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1 IntroductionResearchers are actively seeking to overcome the degradation of optical image quality caused bythe e�ects of imaging through a medium such as air, liquids, and other image degradation media.For example, atmospheric turbulence has especially frustrated astronomers since telescopes wereinvented. The optical e�ects are in part due to the mixing of warm and cold atmospheric layers,resulting in nonuniformities in the density and refractive index of air. These variations causeparts of the light waveforms from an object to be slowed by di�erent amounts, distorting theimage. The resulting twinkling of the stars and other e�ects are the main limitations of imagingthrough the atmosphere [7].Modern methods for the improvement in optical image quality is often attempted in twosteps. The �rst step occurs as the observed image is initially formed. Specially designeddeformable mirrors operating in a closed-loop adaptive-optics system can partially compensatefor the e�ects of medium turbulence. Optical systems detect the distortions. A wavefront sensormeasures the turbulence-induced wavefront distortions using light from either a natural guidestar or a guide star arti�cially generated using range-gated laser backscatter. These distortionsare at least partially nulli�ed by adjusting the surface shape of the deformable mirror. To bee�ective, these corrections have to be performed at real-time speed. Adaptive-optics controlsystems form the subject of considerable recent investigation, see, e.g., Ellerbroek et. al. [18, 19]and Hardy [27].The second stage of compensating for the e�ects of imaging through a medium generallyoccurs o�-line, and consists of the postprocessing step of image reconstruction or restoration.Here, large-scale computations, using either a simultaneous image of a natural guide star ora large ensemble of images corresponding to di�erent atmospheric realizations, are used todeconvolve the blurring e�ects of atmospheric turbulence, e. g., Lagendijk and Biedmond [29]and Nagy, Plemmons and Torgersen [32, 33]. Our concern in this paper is the developmentof robust regularized acceleration techniques for large-scale image postprocessing iterations.Adaptive linear and nonlinear methods are considered.There are a number of applications for optical image postprocessing:� Ground-Based Atmospheric Imaging. Here, restoration procedures are used to deconvolvethe blurring e�ects of atmospheric turbulence.� Endoscopy. Images are obtained through aberration-inducing 
uids, and thus opticalimage restoration can often improve the image quality.� Microscopy. This involves confocal, 
uorescence, and scanning microscopy, sometimes inthree dimensions, producing images which often must be restored by postprocessing.� Underwater Imaging. Again, this technology is known to be limited by turbulence andturbidity.The outline of our paper follows. A review of relevant background material on imagedenoising and image deblurring methods is given in x2. A space-varying regularized iterative2



restoration method based on image segmentation is proposed in x3. Numerical tests on simulatedand real atmospheric imaging data are reported in x4. Some observations and directions forfuture work are discussed in x5.2 Image PostprocessingLinear image postprocessing enhancement methods, especially direct FFT-based deconvolutionand related approaches, are currently used in many practical applications because of theirsimplicity and speed. This is especially true in medical imaging, where even the use of iterativemethods [5, 11, 15] has not yet been widely accepted in practice, e.g., Biedmond et. al [5].Convolution backprojection and related direct �ltering schemes are often used as standardapproaches to image reconstruction and restoration. Two main problems with standard linearmethods are oscillations and smoothing. Traditional enhancement methods prevent oscillationsin the restored image by smooth regularization techniques [23, 37]. Here, discontinuous orsingular image features and oscillatory textures sometimes cannot be restored. We focus onovercoming these restrictions by using space-varying regularization methods. We also providemethods for reducing the computational requirements of certain iterative image enhancementschemes, in order to make their use more practical for applications where both enhancementquality and speed are important considerations.If we let H denote the blurring operator and � the noise process, then the image restorationproblem with additive noise can be expressed as a linear operator equationg = Hf + �; (1)where g and the unknown f denote functions containing the information of the recorded andoriginal images, respectively. Note that whenH = I, the identity operator, the image restorationproblem means to extract the image f from a noisy image g. This problem is usually referredto as the denoising problem.Let u and v denote two-dimensional variables. If H is a convolution operator, as is often thecase in optical imaging, then the operator acts uniformly (i.e., in a spatially invariant manner)on f . Here, (1) can be written asHf(u) = Z
 h(u� v)f(v)dv: (2)The problem is to both deconvolve and denoise the recorded image during the reconstructionprocess, and we refer to this as the denoising and deblurring problem. In optical imaging, thekernel h in (2) is called the convolution point spread function (PSF). After discretization of (1),the spatial operator H de�ned by h in (2) is a matrix that we denote byH. Here, in the spatiallyinvariant case, H is a block Toeplitz matrix with Toeplitz blocks [29].A classical approach employed for solving (1) is that of penalized least squares, which is alsocalled Tikhonov regularization in the inverse problems literature. This requires minimization ofthe expression kHf � gk2 + �J(f); (3)3



where k � k denotes the norm on L2(
), � is a positive (regularization) parameter and thefunctional J(f) serves the purpose of stabilizing the least squares problem and penalizingcertain undesirable artifacts like spurious oscillations in the computed f . Various choices ofJ(f) can be made, including kSfk2, where S is some smoothing di�erential operator, or theidentity. This model leads to fast linear methods for computing f , and is often the methodof choice by practitioners [29]. However the use of other norms such as the L1 norm, lead tononlinear minimization methods [2] which sometimes result in superior enhancement of blocky,noisy images, but with added computational cost. Such approaches are reviewed in the nextsubsection.2.1 Variational MethodsOsher and Rudin [36] have suggested an image enhancementmethod based on solving a nonlinearPDE constrained minimization problem where the function being minimized is the Total Variation(TV) of the image f = f(x; y). Numerous papers on various TV approaches for image denoisingor restoration have been written in the past �ve years. A partial list is provided in the references[1, 2, 10, 12, 17, 36, 39, 40, 41]. By now the principles of TV methods are well-understood, andrecent papers have concentrated on speeding up the computations. Signi�cant computationalrequirements are often necessary for these nonlinear TV-based methods.The variational method of Rudin, Osher and Fatemi [39, 40] considers the following constrainedminimization problem: minf Z
 jrf jdu subject to kHf � gk2 = �2; (4)where rf denotes the gradient of f , and � is the noise level. At a point u = (x; y) in the imagedomain, f(u) = f(x; y), and so jrf(u)j = qf2x + f2y : (5)The quantity Z
 jrf jdu = Z
qf2x(x; y) + f2y (x; y)dxdy (6)is called the total variation norm of f . The minimization in (4) is a form of regularization, astep necessary in solving most ill-posed inverse problems. The TV method [39, 40] is especiallye�ective for recovering a blocky, discontinuous, function from noisy data [17].Several authors [1, 2, 10, 12, 17, 41] have considered the following closely-related Tikhonovregularization problem (3), where �J(f) = � Z
 jrf jdu; (7)see, e.g., Acar and Vogel [1] and Vogal and Oman [41]. Here � is a positive regularizationparameter which measures the trade-o� between a good �t and an oscillatory solution. This4



method corresponds to the use of the L1 norm in the discrete case. At a stationary point of (7),the gradient of (3) vanishes, giving:z(f) � H�(Hf � g)� �r �  rfjrf j! = 0; u = (x; y) 2 
: (8)Due to the term 1=jrf j, (8) is a degenerate nonlinear second order di�usion equation. Thedegeneracy can be alleviated by modifying the di�usion coe�cient; see Vogel and Oman [41].More precisely, let f̂ be an approximation to f given by��(f) = 1qjrf j2 + � � > 0; (9)L�(f)f̂ = �r � (��(f)rf̂); (10)and de�ne R�(f)f̂ = (H�H+ �L�(f))f̂ : (11)Then (8) becomes the following non-degenerate systemR�(f)f̂ = H�g; u = (x; y) 2 
; with @f@n = 0; u = (x; y) 2 @
: (12)A recent survey of related approaches to image enhancement can be found in Alvarez and Morel[2].Various numerical schemes have been devised to obtain the minimizer of the functional (7).For example in Rudin and Osher [39] and in Rudin et. al. [40], an explicit time marching schemeis used. However, the time step must be chosen small. Thus the number of iterations to optimalconvergence can be quite large [2]. Vogel and Oman [41] have introduced a lagged di�usivity�xed point iteration approach, which we denote by FP, to solve (12). If R�(fk), H and L�denote the discretization matrices of R�(fk), H and L�, respectively, then the FP iteration willproduce a sequence of approximations ffkg to the solution f and can be expressed as a sequenceof systems of linear equations:R�(fk)fk+1 � (H�H + �L�(fk))fk+1 = H�g; k = 0; 1; ::: (13)In the denoising case, numerical experiments cited in Vogel and Oman [41] indicated that theFP iteration method often gives a faster convergence rate than the time marching method, withoverall greater speed for the entire process. Note that in (13), obtaining fk+1 from fk requiresone to solve a large linear system with coe�cient matrix H�H + �L�(fk). For deconvolution,H is block Toeplitz with Toeplitz blocks. In any case, the matrix �L�(fk) is a 2-D nonconstantLaplacian with �ve bands. Its spectrum can vary widely over the outer iterations, i.e. with theindex k [10].A disadvantage of experimentally obtained data sets representing the PSFs (obtained, forexample, using guide stars) is that they are also subject to degradations caused by noise during5



the image formation process. Thus, removal of such degradations may be necessary prior toany computations using the PSF in the image restoration postprocessing step. In this paper weconsider, among other approaches, TV-based denoising of the PSF whose model is formulatedas s = h+ �; (14)where h is the blur produced by the atmospheric turbulence on a single point, and s is the actualmeasurement or observed PSF. For the denoising problem, H�H = I, so that the coe�cientmatrix in (13) is a sum of the identity matrix and L�(fk).The question arises here that if the computationally expensive TV-based minimization is usedfor denoising, then why not use it as well to solve the complete image restoration problem foratmospheric imaging. The reason for this is that TV denoising of the PSF can be accomplishedwith little extra computation since point spread functions h for optical imaging can usually betreated as having small extent [7]. Thus, the cost of preprocessing the PSF is much less thanthat of deblurring f by TV methods. Our approach to the deblurring step is considered inthe next section, where a numerically e�cient and stable preconditioned iterative regularizationmethod is proposed.2.2 Preconditioned Conjugate GradientsIn this subsection we consider numerical methods for approximating the solution to the linearrestoration problem in discretized (matrix) form obtained from the operator equation given in(1), namely: g = Hf + �: (15)Here, for simplicity we assume that the image in question is square, and accordinglyH is n2�n2,where n is the number of pixels in each direction. The vectors f , g 2 Rn2 represent the observedand true (unknown) image pixel values, respectively, unstacked by rows.There are many ways to handle this inverse problem of recovering f , which include bothdirect methods such as the singular value decomposition, and linear iterative methods such asconjugate gradients, and/or nonlinear TV methods as de�ned earlier by (13). Direct methodscan sometimes be impractical for problems having matrices of large dimensions, as is the casein image restoration. Recently, though, Fish, Grochmalicki and Pike [20] proposed a \scanningSVD" which computes an approximate singular value decomposition. Here, we consider iterativemethods. The fact that (15) is an ill-posed inverse problemmust also be considered. By ill-posedit is meant that computed solutions to Hf = g are likely to be extremely corrupted by noise.Regularization methods attempt to alleviate sensitivity to the noise by \�ltering" out eigen-components of the solution belonging to the noise subspace. For some iterative methods, ithas been established that early termination of the iterations accomplishes this regularizatione�ect. That is, the eigen-components of the signal subspace are reconstructed in the �rst(possibly many) iterations and, after reaching a certain approximate restoration, the componentsin the noise subspace begin to be reconstructed. It is at this point, where the noise begins tocontaminate the reconstruction, that the iterations are halted, see, e.g., Hanke and Hansen [23].6



The linear conjugate gradient method (cg) has the previously mentioned regularizing properties[23, 34]. The classical cg method solves symmetric positive de�nite systems of equations [21].The blurring operator (PSF) associated with atmospheric turbulence is generally modeled bya symmetric Gaussian function [29]. In optical image restoration, though, the matrix H istypically constructed from observations (such as a bright guide star) and, hence, is generally notquite symmetric in practice. One way to overcome this di�culty, and still work with the classicalcg method, is to apply cg to the factored form of the normal equations H�(g �Hf) = 0. (Avariant of this method is known as cgls [6]). However, there are two main disadvantages withthis approach:� The ill-conditioning of the (implicit) normal equations matrix H�H is much worse thanthat ofH. Thus the convergence rate may be slow, and full reconstruction of the componentsin the signal subspace may require many iterations.� Each cgls iteration requires matrix-vector multiplications with both H and H�.The �rst of these di�culties can be partially addressed through preconditioning; the seconddi�culty is considered in the following subsection. It is known that convergence of cgls willbe fast if the singular values of H�H are clustered around one [4]. Preconditioning amountsto obtaining a matrix C such that (C�C)�1H�H has a more favorable spectrum. Here, Q �(C�C)�1 is an an approximate inverse preconditioner for H�H. With preconditioned cgls,linear systems with C and C� need to be solved at each iteration.Furthermore, preconditioning of ill-posed inverse problems is a delicate matter. Althoughclustering of the spectrum will provide fast convergence rates, it also can have the disadvantageof mixing the signal and noise subspaces [25]. To summarize, we observe that an e�ectivepreconditioner for ill-posed inverse problems should satisfy the following two properties:� The spectrum of the preconditioned system must cluster the components belonging to thesignal subspace. In this way reconstructing an approximation to f can be done quickly,without contaminating the early iterations with noise.� It must be relatively easy to solve systems of equations with C and C�.For spatially invariant point spread functions h in image restoration, both of these goals can beachieved. Brie
y, since the discretized h, given as H, is a block Toeplitz matrix with Toeplitzblocks, it can be approximated by a block circulant with circulant blocks matrix C [13]. ThenC can be easily diagonalized by the 2-D unitary fast Fourier transform (FFT) [16]; that is,C = F ��F , where � is a diagonal and generally complex matrix. Using FFTs, solutions oflinear systems with C and C� can be computed using only O(n2 log n) arithmetic operations, ascan matrix-vector multiplications with H and H�.Since the eigenvalues of C are readily available, those with small absolute values, which areassociated with the noise subspace, can be replaced by ones (A method for separating the signaland noise subspaces is summarized in the following section). In this way, C clusters the singularvalues of H associated with the signal subspace, and acts like the identity on the noise subspace;see Hanke et. al. [25] for further details. 7



We point out that conjugate gradients has a regularizing e�ect on ill-posed inverse problemssuch as (15). In particular, the regularizing method now takes the formmin kHf � gk2 subject to f 2 Sk; (16)where Sk is a certain Krylov-like subspace of dimension k, and the number of iterations k is aregularization parameter; see Hanke and Hansen [23].2.3 A Preconditioned Iterative Regularization MethodWe next address the question of how one can avoid matrix multiplications with H�, as wellas solving systems with C� when using preconditioned iterative regularization with C. Aspreviously mentioned, often the theoretical model of the blurring operator is symmetric (e.g.,a Gaussian PSF in atmospheric blurring). In our optical imaging applications, H is oftenobtained from observations of the PSF which are degraded by noise. Hence H is not likelyto retain a symmetric structure. However, since the theoretical blurring model is symmetric,we would expect H to be nearly symmetric, and that one could obtain a good symmetricapproximation to this operator. This is the symmetrization approach taken by Hanke and Nagy[24] for spatially invariant blurs in astronomical imaging and adopted here as well. Thus, withoutloss of generality, in the following work we assume that the blurring operator H is symmetric(if not, it is symmetrized using the techniques suggested by Hanke and Nagy [24]).However, due to noise and approximation errors, we cannot expect H to be positive de�nite.Therefore, the classical cg method is still not applicable. cgls could be used, but it does nottake full advantage of the new symmetric property imposed in H (each iteration still requirestwo multiplications with H). Although there are other variants of cg that one might attempt[4], the question of whether they still retain a regularization e�ect through early terminationhas, until very recently, been unanswered. An important result in this direction was establishedby Hanke [22] for a minimum residual (mr) type variant of cg, which he refers to as mr-ii.The mr-ii method is a mathematically, but not computationally, equivalent formulation of amethod �rst proposed by Paige and Saunders [38] whose iterates di�er in general from those ofmr, since the residuals are minimized in di�erent Krylov subspaces.Hanke and Nagy [24], have used the mr-ii method for restoration of atmospherically blurredimages in combination with a preconditioning approach, known as preconditioned regularization,similar to the one described in the previous subsection. In addition to the advantage that eachiteration needs only one matrix-vector multiplication and one solution to a system involvingthe preconditioner (as opposed to two each for pcgls), it was observed by these authors thatconvergence for (p)mr-ii can be substantially faster than (p)cgls.The preconditioned iterative regularization scheme was �rst introduced by Hanke, Nagy, andPlemmons [25]. Given a block circulant with circulant blocks matrixC = F ��F (17)described earlier, and a a truncation parameter � as de�ned in Hanke et. al. [25], which e�ectivelyassociates the spectrum of C with the signal and noise subspaces, a regularized preconditioner8



C� is de�ned as C� = F ��(� )F; (18)where the diagonal matrix �(� ) is de�ned by�(� )jj = ( j�jj j if j�jj j > �1 otherwise : (19)The approximate inverse regularized preconditioner is then given byQ� � C�1� = F ��(� )�1F; (20)so that Q� is an approximate inverse of H. Then Hf = g becomes the approximate inverseregularized preconditioned system Q�Hf = Q�g: (21)In our application, H is symmetric, but generally inde�nite, while C� is symmetric positivede�nite. Moreover, only a single column of H and of C� are needed in order to perform thecomputations.We next show how the parameter � is found. In Hanke and Nagy [24], the L-curve criterionwas used in order to chose the � that selects the noise and signal subspaces, as it would be usedin determining a truncation index for the truncated singular value decomposition. Speci�cally,given j�1j � � � j�n2 j where �1 � �2 � : : : � �n2 are the eigenvalues in �, letz� = Xj�jj>� v�j g�j vj; and r� = g � Cz� (22)where vj is the jth column of F �. Then the L-curve consists of a log-log plot ofjjz� jj2 verses jjr� jj2: (23)For larger � the solutions z� have norm typically on the same order as f while the residual tendsto decrease. Thus this part of the plot remains relatively 
at. As � is decreased, the followingsituation usually occurs:� more components of the noise subspace begin to corrupt z� , so that jjz� jj begins to growlarge, and� jjr� jj begins to approach the noise level where it essentially remains constant as � is furtherdecreased.Therefore, the plot begins to rise at some point, and thus has a distinct L-shaped appearance.The value of � corresponding to the corner of the L typically provides a reasonable estimate ofthe separation of the signal and noise subspaces. That is, the eigen-components correspondingto those �j satisfying j�jj > � are associated with the signal subspace, and the remaining withthe noise subspace. For further details on the properties of the L-curve, we refer to Hansenand O'Leary [26] and the references therein. The preconditioned mr-ii method is given asAlgorithm 1 in Figure 1 and an example of an L-curve for actual USAF satellite image datapresented in x4, is given in Figure 2. 9



Algorithm 1: mr-ii with approximate inversepreconditioning by Q�Inputg { observed dataH { symmetrized point spread function operator� { truncation parameterQ� { approximate inverse preconditioner de�ned by (20)f0 { initial guessOutputfk � fMethodq1 = g �Hf0f1 = f0r1 = Q�q1v�1 = 0v0 = Q�Hr1u�1 = 0u0 = Hv0w�1 = 0w0 = Q�u0� = hw0; u0i1=2v0 = 1�v0w0 = 1�w0u0 = 1�u0k = 1while ( not stop ) do� = hrk; uk�1ifk+1 = fk + �vk�1rk+1 = rk � �wk�1� = hwk�1;Hwk�1ivk = wk�1 � �vk�1 � �vk�2uk = Hwk�1 � �uk�1 � �uk�2wk = Q�Hwk�1 � �wk�1� �wk�2� = hwk; uki1=2vk = 1� vkwk = 1�wkuk = 1�ukk = k + 1end while Figure 1: Algorithm 110
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Figure 2: L-curve or log{log plot of jjf� jj2 vs. jjr� jj2 for an actual satellite image computation.3 Space{Varying Restoration (SVR)In this section we introduce our space-varying restoration (svr) approach for the purpose ofdeblurring optical images. svr is a variant of the preconditioned regularization mr-ii methoddiscussed in x2.3. It provides a space-varying regularized iterative restoration scheme based onimage segmentation. Recently, other image restoration methods based on image segmentationhave been investigated [3, 14, 31].The motivation for our work is based on the observation that the preconditioned regularizationmr-iimethod of Hanke and Nagy [24] applies the same level of regularization and preconditioningto the entire image, regardless of how much information or noise is present in various portionsof the image. Note that in regions containing lower signal to noise ratios (such as backgroundareas) one would expect fast convergence to amplify noise; that is, there may be too muchpreconditioning in these regions. Therefore, we propose to apply regularized preconditioningin a space-varying manner. Speci�cally, our approach considers a multi-level preconditioningscheme in order to vary the level of restoration depending on the amount of activity in variousregions of the image. These activity regions are identi�ed by a segmentation scheme describedin the next section. Once these regions are de�ned, we use the L-curve scheme [26] on eachregion to identify the signal and noise subspaces, and hence the level of restoration. Thus, weexpect that more regularized preconditioning will be used in regions of high activity and lessregularized preconditioning in regions of low activity. The method should work especially wellon images that are piecewise smooth. 11



For the image data presented in x4, the boundaries of the activity regions tend to coincidewith steep edges in the image, thus the segmentation scheme also results in essentially smoothsegments. The net e�ect is to suppress the ampli�cation of the noise signal by adaptivelyaccelerating convergence in areas of high signal to noise ratio. By regularizing the computationon independent smooth segments, a stable, space-varying restoration method is achieved.3.1 Image SegmentationImage segmentation has been widely studied and a number of approaches have been investigated(see, e.g., Castleman [9]). Heuristic segmentation schemes for adaptive restoration methods areoften based on comparing the image intensity, the gradient of the image intensity, the Laplacianof the image intensity, or some combination of these measures to a set of threshold values. Otherapproaches include watershed type methods, region growing and numerous edge operators, e.g.,Sobel [9].Nevertheless, segmentation remains a problem dependent technique [35]. A successful methodfor one class of problems may yield poor solutions for other problems. In the case of restorationof optical images, segmentation is especially troublesome: \good" segmentations in the presenceof noise are considerably di�cult to obtain. Furthermore, segmentation, as a preprocessing stepin space-varying restoration, is required to be computationally inexpensive.A simple approach to obtaining a fast segmentation for our optical image restoration purposesis the technique of multiple thresholding [9]. Let the matrix G denote an observed n� n imageof pixel values and let g denote the n2-vector obtained by unstacking G row-wise. The image Gis segmented into ` non-overlapping regions G1; G2; :::; G` using a monotone increasing sequenceof threshold values gmin = t0; t1; t2; :::; t` = gmax and the following rule: pixel gi is in segmentGm, for 1 � m � `, if and only if tm�1 < gi � tm.It was determined that for the data used in our tests, some form of smoothing or denoising isnecessary to improve the e�ectiveness of the segmentation procedure. Here, median �ltering waschosen to smooth the images and reduce noise prior to segmentation by multiple thresholding.Similarly, e�ectiveness can be improved by enhancing high activity features using the gradientor the Laplacian, or by transforming the intensity pixel distribution to a more favorable one.While gradient-based methods seem to be particularly sensitive to noise in the observed image,the transformation of the intensity pixel distribution using the standard technique of histogramequalization [9] to improve contrast and facilitate spacing of threshold boundaries turns out tobe more promising for the purpose of restoration of atmospheric images.For all of the image data presented in x4, median �ltering is used to smooth the observedimage and reduce noise prior to segmentation. For the restorations shown, threshold valuest0; :::; t` are chosen by inspection. The threshold values chosen by inspection were found to beconsistent with histogram based techniques [9] which separate multi-modalities in a histogramof the pixel values. Figure 3 illustrates the segmentation scheme described above as applied tosome real data (see Example 3 in x4). 12



Figure 3: Segmentation applied to satellite data.3.2 An SVR AlgorithmWe now describe our scheme for extending and improving upon the method of Hanke and Nagyby incorporating segmentation and space-varying restoration in di�erent regions according toactivity level. As previously mentioned, the basic idea is to use a slightly di�erent preconditionerover each of the regions so that convergence is accelerated in regions of high activity.Consider again matrix C, a block circulant with circulant blocks approximation to H, andrecall that C = F ��F , where � is a diagonal matrix containing the eigenvalues of C, andF is the 2-D unitary Fourier transform matrix. Given the non-overlapping segmented regionsG1; : : : ; G` of the n � n observed image G, the L-curve criterion suggested in x2.3 can be usedto choose a truncation tolerance �i for the signal and noise subspaces of each region. Let g bethe vector obtained from G by unstacking the image pixels row-wise. Then the segmentation ofG can be equivalently de�ned as g = D1g +D2g + � � � +D`g; (24)where Di is an n2 � n2 diagonal masking matrix given by[Di]kk = ( 1 if pixel gk belongs to segment G(i)0 otherwise: (25)Then an approximate inverse preconditioner for region G(i) is de�ned to be Q�i given in (20),replacing � by �i.With the notation in place, we can now introduce our space-varying restoration scheme. Thesvr method proposed here is shown as Algorithm 2 in Figure 4. svr is a minimum residualtype method that belongs to a class of Krylov subspace methods [22] and, more speci�cally, isclosely related to pmr-ii. Using ` segments, svr solves a problem Hf = g with n2 unknowns13



Algorithm 2: svrInputg { observed data` { number of segmentsI = D1 +D2 + : : :+D` { masking matrices for segmentationf�igì=1 { truncation parametersfQ�igì=1 { approximate inverse preconditionersH { symmetrized point spread function operatorf0 { initial guessOutputfk � fMethodq1 = g �Hf0f1 = f0r1 =Pì=1Dir(i)1 , r(i)1 = Q�iq1 for i = 1; : : : ; `v�1 = 0 , v(i)�1 = 0 for i = 1; : : : ; `v0 =Pì=1Div(i)0 , v(i)0 = Q�iHr(i)1 for i = 1; : : : ; `u�1 = 0 , u(i)�1 = 0 for i = 1; : : : ; `u0 =Pì=1Diu(i)0 , u(i)0 = Hv(i)0 for i = 1; : : : ; `w�1 = 0 , w(i)�1 = 0 for i = 1; : : : ; `w0 =Pì=1Diw(i)0 , w(i)0 = Q�iu(i)0 for i = 1; : : : ; `� = hw0; u0i1=2v0 = 1�v0 , w0 = 1�w0 , u0 = 1�u0w(i)0 = 1�w(i)0 for i = 1; : : : ; `k = 1while ( not stop ) do� = hrk; uk�1ifk+1 = fk + �vk�1rk+1 = rk � �wk�1� = hwk�1;Pì=1DiHw(i)k�1ivk = wk�1 � �vk�1 � �vk�2uk =Pì=1DiHw(i)k�1� �uk�1� �uk�2wk =Pì=1Diw(i)k , w(i)k = Q�iHw(i)k�1 for i = 1; : : : ; `wk = wk � �wk�1� �wk�2� = hwk; uki1=2vk = 1�vk , wk = 1�wk , uk = 1�ukw(i)k = 1�w(i)k for i = 1; : : : ; `k = k + 1end while Figure 4: Algorithm 214



by computing a projection of a sequence of implicit iterates of dimension `n2 produced by(modi�ed) pmr-ii applied to a larger, related problem. To understand the relation between svrand pmr-ii, consider the block diagonal approximate inverse preconditioned systemQTx = Qy (26)where the unknown x 2 R`n2 andQ = diag(Q�1; Q�2; : : : ; Q�`);T = diag(H;H; : : : ;H);y = [gT ; gT ; : : : ; gT ]T : (27)Note that the block diagonal matrix Q is symmetric positive de�nite and (26) is equivalent tothe system Q1=2TQ1=2z = Q1=2y; x = Q1=2z: (28)A key observation in the understanding of svr in Algorithm 2 is that the quantities w(i)k inthe main loop of the algorithm are of the form (QT )kw0 where w0 is formed by stacking thew(i)0 for 1 � i � ` into a vector of dimension `n2.Further, let D be an n2 � `n2 matrix representing a projection D: R`n2 ! Rn2 given byD = h D1; D2; : : : ; D` i (29)where Di are the diagonal matrices de�ned in (25) for 1 � i � `. Observe that an approximaterestoration fk computed by svr is a projection under D of a vector xk belonging to a Krylovsubspace given by Kk(r1;QT ) = span(r1; (QT )r1; (QT )2r1; : : : ; (QT )kr1) (30)where r1 = Q(y�Tx0) is the initial (preconditioned) residual and x0 is formed from ` repetitionsof the initial guess f0. The careful reader may observe that svr can be derived by substitutingQ, T , x0, and y into pmr-ii and making the following two modi�cations.First, observe the scalar quantities �; �; and � in svr are computed similarly to the correspondingscalar quantities in pmr-ii, except the inner product used in svr is de�ned relative to theprojection D. More precisely, let h�; �iD denote a semi-de�nite inner product on a, b 2 R`n2given by ha; biD = hDa;Dbi: (31)See Hanke [22] for a discussion of choice of norms and the corresponding derivation of variousconjugate gradient type methods. It is possible that for general a and b in R`n2 that theparameter � = hwk; ukiD = hDwk;Duki may become zero. This can be veri�ed by constructinga vector b with a zero in every position where the diagonal matrix DTD in R`n2�n2 has a one.In this case ha; biD = 0 for any a. Although at this writing it is not resolved whether � couldbecome zero for our particular applications, we emphasize that this situation seems unlikelybecause of the repetitive way in which our vectors wk and uk of size ln2 are formed.15



Second, the computation and storage of uninteresting quantities are suppressed, e.g., anapproximate solution (restoration) fk requires only n2 values. The approximated solution fk isobtained by projecting xk at each iteration onto Rn2 using D; that is,fk = Dxk: (32)Note also that svr reduces to pmr-ii, that is, svr computes exactly the same sequence of vectoriterates as pmr-ii, when �1 = �2 = : : : = �`.A number of variants of svr are possible based on di�erent choices of which variables inpmr-ii are projected, and which are fully represented in a space of dimension `n2. At oneextreme, all variables in pmr-ii could be fully represented in R`n2 . Here, this variant of svr isequivalent to applying mr-ii to the preconditioned system QTx = Qy, and then combining thedesired portions of the independently computed solutions using the diagonal matrices Di. Atthe other extreme, all of the variables in pmr-ii could be represented by their projections, i.e.,a solution to the system DQTx = DQy is sought. The svr variant presented as Algorithm 2in Figure 4 takes a position in between these two extremes. Projected values are used for thepurposes of computing the scalars �, �, and �.Development of svr variants remains a topic for future investigation. Formal convergenceanalysis of svr will also be presented in future work. At this point, it seems that our restorationscheme as presented above could be slightly modi�ed to deal with non-uniform or spatiallyvarying blur. Also, we note that svr could be used for multiple-frame image restoration ofan object. By multiple-frame restoration is meant the restoration of an image from a set ofobservations of both the PSF and the observed image. This particular application is of interestbecause of the inherent sensitivity of optical image restoration algorithms to changes in theobservations of the PSF.Our restoration method has computational complexity of only O(`n2 log n), where n2 is thenumber of pixels in the image and ` is the number of segments used. Moreover, parallelizationof Algorithm 2 seems a natural step to take. The idea is that every image segment can beprocessed concurrently in ` di�erent nodes. Using the master/slave paradigm, a master nodedetermines when the inner preconditioned linear systems are solved, and when other tasks, suchas H �w(i)k�1, are performed. By simulating a distributed data structure, where each slave node imaintains local variables associated with segment i, communication can be minimized to mostlysending and receiving instructions. The only time when \heavy" communication occurs andsynchronicity is required, is when the master node forms the solution of an outer preconditionedsystem. We have a parallelized version of Algorithm 2 and it is implemented using a ParallelToolbox for MATLAB [28]. It is not the purpose of the present paper to give an analysis ofsuch a parallel algorithm. However, in our experiments, we note that the computing time ofthe parallelized version of svr using 3 to 5 segments was no more than that of mr-ii withpreconditioning applied to a single segment. 16



4 Numerical TestsIn this section we present numerical tests of three data samples to illustrate the e�ectiveness ofthe space-varying restoration (svr) method, in comparison to the unpreconditioned mr-ii andpreconditioned-based regularized mr-ii methods in Hanke and Nagy [24]. The �rst data sampleconsists of true and degraded images of a simple known block object. The second data sampleconsists of true and degraded images of simulated satellite data as it would be captured by aground-based telescope using an adaptive-optics system. The third and last data sample includesactual ground-based telescope images obtained at the USAF Phillips Laboratory Star�re OpticalRange using an adaptive-optics imaging procedure. Here, total variation minimization is usedfor the preprocessing step of denoising the guide star. For the svr method, the degraded imagesin each sample were partitioned into three segments using the segmentation scheme describedin x3. All the computations were done in MATLAB 4.2c.Example 1: Regular Boundaries. This example consists of a simple 256 � 256 image (with65,536 unknown pixel values) containing two blocks having di�erent gray scale intensities with acommon boundary, as shown in Figure 5a. To obtain a blurred image, we used a Gaussian-typepoint spread function shown in Figure 5b (and described in further detail in Example 2) andconvolved it with the original image. The degraded image was then obtained by adding 10%normally distributed random noise, with mean 0 and variance 1.0. This degraded image is shownin Figure 5c.
a. True image b. PSF c. Degraded imageFigure 5: Block image data.The L-curve method was used to select the tolerance or truncation parameters �i for thepreconditioners Q�i associated with each segment. This procedure is described in x2.3. Recallthat the truncation parameter �i separates the spectrum into signal and noise subspaces, therebyenabling the space-varying preconditioner to cluster the singular values of H associated withthe signal subspace, and act like the identity on the noise subspace. For the regularizedpreconditioned mr-ii method (svr with one segment), the truncation parameter we obtained17
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SVRFigure 6: Relative errors for block image data.resulted in a signal subspace involving 350 eigenvalues; that is, 350 eigenvalues were greaterthan the truncation parameter (following the de�nitions in (19) and (18)). For the svr method,the truncation parameters we obtained for each of the three regions resulted in signal subspacesinvolving 100 eigenvalues for the region associated with the background, 350 eigenvalues for theregion associated with the border regions, and 450 eigenvalues for the region containing most ofthe object. (following the discussion of x3.2 ).Because we have the true solution, for each method we are able to quantify solutions interms of their relative errors. A plot of the relative error norms is shown in Figure 6. As canbe seen from the plot, the svr method allows us to obtain smaller relative errors, and in thatsense, better solutions. Moreover, svr appears to stabilize the iterations in that the relativeerrors are reduced quickly, but then remain at about the same level for many iterations. Forinstance, comparing the relative errors at the 15th iteration, we see that svr still provides agood restoration, whereas restorations by the other methods are corrupted with noise. This isa distinct advantage since it is di�cult, e.g., Hanke and Hansen [23], to predict the \optimal"stopping point in practice, and hence being a few iterations further away from the minimumrelative error solution will not have much e�ect on the computed restoration. Thus, robustnessis incorporated into our svr scheme, leading to more stability in the iterations. Figure 7 showsthe computed restorations for each method, which further illustrates the stable behavior of svr.Example 2: Simulated Ground-Based TelescopeData. The image boundaries in Example 1are very regular, and hence the segmentation used to construct the svr preconditioners isrelatively simple to obtain. In the next example, consider a 256 � 256 image with irregular18



mr-ii svr, 1 segment svr, 3 segments
2 iterations 2 iterations 2 iterations
10 iterations 10 iterations 10 iterations
15 iterations 15 iterations 15 iterationsFigure 7: Computed restorations of the block image.19



boundaries. This data was obtained from the US Air Force Phillips Laboratory, Lasers andImaging Directorate, Kirtland Air Force Base, New Mexico. Speci�cally, the true object is anocean reconnaissance satellite, which is shown in Figure 8a. A computer simulation algorithmat Phillips Laboratory was used to produce an image of the satellite, shown in Figure 8c, aswould be observed from a ground-based telescope using adaptive-optics compensation [18]. Thesatellite was modeled as being 12 meters in length and in an orbit 500 kilometers above thesurface of the earth. The simulated charge-coupled device (CCD) for forming the image wasa 65,536 pixel square array. CCD root-mean-square read-out noise variance was �xed at 15microns per pixel to re
ect a realistic state-of-the-art detector.In actual �eld experiments, several hundred measurement are averaged to reduce the e�ectsof noise. The PSF and degraded image used in this data, which are shown in Figure 8b, werecreated to simulate this situation [8, 30].
a. True image b. PSF c. Degraded imageFigure 8: Simulated ground-based telescope image data.Again we use the L-curve method to select the tolerance parameters for the preconditioners.When preconditioning on only one segment, following (19), this corresponded to a signal subspaceinvolving 1335 eigenvalues. With svr, and following (19), the L-curve suggested using 600, 1335,and 1347 eigenvalues for the signal subspaces of each of the three respective regions. A plot ofthe relative errors is shown in Figure 9. Observe that the svr scheme does not quite obtain assmall a relative error as the non-preconditioned mr-ii method. We attribute this observationto the low noise levels in the data, which essentially reduces the need for regularization in thisparticular problem. However, the svr algorithm exhibits a robust and stable behavior in thesense that the relative errors decrease quickly and remain at a low level for many iterations.Computed restorations at various iterations are shown in Figure 10.Example 3: Ground-Based Telescope Data. We consider here a real ground-based telescopeimage taken by a USAF facility of a satellite circling the earth, and a corresponding PSF imageof a nearby natural guide star, Deneb. The guide star was chosen in the near �eld-of-view forthe satellite, in order to enforce spatial invariance of the PSF for the operator equation given in20
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ying southward down the Milky Way. It is a brilliant white star with visual magnitude1.4. Deneb and wing stars of the swan form an asterism called, for obvious reasons, the NorthernCross. Figure 11 shows the observed degraded image and an image of the guide star Deneb.We remark that the e�ects of atmospheric turbulence have been partially compensated by anadaptive-optics system [27] as the satellite and guide star were imaged through the telescope.The adaptive-optics system used was controlled by a procedure similar to that developed byEllerbroek, Van Loan, Pitsianis, and Plemmons [18, 19].Figure 12a shows a surface plot of the observed PSF image, and it is not di�cult to see thatthe image contains a substantial amount of noise. A preprocessing step to reduce this noise isnecessary to obtain a better restoration. In our experiments we attempted to restore the imageboth with and without denoising the PSF, and found that signi�cantly better restorations wereobtained when denoising. We tried various techniques for removing noise from the PSF, such aslocal averaging, median �ltering and total variation minimization. Best results were obtainedwith the total variation (TV) method, as described in x2.1. Here, the sharp spike associated withthe PSF is preserved very nicely, and the computationally intensive TV method is feasible in thiscase since the PSF has small support. Figure 12b shows a surface plot of the TV denoised PSF.We mention that because the TV method requires solving a nonlinear minimization problem, ingeneral it can be expensive to implement. However the extent of the PSF is generally very smallcompared to the dimensions of the image, and so the cost of denoising the PSF is reasonablyinexpensive compared to the cost of restoration.21



mr-ii svr, 1 segment svr, 3 segments
3 iterations 3 iterations 3 iterations
15 iterations 15 iterations 15 iterations
30 iterations 30 iterations 30 iterationsFigure 10: Computed restorations of the simulated satellite image.22



a. Observed image b. Observed PSF (Deneb)Figure 11: Real ground-based telescope data.It should be emphasized that this data is real, and that a true image of the object is notavailable. Therefore, we cannot use a plot of the relative errors to determine a stopping criteria.Many methods have been proposed for terminating the iterations, including the discrepancyprinciple, generalized cross validation, and the L-curve method [23]. There are advantages anddisadvantages to each of these techniques, and we do not want to advocate any one method orgo into any detailed discussion of them. However, a signi�cant observation from our previoustests is the stable behavior of the svr iterates. This suggests that examining the norm of thedi�erence in successive iterates may determine when the computed restoration can no longer beimproved signi�cantly. Figure 13 shows computed restorations for each of the images at variousiterations. Once again we observe the stability of the restorations using the svr method.5 ConclusionsIn this paper we have presented a new segmentation-based preconditioning method, which werefer to as svr, leading to space-varying regularized iterative restoration of optical images.Denoising methods, including total variation minimization, followed by segmentation-basedpreconditioning methods for minimum residual conjugate gradient iterations, were investigated.Numerical tests were made on both simulated and practical atmospheric imaging problems. Thesvr preconditioning method appears to have certain advantages:� Even if a stopping criteria does not halt the algorithm precisely at the appropriate solution(either a few iterations before or after), it appears that the svr method will still provide arestoration that is close to optimal. We have observed that the svrmethod rapidly reducesthe relative error, and then stabilizes at a level close to that of a near optimal solutionfor several iterations. Examining the norms of the di�erence of successive iterations, inconjunction with one of the standard stopping criteria, leads to a robust iterative method.23
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a. Observed PSF b. TV denoised PSFFigure 12: Preprocessing of Point Spread Function (PSF).� As described in x3, the svr preconditioning scheme can easily be implemented in parallel.In this case, the total computational cost of our scheme is essentially the same as for thefast preconditioned mr-ii restoration method, which has computational complexity of onlyO(n2 log n), where n2 is the number of pixels in the image.� The appropriate segmentation procedure used, as well as the number of segments chosen,is problem dependent. More studies and comparisons are needed in this regard. Analyzingthe image in a well-chosen, piecewise smooth form appears to yield better overall separationof the signal and noise subspaces for the purpose of choosing the space-varying preconditioners.The resulting iterative restoration using svr can e�ectively suppress noise contaminationof the iterates. Over smoothing the image is avoided, and singular image features such assharp edges and oscillatory textures can be restored without resorting to a computationallyexpensive nonlinear optimization method such as total variation restoration.Acknowledgements. The authors wish to thank R. Carreras, B. Ellerbroek and C. Matsonfrom the US Air Force Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air ForceBase, New Mexico for supplying much of the simulated and real data used in the numericaltests. We also thank R. Chan from the Chinese University of Hong Kong for supplying a sectionof the total variation code used to denoise the guide star Deneb.References[1] R. Acar and C. Vogel, Analysis of Bounded Variation Penalty Methods, Inverse Problems, 10 (1994),pp. 1217{1229.[2] L. Alvarez and J. Morel, Formalization and Computational Aspects of Image Analysis, Acta Numerica(1994), pp. 1{59. 24
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