
vertices, mandatory and optional.
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The different selections of the four optional vertices give rise to 2* = 16 configurations
an RQT node can have, as shown in Figure 3.4.

D 24
Dt < ] £ 2K 2 DR R

Figure 3.4: The 16 possible configurations of an RQT node.

Inherited and uninherited vertices: Every non-root node in an RQT shares some ver-
tices with its immediate parent. Such vertices are denoted as inherited. The vertices at
the four corners of a node ¢ are inherited, while the vertex at ¢’s center and those at the
midpoints of ¢’s edges are not (See Figure 3.5). Vertices that are not inherited are called
uninherited. Note that the vertices at the corners of the node are both mandatory and
inherited, and that the midpoints of the edges are both uninherited and optional. Only the
node at the center of the node is uninherited yet mandatory.

The definition above pertains to non-root nodes only. For completeness we categorize the
vertices of the root node as well. Since the root itself has no parents and therefore cannot
inherit anything, we define all its vertices as uninherited.

Figure 3.5: Inherited vertices in RQT nodes are denoted by solid circles, while uninherited
vertices are denoted by empty circles. Thin lines correspond to the edges of the node, while
the heavy lines correspond to the edges of the node’s parent. The uninherited vertices of the
node are positioned where its parent cannot have any vertices.

Stored elevations are the elevations at the vertices of an RQT node. The stored values
determine the inclinations of all the triangular faces of the node. Stored values normally
correspond to values read from the input representing actual measurements made on the
real surface. The implementation guarantees access to these values at retrieval time, hence
the label “stored”. Note that only elevations stored in the inherited vertices of a node ¢ are
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also stored values in ¢’s parent; the elevation at an uninherited vertex of ¢ is necessarily a
computed one (see next definition) in the parent of ¢.

Computed elevations are those produced by the surface model for points other than
vertices by interpolation of the relevant stored elevations. These are therefore not input
values and may differ from the actual elevation of the surface at the same location. However,
it is assumed that the data points in the input are sufficiently dense so that the chances of
such a discrepancy being significant are slim. This assumption is not specific to RQT models
but is true in general for all sampled models.

Any non-vertex point within a node occurs in some triangle of the node (perhaps more
than one, if it is on an edge). The computed elevation is obtained by interpolating the
stored values found at the three vertices of that triangle. For a point common to two or
more triangles, the elevation can be computed from any of the triangles the point is incident
on; the result is guaranteed to be independent of this choice.

3.3 Implementation

3.3.1 Assumptions

Embedding arbitrary datasets in RQT: Like the region quadtree, the RQT describes a
two-dimensional square area whose side is a power of 2. Arbitrary datasets can be embedded
in an appropriate square (one whose side is the smallest power of 2 to exceed both dimensions
of the dataset) by zero padding. This transformation allows us to consider only datasets of
size (2™ 4+ 1) x (2™ + 1) for some positive integer m with no loss of generality.

This transformation for arbitrary datasets may, in the worst case, induce considerable
overhead in terms of empty, zero-filled RQT nodes whose presence is nevertheless mandated
by the RQT decomposition rules. For example, the dataset depicted in Figure 3.6a covers
an area of 25 pixels but incurs an overhead of 65 + 3log S — 6 empty blocks. This would
indeed be inefficient, since there are three empty blocks for each pixel in the area of interest,
regardless of size.

However, DTMs usually span an area having the shape of an upright rectangle. The
worst-case behavior of such an area is depicted in Figure 3.6b. Here the dataset dimensions
exceed a power of 2 by a small amount, thereby requiring a padding area almost three times
as large as the dataset. The overhead in this case is only 45 + 3log S — 4 compared to the
dataset area of (S 4 1)? pixels. The ratio between the two is inversely proportional to S, so
it improves with the size of the dataset.

Monotonicity of refinement: As explained in Section 1.1, associated with any surface
model is a tolerance, which bounds the difference between the elevation values reported in
the input and those computed by the model for any location. It may be assumed that since
small nodes can express terrain variation with greater detail and fidelity than larger ones,
decomposing a large node into its smaller descendants can only improve the tolerance of the
resulting model. Although this is the general trend, it is not universally true. In particular,
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Figure 3.6: Bad cases of arbitrary datasets embedded into an RQT square. (a) Absolutely
worst case. (b) Worst case involving upright rectangular datasets.

in certain cases a node split may in fact degrade the model’s accuracy. It should be noted
that this phenomenon is related to the way the model’s accuracy is measured. If, for example,
average deviation were used in Figure 3.7 instead of maximum deviation, monotonicity would
have been retained. However, one could devise a case where monotonicity breaks down for
that method as well.

As an example of this phenomenon, consider Figure 3.7, where the problem is shown
in a one-dimensional setting for simplicity. The first-cut model, depicted in Figure 3.7b,
is acceptable for some predefined tolerance (denoted by the dashed lines). However, the
model fails the tolerance test when one more data point is added to it (Figure 3.7¢). Further
refinement (see Figure 3.7d) makes the model acceptable again. This last model is also
better than the first as a tighter tolerance can now be supported, thereby demonstrating the
general trend of improving model accuracy with refinement.

In this study it was assumed that every refinement improves the quality of the resulting
model, disregarding the above examples to the contrary. The algorithms can be changed to
account for these exceptions. Alternatively, a distinction can be made between two tolerance
values: the input tolerance, which is a parameter of the RQT construction process, and the
output tolerance, which is the maximum difference between the elevations given by the
model and the input for the same location (i.e., the sense in which the term “tolerance” has
been used so far). These two values are correlated but may differ, due to the phenomenon
described above. Experimentation with varied datasets shows that only a small fraction
of blocks contain points outside the input tolerance, regardless of the actual value used.
However, different datasets may develop different output tolerances when constructed with
the same input tolerance. Moreover, as we shall see, the top-down construction algorithm
appears to produce better results in this regard than the bottom-up algorithm does.

3.3.2 Atomic Nodes

In terms of implementation, the relationship between the smallest nodes and the input needs
clarification. The elevations stored at the vertices of RQT nodes, in the ideal case, are the
actual input values. However, it is possible to store interpolated values, corresponding to
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Figure 3.7: Refinement does not monotonically lead to better models. (a) A few consecutive
elevation samples along a one-dimensional terrain. (b) A first-cut model of the terrain. The
dashed lines indicate the range of values the model tolerance permits the data to take. (c) A
refinement of the model in (b). Clearly, some data points (marked by solid circles) that earlier

were within tolerance are now outside of it. (d) A further refinement of the model. Now
all samples are again within tolerance. In fact, the tolerance can now be reduced almost

threefold.

virtual data points, at locations that are not in the original dataset (i.e., non-grid points).

The following are three possible atomic node construction schemes:

1. A node is built around each data value, making it the center vertex of the node and
assigning interpolated values to the other vertices (Figure 3.8a). Each atomic node
consumes a data point exclusively, so covering the input area requires as many atomic
nodes as there are data points.

2. Every four input data values whose positions form a unit grid square are used as the
basis for an atomic node. The four elevations are stored in the atomic node’s four
corner vertices while the elevation at its center vertex is interpolated from the other
four (Figure 3.8b). Each atomic node shares four elevation samples, but each data
sample is shared among four atomic nodes. Therefore, on the average, there are still
4 x i = 1 data points per atomic node.

3. Atomic nodes may be constructed from a 3 x 3 subgrid (Figure 3.8c). Here all nine
vertices are associated with actual input data values. Each atomic node uses one data
sample exclusively (the center vertex) and shares eight others: four (the edge mid-
points) with another node and four (at the corners) with three other nodes. Summing
up, we get 1 x 1 +4 x % +4 % i = 4 data points per atomic node on the average.

30



. . . . . ° o . ° . .
—O0— oo

. oo boe . . b . . . .
[/IN]

. . . ° . . . . ) ° . .

. . . . . . . . . . . . . ° .

@) (b) ©

Figure 3.8: The construction of atomic nodes from raw input data. The solid circles represent
the grid; the open circles are virtual data points whose values are interpolated. The ratios of
input values per atomic node are (a) 1:1 centered; (b) 1:1 shared; (c) 4:1 shared. Note that
when nodes merge to form larger nodes, only scheme (a) ends up with persistent interpolated
values.

Approach (a) simplifies the relationship between the input data and the resulting tree. In
this case, however, most of the elevation values that are eventually stored do not correspond
to actual input elevation data samples. Instead, they are averages of two or four adjacent
locations. Moreover, when adjacent nodes merge, the true data points are not propagated
to the resulting node. It is therefore possible for the final model to contain only interpolated
elevations. This may cause smoothing and other undesirable effects.

In approach (b), only one computed elevation value is stored in each atomic node, and
that value is dropped completely when four atomic nodes are merged to form the smallest
non-atomic node. The danger of the model ending up with many interpolated elevation
values is therefore diminished considerably.

Approach (c¢) suffers from none of the above maladies, since atomic nodes constructed
in this way do not call for any interpolated values at all. However, more input values go
into the construction of a single node than in the previous schemes. As a result, difficulties
may arise at the boundary of the data set if the number of rows or columns is not odd.
Nevertheless, this is the approach that is used in the present implementation.

3.4 RQT Construction Algorithms

In this section we discuss the process by which an RQT model is constructed from raster
(DTM) input. We present bottom-up and top-down algorithms. The bottom-up algorithm
starts out with the most refined, and hence the largest RQT possible. It then prunes it as
much as possible without the accuracy dropping below the predefined tolerance value. The
top-down algorithm, on the other hand, starts with a single node and recursively decomposes
it until the model’s accuracy reaches that tolerance.

Both algorithms create nodes and then, if they are inadequate for the final model, destroy
them. However, the bottom-up algorithm creates and destroys only nodes which could be
subordinated to the leaves of the final result, while the top-down algorithm only goes through
nodes which are superior to the leaves of the result. Due to the tree property of exponential
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growth, it is expected that the top-down algorithm should run faster than the bottom-up
algorithm. This was corroborated by our experiments.
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Figure 3.9: A comparison between the expected complexity of the bottom-up and top-down

algorithms. For simplicity, the two-dimensional sprawl of the tree is depicted here in one
dimension. The heavy line represents the leaf nodes of the RQT ultimately constructed.
(a) Descendant nodes generated by the bottom-up algorithm. (b) Internal nodes that are
generated by the top-down algorithm.

Below we describe the implementation of both algorithms in greater detail. Section 3.4.1
and Section 3.4.2 describe the bottom-up and the top-down algorithms, respectively. Exper-
imental results are provided in Section 3.4.3.

3.4.1 The bottom-up Construction Algorithm

At the start we build an RQT which consists only of atomic nodes, representing the input
data at the greatest level of detail possible for the given tree depth. Next, we merge adjacent
nodes where doing so would violate neither the accuracy of the model nor the restrictions
on neighbor sizes (Figure 3.10).

Step 2 in Figure 3.10, called the input phase of the algorithm, is where input is read
and the atomic nodes are constructed. Depending on the implementation of atomic nodes in
terms of data samples (as discussed in Section 3.3.2), the input is read in either row by row
or two rows at a time. Note that this is done in the input’s natural order. Since all atomic
nodes have the same size, the resulting model obeys the RQT restrictions on neighbor sizes

and therefore is an RQT.

Steps 5 and 6 of Figure 3.10 form the merge phase. In this phase each level of the tree,
starting with the one just above the one constructed in the input phase, is visited in turn. At
each level, every leaf node is tested for mergibility. If a node is mergible, then it is coalesced
with the three other nodes with which it shares a parent. The four siblings are then deleted
from the tree and replaced by their parent node. A leaf node is mergible if all the conditions
in Figure 3.11 are met.

The algorithm terminates once all the nodes at a given level have been processed and
no more merges can be performed. Termination is guaranteed since once the root level is
reached, no more merges can take place.

Analysis: We assume that the dataset describes a square patch of s x s equally spaced
data points, where s = 2™ 4+ 1 for some integer m (see Section 3.3.1 for justification). Let
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Bottom Up RQT Construction Algorithm

1. R« empty RQT.

2. Read input elevations in sequence, create an atomic node
for each elevation and insert it into K.

3. 5« size of atomic node.

4. while S is less than the size of the area covered by the
RQT do begin

5. for each block B of size S do
if B is mergible (see Figure 3.11 for mergibility
conditions) then
coalesce it with its siblings.

6. if no nodes were merged during the execution of the
loop in step 5 then
stop
else

S «—25.

end

Figure 3.10: Algorithm to construct an RQT from raster data using the bottom-up approach.

N denote the total number of points in the dataset, so N = s2. Let e denote the number of
elevation values which are used in the specification of single atomic nodes (depending on the
definition, e could be either 1 or 4; see Section 3.3.2). The number of atomic nodes formed in
the input phase is N/e. The only I/O associated with establishing an atomic node involves
reading the input (7},,,:) and inserting the complete node into the RQT (Tj,s5¢r¢). Therefore,
the time to perform the input phase is given by

N
Tinput—phase =N x Tinput + ; X Tinsem‘ = N(Tinput + Tinsem‘/e)-

At each level, each node is tested. Each test operation involves retrieving the node, its
three siblings and no more than eight of their collective neighbors (if they have more than
eight neighbors combined, at least one of them must be small enough to block the merge).
It the node passes the test, the four siblings are deleted and their parent inserted. The
maximum time to process a merge is given by

Tmerge =12 x Tretm'eve + 4 x Tdelete + Tinsem‘-
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Conditions for Merging Nodes

1. The node is the north-west child of its immediate parent.
This condition guarantees that each merge is considered
only once, when the first eligible leaf is encountered.

2. The size of the node is equal to the sizes of its
currently existing east, south and south-east neighbors.

3. The node and its three siblings have no optional vertices
(those at the midpoints of their edges) or any such
vertices that do exist may be eliminated. This can be
done only if the elevation stored in any optional vertex
1s within tolerance of the elevation computed for the same
location in its absence (Figure 3.12b).

4. The elevation values stored at the uninherited vertices of
the nodes being merged must be within tolerance of the
values computed for their locations in a parent node when
it is created (Figure 3.12¢c).

5. Neither the node nor its three siblings have any
smaller-sized neighbors. Note that if any such neighbor ¢
existed, and the proposed merge were to proceed, then the
merge would yield a node four times larger than ¢ in ¢’s
neighborhood, in violation of the RQT definition.

Figure 3.11: Required conditions for merging nodes in an RQT.

The number of iterations made in the merge phase is dependent on the actual data. The
worst case is that of a completely flat surface, which can be represented by an RQT with a
single node. In this case, the bottom-up algorithm will need to merge all the nodes in the
tree, incurring the greatest overhead. Conversely, the best case is represented by a surface
whose variation is so great that no merging is possible at all. In such a case the algorithm
can stop after one pass over the atomic nodes. Realistic running times should fall between
those computed for these two extremes.

In the best case, the atomic nodes formed in the input phase are scanned but all fail the
merge test. The quarter of the atomic nodes that are north-west siblings which do not fail
requirement 1 of Figure 3.11 will fail requirement 4 (by assumption of best case). Although
satisfaction of requirement 1 may be determined without any 1/0O, checking requirement 4
requires the retrieval of four siblings, thereby incurring a cost of 4 X T’ 4s;¢0. time units. Given
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Figure 3.12: Merging nodes: heavy lines denote node extent, light lines denote internal node
decomposition.  (a) Initial four leaf nodes; (b) Intermediate stage I: open circles denote
optional vertices. Such vertices must be removed for the merge to proceed. A vertex can be
eliminated if the elevation it stores falls within tolerance of the computed value for the same
location.  (c) Intermediate stage 11: Open circles denote uninherited vertices, which must
also be removed. (d) Resulting merged node.

that there are N/e atomic nodes, the total time for best case merge phase is

N 1
best = : X 1 X A X Thetrieve = N(Tretm'eve/e)'

merge—phase

In the worst case, all possible internal nodes are formed at some point. Since internal
nodes total one third of the number of leaf nodes, with worst case the time needed to execute
the merge phase is given by

N

€

Tworst

merge—phase

X X Tmerge = N(Tmerge/ge)-

Lo =

Therefore, the execution time Thypm—nypy of the bottom-up algorithm satisfies the following
inequality:

best worst
Tinput—phase + T S Tbottom—up S Tinput—phase + T

merge—phase merge—phase *

The execution times associated with RQT operations (e.g., Thetricve, Tactetes Tinsert) are
all related to the depth of the RQT, which is log,(N) = log,(/N)/2. Therefore, the above
bounds are both O(N log N), which means that the running time of the bottom-up algorithm
is also O(N log N). Note that this time is for any RQT, irrespective of the actual elevation
values or the size of the resulting RQT.

3.4.2 The top-down Construction Algorithm

This algorithm attempts to adapt the ideas of the predictive quadtree construction algorithm
described in [Shaf87a]. In the course of constructing an area quadtree from raster data, the
predictive algorithm only splits nodes—it never merges any. The algorithm is therefore
optimal in the sense that the work it does is proportional to the size of the eventual output.
To accomplish this, the algorithm maintains a partially-constructed minimal quadtree that
is consistent with the data read so far by making optimistic assumptions about the unread
portion of the input. As data is read in, only the minimal changes required to regain
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consistency with the new input are applied to the quadtree. When all the input has been
processed, the result is the desired quadtree.

Like the predictive quadtree construction algorithm, the top-down construction algorithm
maintains a partially constructed RQT which is consistent with the data processed so far.
However, the order in which the construction proceeds is driven by the levels in the tree
rather than the order of the input.

The first step is to construct the root node, using the input elevation values associated
with the locations indicated in Figure 3.13a. Once this has been done, and throughout
the construction process, an elevation value is associated with every point within the map’s
extent, reflecting either an input (stored) value or an interpolated (computed) value. Initially,
these values will probably represent only a poor approximation of the surface since only nine
values are stored and the rest are computed. However, as more nodes are inserted, the
computed values approach those of the desired surface.

O O O O 0O O O O ©
O O O O 0O O O O ©
QO O O O O O O O ©
QO O O O O O O O ©

o O O O O O
0000000000000 O0OO
O—0O0—0O0—"0—"0—"0——0—=0

@ (b) (© (d)

Figure 3.13: Locations of uninherited vertices in the first few levels of an RQT: (a) root
level; (b), (c), and (d) levels 1, 2, and 3, respectively. The square represents the extent of
the RQT.

On each level after the first, each possible node is considered in turn. For each node, the
uninherited vertices are determined. The locations of these vertices for levels 1, 2, and 3 are
shown in Figures 3.13b, 3.13¢c, and 3.13d, respectively. The elevation given in the input for
each such uninherited vertex is compared with the value computed from the current tree. If
the two values are sufficiently different, the node is constructed and inserted into the current
tree.

However, in contrast to the bottom-up algorithm, the tree may need some preprocessing
before the node can be inserted. Not all of the node’s siblings and ancestors that are
mandated by quadtree structure need be present at the time the insertion is attempted.
They must be generated and inserted first.

To see how this may come about, consider Figure 3.14. Figure 3.14a depicts a node in
the tree being constructed, say at level (. It is possible that a pass over the next level, { + 1,
will not yield any discrepancy with the input within the bounds of this node, as seen in
Figure 3.14b. In the next step, at level ¢ 4+ 2, an input value which differs sufficiently from
the computed elevation for that location is detected (solid triangle in Figure 3.14c). The
node at level {42 which contains this point should now be inserted. However, it is too small
to be inserted directly, since its neighbors would be larger than twice its size. Therefore, its
parent node on level {+1 needs to be inserted first, along with its siblings, as in Figure 3.14d.
Only once this has been done can the small node be inserted (Figure 3.14e).
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Figure 3.14: Example of node insertion when using the top-down algorithm: Solid circles
denote stored elevation values while open circles denote locations where the input and com-
puted values were found to be in agreement. (a) Initial state of a node ¢; (b) the situation
after the construction pass over the level immediately below the one containing ¢; (c) the
state when, during the pass over the second level below ¢, an input value (marked by a
triangle) which significantly differs from the elevation computed for the same location is
encountered; (d) first split; (e) final split.

Procedure incorporate manages these insertions in the implementation of the top-down
algorithm. Figure 3.15 illustrates how procedure incorporate works. Assume a partially
constructed RQT (Figure 3.15a) is decomposed when a small block B (highlighted in Fig-
ure 3.15b) needs to be incorporated into the tree. First, the smallest ancestor of B in the
tree, call it A, is located and deleted (Figure 3.15¢). Next, all the descendants of A which do
not cover B are generated and inserted into the tree (Figure 3.15d). This process is repeated
with the descendant of A which does cover B (Figure 3.15e). The process stops when A
equals B, at which time B may be inserted (Figure 3.15f). Figure 3.16 shows procedure
incorporate in pseudo-code.

The top level control structure of the top-down algorithm is shown in Figure 3.17. Loading
the input data, following the general logic outlined above, is achieved by procedure load
(Figure 3.18). It produces a quadtree with sufficiently many stored values to support the
input tolerance. However, this quadtree is not necessarily restricted. Procedure restrict
(Figure 3.19) converts the quadtree into an RQT. This approach produces simpler code and
also supports the out-of-core version of the algorithm to be described below.

Procedure restrict operates on the output of procedure load in a separate pass. To keep
track of the nodes it has already processed it maintains a bit per node called the mark bit.
At any time during the execution of this procedure, the population of marked nodes does
not violate the rules of restricted quadtrees. Unfortunately, marking a node ¢ may not be
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Figure 3.15: Steps in the execution of procedure incorporate. (a) A partially constructed
RQT. (b) A small block (highlighted) needs to be incorporated into the tree.  (c) The
new block’s ancestor is deleted from the tree. (d) The ancestor’s descendants which do
not cover the new block are inserted.  (e) The process repeats at the next lower level.
(f) Termination: the level of the new block has been reached and it can be safely inserted
into the tree.

the last time node ¢ is processed. Some unprocessed neighbor of ¢, say r, may exist that
is too small to remain in ¢’s neighborhood. This will force ¢ to decompose later, when r
is processed. In reprocessing marked nodes procedure restrict is helped by the recursive
procedure backtrack (Figure 3.20).

Analysis:  We adopt the same assumptions and notation used in the analysis of the bottom-up
algorithm (Section 3.4.1)—that is, N = s? is the total number of data points in an input
of s X s array where s is one more than a perfect power of two. In addition, let Lg,,; be
the number of nodes in the RQT that is ultimately constructed. Also, only disk 1/0 is
considered in our analysis.

The total running time of the top-down algorithm, T},,_ 4oy, consists of the time spent
examining the input (Tepamine ), constructing the result (Teonstruct), and restricting the result-
ing quadtree to form a RQT (Tyestrict). The tasks of examining the input and inserting nodes
into the resultant RQT are common to all constructions, and their complexity depends only
on the size of the surface being modeled, not its shape. On the other hand, the cost of
converting the quadtree into a RQT depends on the shape of the surface.

Ttop—down — Teammine + Tconstruct + Trestm'ct (31)

Examining the input is done in the load phase (step 2 of Figure 3.17, and given in greater
detail by procedure load in Figure 3.18). The entire input dataset is scanned, at least to
verify that the model is consistent with the data, even if no nodes are generated as a result.
Each block at each level is examined in turn, a total of 4N/3 blocks. Examining a block
entails reading the nine elevation values corresponding to its vertices from the input. Note
that the nine input values are unlikely to be found in consecutive locations on the input
medium, and thus obtaining them may be expensive. The total time spent reading the input

is given by iy
Teammine = ?9 X Tinput (32)

Operations that result in the insertion and deletion of nodes are scattered throughout
both the load and restrict phases, but calculating the time spent executing them is straight-
forward. Unlike procedure bottom-up, in procedure top-down nodes are never merged. Other
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Incorporate Node N Into Quadtree R

1. B4 + the smallest block in K which covers N.
2. delete By from R.
3. while B4 is larger than N do begin

4, for each child block B of B4 which does not cover N
do begin

5. Ng < the RQT node whose extent is By and elevation
data obtained from the input.

6. insert Ng into R.

end

7. B4 «— the child block of B4 which does cover N.

end

8. insert N into R.

Figure 3.16: Procedure incorporate which incorporates a node into an RQT. It is an auxiliary
routine for the top-down algorithm.

than the root, nodes are inserted only when their parents are decomposed. Since their total
number is known, the amount of work they require can be computed. If the final result
contains Lg,q leaf nodes, then (Lg, — 1)/3 internal nodes must have been present at vari-
ous times during its construction. Each node was replaced by its four children when it was
deleted. Rounding up this number to Lg,q./3 we find that constructing the RQT actually
takes

L na
Tconstruct = %(Tdelete + 4 x Tinsem‘) (33)

In the worst case, any single operation on the RQT requires a traversal of a path from
the root to a leaf node, having a cost of log Lg,.. For simplicity we assume that all of
Tretricves Linsert and T'gereqe are proportional to log Lg,,.i. Therefore, the above expression can
be rewritten as

Tconstruct X Lﬁnal 10g Lﬁnal (34)

The third term contributing to Tj,,_gouwn, the time required to restrict the quadtree
(procedure restrict), is difficult to gauge exactly since it depends on the shape of the surface
being modeled. However, it can be assessed using amortization analysis. Note that since
nodes are never merged in the course of top-down construction, all deletions and insertions
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Top Down Construction

1. R+ an empty RQT structure.
2. Load input data into R (see Figure 3.18).

3. Restrict R (see Figure 3.19).

Figure 3.17: Procedure top-down which constructs a RQT from raster data.

of nodes, including those performed by procedure restrict, have been accounted for in the
calculation of Ty, st However, restrict also retrieves nodes from the partially constructed
tree to determine the size ratios of neighboring nodes. We will show that although some
nodes may be retrieved multiple times, on the average a node is examined a constant number
of times.

Table 3.1: Costs associated with the different scenarios a node may be subject to in procedure
restrict.

scenario | retrievals | unmarked | marked
1 8 +3 0
2 4 +4 -1
3 8 -1 +1

Let M denote the number of marked nodes and U the number of unmarked nodes at
any given time during the execution of procedure restrict. Examination of the code reveals
that when a node B is processed, there are only three possible outcomes, summarized in

Table 3.1:

1. B has neighbors that are too small to coexist with it (line 4 in Figure 3.19). As many as
eight neighbor nodes must be retrieved. B is then replaced with its four children. Since
both B and its new children are unmarked, this operation’s net result is to increase U
by three, while leaving M unaffected.

2. B gets processed by the helper procedure backtrack (line 5 in Figure 3.19 and line 1
in Figure 3.20). Since this procedure is applied only to marked nodes, it follows B
is marked. Procedure backtrack first searches for any neighbors that are larger than
B. Since on any given side of a node, a larger neighbor must be the sole neighbor,
only four retrievals are necessary to locate all of B’s larger neighbors. The procedure
continues by replacing the marked node B with its unmarked children. Consequently,
U is increased by four and M is reduced by one.
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Load Data Into an Empty Quadtree R

. for S ranging through all permitted block sizes (from the
size of the input down to size of an atomic node) do begin

for each possible block B of size S do begin

Np «— the RQT node whose extents are B and whose
elevations are obtained from the input.

if B is the root block then
insert Np into R
else begin

N; «— the RQT node whose extents are B but
whose elevations are computed from R.

if Np and N; disagree on elevation at any point by
more than the predefined tolerance then
incorporate Np into R (see Figure 3.15).

end

end

end

Figure 3.18: Procedure load which loads input data into an empty RQT.

3. B is compatible with its neighbors and requires no updating (only lines 6 and 7 of
Figure 3.19 get executed). Again, as many as eight neighbors of B need to be retrieved
to verify this. Subsequently, B is marked, reducing U by one and increasing M by one.

Let K; be the number of times scenario 1 is encountered in the course of processing a
surface, and let K, and K3 be defined similarly. The total number of retrievals K, irievals

performed by procedure restrict is given by

[(Tetm'evals = 8[(1 + 4[(2 + 8[(3

Let Liniermediate denote the number of nodes in the quadtree produced by procedure load,
and, as above, let Lg,, be the number of nodes in the final, restricted quadtree. Initially
U = Litermediate and M = 0, since all the nodes start out as unmarked. Following the
execution of procedure restrict, ' = 0 and M = Ly, . Equation 3.6 restates these conditions

for U while Equation 3.7 restates them for M:

Lintermediate + 3[(1 + 4[(2 - [(3 =0
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Restrict quadtree R

1. R+ an unrestricted quadtree with all its blocks
initially unmarked.

2. for each unmarked block B in R do begin
3. locate all of B’s neighbors in f.

4. if the size of any of B’s neighbors is smaller
than half the size of B then
delete B and insert its four unmarked children.
else begin

5. apply procedure backtrack to any of B’s marked
neighbors that is larger than twice the size of B
(see Figure 3.20).

6. adjust the configuration of B and that of its
neighbors to conform with the desired RQT
(4-triangle or 8-triangle rules; see Section 3.2).

7. mark B.

end

end

Figure 3.19: Procedure restrict which converts a non-restricted surface model into an RQT.

Ks— Ky = Lgyu (3.7)

Eliminating Ky we get

1
[(1 + [(3 - §(4Lﬁnal - Lintermediate) (38)
From Equations 3.7 and 3.8 we have
. . . . 1
[Xz < [§3 < [Xl + [XS == §(4Lﬁnal - Lintermediate) (39)
. : ; 2

[Xl + [XZ + [XS < §(4Lﬁnal - Lintermediate) (310)

Recalling Equation 3.5:

, ; ; ; 16

[Xretm'evals < 8([&1 + [XQ + [Xg) < ?(4Lﬁnal - Lintermediate) (311)
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Backtrack Over Marked Node N

1. Apply procedure backtrack (this procedure) to any of N'’s
neighbors that is larger than twice the size of N.

2. Delete N from R.

3. Insert the 4 unmarked children of N into R.

Figure 3.20: Procedure backtrack which recursively handles large marked nodes. It is an
auxiliary routine for procedure restrict.

In the worst (and practically impossible) case of Liyiermediate = 0, the number of retrievals
done by procedure restrict is no more than %Lﬁm;. This is a very crude approximation, but
it is sufficient to show that K,eipicvats 18 O(Lfinar). Assuming again that Treypiere is O(log Lgnar),
the total time required to restrict the quadtree is

Trestm'ct X Lﬁnal 10g Lﬁnal (312)

The total running time for the top-down algorithm can now be stated as
Ttop—down — Teammine + Tconstruct + Trestm'ct = O(NTmput + Lﬁnal 10g Lﬁnal) (313)

This seems to be the optimal result that the top-down algorithm was designed to attain—
an execution time proportional to the size of the output produced rather than the size of the
input (if not for the term containing N). It is interesting to observe that analyses of sub-
linear algorithms often ignore the fact that, in principle, the input size may be driving the
algorithm’s execution time. It is usually assumed that modern operating systems are capable
of reducing the overhead in making the input available to the point that it is negligible when
compared with the other tasks performed by the algorithm being studied. However, in our
case this assumption fails: the algorithm accesses input in an unpredictable manner. In fact,
Tinput can entail a physical disk access, and therefore cannot be ignored.

Clearly, the above concerns do not apply if sufficient random-access memory (RAM) is
available to store the entire input dataset. The input values can then be accessed in any order
without penalty. In order to handle real-world applications that are likely to involve larger
datasets, we propose to decompose the input into blocks, along the lines of the decomposition
that the first few levels of a quadtree would follow. The data relevant to each such block
would be placed in a separate disk-based subfile in DTM format, using procedure split-file
of Figure 3.21. The number of levels used is chosen based on the amount of available RAM;

each such subfile should fit entirely into a RAM buffer.

Procedure split-file must obviously read every input item and then write it out, so essen-

tially it moves 2N items. However, since consecutive data transfers are the most efficient, a
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Split Input into Subfiles

1. n < the side of the input.

2. d < the depth of subfile decomposition. There will be 4¢
subfiles generated, arranged in a 2? x 2? array.

3. m «— n/Zd—I—l (the dimension of a subfile).
4. for m; =1 through 2¢ do begin

5. for r=1 through m do begin

6. read a row from the input.
7. for m, = 1 through 2¢ do begin
8. write the next m items from the row into

subfile [mg,mq].
end
end

end

Figure 3.21: Procedure split-file which splits the input file into subfiles, each small enough
to fit entirely into the available RAM.

better measure of execution time is the number of such transfers initiated. Each row in each
subfile requires a separate transfer since a row is the longest chunk of data the algorithm
can move without interruption. If the input file (of n x n items) is split into 4¢ subfiles, then
n(l + Zd) consecutive data transfers are required.

The main penalty of splitting the input into many smaller files is not time but space.
Not only the input file and the result RQT need to be accommodated, but the subfiles as
well. The subfiles take as much space as the input does, which could be considerable. On the
other hand, the input can easily be reconstructed from the subfiles, so if space is an issue,
the original input file may be discarded after it is split and its space released.

Procedure load of Figure 3.18 is then run on each subfile, either in sequence or, if the
appropriate hardware is available, in parallel. The output from all the invocations of load
is accumulated in a single RQT structure. This can be done because the part of the surface
processed by each such invocation is disjoint from the part used by any other, and so are the
extents of the resulting RQT nodes. The output streams from different invocations of load
therefore do not interfere with each other.

After the entire input is processed, the RQT that has been built contains all the eleva-
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tion data. However, in fact it is not an RQT; blocks of different sizes may freely border
each other in violation of neighbor restrictions. This occurs not only inside subfiles, but
mostly on the boundaries between subfiles. The nodes on both sides of such boundaries
are created by different invocations of load which do not communicate and cannot resolve
such inconsistencies. Here is where the utility of having the restrictions imposed in a second
pass on the output comes in handy. Procedure restrict can now be run once on the total
output, reforming it into a true RQT. This out-of-core version of the top-down procedure is
described in Figure 3.22.

Out-of-core Top Down Construction

1. R+ an empty RQT structure.
2. for each subfile SF do begin
3. read subfile SF into a RAM buffer.

4. load the contents of S/ into R using procedure load
(see Figure 3.18).

end

5. restrict R (see Figure 3.19).

Figure 3.22: The out-of-core version of procedure top-down with the code of Figure 3.17
upgraded to work with very large datasets.

3.4.3 Experimental Results

The construction algorithms were tested on three datasets, each a raster of 513 x 513 eleva-
tions:

1. “Salisbury east 2,07 is part of an area on Maryland’s eastern shore which is essentially
very flat (Figure 3.26). Elevations on this map are between 0 and 5 meters.

2. “data”, a map of unknown origin. It describes terrain of moderate variability (Fig-
ure 3.27). Its elevations range between 0 and 206 meters.

3. “Reno west 0,07 is a portion of an area near Reno, Nevada, in the midst of the Rocky
Mountains, that is quite rugged (Figure 3.28). Its elevations reach 3244 meters.

The first and third maps are from the USGS 1-degree DTED DEM collection [USGS90].
They are both sections of size 513 x 513 cut from an original USGS sheet, which measures
1201 x 1201.
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The results of construction times are summarized in Table 3.2 and shown graphically
in Figures 3.23, 3.24 and 3.25. It is clear that the top-down algorithm is faster than the
bottom-up most of the time, as expected. The bottom-up algorithm outperforms the other
only for very low tolerances, where the final result is is very close to a complete tree. In that
case, as explained in Section 3.4, the bottom-up algorithm can terminate shortly after its
input phase, whereas the top-down algorithm must go through all the intermediate nodes
first, and then perform an equivalent of the input phase.

Table 3.2: Experimental results of constructing various maps, using the 8-triangle rule.
Execution times on a SUN SPARCstation 5 are given in seconds.

map name | map size | algorithm tolerance
1 [ 3 ] 10 | 30 | 100 | 300
Salisbury | 513 x 513 | top-down | 220 | 197 | 170 | 171 | 172 | 173
east 2.0 bottom-up | 1100 | 1073 | 1046 | 1040 | 1037 | 1035
data 513 x 513 | top-down 299 | 233 | 207 | 192 | 174
bottom-up | 1106 | 1032 | 1038 | 1027 | 1040 | 1046
Reno 513 x 513 | top-down | 1337 | 1250 | 876 | 413 | 256 | 204
west 0,0 bottom-up | 1424 | 1696 | 1500 | 1166 | 1119 | 1079

An interesting phenomenon involves the behavior of the running times for the bottom-up
algorithm. It was expected that its execution time would increase with the tolerance of
the map being constructed, since for larger tolerances more nodes need to be merged. Ex-
perimentation shows that this is true initially, but then the time trends downward, just as
top-down does.

The reason for this behavior stems from the inhomogeneity of the terrain. It would not
occur if the terrain were evenly flat or evenly rugged, and is particularly pronounced in maps
that have spots of great variability as well as relatively flat areas, such as “Reno west 0,0”.
When building with low tolerance, the first pass of the bottom-up algorithm ends up merging
just a few nodes, leaving the leaf layer of the RQT very populated. In an inhomogeneous
map, however, there are some regions of slow variability which require several passes to fully
construct. (Recall that the bottom-up algorithm processes a single layer in each pass.) As
a result, the relatively populated leaf layer of the RQT gets traversed several times. On the
other hand, when the construction is done using a high tolerance, many of the nodes get
merged directly in the algorithm’s first pass, leaving fewer nodes to process in each of the
subsequent passes.
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Figure 3.23: Construction times of map “Salisbury east 2,0” using bottom-up and top-down

algorithms.
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Figure 3.24: Construction times of map “data” using bottom-up and top-down algorithms.
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Figure 3.25: Construction times of map “Reno west 0,0” using bottom-up and top-down

algorithms.
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Figure 3.26: Perspective display of the 513 x 513 surface “Salisbury east 2,0”7. This is an
example of a tame surface with little variation. Range of elevations: 0 — 5 meters.
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Figure 3.27: Perspective display of the 513 x 513 surface “data”. This is a moderate surface

example, whose elevation range between 0 and 206 meters.

Figure 3.28: Perspective display of the 513 x 513 surface “Reno west 0,0”. This is an example
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of rugged terrain. Range of elevations: 1341 — 3244 meters.



Chapter 4

The PMR Quadtree

4.1 Introduction

The PMR quadtree is a quadtree variant with many applications. In this dissertation it is
used to support surfaces modeled by arbitrary triangulations (see Chapter 5). In the course
of its implementation, however, some issues have come up that are interesting in their own
right, and they will be covered in this chapter.

This chapter is organized as follows: After describing the PMR quadtree and what it
is that makes it different from other quadtree variants (Section 4.2), algorithms for two
operations that we have implemented are described: finding a nearest object to a given
point in Section 4.3, and reporting all the objects found within a specified region of space in
Section 4.4.

4.2 Definition

The PMR quadtree is a spatial data structure that manages spatial objects symbolically. It
is effective in limiting searches to a vicinity of the search point to determine the existence
of objects. Unlike the area quadtree, however, it is less suitable for queries involving the
extents of objects.

While an area quadtree actually codes the extents of the objects it contains (by means of
a raster), the PMR quadtree manipulates labels which identify objects, placing each in the
parts of space in which the labeled object resides. This symbolic approach allows for greater
flexibility. Thus the PMR quadtree can store objects whose descriptions are arbitrary (i.e.,
not confined to being a raster), and objects of different types can be combined in a single
structure. The dimensionalities of the stored objects may be different from that of the space
they are in (e.g. line segments embedded in the plane), and their extents may overlap.

The PMR quadtree decomposes space recursively into blocks, possibly of differing sizes.
Each block is associated with the descriptions of the objects that spatially intersect it.
Objects which span several blocks have their identifiers associated with each block that they
intersect. The decomposition is carried out so that the number of objects associated with
any block is bounded.

More specifically, the construction of a PMR quadtree is controlled by a parameter known

as its splitting threshold (or simply threshold). If, following the insertion of a new object,
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the number of objects associated with a block exceeds this threshold, the block is split
once but only once. Although it is possible that the number of objects in one or several
of the resulting child blocks still exceeds the threshold, they are not decomposed during
this insertion cycle. There is no guarantee, therefore, that the number of objects associated
with a block does not exceed the threshold. This nondeterministic approach has been found
in practice to be quite effective [Nels86a]. Its drawback is that the structure of the tree
is somewhat random (alluded to by the ‘R’ in “PMR”) and is dependent on the order in
which the objects are inserted. The PMR quadtree was presented in [Nels86a], where the
application of such a structure to a collection of line segments in the plane was described

(and the term “PMR”coined).
A PMR quadtree is defined as follows:

1. When inserting a new spatial object, associate it with each quadtree block spanned by
the object.

2. If, as a result of insertion, the number of objects associated with a block exceeds the
predefined threshold, split that block once.

3. Following the deletion of an object, all sets of sibling blocks whose combined population
drops below the threshold are merged. In contrast with the case of insertion, merging
is carried out recursively to completion.

4.3 Nearest Object

4.3.1 Motivation

Since the PMR quadtree keeps track of the spatial locations of objects, finding the nearest
object to a given location (called the search point) is a natural query to pose. Such a
query arises frequently in applications such as vector quantization ([Arya94]) and statistical
pattern recognition ([Same94a]). The problem of finding the nearest line segment in two-
dimensional space was studied in [Hoel91]. However, the principles of that algorithm apply
to higher dimensions as well. The three-dimensional version of the algorithm is described
below.

4.3.2 The Principle

Due to its construction, any non-leaf block in a PMR quadtree must contain at least a
threshold number of objects. This is because the construction rules dictate that a block is
decomposed (ceasing to be a leaf) only if its population exceeds the threshold. Conversely,
when the population of a non-leaf block falls below the threshold the block’s descendants
are repeatedly merged until it becomes a leaf.

As a minimum, it may be assumed that a PMR quadtree’s threshold is at least one. (A
smaller threshold would entail a block splitting with every insertion, and would prevent blocks
from merging on deletion. With enough objects, such a PMR quadtree will deteriorate into
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a grid of atomic-sized blocks.) Combining the two results, it is guaranteed that any non-leaf
block of every PMR quadtree contains at least one object.

This lower bound on density places an upper bound on the distance from any search point
and the object nearest to it, when measured in block sizes. Let the leaf block containing the
search point be the base block and its immediate ancestor be the parent block. The parent
block contains the search point by virtue of containing the base block. From the argument
made above, the parent block is guaranteed also to contain an object (since it is not a leaf).
Let this object be the limiting object. Since both the limiting object and the search point

are inside the parent block, the distance between them cannot exceed the longest diagonal of
that block. There may be other objects, perhaps in neighboring blocks, that could very well
be nearer the search point than the limiting object, but this diagonal represents an upper
bound. The search can therefore be limited to the volume of a sphere centered about the
search point and having a radius equal to the longest parent block diagonal (Figure 4.1).

Figure 4.1: The scope of search for a nearest object in a PMR quadtree can be limited to
a sphere whose radius is the distance between the search point (A) and the furthest point
from it in the parent block (the parent of the block containing A).

It should be noted that this limit is on the number of blocks traversed, not on the
number of objects tested. Since quadtrees are a method for decomposing space, algorithm
complexity may be measured in terms of the number of quadtree blocks accessed. Assuming
a 1-1 correspondence between block accesses and disk accesses, the number of blocks accessed
can be a good predictor of execution time. From a geometric standpoint, a better idea would
be to measure the work done in terms of the number of objects from which a nearest one must
be chosen. However, using such a measure depends on establishing a connection between the
number of objects in the space and the number of blocks needed to adequately cover them
in a PMR quadtree. It is difficult to obtain such relationships in general, and the random
character of the PMR quadtree makes it even more difficult; hence no attempt will be made
to use such a measure here.

4.3.3 The Expanded Block List

This limit on the search region is given in terms of the search point and a radius, quantities
that are unrelated to the elements of the PMR quadtree, i.e. blocks. Expressing this volume
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in terms of quadtree blocks depends on the metric being used. The most convenient in this
regard is the L., (i.e., chessboard) metric, in which the locus of all points equidistant from
a given point resembles a PMR quadtree block. However, in reality, the metric used most
often is the Euclidean one (L3) in which this locus (a sphere) is quite different from a block.

Assuming the more practical case of the Euclidean metric, it is helpful to determine which
blocks intersect the search sphere in order to search only those. Such a list will be referred
to as an expanded block list to differentiate it from a more concise list to be proposed later.
Invariably, many of the blocks in the expanded list will only be partially inside the search
sphere, so the volume covered by the union of all the list’s blocks is larger than that of
the search sphere. However, specifying the search region in terms of blocks considerably
simplifies the access to the PMR quadtree.

To simplify the generation of the expanded block list, it is assumed that the PMR quad-
tree is populated with blocks of a single size, equal to the size of the parent block. The
space to be searched is delineated by listing those equal-sized blocks that are in it, specitying
their coordinates relative to the base block. In reality, a PMR quadtree will seldom be so
uniform, and the algorithm must be able to handle mismatches between the blocks in the
list and those actually found in the PMR quadtree (Figure 4.4). But under a uniform object
distribution, this approach strikes a balance between covering too much space beyond the
search sphere and making the list too long. As we shall see, even this list of uniform blocks
can become prohibitively long in high dimensions.

w N
]

(a) (b)

Figure 4.2: Different cases of search spheres in a two-dimensional PMR quadtree. (a) The
sphere with the largest radius. (b) A different case, showing that the largest sphere does
not subsume all other cases. The gray square indicates the base block.

It would be best if the expensive step of generating the expanded block list could be done
once and for all, to cover all cases. Note that the union of the search spheres induced by all
possible search points is not in itself a sphere. For example, consider Figure 4.2. The sphere
with the largest radius results when the search point is at the extreme corner of the parent
block W (Figure 4.2a). A smaller sphere is generated if the search point is X of Figure 4.2b,
but nevertheless it is not subsumed by the larger sphere. The union of all such spheres
is indicated by the light gray area in Figure 4.3. Note that the set of blocks which cover
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this general search area is identical to the set required to cover only the maximal sphere.
Consequently, the list of blocks to traverse is independent of the specific placement of the
search point and hence is known prior to performing the search. Figure 4.3 shows in medium
gray the blocks that need to be visited in the two-dimensional case. In the worst case, twelve
blocks equal in size to that of the parent block must be accessed.

.T

Figure 4.3: Blocks that should be searched in a two-dimensional PMR quadtree. The dark
gray square is the base block. The light gray area shows the union of all possible search
spheres. Medium gray indicates the blocks on the expanded block list.

4.3.4 The Algorithm

Given an expanded block list, the algorithm described in Figure 4.4 can be applied. It scans
the list and determines the nearest of all the objects found in any of them. This is faster
than scanning the complete PMR quadtree from which the list was drawn.

Several heuristics can be applied to improve the algorithm even further. The blocks in
the list should be sorted according to their distances from the search point. That way the
algorithm can terminate before the list is exhausted, in case it reaches a block whose distance

from the search point is greater than that of the nearest object found so far (variable D of
Figure 4.4).

The problem with keeping the expanded block list sorted is that the list can no longer be
generic, as the block order depends on the actual location of the search point. Moreover, a
sort is required each time step 7b of the algorithm is executed since at that point new blocks
are added to the list. This latter difficulty can be minimized by sorting only the set of new
blocks and then merging it with the main list, which is already sorted.
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Find Nearest Object

1. P« the search point.
2. R+ ¢ /* the result */.

3. D« the distance between P and the vertex of the parent
block farthest from it.

4. [+ the expanded list with all its blocks marked
"unprocessed".

5. if all the blocks in [ are processed then
output R and stop.

6. S < the first unprocessed block in L.

7. Search the PMR quadtree for block S. Let [/’ be the block
actually found. There are three possibilities:*

a. S=1I": go to step 8.

b. S D F: replace the reference to S in the expanded
list with references to all of its descendants. Mark
them them all as "unprocessed'" and go to step 6.

c. SCF: scan the unprocessed blocks in [ and remove
references to any block which also falls inside [.
(This is done to avoid redundant visits to the same
block.) Then go to step 8.

8. for each object r in block F do begin
9. d «— the distance between r and P.

10. if d =D then
R~ RU{r}.
else if d < D then begin
R—r.
D —d.
end
end

11. Go to step 6.

“Note that for any two quadtree blocks A and B, exactly one of the following relations
holds: ANB=A, ANB=Bor ANB=¢.

Figure 4.4: Algorithm for finding the object nearest to a given point in a PMR quadtree.
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4.3.5 Nearest Object in 3-D

The list of blocks intersecting the search sphere in the case of three dimensions is illustrated
in Figure 4.5 and drawn algorithmically in Figure 4.6.

Figure 4.5: Blocks that should be searched in a three-dimensional PMR quadtree. A denotes
the base block, while B denotes the parent block.

4.3.6 Nearest Object in Arbitrary Dimensions

There is a theoretical difficulty in conducting nearest neighbor searches in higher dimen-
sions. The amount of space overhead (i.e. of space traversed even though it is outside the
search sphere) can grow quite large as the dimensionality of the space increases. This is
because the number of “corners” (i.e., the sections of a block near its vertices into which the
circumscribed hypersphere cannot reach) grows exponentially with dimension. As a result,
the ratio between the volume of a hypersphere and that of its circumscribing hypercube
decreases exponentially with dimension. This property of spaces of high dimensions makes
searching them particularly time-consuming [Spro91].

Table 4.1 contains the actual values of this ratio for dimensions ranging from 1 to 14.
Equation 4.1 is the formula for calculating the volume of a d-dimensional hypersphere of
diameter D (from, for instance, [Apos69, pp. 411-412]).

Va(D) = CEy (g)d (4.1)



expanded block list for 3-D

Let P denote the vertex shared by the base and the parent
blocks (there is exactly one such vertex);

1. The parent block.

2. All blocks sharing one of the parent block’s faces which
are incident on P (at most three).

3. All blocks sharing one of the parent block’s edges which
are incident on P and have not been listed already (at
most three).

4. All blocks incident on P that have not been listed already
(at most omne).

5. All blocks sharing a face with any of the blocks listed in
items 1, 2, 3 and 4 (at most 24).

6. All blocks sharing an edge with any of the blocks listed
in items 1, 2, 3 and 4, excluding blocks listed in item 5
(at most 24).

All blocks in the expanded list have the same size as the
parent block.

Figure 4.6: Algorithm to find the blocks in the expanded search list for a three-dimensional
PMR quadtree.

Equation 4.1 can be simplified (avoiding the I' function notation) if odd and even dimen-
sions are calculated separately. Equation 4.2 can be used for odd dimensions, while Equation
4.3 applies to even ones.

d—1 d—1
2173 (d""—l)! 72
Vodd D) = 2 Dd: Dd 4.2
d ( ) (d—l—l)! d-l;'(d;1+1)'(d;1—|—2)'-..'d ( )
d d
T2 T2
even D) = d: Dd 4.
vito) 24(4)! 4-8-12-...-2d (4.3)

The scheme described in Section 4.3.4 may be extended to an arbitrary number of dimen-
sions provided the list of blocks covering the search sphere can be produced automatically.
Tabulating an expanded block list in advance can reduce the inefficiency inherent in high-
dimensional searches. Although generating such a list even off-line is a lengthy process, it
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Table 4.1: The volume of a d-dimensional hypersphere having unit diameter.

dim formula volume || dim formula volume
1 1 1.00000 2 z 0.78540
3 33 0.52360 4 g 0.30843
5 il 0.16450 | 6 . 0.08075
7 I 0.03691 | 8 | 0.01585
9 T 1000644 | 10 | gemesgs | 0.00249
11 76.7.8.7;6.10.11 0.00092 || 12 m 0.00033
13 7.8.9.10-11-12-13 000011 14 m 000004

needs to be done only once per dimension: once completed, it can be applied to any PMR
quadtree of the associated dimension.

One way to create an expanded block list is to determine a part of space that is guaranteed
to contain all possible search spheres (this can be done since the search radius is bounded
a priori), and then to exhaustively test all blocks within it. Any block situated so that it
could be part of some search sphere is included in the list.

The difficulty with this approach lies in the sheer size of the resulting list, which at higher
dimensions can become prohibitive. The ratio S; between the volume of the search sphere
and that of the parent block provides a lower bound on the size of the expanded block list.
Since the union of the listed blocks covers the search sphere, their total volume must be at
least as large as that of the sphere. From the fact that the radius of the search sphere is
the longest diagonal of the parent block, and hence proportional to the square root of the
dimension, and Equation 4.1, an expression for this ratio Sy can be written:

s
Si= ———(Vd)* 4.4
Using Stirling’s approximation for the I' function,
I'(z+1) = V2rza©e™ (4.5)
Equation 4.4 can be approximated as
2me)s
gy~ 279 (4.6)

which is Q(2¢). Moreover, in order to obtain the expanded block list we may have to inspect
all the blocks within a cube circumscribing the search sphere. A search sphere of radius v/d is
circumscribed by a cube whose volume is 2\/Ed, which can pack O(d?) blocks of parent-block
size. Fortunately, the number of symmetries embedded in the geometry of this construction
offers several heuristics which drastically reduce both the size of the expanded block list and
the amount of computation involved.
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The only factor determining whether a block should be included in the expanded block
list is its distance from the search point. Euclidean distance is computed by summing squares
of coordinate values. The distance function is therefore invariant to changes in the signs of
the coordinates (since they are squared) as well as to permutations they may undergo (since
summing is commutative). A given set of coordinates can represent several distinct points,
all equidistant from the search point, if their signs and order are allowed to change. It is
therefore possible to generate a core list, in which each block is representative of many blocks
appearing in the the expanded block list (hence the term “expanded”). Specifically, a block
B. in the core list represents any block B. whose coordinates can be derived from those of
B. by permuting their order and changing their signs. Since any block so derived has the
same distance (from the search point) as B., if the latter intersects the search sphere so will
all the derived blocks. If the blocks in the core list are sorted by their distances from the
search point, then this property facilitates the generation of the expanded block list directly
in sorted order as well; we simply add to the expanded block list all the blocks derived from
a single block in the core list before processing any subsequent core list blocks.

The size of the core list also grows exponentially with dimension, but it is several orders
of magnitude smaller than the corresponding expanded list. Table 4.2 compares the size of
the core list with that of the expanded block list, as well as with the size of the search sphere
(expressed in terms of parent block volumes).

core list for any dimension d

1. R« the radius of the maximal search sphere (= Vd) .

2. Nest d loops, one per coordinate; each loop starts with
the current value of its predecessor loop, as follows:

for ( ¢ =0 to R) do
for ( ¢c;=¢ to R) do
for ( c3=c¢y, to R) do

for ( ¢4 =c4_1 to R) do
if (X4, ¢2 <d) then

add (c1,¢2,...,¢4) to the core list

3. stop.

Figure 4.7: The list of PMR quadtree blocks to traverse to find nearest objects in the case
of three dimensions.

Figure 4.7 provides the details of the algorithm used to derive the core list. It uses a
stack of nested for-loops whose depth is determined at run time. In practice, this can be
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Table 4.2: A comparison of the size of the core and expanded block lists for various dimen-
sions. The volume of the search sphere (in units of parent block volume) is provided as a

benchmark for the shortest expanded list theoretically possible.

core expanded volume of
dim | list block list | search sphere
1 1 2 2.00
2 2 12 6.28
3 3 56 21.76
4 4 240 78.95
5 6 1152 294.25
6 8 6336 1116.23
7 10 35968 4287.69
8 12 196352 16624.5
9 15 1031168 64924.6
10 19 5384192 255016

12 27 | 1.569 x 10® 3.987 x 10°
14 38 | 4.751 x 10° 6.317 x 107
16 50 | 1.419 x 10" | 1.010 x 10?
18 67 | 4.296 x 102 | 1.629 x 10%°
20 87 | 1.313 x 10 | 2.643 x 101!
25 156 | 6.867 x 1017 | 2.854 x 10
30 265 | 3.665 x 1021 | 3.145 x 10'7
35 422 1 1.984 x 10% | 3.513 x 10%°
40 648 | 1.081 x 10?7 | 3.963 x 10*
45 963 | 5.975 x 10%* | 4.507 x 10%*°
50 | 1394 | 3.312 x 10%° | 5.156 x 10**
60 | 2742 | 1.032 x 10* | 6.845 x 10°°
70 | 5037 | 3.261 x 10°! | 9.214 x 10*!
80 | 8779 | 1.041 x 10° | 1.253 x 10%®
90 | 14671 | 3.349 x 10 | 1.717 x 10°
100 | 23672 | 1.084 x 10™ | 2.368 x 10%°

achieved by a recursive function, where each invocation represents one loop. It is also useful
to include in each loop (or in the single recursive function) a test to check if the sum of the
squares of all the coordinates fixed so far (in all enclosing loops, including the present one)
already exceeds the space dimension, in which case we break out of the present loop. This
test, although not necessary for correctness, cuts the running time by 99.9% in dimension
70, for example.

60



4.4 Windowing

Another useful operation supported by the PMR quadtree is windowing (also known as range
query), which is concerned with determining which objects are included in a given region of
space. The semantics of the query can either be exclusive, selecting only objects completely
contained in the window region, (Figure 4.8b), or inclusive, where all objects having a non-
empty intersection with the query region qualify (Figure 4.8c). In the inclusive case there is
the further choice of reporting objects only partially in the region in their entirety or clipping
them to the region (Figure 4.8d).

RS N
(b) © @

(@)

Figure 4.8: Various ways of interpreting a windowing operation. (a) A section of a PMR
quadtree containing a query window. (b) Exclusive: only objects completely contained in
the window are selected. (c¢) Inclusive: all objects intersecting the window are output in
their entirety. (d) Clipped: objects not completely contained in the window are clipped.

The mechanics of any of the windowing algorithms depends on the PMR quadtree well as
on the properties of objects included in the query window. To determine whether an object
is completely contained inside the query window, or to clip it against that window if it is
not (operations called for by the inclusive and clipped versions of the algorithm), a complete
description of an object is required. We confine the present discussion to that part of the
algorithm that is common to all three approaches, which pertains only to the PMR quadtree
and is independent of the actual objects involved.

4.4.1 Previous Work

Practical PMR quadtrees are large enough to be disk resident, so each block read may, in
reality, involve a disk access. A good algorithm, then, would attempt to minimize the number
of PMR quadtree blocks accessed and the number of times each one of them is read. Ideally,
blocks having non-empty intersections with the window should each be read once, and other
blocks not at all.

An algorithm having such optimal behavior is described in [Aref92¢]. It is limited to
rectangular query regions that are axis-aligned (i.e., rectangles whose edges are parallel
to the major axes). It uses the region quadtree decomposition ([Same90a]) of the window
itself. The blocks that comprise this decomposition window drive the search for blocks in
the underlying quadtree where the objects are stored.
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The algorithm in [Aref92¢] is therefore not limited to a specific quadtree type or a partic-
ular query. When focusing on PMR quadtrees, however, several assumptions can safely be
made that are not true in general. We revisit this algorithm with these assumptions to yield
simpler code, without sacrificing the benefit of accessing blocks that overlap the window once
and others not at all.

The algorithm [Aref92¢] employs three support data structures in addition to the PMR
quadtree being windowed:

1. A quadtree decomposition of the window, implemented as a linked list of blocks.

2. An active border to keep track of the part of the window already processed. The
active border is implemented with two linked lists representing the western and eastern
boundaries of the area covered. Note that the northern border is immaterial and the
southern one is taken care of directly in the algorithm.

3. An unspecified mechanism for returning the result of the window query back to the
user.

The algorithm presented here provides a mechanism for returning the result (another
PMR quadtree). It also removes the restrictions on the shape and alignment of the query
window.

4.4.2 The Algorithm

Algorithm window described here accepts a collection of objects arranged in a PMR, quadtree,
labeled source, and a region of space serving as a window represented in any suitable way.

The algorithm eventually produces the subset of objects which intersect the window. The
window may have any shape and the algorithm is applicable to spaces of any dimensionality.

The role of returning the result of the window query is carried out in the present imple-
mentation by another PMR quadtree, labeled result. Although convenient from an imple-
mentation standpoint, this places an additional requirement on the algorithm which is not
shared by the one in [Aref92c]. In particular, in addition to listing the objects found in the
window, our algorithm window must also provide the appropriate PMR quadtree decompo-
sition of the space that they occupy. Fortunately, this decomposition is closely related to
that of the source quadtree, as explained below, so that the overhead incurred is usually
small.

Observation: if block s € source and parent(s) C window then s € result.  The
block decomposition of any non-degenerate subtree of the result quadtree is identical to
that of the corresponding subtree in the source quadtree whenever its root is completely
contained within the query region. This follows from the property of the PMR quadtree
discussed in Section 4.3.2 which states that the number of objects in a non-terminal PMR
quadtree block is at least as large as the threshold. If the parent of a block is completely
contained within the window, then all the objects it contains are included in the result.
Since block decomposition in the PMR quadtree is driven only by the distribution of objects
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within it, the conditions which led to the particular decomposition of the source quadtree
for this block are also present in the corresponding result quadtree. Blocks of this nature
can account for the bulk of the query window if it is large in terms of the sizes of the source
quadtree blocks that it overlaps.

The algorithm scans all the blocks (terminal and non-terminal) that are found in a tree
representation of the source quadtree. In reality, it is not essential that a tree representation
be used; this is assumed here only for the purpose of facilitating the description of the
algorithm’s operation. The blocks of the source quadtree are classified as follows:

e blocks completely outside the window,
e blocks completely inside the window, and

e the remaining blocks: those which intersect the window boundary.

Blocks residing outside the window can be safely ignored, since nothing they (or their
descendants) may contain can be relevant to the result. Non-terminal blocks completely
inside the window, according to the observation above, serve as roots of subtrees which
are replicated in the result verbatim. Terminal blocks inside the window and any block
intersecting the boundary require further consideration: the former since their presence in
the result is not guaranteed, the latter because they may contain objects that are not in the
window at all.

Specifically, the algorithm performs a top-down depth-first traversal of the source quad-
tree. Any block falling outside the window is discarded. Any non-terminal block inside
the window is copied, along with all its descendants, into the result quadtree. Boundary
non-terminal blocks are decomposed and this classification is applied recursively to their

children.

Eventually, only terminal blocks remain. Those outside the window are discarded. The
rest are examined for the objects they contain, which are placed in an auxiliary list. Blocks
completely inside the window contribute all their objects to the list, while the objects in
boundary leaves must be tested individually, since such leaves may conceivably contain
objects that are outside the window.

Once the traversal of the source quadtree is done, a partial result quadtree has been
generated as well, consisting of the subtrees rooted in blocks completely inside the window. In
addition, any objects that may still be missing from the result are available in the object list
mentioned above. Inserting the objects on the object list into the result quadtree completes
the production of the desired result. It is assumed that the insertion methods of both the
result quadtree and the object list eliminate duplicates, so that an object residing on the
boundary of two or more blocks does not end up being inserted multiple times.

Pseudo code for the top-level control structure of the window algorithm is given in Fig-
ure 4.9 and its recursive component, window-block, in Figure 4.10. The algorithm presented
here has the semantics of inclusive windowing, as depicted in Figure 4.8c. However, simple
changes can accommodate the other variants. Changing step 5 of window (Figure 4.9) to
clip each object against the window before it is inserted into the result quadtree will result
in the clipped version of the query, as in Figure 4.8d. Objects introduced into the result
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via direct copy cannot require clipping, at least not in that part, since only blocks that are
completely inside the window are copied. Likewise, if step 1 of Figure 4.10 is changed to
read “is contained in” instead of “intersects”, the algorithm should produce the exclusive
windowing version, as in Figure 4.8b.

Build a PMR quadtree From Objects in Window

1. L « an empty list of objects.

2. R+ an empty PMR quadtree with the parameters of the
source quadtree.

3. B« the root block of the source quadtree.

4. window-block(B, L, R) (see Figure 4.10).

5. for each object O in L do
Insert O into R.

6. Free L, return K and stop.

Figure 4.9: Algorithm window: find all the objects in a PMR quadtree intersecting a given
window.

Figures 4.11 through 4.15 demonstrate the operation of the window algorithm by going
through an example. Starting with the object set and the window shown in Figure 4.11a,
each of the figures (except the first and last) shows the operation at one level of the tree.
The blocks being considered at each level are marked by the heavy lines, while the thin
lines show the block decomposition of the underlying source quadtree. The portions of the
space the algorithm has finished processing are marked by a hatched pattern. The figures
are split into three columns: the left column displays the source quadtree and the status of
its processing; the middle column shows the increments made to the result quadtree; the
objects being accumulated on the object list are shown in the left column.

After considering the root block (Figure 4.11b) and finding that it cannot be classified
as either inside or outside the window, the algorithm turns to its children (Figure 4.11c).
Level 1 of the tree is still too coarse, so another level is attempted (Figure 4.12d). Here some
blocks can already be classified; those on the right are outside the window and are discarded
(Figure 4.12e). Two blocks are found inside the window (Figure 4.12f) and are copied to
the result (Figure 4.12g). Objects in the leaves encountered (top right and bottom left of
Figure 4.12h) are stored on the object list (Figure 4.12j).

The process is repeated for levels 3 and 4 in Figures 4.13 and 4.14, respectively. In level
4 no blocks were found to be completely inside the window so no additions were made to
the result quadtree at that step.
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Get Windowed Objects in Block B

1. if B intersects boundary of window then

begin
2. if B is a leaf block in the source quadtree then
begin
3. for each object O in B do
4. if O intersects the window then
Add O to the object list L.
end
else
5. for each child ¢ of B do

window-block (C', L, R).

end

6. elseif B is contained in the window then

begin
7. if B is a leaf block in the source quadtree then
8. for each object O in B

Add O to the object list L.
else

9. incorporate(B, R) (see Figure 3.16).
end

Figure 4.10: Algorithm window-block which extracts the objects in the block that are also
in the query window.

When processing of the source quadtree is complete, we have obtained the partially
constructed result quadtree and the object list. Figure 4.15 repeats the relevant panels from
the previous figures and shows the products of their accumulation. Finally, the objects in
the list are inserted into the result quadtree to produce the final result in Figure 4.15v.
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Figure 4.11: A walk through the operation of window at levels 0 and 1. The PMR splitting
threshold is 2. Notice the use of solid decomposition lines to indicate the level of the PMR
quadtree that is being examined. (a) The original dataset and query window. (b) Level
0—inspecting the root block. (c) Level 1.
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Figure 4.12: A walk through the operation of window: level 2. (d) Level 2 grid of blocks to
inspect. (e) Objects in terminal blocks outside the window are discarded. (f) Non-terminal
blocks inside the window are copied to the result. Both the objects and the underlying
decomposition are recorded. (g) The information extracted in (f) is copied to the result.
(h) Terminal blocks intersecting the window are examined. Any objects they contain which
themselves intersect the window are copied to the object list. (i) The objects found in (h)
are added to the object list.
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Figure 4.13: A walk through the operation of window: level 3. (j) Level 3 grid of blocks to
inspect. (k) Objects in terminal blocks outside the window are discarded. (1) Non-terminal
blocks inside the window are copied to the result. Both the objects and the underlying
decomposition are recorded. (m) The information extracted in (1) is copied to the result.
(n) Terminal blocks intersecting the window are examined. Any objects they contain which
themselves intersect the window are copied to the object list. (o) The objects found in (n)
are added to the object list.
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Figure 4.14: A walk through the operation of window: level 4. (p) Level 4 grid of blocks
to inspect.  (q) Objects in terminal blocks outside the window are discarded. Note that
there are no more non-terminal blocks inside the window at this stage, so the step of copying
them into the result is skipped. (r) Terminal blocks intersecting the window are examined.
Any objects they contain which themselves intersect the window are copied to the object
list. (s) The objects found in (r) are added to the object list.
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Figure 4.15: A walk through the operation of window: conclusion. Note that panels (g), (i),

(m), (o) and (s) are just copied from the previous figures.

(t) The result quadtree after

processing the source quadtree but without the elements in the object list. (u) The object

list. (v) The final query result as produced by the union of (t) and (u).
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Chapter 5

Irregular Triangulations and Quadtrees

5.1 Motivation

The triangulations used in Chapter 3 for surface modeling were in registration with the un-
derlying quadtree; the triangles were constrained in shape, size and placement so they neatly
fit into the quadtree blocks. It is also possible to use quadtrees for arbitrary triangulations.

A common surface model utilizing arbitrary triangulations is the Triangulated Irregular
Network or TIN [Peuc75]. TINs are described in Section 1.3.3, but for the purpose of the
present discussion, the particulars of the TIN utilized are secondary to the application made
of the quadtree structure. For simplicity, TINs representing Delaunay triangulations [Prep85]
of DTMs are used.

The lack of registration of the triangle boundaries with those of the blocks of the under-
lying quadtree does make a difference. The restricted quadtree of Chapter 3 is inapplicable
as it has no support for triangles spanning quadtree blocks. The region quadtree [Same90a],
in which a region is described by enumerating its interior at some resolution, suffers from all
the difficulties associated with rasterizing vector-based entities (triangles in this case) due
to the information lost in the process.

We propose to use the PMR quadtree described in Chapter 4, which can organize arbi-
trary objects in space. This chapter describes this adaptation of PMR quadtrees to surface
modeling.

5.2 Implementation

As described in Section 4.2, the PMR quadtree is capable of organizing any collection of
objects in space. Two aspects of this organization, however, are deliberately left open and
must be determined for each collection:

e The decomposition rule: under what circumstances should a PMR quadtree block be
decomposed into its descendantsl’

o Object-block intersection: when do a given object and a given PMR block intersectl’

In practice, either aspect is too complex to be conveyed to a generic implementation
of a PMR quadtree using a single parameter, or even a set of parameters. In the present
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implementation, user-defined functions are used to describe the desired behavior in both
cases.

5.2.1 Decomposition Rule

A PMR quadtree implementation bases its decomposition rule on object density, helping
to control the population of objects associated with any one block in the structure. This
enables PMR quadtree blocks to be realized in a limited amount of space, and also caps the
time required to find an object within a block. A single block, then, can be implemented in
both time and space complexities of O(1).

The bucket PMR quadtree sets a fixed limit to the number of objects a block may
contain, and splits any block containing more than that number of objects, known as the
bucket capacity. This would achieve both goals stated above: a fixed amount of storage and
a fixed block searching time. In some situations, however, such a rule may be problematic.
For example, consider a collection of line segments, m of which share a common endpoint

p. Assume further that this collection is stored in a bucket PMR quadtree using a bucket
capacity of c. The PMR quadtree block that eventually contains point p must also contain
all the m line segments incident on p. If ¢ < m, that block violates the decomposition rule
and no amount of splitting will rid the structure of it.

The PMR quadtree, as originally described in [Nels86a], overcomes this problem by re-
quiring that the implementation support overpopulated blocks. Also, instead of a bucket
capacity it uses a concept of a splitting threshold defined as follows: a block that exceeds
its splitting threshold (as a result of an insertion) is split once and only once. No further
action is taken even if some of the resulting sub-blocks remain overpopulated. This avoids
the excessive decomposition resulting from the PMR quadtree’s futile attempt to localize
inseparable objects, such as the line segments incident on point p in the example above.

Collections of line segments may or may not have many occurrences of such inseparable
objects. However, this situation exists for virtually all triangles of a triangulation; other
than the triangles on the perimeter of the area described, every triangle is incident on at
least six more triangles. To help further reduce unnecessary splitting we propose to regard
all touching objects as a single object when counted towards meeting the splitting threshold.
Only objects that have no edges or vertices in common are regarded as distinct in this
context.

Consider Figure 5.1a where three touching objects are depicted. With a splitting thresh-
old of 2 and no consideration for touching objects, decomposition will proceed until blocks
of the smallest size possible are generated. The block within which the objects meet will
inevitably contain three labels, more than permitted by the splitting threshold. On the other
hand, when touching objects are counted as one, as in Figure 5.1b, only one big block is
generated, which, admittedly, contains more than the splitting threshold of labels, but as we
have seen, this cannot be avoided.

5.2.2 Object-Block Intersection Rule

Another choice the user of a PMR quadtree must make has to do with the object-block
intersection conditions, which determine when objects need to be associated with a PMR
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Figure 5.1: Touching objects in a bucket PMR quadtree.  (a) No special consideration;
(b) touching objects considered as one. The tree depth is 5 and the splitting threshold is 2
in both cases.

quadtree block. Again, difficulties may arise around boundary situations. A common ap-
proach to quadtrees in general posits that two of a block’s borders, say north and west, are
closed, whereas the other two are open. Such a scheme gives ownership of any point in space
to one and only one block, a desirable property.

However, in its application to TINs, blocks having open boundaries may cause problems.
A block which has only the vertex of a triangle on its border will not be associated with
that triangle if the border in question is an open one. If the neighbors of the triangle need
to be found, care must be taken to look for them in the block which contains the vertex in
question on its closed boundary. This may complicate the design of algorithms and is an
opening for programming errors.

The disadvantage of having all of the block’s boundaries closed is that objects that
otherwise would be associated with one block must now be associated with two. However,
objects are invariably associated with multiple blocks in a PMR quadtree because arbitrary
objects are not likely to be placed neatly inside blocks” interiors. Most implementations
which use PMR quadtrees to store complex objects do not store the objects themselves
inside the tree, but store only pointers to them to avoid the data duplication that would
otherwise result. Since the occurrence of vertices on boundaries is in general a relatively rare
event, the small amount of added storage does not seem significant.
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Chapter 6

Field of View: a Test Case

6.1 Field Of View

An interesting application of surface models is the automatic determination of visibility:
identifying the parts of the surface that are visible from a given a point. The need for such
determination arises both when visibility is desirable as well as when it is not. For example,
placing broadcasting towers or surveillance posts can be economized by finding a minimal
set of locations from which every point on the surface can be seen. Conversely, stealth
navigation involves finding a path not visible from any known observation point. Both of
these and many similar tasks can make use of automated field of view generation.

The field of view algorithm (field-of-view) presented here is sufficiently general to support
any polyhedral surface model. Since the algorithm is introduced specifically in order to test
the two approaches to surface modeling discussed in this work, it was important not to rely on
any idiosyncrasies peculiar to only one of them. The choice of algorithm and implementation
details reflect this by maximizing encapsulation, not performance. As a result, field-of-view
is not necessarily the fastest field of view algorithm possible, but it can be used with both
the RQT and QTN quadtree surface representations with no adaptation.

Determining the field of view may be regarded as the converse of the process involved in
producing an image of the surface. The purpose in the graphical display case is to generate an
image, keeping no track of the individual surface facets contributing to it. When generating
a field of view, it is precisely the extent of those facets that is recorded, while an image is
produced, if at all, only as a byproduct.

An often-used graphical display algorithm is the depth sort algorithm [Newe72]. (A sim-
pler variant of this algorithm is called the “painter’s algorithm” [Fole90, p. 673].) In this
algorithm, the components of the scene are projected onto the display device in decreasing

distance from the viewpoint. Nearer objects are painted after, and therefore over, more
distant ones, simulating the visualization process as it occurs in reality.

In determining the field of view, a reverse process can be used. Beginning with the surface
facets nearest to the viewpoint, the “shadow” each casts is accumulated. As more distant
facets are considered, only the part that is not obscured by the collective shadow is viewable.
The main difference in processing is the order in which the surface facets are sorted: farthest
first while displaying, nearest first in field-of-view.

This sorting utilizes the special capabilities of the surface models. It is therefore done
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differently in the cases of the RQT and the QTN quadtrees. Section 6.4 delves into the
details of the sort step of the algorithm.

Another difference between field-of-view and the depth sort algorithms is that while the
result of the graphic display can conveniently be integrated on the display device itself,
there is nothing that can naturally play this role in the case of field-of-view. A special data
structure, horizon, is devised for this purpose and is described in Section 6.3. In line with the
philosophy of encapsulation stated above, most of the computation involved in calculating
the field of view is done inside this horizon structure. The field-of-view algorithm is described

in pseudo code in Figure 6.1.

Field of View

1. FOV « an empty field-of-view.
2. H «— an empty horizon.

3. Determine the smallest polygon F made of surface facets
surrounding the viewpoint (Section 6.2).

4, Use P to initialize H and FOV.

5. for each facet F in sorted order (Section 6.4) do
begin

6. V « visible part of F' (Section 6.3).
7. Update H to reflect the impact of /' (Section 6.3).

8. FOV « FOVUV.

end

Figure 6.1: Algorithm field-of-view: determine the part of the surface visible from a given
viewpoint.

Finally, results of test runs made with actual surfaces are presented in Section 6.5. Surface
data was obtained from the USGS representing several locations in the US. Both relatively
flat (east coast) and rugged (Rocky Mountains) terrain examples are included.

6.2 Priming

The first step of the algorithm involves the initialization of the field of view and horizon struc-
tures. Assuming that the viewpoint is somewhat elevated above the surface, all the facets
that are incident on it are completely visible. Consequently, there is no need for occlusion
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calculations when considering these facets. They are added to the result of field-of-view with-
out further processing. They are also used to initialize the horizon structure. The smallest
polygon surrounding the viewpoint that is made of surface facets is found and used to form
the initial horizon.

In the simple case the viewpoint is inside one of the facets, as is shown in Figure 6.2a. The
facet containing the viewpoint can then serve to form the initial horizon. If the viewpoint is
situated on an edge between two facets (Figure 6.2b) or on a vertex of the triangulation (Fig-
ure 6.2¢), some additional processing is called for. To form a polygon to which the viewpoint
is internal, the edges of all the surface facets incident on the viewpoint are combined into
a list. The desired polygon is formed from all the edges in the list that are not themselves
incident on the viewpoint. The polygons generated in each case are marked by heavy lines

in Figure 6.2.

\

Figure 6.2: The possible relationships between the viewpoint and the surface facets incident
on it.  (a) The viewpoint is interior to a single facet. (b) The viewpoint is on an edge

@ (b) ()

between two facets. (c) The viewpoint is on a vertex, incident on many facets.

In practice, the algorithm uses the fact that any edge incident on the viewpoint must
appear in the list twice.! This is because any edge in the surface rendition belongs to two
facets, those on each of its sides. When all the edges are placed in a list, each one of these
facets contributes an instance. Consequently, the algorithm removes all the edges that have
multiple appearances in the list and retains only the singletons. The list is then sorted to
form the desired polygon.

The next step of the algorithm (Section 6.3.2) requires the existence of a complete hori-
zon, one that provides an elevation value in every direction from the viewpoint. Since the
viewpoint is internal to the initial horizon polygon, any ray emanating from the viewpoint
must intersect one of its edges. Hence the projection of those edges onto the wings (see
Section 6.3.1) forms a complete horizon.

Once the initial horizon is in place, the viewpoint is external to all subsequent surface
facets. The projection of a surface facet onto the wings extends, therefore, only a single wing,
or two if it is situated somewhere along the axes bisectors. In extreme cases, facets that are
both large and close to the viewpoint may extend three wings; see facet 3 in Figure 6.3.

!This argument assumes the viewpoint is not on the very edge of the map. However, in case it is, the
edge it 1s on must be included even though it is incident on the viewpoint, so the algorithm presented will
still perform correctly.
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Figure 6.3: Possible combinations of surtace facet distance and size, resulting in the projec-
tion being confined to a single wing (1), two wings (2), or three wings (3).

6.3 A Data Structure For Horizon Modeling

As stated above, the purpose of the horizon data structure is to facilitate incremental field

of view generation. As each surface facet is presented to the horizon data structure, the
latter computes which parts of this facet, if any, are visible. It also integrates the impact
this surface facet has with that of all the previous ones, preparing the structure for the next
surface facet. For the structure to actually perform correctly, however, it is essential that no
surface facet be presented if it can possibly obscure a facet that has already been presented.
The responsibility for sorting the surface facets lies with the user of the horizon.

6.3.1 The Wings

In order to represent the horizon, the structure employs a screen onto which the edges of
the facets of the surface model are projected. These projections delineate, in each direction,
the highest line of sight that still grazes the part of the surface seen so far. Ideally, a unit
sphere about the viewpoint would provide the least distorted image of the horizon. However,
projecting onto a curved surface is computationally difficult, so a flat screen was chosen
instead. In fact, in order to avoid potential singularities, four flat screens, called wings, are

used, one in each principal direction at unit distance from the viewpoint (Figure 6.4). The
horizon is accumulated in the form of four contiguous lists of line segments, one for each
wing.

Since the wings are at unit distances from the viewpoint, each wing is two units wide. If
a Cartesian coordinate system is constructed with the viewpoint as its origin, the north and
south wings are parallel to the x axis, spanning the range [—1,1]. The east and west wings
span the same range along the y axis. These bounded ranges are the reason four wings are
used. All wings span all values of z, but unless the viewpoint is positioned at the very edge
of a cliff, these values are bounded as well.
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Figure 6.4: The four wings onto which surface facets are projected, accumulating the horizon.
The black dot in the center represents the viewpoint.

6.3.2 Processing a Surface Facet

Processing a facet involves two related activities. The first determines what part of the
facet, if any, is visible from the viewpoint. The second calculates the shadow the current
facet casts on those farther away. The two results are clearly related: a facet casts a shadow
if and only if some of it is visible. The shadow is used to update the internal representation
of the horizon to reflect the impact the current facet has had, thus preparing the structure
for the processing of the next facet. The calculated visible portion of the facet is returned
to the caller. The process is described in greater detail in Figures 6.5 through 6.8.

First, the current facet, whose location and orientation are arbitrary, is projected onto
the appropriate upright wing (Figure 6.6). If the facet’s projection extends two or three
wings (see Figure 6.3), each affected wing is processed in turn.

Next, the facet’s wing projection is compared with the current state of the horizon on that
wing. If any part of the projection protrudes above the horizon line, the polygon(s) bounded
by the horizon and the parts of the projection that are above it are found (Figure 6.7).

To update the horizon line, the edges of these polygons are added to it, to form the new
horizon. This maintains the horizon’s property of delineating the highest lines of sight in all
directions.

The polygons are also used to determine the visible part of the current facet. Each is
projected back onto the plane of the facet, defining the parts of its facet that are visible
(Figure 6.8).

In practice, the algorithm uses several heuristics to avoid redundant tests. A facet of the
model facing away from the viewpoint (i.e., if the viewpoint is below the plane the facet is
in) is not considered, for example. It is assumed that the surface is continuous and any edge
of such a facet, if indeed visible, must belong also to a facet that is directed towards the
viewpoint, and will eventually be registered when that other facet is processed.
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Figure 6.5: A walk through the operation of horizon. (1) Initial state, being presented with
a new surface facet. POV-—the viewpoint. W-—the projection plane. For simplicity, only
one of the wings is shown. H—current horizon. SF—a surface facet.

Figure 6.6: A walk through the operation of horizon. (2) Projecting the facet onto the
projection plane (“wing”).
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Figure 6.7: A walk through the operation of horizon. (3) The impact this facet has on the
horizon.

Figure 6.8: A walk through the operation of horizon. (4) project the visible portion back
onto the facet.
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6.4 Sorting the Facets

For the horizon data structure to produce the field of view correctly, the facets of the surface
model must be presented to it in order of occlusion; a facet may not occlude a facet that
has already been processed. This can be accomplished by a special sort pass over the facets
of the model, producing a list of the facets in the required sequence. Note that occlusion
depends on the viewpoint, so that even for the same surface, computing the field of view
from different viewpoints requires separate sorting phases.

However, the very purpose of spatial indices is to make such special processing unnec-
essary. Both the RQT and QTN surface models can be made to generate the facets in the
required sequence without an explicit sort phase by relying on their spatial indexing capa-
bilities. Due to the different approach the two structures take to indexing, however, the way
this is done is specific to the model. The way the RQT surface model sorts the facets is
discussed in Section 6.4.2 and the counterpart procedure for the QTN model is described in
Section 6.4.3. Issues common to both schemes are discussed in Section 6.4.1.

6.4.1 Common Issues

Observation: Three-dimensional occlusion may be excluded based on two-
dimensional considerations. Let P be a viewpoint and f; and f; be two facets of a
surface model in three-dimensional space. Furthermore, let P’, f{ and f} be their corre-
sponding projections on the z-y plane. f; may occlude f; when viewed from P only if f]
occludes f3 when viewed from P’ i.e., there is a point Q' on f} such that P’'Q’ intersects f}.
This is because if f; occludes f; there is a line of sight from P to a point () on facet f, that
is frustrated by fi. The projection of that line is P'Q’.

Consequently, if the partition of the x-y plane induced by projecting the surface model
onto it can be sorted, then that order is a sorting of the corresponding three-dimensional
facets as well. This property allows the algorithms to make all their determinations based
on the two-dimensional projection of the surface model, thus simplifying the sorting task.

It is important to note that it is not always possible to sort the facets of a model.
Arbitrary triangulations may produce occlusion cycles, such as the one depicted in Figure 6.9.
For the situation shown in Figure 6.9b to occur, the surface would have to contort in a way
that our continuous, 2%—D surfaces are incapable of, but the configuration in Figure 6.9a
is possible in arbitrary triangulations. It is proved in [DeFI191], however, that Delaunay
triangulations are immune to such cycles. Therefore, we restrict the QTN model to surface
models derived from Delaunay triangulations.

6.4.2 Sorting the Facets in the RQT Model

The restricted quadtree surface model (RQT) is special in that all its facets fit neatly into
the square blocks of the underlying quadtree. It is therefore possible to sort the blocks first
and then sort the facets within each block later.

The blocks are sorted through a traversal of the internal nodes of the quadtree. The space
covered by the surface is divided into four zones with respect to the viewpoint (Figure 6.10)
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Figure 6.9: An example of a set of triangles defying spatial sorting. (a) An arrangement of
three triangles on the plane that cannot be sorted with respect to the given viewpoint (solid
circle). Along line-of-sight «, triangle 1 precedes triangle 2; along 3, 2 precedes 3; and along
v, 3 precedes 1. (b) An image of three unsortable triangles.

formed by parallels to the x and y axes passing through the viewpoint. If the center of an
internal node is inside, say, the north-west zone, then clearly all the facets in its descendant
marked 1 in the figure are nearer the viewpoint P than any in the other descendants. That
property holds for all the zones, with the exception of the descendants marked 2 and 3, which
are at equal distance and could be interchanged.

4 2 2 4
3 1 1 3
NwW P NE
3 1 1 3
4 2 2 4
SwW SE

Figure 6.10: The zones induced by a viewpoint for RQT block sorting. The order in which
descendants are processed in each zone is indicated by the numbers in the sample blocks.

Similarly, the facets within a terminal node are sorted according to the orientations they
may have with respect to the viewpoint. The eight possible orientations and the ordering
each induces among the possible facets are shown in Figure 6.11.

Figure 6.11 assumes blocks with eight facets each, but an RQT block may be configured
with fewer facets (see Section 3.2.3, Figure 3.4). In that case, some (or all) of the facets
are larger, each covering two adjacent facets of the size shown in the figure. When such
configurations are encountered, a large facet takes the place the first (in sorting order) small
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Figure 6.11: The eight orientations a block may have with respect to the viewpoint and the
ordering each orientation induces among the facets in the block. Similarly numbered zones
may be scanned in any order.

facet it covers would have taken.

Given the classifications of internal and terminal nodes described above, the formulation
of the sorting algorithm is straightforward and is given in Figure 6.12.

The performance of algorithm rqt-sort depends on the implementation chosen for the
representation of the quadtree. Each node, internal and terminal, is visited once, as well as
each facet. The number of internal nodes is smaller than the number of terminal nodes in
any tree of fixed degree. Moreover, since the number of facets per node is bounded from
above and from below, the number of terminal nodes is smaller than the number of facets.
If finding a descendant of a given node is an O(1) operation, then the sorting can be done
in time proportional to the number of facets in the model.

6.4.3 Sorting the Facets in the QTN Model

Unlike the RQT case, the facets in the QTN model are not in registration with the boundaries
of the nodes of the underlying quadtree, so sorting them is not helpful in this case. Algorithm
gtn-sort is an adaptation of one presented in [DeFl189a] for sorting Delaunay triangulations
in general. It has been modified to make use of the spatial index the QTN model has to
offer.

Algorithm qtn-sort maintains an active border which is always star-shaped about the
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RQT-Sort(RQT R, viewpoint P)

1. B« root of R.
2. if B is an internal node then begin
3. 7/ « the zone B is in with respect to P (Figure 6.10).

4. for each descendant (' of B, in the order defined by /
do
Sort(C', P).

end
5. else begin // B is a terminal node
6. O < the orientation B is in wrt P (Figure 6.11).

7. for each facet /' in B, in the order defined by O do
Process F
end

Figure 6.12: Algorithm rqt-sort to sort the facets of an RQT surface model according to
their distances from a given viewpoint. The processing of facets done in line 7 is in the
sorted order.

viewpoint. Its edges are also edges of the triangulation, i.e. the projection of the surface
model onto the z-y plane. It thus separates the triangles that have been processed from
those that have yet to be. Initially, the active border is set to be the boundary of the initial
polygon, described in Section 6.2. The algorithm then picks an edge on the active border
at random, and considers the unprocessed triangle the edge is incident upon. If certain
conditions hold (see Figure 6.15), the triangle is processed and its edge (or edges) that were
not part of the active border replace the edges (or edge) that were. A theorem from [DeF191]
guarantees that, provided the triangulation is Delaunay, there is always a triangle for which
the conditions are true. This step is repeated until all triangles are processed. Figure 6.13
shows a sample Delaunay triangulation and several possible stages in the development of the
active border.

At each step, algorithm qtn-sort picks an edge, say E. from the current active border at
random. Unless the edge is at the boundary of the surface, it is incident on an unprocessed
triangle T by virtue of the fact that the active border is at the boundary between the
processed triangles and the unprocessed ones. There are three possible cases, depicted in

Figure 6.14:

1. Another edge of T is included in the active border, as in Figure 6.14a. (Clearly, £ and
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Figure 6.13: A sample Delaunay triangulation and several stages in the development of the
active border during the execution of qtn-sort.

(@) (b)

Figure 6.14: Algorithm qtn-sort incremental step: the three possible configurations.
(a) gtn-sort selected GH. AGH.J is acceptable since two if its edges, GH and [.J are
both on the active border. (b) qtn-sort selected EG. AFEFG is acceptable because PF
intersects the selected edge EG. (c) gtn-sort selected AB. ANABC is not acceptable since
PC does not intersects the selected edge AB, indicating that there is a triangle (ABCD in
this case) that is closer to P.

FE’ must be adjacent on the active border, a fact which simplifies testing this case.) T
is acceptable and may be processed next. Then E”, T’s remaining edge, replaces both
E and E' on the active border.

2. Both of the T’s remaining edges £’ and E” are not part of the active border, hence T
has a vertex V that is not on the border as well. If PV intersects F, as in Figure 6.14b,
again the triangle is acceptable and may be processed next. E’ and E” then replace £
on the active border.

3. The triangle is as described in item 2 except that PV does not intersects F, as in Fig-
ure 6.14c. In this case, there is an unprocessed triangle that is closer to the viewpoint
than T" and must be processed first. 1" is therefore rejected and this step is wasted.
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Algorithm qtn-sort is given in pseudo-code in Figure 6.15.

In implementing algorithm qtn-sort, provision must be made for maintaining the active
border since it does not fit into the QTN model. The spatial index comes in handy when the
triangles incident on a particular border edge are sought. If the surface model contains N
triangles, each triangle takes O(log N) time to search. The total search involves processing
all triangles, which requires a minimum of O(N log N), if the configuration described in case
3 never occurs. In the worst case, a complete scan of the active border yields one acceptable
triangle. If triangle distribution is uniform, the active border is expected to have O(v/N)
segments since it represents the perimeters of O(N) triangles. The worst case behavior of

this algorithm could then be O(N% log N).

6.5 Experimental Results

The field-of-view algorithm was implemented and tried out on several actual datasets. In
addition to the datasets “Reno west 0,07, “data” and “Salisbury east 2,07 described in Sec-
tion 3.4.3, tests were performed on a 129 x 129 section of the “data” map. The tests consisted
of measuring the time required to determine the viewable area from various viewpoints. Maps
constructed from the various datasets at several tolerance values were employed. The results
are summarized in Table 6.1. Each number in the table represents an average of several
measurements taken from different viewpoints.

Table 6.1: Experimental results of field of view determination. The results represent averages
taken over several viewpoints. Execution times are in seconds.

RQT QTN
tolerance || facet | execution | time/facet || facet | execution | time/facet
(meters) || count | time (sec) | (milisec) || count | time (sec) | (milisec)
Salisbury east 2,0 (513 x 513)
1 3178 372 117 336 55.2 164
666 64.5 97 78 134 172
Data (129 x 129)
3 17728 1181 67 8540 1017 119
3 12268 537 44 4462 489 110
10 4806 294 61 1532 176 115
30 1090 27 25 250 45 180
100 4 ) 125 4 2.3 575
Reno west 0,0 (513 x 513)
100 7769 570 73 2067 742 359
300 926 65.5 71 325 177 h44

To compare the efficiency of the RQT and QTN surface models, the timing data was
processed in two ways. One interpretation measures the time required to process a single
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facet of the model. Since the field-of-view algorithm examines every triangle of the model,
larger models with more facets are expected to take longer to process. To eliminate the effect
of size, the ratio of total execution time to the number of facets in the model is computed.
It is argued that the time to process a facet has a generic component, the time spent in the
common horizon structure (Section 6.3), and a model specific component, the time taken to
sort the triangles (Section 6.4). It is assumed that over a large number of trials the difference
between this time-per-facet figure for the two models is attributable to the model specific
component, and indicates the model’s relative effectiveness in carrying out the required
sorting task. Execution time results are plotted against model size in Figure 6.16

The other interpretation of the results compares the performance of maps of the two
types constructed from identical data sets using the same tolerance. Also, the same set of
viewpoints is used in the testing the two models. The results of execution time as a function
of model tolerance are plotted for the smaller “data” map in Figure 6.17.

Execution times per triangle are consistently lower for the RQT. This should mean that
the RQT is able to sort triangles faster than the QTN can. This result is to be expected,
since the RQT performs the sort by manipulating the blocks which contain them, avoiding
the overhead involved in accessing the individual triangles.

On the other hand, the triangles in a TIN are not constrained by the underlying quadtree
as the RQT triangles are, and thus may have a higher information content. Consequently,
a QTN can model a given surface to a given tolerance with fewer triangles than an RQT
would require.

These two capabilities are in competition, and can make either model outperform the
other, depending on the nature of the surface. For surfaces whose variation is moderate, an
RQT model may be burdened with many unnecessary faces, mandated by the restriction on
the sizes of neighboring blocks. This compounds the RQT’s propensity to produce larger
models. As a result, RQT models display poorer performance in this case, as seen from the
results for “Salisbury east 2,0”.

The RQT model seems to be doing better for surfaces with great variability, on the other
hand. When the ruggedness of the surface requires many triangles to faithfully model it, the
disadvantages of the RQT model are not as pronounced, and its faster processing can lead
it to outperform the QTN model, as seen in the results for “Reno west 0,0”.

For the “data” map, which exhibits moderate variation in elevation, the results for the
two models are quite close, lending support to the argument made above.
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QTN-Sort (QIN (), viewpoint P)

1. L « list of the edges of the initial polygon
(Section 6.2).

2. while there is an edge in [ that is not on the map’s
boundary do begin

3. I/« an edge in L that is not on the map’s boundary.
4. T «— the triangle incident on [/ farthest from P.

5. if two of the edges of T are in L then begin

6. Remove from [ the edges of 7' it contains.
7. Add to L the edge of 7T it did not contain.
8. Process 1'.

end

else begin

9. () « the vertex of T not incident on any edge in L.
10. if the line from P to () intersects K then begin
11. Remove [/ from L.
12. Add to L the edges of 7" other than F.
13. Process 71'.
end
end
end

Figure 6.15: Algorithm qtn-sort to sort the facets of a QTN surface model according to their
distance from a given viewpoint. The triangles processing done in line 8 and 13 is done in
sorted order.
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Chapter 7

Conclusions and Future Research

We have studied two ways in which polyhedral models of 2%—D surfaces can be embedded
into quadtree spatial indices. The restricted quadtree was found to be useful in supporting
regular elevation grids such as are found in DEMs. Two algorithms for constructing restricted
quadtrees from DEM data were presented, and the conditions under which each of them may
be preferable were shown. For irregular data, such as found in TINs, using a PMR quadtree
was found to be appropriate.

A field of view algorithm that can be used with both surface models was presented. It
was used to exercise the two implementations and determine when it is better to use the
one or the other. It was found that the RQT model can perform individual tasks faster
than the QTN. The TIN, however, can model a given surface to a given tolerance with fewer
triangles than the RQT . In balance, it was found that the QTN’s relative slowness can be
compensated for by its smaller size for more moderate maps, but that the RQT outperforms
it when modeling more rugged terrain.

Further study is required to find what applications could use RQTs to their advantage.
It seems that applications which operate on two or more surfaces defined over the same
area could be helped by the consistency provided by a common registration of the models.
For example, operations involving comparison or intersection of two surfaces simultaneously
require the parts of the surfaces that project to the same area in the xy plane. Those parts
would correspond in particularly simple ways if they are both nodes in registered quadtrees,
as would be the case if RQTs were used.

In the course of this research, a testbed for comparing the RQT and QTN was imple-
mented, utilizing to a great extent shared object-oriented code. Other surface applications
that can be implemented in these terms, such as perspective display, could be used to further
test the appropriateness of these two surface models for various tasks.
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