
Information Technology, Learning, and Performance Journal, Vol. 20, No. 1, Spring 2002 27

Teaching SpreadsheetTeaching Spreadsheet--Based Decision Support Based Decision Support
Systems with Visual Basic for ApplicationsSystems with Visual Basic for Applications

Susan W. PalocsaySusan W. Palocsay

I na S. MarkhamIna S. Markham

Office 2000 has become a standard desktop application package for employees of virtually all
Fortune 500 organizations and most small and home offices. The spreadsheet component of
Office 2000, Excel, is widely used throughout the business world today for processing
quantitative data and developing analytical solutions. The ability to build decision support
systems (DSS) based on these spreadsheet solutions can facilitate knowledge management and
increase information utilization within an organization. This paper describes our experiences
in preparing for and teaching a new course offering for undergraduate information systems
majors in developing DSS with Visual Basic for Applications, the programming language for
Excel. As a result, we hope to encourage other educators to explore this new technology as a
worthwhile addition to information systems curricula.

The trend toward increasing complexity and
uncertainty in the business environment, combined
with the need to make decisions quickly and avoid
costly errors, has changed the nature of managerial
decision making at all levels of an organization
(Turban & Aronson, 2001). At the same time,
advances in information technology have led to
more sophisticated computer software tools and
greater end-user involvement in the design,
implementation, and modification of applications
based on these tools. The result is an opportunity
to provide managers with timely information systems
that can deliver the benefits promised by theoretical
decision support systems (DSS).

An early definition of DSS described them as
interactive computer-based systems, which help
decision makers utilize data and models to solve
unstructured problems (Gorry & Scott Morton,
1971). Subsequent efforts to characterize these
systems have broadened the definition, but there is
general agreement that the basic structure of a DSS
consists of four major components: a database,
model base, knowledge base, and a user interface
(Turban & Aronson, 2001). The three “base”
components are subsystems to store and manage
corporate data, quantitative models, and
organizational knowledge. The user interface
provides the view of the system seen by the user

and supports communication and interaction with
the system.

The model component of a DSS is often derived
from management science (MS) and requires the
use of a mathematical algorithm for solution. While
custom programming may be necessary for some
highly complex models, many of these MS models
can now be built using high-level software tools and
modeling languages, and, most recently,
spreadsheets (Savage, 1997). The enormous
popularity of spreadsheets among business people
has spurred the development of numerous add-in
packages that embed MS solution methods in the
spreadsheet environment. The first MS textbooks
with spreadsheet modeling began appearing about
five years ago (see Ragsdale, 1995; Camm &
Evans, 1996; Hesse, 1997; Winston & Albright,
1996). Due to their influence, most MS texts have
adopted some level of electronic spreadsheet usage,

Susan W. Palocsay is Professor, Computer
Information Systems and Operations Management
Program, College of Business, James Madison
University, Harrisonburg, Virginia.

Ina S. Markham is Associate Professor, Computer
Information Systems and Operations Management
Program, College of Business, James Madison
University, Harrisonburg, Virginia.

28 Palocsay and Markham

and the use of spreadsheets in teaching MS has
become a common practice.

In retrospect, the movement away from
teaching the detailed steps of algorithms toward
spreadsheet-based quantitative analysis was a
logical shift for MS education. Spreadsheets had
become entrenched in business, driven by the
demands of end users for tools to help them in
performing analysis tasks. Chan and Storey (1996)
found that, regardless of their level of spreadsheet
proficiency, spreadsheet users are not likely to
apply specialized software even if these other
software packages are commercially available and
potentially more appropriate for their tasks. At the
same time, MS courses in business schools across
the country were being reduced and, in some cases,
eliminated (Willemain, 1997). Incorporation of
spreadsheets into MS increased both the relevance
and the popularity of the introductory MS course in
business core curricula (see references in
Grossman, 2001).

Most recently, Ragsdale (2001a) and Albright
(2001) have independently proposed a further
extension of spreadsheet-based MS models into
decision support using Visual Basic for Applications
(VBA), the programming language for Excel. With
VBA, a user-friendly interface can be built around
an MS model to provide a DSS in the familiar
spreadsheet environment. The end user is not
likely to be interested in the mathematical form of
the model, only in its application to a specific
decision task. Packaging the model with a set of
dialog boxes to specify input data, and non-
technical reports and charts to present the results,
gives other members of an organization access to
the model’s functionality. Our goal was to develop
a course for computer information systems (CIS)
majors that would stimulate their interest in DSS by
combining their knowledge of MS models with
current information technology.

BackgroundBackground

The authors first became interested in VBA
programming at the initial Teaching Management
Science summer workshop at Dartmouth College in
the summer of 1998, which focused on teaching MS
modeling with spreadsheets. Ragsdale (2001a) and
Albright (1998), two instructors at this workshop,

reported positive feedback from incorporating some
VBA into MS courses. They indicated, furthermore,
that previous computer programming experience
was not required, and students were very excited by
the new computer skills they acquired in the course.
The authors wondered how an introductory course
in VBA with an emphasis on spreadsheet DSS might
benefit their CIS majors.

A review of the IS’97 model curriculum (Davis,
Gorgone, Couger, Feinstein, & Longenecker, 1997)
identified three exit characteristics expected of
information systems program graduates to which
such a course could contribute: (1) Information
Technology and Tools, which states that the
graduates should be able to select and apply
software tools for organizational solutions as well as
develop and manage distributed systems with high-
level tools and methodologies; (2) Problem Solving,
which states that the graduates should be able to
recognize the need for applications of analytic
methods, apply systems concepts to definition and
solution of problems, and formulate creative
solutions to simple and complex problems; and (3)
Systems Development Methodologies, which states
that the graduates should be able to select and
utilize appropriate methodologies; use tools and
techniques to analyze, design, and construct an
information systems; and apply design
methodologies compatible with organizational
settings. Specifically, this course could be used to
help students meet objectives for selected learning
units in the pre-requisite software tool kit (IS’97.P0
– Knowledge Work Software Tool Kit) and four of
the ten IS’97 course descriptions (IS’97.2 –
Personal Productivity with IS technology, IS’97.3 –
Information Systems Theory and Practice, IS’97.5
– Programming, Data, File and Object Structures,
and IS’97.7 – Analysis and Logical Design).

As companies have moved away from large
mainframes in favor of smaller client-server
systems, application development has moved closer
to the end user. The ability to integrate these
applications into components of Microsoft Office
2000 has the potential to reduce the time and cost
of their development while increasing their
utilization. Providing students with practical skills
to use in this environment should enhance their
preparation for internships and future employment.

Teaching Spreadsheet-Based Decision Support Systems with Visual Basic for Applications 29

Since learning a new technology requires both
time and motivation on the part of the faculty
members, the authors volunteered to develop and
team-teach a new section of CIS 301, Information
Technology and Tools in the fall of 2000 on VBA
programming in Excel, as an overload. CIS 301 is
a 1-credit, hands-on course required for all CIS
majors, with an objective of giving CIS students
experience with management productivity tools on
microcomputers. The specific software taught
under this course number varies.

 This arrangement was attractive to the authors,
as well as their program director, for several
reasons. It would provide an additional section of a
course that was in high demand while permitting the
authors to cover their regular teaching
responsibilities (9 credit hours per semester) at the
same time. The only additional resource needed
from an administrative point of view was classroom
space, and it was customary to teach CIS 301 in the
computer lab. Using the computer lab had the
added advantage of restricting the class size to a
maximum of 25 students. The team teaching aspect
was appealing since this would be the authors’ first
experience with VBA programming and there were
no other faculty in their program with VBA/Excel
skills. Their liability would also be limited to
preparing for one hour of class per week, and they
could assume that every student had previously
taken the first- and second-year business core
classes, including an introductory management
science course required by all business majors.

Course Descr ipt ionCourse Descr ipt ion

The first step in preparing to teach the course was
to identify resources for use by the authors in
learning VBA programming and a text for use by
the students in the class. Copies of the references
listed in Table 1 were obtained, with the exception
of Albright’s book (since it was not yet published).
The authors selected Microsoft Excel 2000 Visual
Basic for Applications: Fundamentals by Jacobson
(1999) as the text for the course. This choice was
based on the tutorial nature of the Jacobson book as
well as its coverage, which was limited to
introductory Excel VBA programming. Jacobson
has developed a series of short lessons that cover
important topics in VBA, each consisting of a

number of practical exercises that can be used
either for demonstration purposes or for interactive
learning. The instructions for each exercise are
clearly written and accompanied by annotated
screen illustrations, providing a straightforward
introduction to even the most difficult concepts in
VBA programming.

To add a MS modeling component to the VBA
course, the authors turned to the recent work of
Albright (2001). This material discussed the VBA
functions available to manipulate the Solver
optimization add-in (included in Excel) and gave an
example of a DSS for a typical oil-blending linear
programming (LP) model. Frontline Systems, Inc.,
the company that provides Solver to Microsoft, also
has good documentation of these VBA functions on
their website at http://www.frontsys.com/
mlvbaref.htm. Students were provided with this link
to obtain the reference material they needed for
controlling Solver from VBA.

Class sessions were scheduled in the computer
lab for one 50-minute period per week, with 14
class meetings over the semester. Although the
students enrolled were CIS majors, the authors were
concerned about disparities in knowledge of Excel
spreadsheets and in degree of programming
experience among the students. A short
questionnaire was administered during the first class
meeting asking students to rate their spreadsheet
skills, to indicate if they had used Solver in their MS

Table 1: List of VBA Books

Albright, S. C. (2001). VBA for modelers: Developing decision

support systems with Microsoft Excel. Pacific Grove, CA:
Duxbury Press.

Boctor, D. (1999). Office 2000 Visual Basic for applications:
Fundamentals. Redmond, WA: Microsoft Press.

Green, J., Bullen, S., and Martins, F. (1999). Excel 2000
VBA programmer’s reference. Birmingham, UK: Wrox
Press.

Jacobson, R. (1999). Microsoft Excel 2000 Visual Basic for
applications: Fundamentals. Redmond, WA: Microsoft
Press.

Lomax, P. (1998). VB & VBA in a nutshell. Sebastopol, CA:
O’Reilly & Associates, Inc.

Walkenbach, J. (1999). Microsoft Excel 2000 power
programming with VBA. Foster City, CA: IDG Books
Worldwide, Inc.

Zak, D. (2001). Visual Basic for applications. Cambridge,
MA: Course Technology.

30 Palocsay and Markham

course, and to list all of the programming courses
they had previously taken or were taking in the
current semester. The survey results are
summarized in Table 2.

To create a common foundation in basic Excel
skills, an interactive tutorial written by Albright
(available from http://www.indiana.edu/
~busk410/ExcelTutorial.html) was assigned to
students at the first meeting. Students were also
given a set of written questions about the most
important topics in the tutorial.

An overview of the course design is provided in
Table 3. The authors found this to be a very
effective way to deliver the course material as it
significantly reduced the amount of class lecture
time and allowed the students to discover important
characteristics of VBA on their own. Since the
solutions to the text exercises were included on a
CD-ROM with the book, “checkpoints” were
collected to require students to complete additional
tasks that augmented or extended the book’s
exercises. At the end of each class, students were
given a checkpoint or take-home assignment
reinforcing the new material to be completed before
the next class meeting. Table 4 lists the topics
covered in this course.

Starting at week 9, the authors shifted the focus
of the class from “programming” to “application
development” by relating VBA programming
concepts to MS models. A useful example of a user-
defined function with arguments from MS is one
that computes P0, the probability of no customers in
a multi-server queuing system (Anderson, Sweeney,
& Williams, 1999). It is not possible to
write a single Excel formula that will handle
any number of servers since a summation
term in the formula is indexed by this
number. This example also provided an
opportunity to emphasize the importance of
error checking when developing modules for
others to use. In this case, the problem
occurs when the mean arrival rate is less
than the product of the number of servers
and the mean service rate (i.e., the average
system utilization is less than one). A VBA
procedure was created to check for this
condition before calling the function, and to
notify the user (Figure 1).

Table 2: Summary of Background Data

§ Excel expertise on a scale of 1 (beginner) to 10 (very

advanced)
• 7.65% indicated level 5
• 7.65% indicated level 6
• 46.2% indicated level 7
• 38.5% indicated level 8

§ Previous use of Solver
• 61.5% indicated Yes
• 38.5% indicated No

§ Previous knowledge of Visual Basic
• 30.77% indicated Yes
• 69.23% indicated No

§ Previous knowledge of Visual Basic for Applications
• 23% indicated Yes
• 77% indicated No

§ Previous knowledge of other programming languages
• 22.7% indicated None
• 77.3% indicated Some, specifically

° 7.65% Fortran and Pascal
° 7.65% C++ and Java
° 31% COBOL
° 31% COBOL and C

Table 3: Overview of Course Design

Format of each class

• Overview of material
• Demonstrations as appropriate
• Hands-on exercises

Grade allocation

• Checkpoints accounting for 20% of grade
• Take-home assignments in lieu of tests

° Assignments I and II each worth 20% of grade
° Assignment III worth 40% of grade

Table 4: Overview of Course Content

Week Topic

1 Excel Tutorial
2 Recording and running Macros; Using Visual Basic Editor
3 Design issues of macros; Relative referencing

4 Excel Object Model; Object Browser; Auto Lists
5 & 6 Range Objects

7 Chart Objects
8 Loops and conditional statements

9 Custom functions

10 & 11 Formulating and solving linear programming (LP) models
12 - 14 ActiveX controls; User forms; Creating a Decision Support

System (DSS)

Teaching Spreadsheet-Based Decision Support Systems with Visual Basic for Applications 31

The final assignment required students to
develop an interactive LP model-based DSS. The
problem scenario was a manufacturing company
with a typical make-buy decision problem for two
products, electric and gas lawn trimmers (Ragsdale,
2001b). The data and formulas for the LP model
were maintained on one worksheet that is hidden
from the user, as shown in Figure 2. Additional
worksheets were created to give an overview of the
application (Figure 3), report the results of solving
the model (Figure 4), and show charts of the
optimal production and purchasing mix (Figure 5)
and resource usage (Figure 6). Command buttons,
a type of ActiveX control, were added to
appropriate worksheets to run the application and to
view and navigate between the sheets. Custom
dialog boxes, referred to as user forms in VBA,
were designed and implemented with event code to
allow the user the option of modifying data in either
the objective function or constraints of the LP

model. The main VBA code for
the application is responsible for
showing the forms, setting up the
Solver dialog box, and running
Solver to obtain the optimal
solution. Various error-checking
procedures were also included to
verify user inputs, identify special
cases such as infeasibility, and
ensure that the system operated
properly. A copy of the Excel file
for this application can be
obtained from the authors.

Pedagog ical IssuesPedagog ical Issues

Because the course was taught in a
computer lab, the authors were
able to de-emphasize the lecture
presentation of technical material
and directly involve the students in
hands-on experiential learning
activities. This approach had
many positive benefits, and the
authors are not sure how the
transfer of the course to a
traditional classroom setting or an
increase in class size would affect
the overall results. The format

allowed the authors to see firsthand where students
were encountering learning difficulties with the new
material and offer immediate assistance based on
the needs of either individual students or the class
as a group.

Figure 1: VBA function for queuing

Function P0(k, lambda, mu)

 Sum = 0

 For n = 0 To k - 1
 Sum = Sum + (lambda / mu) ^ n / WorksheetFunction.Fact(n)
 Next n

 P0 = 1 / (Sum + ((lambda / mu) ^ k / WorksheetFunction.Fact(k)) * (k * mu / (k * mu -
 lambda)))

End Function

Sub MultiServerP0()

 Dim NumServers As Long
 Dim ArrivalRate As Long
 Dim ServiceRate As Long

 NumServers = InputBox("Enter the number of servers: ")
 ArrivalRate = InputBox("Enter the mean arrival rate: ")
 ServiceRate = InputBox("Enter the mean service rate for each server: ")

 Range("B7").Value = NumServers
 Range("B8").Value = ArrivalRate
 Range("B9").Value = ServiceRate

 If ArrivalRate < NumServers * ServiceRate Then
 Range("C14").Value = P0(NumServers, ArrivalRate, ServiceRate)
 Else
 MsgBox ("The mean arrival rate must be slower than the mean service rate of the

system")
 Range("C14").Value = "#NA"
 End If
End Sub

Figure 2: Linear programming model sheet

32 Palocsay and Markham

For example, it was easy to illustrate and
discuss the differences in code generated by the
Recorder (FormatPercent, in Figure 7) and one
created by the user (FormatPercent2, also in Figure
7). Unfortunately, the Macro Recorder often
generates a significant amount of unnecessary code,
and there are some actions and logic that cannot be
recorded. Students were quick to see the elegance
and usefulness of a shortened version with the same
functionality.

Although there was considerable computer
programming experience among the students in the
class, there were weaknesses in several areas. One
area is the concept of object orientation, where an
object such as a range of cells on a worksheet is
selected and then changes are made in its
properties or methods are applied. The primary
difficulty seemed to be more in identifying and
selecting the proper object than in manipulating the
object. Range objects seemed to be the most
difficult concept in VBA programming for students
to grasp, regardless of their level of programming
experience. By definition, a range consists of a set
of one or more cells on a worksheet, and much of
the functionality of a VBA procedure involves
selecting a range of cells, changing its
characteristics (i.e., properties), and performing
actions (i.e., methods) on it. For the purpose of
exploring Range objects, the class was asked to
predict the cells that would be affected by each
VBA statement in a procedure before its execution
(see Range 1 and Range 2 in Figure 8). Changing
the color of selected cells helped students to
visualize the results of manipulating a range. To
effectively use Range objects in VBA programming,
the concept of storing a reference to an object, in
contrast to storing a value in a variable, must be
well understood.

Students also struggled with traditional
programming concepts, especially conditional logic
(e.g., If…Then…Else statements) and sequential
processing (e.g., For loops). Students found the
demonstration of a For loop with a macro to
compute a 3-period moving average to be helpful.

Figure 3: Explanation sheet for application

Figure 4: Report of model results

Figure 5: Chart of optimal production/purchase mix

Figure 6: Chart of resource usage

Teaching Spreadsheet-Based Decision Support Systems with Visual Basic for Applications 33

As an
exercise,
the
students

extended this macro to ask the user for the range of
input data and the number of periods for the
forecasting analysis (Figure 9). There was also a
discussion of the advantage of writing a formula into
a cell that will automatically be updated if there are
changes in the input data, rather than writing only
the calculated value as Excel’s built-in Moving
Average tool does. In addition to the For, Do Until,
and Do While looping structures, VBA also offers a
For Each loop that provides a convenient way to
process a group of objects belonging to a collection,
such as all of the worksheets in a workbook. An
example of the use of this construct in a DSS,
suggested by Albright (2001), is to include a
procedure like the one shown in Figure 10 to hide
all of the worksheets except an introductory
explanation sheet when the workbook is opened.

Another serious deficiency that was prevalent
among students in the class was the lack of
debugging skills. Students were encouraged to take
advantage of the tools provided by VBA for
debugging such as the ability to execute the code
one line at a time, by repeatedly pressing a function

key, and immediately viewing the effects in the
Excel workbook. Students were often observed to
be too impatient to step through their procedures
and analyze the performance of their code.
Another concern was that students did not apply
techniques such as commenting out a line or
inserting write (i.e., MSGBOX) statements to help
them debug their code. In revising the course, the
authors recommend looking for ways to incorporate
more discussion and practice on debugging skills.

A final pedagogical issue was the balance
between standardization and creativity on the part
of the students in programming. As a result of the
numerous properties and methods associated with
VBA objects in Excel, there are many ways to write
VBA code that will perform a certain set of
operations. The authors discovered early on in the
course that instructions for assignments had to
specify which properties and methods to use, if the
objective was to give the students practice with
particular ones. For some assignments, however,
these instructions were deliberately omitted so that
students would be forced to think about the various
objects and use their book, notes, and/or online
help to find appropriate members of the objects to
accomplish the required tasks. As a result, the
grading of these assignments was considerably more

Figure 7: Example of recording and
editing a VBA macro

Sub FormatPercent()
'
' FormatPercent Macro
' Macro recorded 7/8/2001
'
' Keyboard Shortcut: Ctrl+Shift+P
'
 ActiveCell.Select
 Selection.NumberFormat = "0.0%"
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .ShrinkToFit = False
 .MergeCells = False
 End With
End Sub

Sub FormatPercent2()

' Edited version of FormatPercent macro

 With Selection
 .NumberFormat = "0.0%"
 .HorizontalAlignment = xlCenter
 End With

End Sub

Figure 8: Manipulating Range objects

Sub Range1()
 Dim myRange As Range
 Set myRange = ActiveCell.CurrentRegion
 myRange.Interior.Color = vbCyan
 myRange.Rows(4).Select
 myRange.Rows(myRange.Rows.Count).Select
 myRange.Columns(2).Select
 myRange.Columns(myRange.Columns.Count).Select
 myRange.Cells(2, 3).Select
 myRange.Cells(11).Select
 myRange.Cells(myRange.Cells.Count).Select
 myRange.Cells.ClearFormats
End Sub

Sub Range2()
 Dim myRange As Range
 Set myRange = Range("A5:B6")
 myRange.Interior.Color = vbYellow
 myRange.Offset(0, 1).Select
 myRange.Resize(, 3).Select
 myRange.Resize(3).Select
 myRange.Offset(-4, 0).Resize(myRange.Rows.Count + 6,
myRange.Columns.Count + 1).Select
 myRange.EntireColumn.Select
 myRange.Cells(3).EntireRow.Select
 myRange.Cells.ClearFormats
End Sub

34 Palocsay and Markham

difficult and time consuming, and required actually
running students’ procedures rather than reviewing
printed code to verify that they work properly.
Students were initially uncomfortable with these
less-structured assignments, but gradually came to
value the confidence they gained from them as the
course progressed.

Future PlansFuture Plans

A formal course evaluation (summarized in Table 5)
was administered on the last day of class. Every
student commented that the workload was very high
relative to the number of credits earned (i.e.,
one). Ninety-five percent of the students also
indicated that they learned material perceived
by them to be of use in the future. Fifty percent
of the students recommended that the class
should meet a couple of times each week. The
authors agreed with this assessment, and the
course will be offered as a 3-credit special
topics elective course that meets twice a week in
the future.

This format will allow time to expand
coverage of VBA topics in the initial course
outline, and to explore more capabilities of

VBA, such as
building DSS based
on other types of
MS models and
linking Excel
spreadsheets to
other Office 2000
components.
Albright (2001)
includes some
excellent examples
of DSS for
simulation and
forecasting
applications.
Finance and
accounting are
additional sources
of potential
applications for
spreadsheet-based
DSS. Since VBA is
also the

programming language for Word, PowerPoint, and
Access, one possible extension of the course is in
the direction of developing integrated DSS in Office
to link spreadsheets with documents, presentations,
and databases. An example DSS for portfolio
optimization where the data are stored in an Access
database and queried from Excel using SQL
commands, described in Ragsdale (2001a),
illustrates this approach for advanced DSS.

Interestingly, one of the students worked on an
independent project that built on the material from
the course. This student has since graduated and is
working with a well-known consulting firm. This

Figure 9: Moving average forecasting

Sub MovingAverage()

 Dim myRange As Range
 Dim myMove As Range
 Dim i As Integer
 Dim j As Integer
 Dim k As Integer
 Dim myPeriod As Integer

 Set myRange = Range(InputBox("Enter the range of sales for the moving average in the form B1:B#"))

 myRange.Offset(0, 1).EntireColumn.ClearContents

 myPeriod = InputBox("Enter the number of periods for the moving average")

 Set myMove = myRange.Resize(myPeriod)

 j = myPeriod + 1
 k = myRange.Rows.Count + 1

 For i = j To k
 Cells(i, 3).Value = WorksheetFunction.Sum(myMove) / myPeriod
 Cells(i, 3).NumberFormat = "#,##0.00"
 Set myMove = myMove.Offset(1, 0)
 Next i

End Sub

Figure 10: For Each loops

Private Sub Workbook_Open()

 Dim mySheet As Object

 Worksheets("Explanation").Activate
 Range("A1").Select

 For Each mySheet In ActiveWorkbook.Sheets
 If mySheet.Name <> "Explanation" Then mySheet.Visible = False
 Application.ScreenUpdating = False
 Next

End Sub

Teaching Spreadsheet-Based Decision Support Systems with Visual Basic for Applications 35

fact, along with the comments from student
evaluations, suggests that the VBA course with
emphasis on DSS does benefit CIS majors. The
authors believe that VBA gives IT educators an
excellent opportunity to teach students in
information systems how to create applications that
interface with data and models and perform
quantitative analysis. The widespread use of Office
2000, and Excel in particular, promises that these
skills will be immediately applicable in the business
environment and directly contribute to the efforts of
companies that are focusing their efforts on better
utilization of these tools. The authors’ initial
experience teaching VBA programming to CIS
majors lead them to recommend that IT educators
add VBA to their curricula as a way to take
advantage of modern spreadsheet technology and
apply this technology in the context of business
organizational needs.

ReferencesReferences

Albright, S. C. (1998). Using VBA in a management

science course. OR/MS Today, 25(3), 6.
Albright, S. C. (2001). VBA for modelers: Developing

decision support systems with Microsoft Excel. Pacific
Grove, CA: Duxbury Press.

Anderson, D. R., Sweeney, D. J., & Williams, T. A.
(1999). Contemporary management science with

spreadsheets. Cincinnati, OH: South-Western
College Publishing.

Camm, J. D., & Evans, J. R. (1996). Management
science modeling, analysis and interpretation.
Cincinnati, OH: South-Western College Publishing.

Chan, Y. E., & Storey, V. C. (1996). The use of
spreadsheets in organizations: Determinants and
consequences. Information & Management, 31(3),
119-134.

Davis, G. B., Gorgone, J. T., Couger, J. D., Feinstein, D.
L., & Longenecker, Jr., H. E. (1997). IS’97 Model
curriculum and guidelines for undergraduate degree
programs in information systems. Park Ridge, IL:
Association of Information Technology Professionals.

Gorry, G. A., & Scott Morton, M. S. (1971). A
framework for management information systems.
Sloan Management Review, 13(1), 55-70.

Grossman, Jr., T. A. (2001). Causes of the decline of
the business school management science course.
INFORMS Transactions on Education, 1(2), 51-61.

Hesse, R. (1997). Managerial spreadsheet modeling and
analysis. Chicago: Richard D. Irwin, a Times
Mirror Education Group, Inc. Company.

Jacobson, R. (1999). Microsoft Excel 2000 Visual Basic
for applications: Fundamentals. Redmond, WA:
Microsoft Press.

Ragsdale, C. T. (1995). Spreadsheet modeling and
decision analysis, 1 st Edition. Boston: Course
Technology, Inc.

Ragsdale, C. T. (2001a). Teaching management science
with spreadsheets: from decision models to decision
support. INFORMS Transactions on Education, 1(2),
68-74.

Ragsdale, C. T. (2001b). Spreadsheet modeling and
decision analysis, 3 rd edition. Cincinnati, OH: South-
Western College Publishing.

Savage, S. (1997). Weighing the pros and cons of
decision technology in spreadsheets. OR/MS Today,
24(1), 42-45.

Turban, E., & Aronson, J. E. (2001). Decision support
systems and intelligent systems. Upper Saddle River,
NJ: Prentice-Hall.

Willemain, T. (1997). OR/MS and MBAs: Mediating
the mismatches. OR/MS Today, 24(1), 36-41.

Winston, W. L., & Albright, S. C. (1996). Practical
management science, 1st Edition. Pacific Grove, CA:
Duxbury Press.

Table 5: Course Evaluation Questionnaire and Student
Comments

1. What did you like best about the course?
• Material was neat/useful/helpful/relevant

2. What did you like least about the course?
• Too much work for 1 credit

3. What do you think we could do to improve the course?
• Make it a 2 or 3-credit course
• Meet twice a week

4. Overall, what was your impression of the course?
• Too much work
• Great learning experience
• Learned valuable skills

Material published as part of this journal, either on-line or in print, is copyrighted by the
Organizational Systems Research Association. Permission to make digital or paper copy of
part or all of these works for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage AND that copies
1) bear this notice in full and 2) give the full citation. It is permissible to abstract these
works so long as credit is given. To copy in all other cases or to republish or to post on a
server or to redistribute to lists requires specific permission and payment of a fee. Contact
Donna Everett, d.everett@moreheadstate.edu to request redistribution permission.

