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We describe the design, implementation, and evaluation of Molé, a mobile
organic localisation engine. Unlike previous work on crowd-sourced WiFi

10 positioning, Molé uses a hierarchical name space. By not relying on a map
and by being more strict than uninterpreted names for places, Molé aims
for a more flexible and scalable point in the design space of localisation
systems. Molé employs several new techniques, including a new statistical
positioning algorithm to differentiate between neighbouring places, a

15 motion detector to reduce update lag, and a scalable ‘cloud’-based
fingerprint distribution system. Molé’s localisation algorithm, called
Maximum Overlap (MAO), accounts for temporal variations in a place’s
fingerprint in a principled manner. It also allows for aggregation of
fingerprints from many users and is compact enough for on-device storage.

20 We show through end-to-end experiments in two deployments that MAO is
significantly more accurate than state-of-the-art Bayesian-based localisers.
We also show that non-experts can use Molé to quickly survey a building,
enabling room-grained location-based services for themselves and others.

Keywords: crowd-sourcing; WiFi positioning; localisation

25 1. Introduction

The ability for a mobile device to perceive a user’s location has many applications,
from social networking ‘check-ins’ to location-appropriate content, such as
automatically presenting people with a relevant train schedule.

While the global positioning system (GPS) enables devices to sense their location
30 in most outdoor environments, bad weather and ‘urban canyons’ can restrict its

operation. In addition, there are many indoor positioning applications where GPS
can provide only limited assistance, as it typically provides a position fix only near
windows and doors.

To enable room-grain indoor and outdoor positioning in GPS-less environments,
35 researchers have used physically-fixed wireless beacons to associate a unique

‘fingerprint’ with each place or grid point (Bahl and Padmanabhan 2000, Priyantha
et al. 2000, Haeberlen et al. 2004). While the types of wireless beacons have varied
over time, most techniques now use 802.11 WiFi beacons because of their near
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ubiquity, particularly in urban and suburban environments. Because of the difficulty
40 in translating between distance and received signal strength (Pahlavan et al. 1998),

more compact alternatives to fingerprinting – e.g. triangulating among the beacons –
are generally eschewed.

One of the key problems with fingerprinting, however, is learning the fingerprint
for each place – however ‘places’ are designated. We call the process where a person

45 links a fingerprint to a place ‘binding’. Several commercial vendors offer positioning
services, which include a fingerprint-generation survey (Ekahau 2010). However,
these come at a steep price: a large office building can cost $10,000 USD with
no maintenance included. Because this is prohibitively expensive for many
applications – such as contextualising a device’s behaviour based on which room

50 of a house it is in – several research systems have begun to crowd-source fingerprints
from end-users (Bhasker et al. 2004; Bolliger 2008, Barry et al. 2009; Park et al.
2010). In the model for these Wikipedia-style approaches, a single locally-
knowledgeable user performs the bind for a place and many visitors can then rely
on the database of fingerprints.

55 Molé focuses on a new point in the design space of these crowd-sourced, or
‘organic’, positioning systems. Some systems, such as OIL (Park et al. 2010), present
a map to the user: users bind places by clicking on the map. Others, like Redpin
(Bolliger 2008), allow the association of any text string with a place’s fingerprint. In
contrast, Molé arranges the world hierarchically; this imposes a clean, intuitive

60 namespace (country, region, . . .), and allows for data prefetching at a building scale
if not larger. It also isolates problems in the fingerprint database to small portions of
the tree. Molé relies on compact data structures that allow many fingerprints to be
stored on the user’s device. In turn, this allows the user’s device – not a server – to
select among potential places with similar fingerprints, improving privacy.

65 Here, we describe how Molé’s hierarchical namespace leads to a scalable design,
where its servers can be easily replicated in the ‘cloud’. We show how its new statistical
positioning algorithm uses response rate as additional fingerprint information. In our
experiments, this leads to an improvement in accuracy of 10% over the current state-
of-the-art. We also show how Molé uses accelerometer-based motion detection both

70 to reduce the latency in showing the correct place after a user has moved and to collect
clean fingerprints from end-users. Through a crowd-sourcing experiment, we show
that a multi-story building can be quickly and accurately covered by non-experts: in
one hour, four people completely surveyed a mid-sized research lab. After this
surveying period, which can be concurrent with use, any person visiting the lab can

75 benefit from room-customised behaviour, from location-aware assistance and
notifications to device and application contextualisation.

This article’s contributions are:

. A new organic positioning system, called Molé, whose positioning algorithm
explicitly accounts for temporal variations in the signal space;

80 . A detailed description of Molé’s hierarchy of places and cloud-based, batch
design;

. A simulation and experimental analysis of Molé, including crowd-sourcing a
multi-floor building with untrained users;

The article, which focuses on Molé’s positioning algorithm, proceeds as follows.
85 We describe and show the user interface for the place hierarchy in Section 2.

2 J. Ledlie et al.
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We outline our positioning algorithm in Section 3. In Section 4, we show howMolé’s
architecture takes advantage of the ‘cloud’, to allow fingerprints to be combined
efficiently and for clients to receive the contributions of others quickly. In Section 5,
we describe our evaluation of Molé, examining its positioning algorithm versus the

90 current state-of-the-art, its use of movement detection, and how end-users can use it
to build up a working deployment in a multi-story building. We describe related
work in Section 6 and conclude in Section 7.

2. Model of places

Molé arranges the discrete, human-designated places of the world in a hierarchy.
95 While the hierarchy could be of variable depth, our current implementation contains

five levels, as the estimate in Figure 1 illustrates. From coarse to fine, the levels
typically refer to country, region, city, area and unique place (e.g. room). Areas are
the unit of fingerprint aggregation, transfer and, therefore, privacy; the server knows
at most what areas you visit. Areas typically refer to street addresses (e.g.

100 ‘4 Cambridge Center’ in Figure 1), although they could refer to larger outdoor
areas such as parks. The design also allows aggregation at higher levels.

We believe that arranging places in a hierarchy is useful in many organic
positioning settings. Earlier, approaches have used visual maps (Bhasker et al. 2004;
Park et al. 2010) or uninterpreted strings (Bolliger 2008) to identify individual places.

105 Visual maps require that a fairly accurate map of the area – typically a building –
exists. While well-managed places, such as universities and airports, may be able to
generate maps, this approach may not scale to individual homes or businesses, where
people may not have the time, knowledge, or interest to create a map of their sets of
places. In addition, many users find it non-trivial to locate themselves on indoor

110 maps, particularly in complex buildings. Assigning uninterpreted strings to places
during a bind has its own challenges: for example, the namespace may rapidly
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Figure 1. Molé’s user interface. It shows the country, region, city, area, room hierarchy in
street address format. The statistics shown are described in Section 4.1.

Journal of Location Based Services 3
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become crowded with similar names. While Barry et al. (2009) do allow for spaces
within buildings, their hierarchy is not intended to cover the world.

Figure 1 shows the current estimate of a device’s position within this hierarchy.
115 While the depth and names of the hierarchy are currently predefined, different

countries or cultures could change its shape as they saw fit, assuming the user
interface could handle this variation. Users click on the ‘Incorrect Estimate?’ button
to edit the current estimate and make a new bind, improving future estimates for
themselves and other users. The statistics are explained in Section 4.

120 3. Algorithm

In this section, we describe our new, statistical localisation algorithm (Section 3.1),
briefly review naı̈ve Bayesian localisation (Section 3.2), and describe a kernelised
RSSI histogram variation that can be applied to both localiser types (Section 3.2).

3.1. Maximum overlap localisation

125 Maximum Overlap, or MAO, selects its estimated place as the one whose fingerprint is
most similar to the user’s fingerprint, using a similarity function we describe below.
MAO has two key advantages. First, it is efficient to compute. Because, we anticipate
localisation algorithms running continuously in the background on mobile devices,
this simple computation should translate into longer battery life. Second, it provides

130 a scan distance function, which can be used to estimate physical distances between
sets of fingerprinted objects. Scan distance functions are also useful for clustering
scans, outlier detection and cleaning scan databases (citation: park10 growing). By
themselves, distance functions are also useful for estimating the physical distance
between the positions where the scans were made, which we show in Section 5.4.

135 To create a MAO fingerprint, we begin with a standard set of place-to-APs
histograms containing raw RSSI readings. As in Haeberlen et al. (2004), we
summarise each per-place per-AP histogram with a single Gaussian with mean � and
standard deviation � (we describe a kernelised histogram variant in Section 3.3).

Every place is assigned a fingerprint, which is a set of mappings from access
140 points to data triples:

APi ) hwi,�i, �ii ð1Þ

where wi is the weight of APi, the number of observable APs is �, and the total weight
for each fingerprint

P�
i¼1 wi is 1. Note that the most recent k scans of the user also

form a fingerprint using the same method.
Determining the weight w to apply to each visible AP is an important component

145 of our algorithm. A straw man method would be to simply weigh each visible AP
equally: 1/�. Instead, we base the weight on the probability that the given AP will
actually be observed in the place. Specifically, we set the probability to the response
rate, the fraction of a fingerprint’s scans in which a given AP was observed. When a
place is scanned many times, some APs will be seen in every scan, and some are seen

150 only rarely. This captures the intuition that a user’s device will see the same APs
with the same signal strength distribution and the same observation frequency when
it is in the same place (these two quantities are only weakly correlated as we show

4 J. Ledlie et al.
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in Section 5.1). If the user’s fingerprint does not contain an AP that is almost always
observed when in a particular place, it is highly unlikely that the user is in this place.

155 Weighting according to response rate reflects this intuition. Specifically, the weight
for APi is:

wi ¼ ri

.X�
j¼1

rj ð2Þ

where ri is the number of readings of APi.
To find the similarity between two fingerprints, we determine the similarity in

signal strengths of APs that exist in both fingerprints, and penalise for missing APs,
160 weighting both quantities by the response rate. The comparison of any two

fingerprints returns a similarity �2�S� 1, where a comparison of identical
fingerprints returns 1 and of disjoint fingerprints returns �2 (Disjoint fingerprints
are those that share no access points). For fingerprints A and B:

SðA,BÞ ¼
X
i2A[B

�i ð3Þ

where �i is the effect each APi. This delta of each AP is computed as:

�i ¼

!aþ!b

2 �O �a, �a,�b, �bð Þ if i 2 A, i 2 B,
�!a � p if i 2 A, i =2B,
�!b � p if i =2A, i 2 B,

8<
: ð4Þ

165 where O(�) is the overlap coefficient between the two Gaussian distributions (Inman
and Bradley 1989) and 0� p� 1 is the penalty to apply for missing APs.

Figure 2 provides an example of computing the similarity between a pair of
fingerprints. The example shows two places (top and middle) and the overlap of their
fingerprints (bottom). The 20 scans in place1 have sensed three different access

170 points: AP1, AP2 and AP3. The 25 scans in place2 have only sensed two access points,
both of which are the same as those seen in place1: AP1, AP2. AP3 was not observed
in place2. To compute the weights for place1, we divide the observations for each AP
by the total number of observations, 20þ 15þ 5¼ 40. The same procedure is done
for place2. This completes the creation of fingerprints for these two places. The

175 bottom row shows how the similarity between the two fingerprints for places 1 and 2
is computed:

s ¼ 0:75�
20=40þ 25=45

2
þ 0:30�

15=40þ 20=45

2
� 5=40 ð5Þ

where the penalty p¼ 1, and 0.75 and 0.30 are the overlap coefficients for AP1 and
AP2, respectively. ‘Place2’ could equivalently be a set of scans as seen by a user’s
device: the algorithm to compute their similarity would be the same. Because the

180 same comparison applies whether place B is a user’s fingerprint or any collection of
scans – such as a location tag – it can be used to estimate a physical distance between
two real or virtual objects (e.g. virtual graffiti).

One particularly nice aspect of this overlap computation is that it exists as a
closed-form function when Gaussians are used to represent the RSSI readings

185 (Inman and Bradley 1989). Alternatively, the results from the function can be stored
in a look-up table (Linacre 1996); we found a table with only hundreds of values gave
almost the same results as a function. This simple computation is in contrast to

Journal of Location Based Services 5
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graphical models (Madigan et al. 2005), which may require thousands of iterations to

converge.
190 A special case exists where we have only a few RSSI measurements for an AP. In

particular, the sample variance, which is a second-order statistical property, is not

well-defined with only one sample. Because this situation by definition exists for

rarely observed APs, taking more scans is not advisable as we may need to take many

more in order to obtain a stable estimate for �. Instead, to estimate � for these APs,
195 we use a weighted average of this AP’s sample standard deviation �s (if it exists)

together with a common prior �c:

�i ¼
ðri � 1Þ�s þ �c

ri
ð6Þ

With this, the overlap coefficient can be computed even with very few RSSI values, or

even a single value, from a given AP.We found �c¼ 1 worked well in our experiments.
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Figure 2. Example of computing the similarity between two fingerprints using MAO: place1 [
place2¼Overlap.
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3.2. Naı̈ve Bayes localisation

200 We compare MAO to state-of-the-art naı̈ve Bayes localisation in Section 5.2. For

completeness, we briefly review Bayes localisation here (for more details, see

Haeberlen et al. (2004) and Madigan et al. (2005)). Bayesian localisation estimates

the most likely location using Bayes’ rule. Naı̈ve Bayes localisation further assumes

that the signal strengths from different access points are independent from each other
205 given a location. Therefore, given a signal strength vector s¼ [s1, s2, . . . , sk] from k

access points, the posterior probability of being in location l is given by

Pðl jsÞ ¼

Qk
i Pðsijl Þ Pðl Þ

PðsÞ
: ð7Þ

Since P(s) is fixed given the observed signal strength vector s, With a uniform prior

assumption on p(l), the final location estimate l̂ is given as follows:

l̂ ¼ argmax
l

Yk
i

Pðsijl Þ

" #
: ð8Þ

Previous work has compared similarity and nearest neighbour-based approaches

210 to Bayesian ones and come to differing conclusions (Youssef and Agrawala 2005,

Dong et al. 2009). The main generalisable aspects that MAO adds to previous work are

(1) its use of a weighting factor that values the effect of APs differently and (2) its

penalisation for missing APs. Foreshadowing our results, we find in Table 1 that two

performed equally without these techniques (columns two and six). Bayesian
215 localisation has the advantage that it is natural to include prior estimates through a

non-uniform valuation of P(l), making it less likely that an estimate will ‘jump’

across a building, for example. While we study these generalisable aspects in the

context of mao, we invite other researchers to apply them to Bayesian localisers.

Table 1. Algorithm comparison (Lab B) – spot-on hit rate (floor plan in Figure 9c).

Room
MAO/
gauss

MAO/hist./
no wt.

MAO/hist./
no pen.

MAO/hist./
penalty

Bayes/
gauss

Bayes/
hist

302 92.87 100.00 100.00 100.00 100.00 100.00
303 90.59 100.00 100.00 100.00 74.64 88.52
304 92.09 98.73 100.00 100.00 91.46 79.75
308 99.84 99.84 100.00 100.00 90.49 100.00
309 32.86 42.70 59.37 58.89 31.75 43.33
310 1.59 10.95 41.75 81.59 24.76 11.43
311 90.59 41.15 87.08 94.90 87.56 95.37
312 42.88 93.67 90.03 70.89 70.09 72.47
313 100.00 100.00 100.00 100.00 99.16 100.00
316 100.00 100.00 100.00 100.00 98.73 100.00
319 99.84 100.00 100.00 100.00 98.57 97.14
320 100.00 98.74 100.00 100.00 99.37 100.00
321 99.22 100.00 100.00 100.00 100.00 100.00
322 88.38 100.00 100.00 99.53 92.15 97.33

All 80.46 84.49 91.17 93.16 82.52 84.43

Journal of Location Based Services 7
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3.3. Kernelising RSSI histograms

220 A final algorithmic technique that we have tested in Molé is kernelising RSSI

values – essentially spreading a given reading over adjacent bins – a technique

Park et al. (2011) used for sharing fingerprints across heterogeneous devices. The key

observation is that summarising a set of RSSI values with a Gaussian can often lead

to Gaussians that are similar across nearby rooms. The alternative to a Gaussian
225 summarisation has typically been to simply leave the RSSI values in raw histogram

form. For example, a fingerprint based on histograms might include five �78 dBm

readings, three �80 dBm and one �83 dBm reading from a particular access point.

By leaving these values in raw form, a reading of, e.g. �79 dBm will be discounted,

instead of contributing to a match as it should. A Gaussian summarisation, however,
230 will also not yield an accurate picture for the distribution’s shape: it is skewed toward

�78. Instead, as shown in Figure 3, we can apply a kernel to each RSSI value,

effectively spreading it out into adjacent bins without affecting the overall shape.

This shape can capture differences between neighbouring spaces that would be

blurred by a Gaussian summary.
235 Another advantage of the kernel representation of fingerprints is that it makes a

method for sharing fingerprints across heterogeneous devices (Park et al. 2011)

applicable to MAO as well. As different RF devices have different signal character-

istics both at the hardware and software level, a set of RSSI fingerprints captured

from one type of device will not produce highly accurate localisation when used
240 unaltered on another type of device. To reduce the fingerprint difference between

heterogeneous devices, Park et al. (2011) applied a linear transformation of signal

strengths followed by kernelisation of the RSSI histogram. When applied to MAO,

this kernelisation yields a similarity score more reliable across different devices,

because it makes the individual difference of noise characteristics less distinct across
245 devices.

One issue with using histograms as compared to Gaussians is the requirement

that – in theory – they consume an order-of-magnitude more space. This increase in

space consumption is due to the range of RSSI values (typically �30 to �100 dBm)

versus a simple mean and standard deviation. Multiplied by many places and
250 many access points, this space consumption arguably could be significant for

b/w
 in

 p
rin

t,

co
lo

ur o
nlin

e

 0
 1
 2
 3
 4
 5
 6
 7
 8

-45 -50 -55 -60 -65 -70 -75 -80 -85

C
ou

nt
/P

D
F

dBm

Raw
Kernel
Gaussian

 0
 1
 2
 3
 4
 5
 6
 7
 8

-45 -50 -55 -60 -65 -70 -75 -80 -85

C
ou

nt
/P

D
F

dBm

Raw
Kernel
Gaussian

Figure 3. RSSI histograms and their kernel and Gaussian representations, taken from two
APs seen in the same bind. The left figure shows how the peaks of a ‘narrow’ bimodal can be
more accurately captured by a kernel representation. The right figure shows how a Gaussian
can artificially spread out a bimodal that has two distant peaks.
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on-device positioning. In practice, however, because so few bins of the histogram are
used – even when kernelising – that the actual space consumption is only a few
floating point numbers more per access point in our experience.

Histogram kernelisation can be applied both to similarity-based localisers like
255 MAO and to Bayesian localisers. We compare the accuracy of Bayes and MAO with and

without kernelised histograms in Section 5.2.

4. Implementation

Molé’s implementation is divided into client and server components. The client
portion periodically scans WiFi signals and makes an estimate of the current place

260 available to other applications on the same mobile device. Because all position
estimates are calculated on the client using a cache of fingerprints, the client’s exact
position remains private and new estimates can be made in the absence of network
connectivity. The server can only know which aggregations of fingerprints have been
requested, not which rooms have actually been visited.

265 4.1. Client components

The client itself consists of two parts: a daemon, which runs continuously in the
background, and a user interface, which is displayed when the user wants to make a
bind, modify the daemon’s behaviour, or view statistics. Figure 1 shows the user
interface. Its statistics include: the number of scans being used to form the estimate;

270 the count of distinct APs that were observed within these scans; the current time
between scans (i.e. scan period); the number of areas and individual places within
those areas under MAO consideration; whether the user is deemed to be moving; the
score of the current estimate (‘overlap max’); and churn, the time since the estimate
was last changed. The Molé daemon exports the current location estimate to all

275 applications on the device, assuming that the user has set ‘sharing’ to be on.

4.1.1. Using motion detection

As Haeberlen et al. (2004) showed, comparing more user scans against each
fingerprint improves spot-on accuracy, with diminishing returns after about eight
scans with their data. But frequent scanning reduces battery life, and having a fixed,

280 large number of user scans introduces a lag when the user is moving between places.
If a device has an accelerometer, Molé uses it to find a happy medium between
battery consumption and update lag. If the device is estimated to be stationary, it
slows down the scan rate and other functions. When walking is detected, the current
set of user scans is discarded and the scan rate is increased (up to once per 10 s in our

285 current implementation). By truncating the user scans (11 in Figure 1), Molé returns
a less accurate, but more timely estimate. When the user stops moving, the user scans
accumulate and the accuracy of the estimate improves. Because we simply truncate
the positioning and bind queues in response to movement, our method is
independent of the choice of the particular motion detection algorithm; we use

290 Shafer and Chang’s (2010) detector. An alternative method would treat the detector
as less of a black box and could dynamically adjust the length of the queues based on

Journal of Location Based Services 9
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the magnitude or confidence with which movement was detected. To further reduce

battery usage, we run the motion detector every 10 s with a duty cycle of 5%; at this

rate motion detection has little effect on the overall battery consumption of a typical
295 smartphone. We evaluate the effect of using motion detection on update delay and

fingerprint creation in Section 5.3.

4.1.2. Client-side filtering and positioning

Client localisation involves fetching the correct area’s fingerprint file (if it is not

cached on-device), filtering down to a few fingerprints to be tested more precisely,
300 and producing a top estimate with MAO. As shown in Figure 4, the client periodically

asks the server for the list of areas associated with one of its visible MACs (step 1),

and receives the fully-qualified (hierarchical) area name in response (step 2). It then

requests the area’s fingerprint file (step 3) and localises using the current user scans

(step 4). To reduce the number of fingerprints that MAO must compare, we apply

305 Charrow’s (2010) fingerprint filtering to our local cache to identify a set of ‘nearby’

locations in Figure 1, ten places have passed this filter. We use the filter twice: first on

the cached areas, then on the cached places within the unfiltered areas. Because areas

can contain many places, this greatly reduces the number of places that must be

compared when many areas are cached on the device. In addition, because the filter
310 uses only MAC presence/absence, it is far less CPU intensive than a room-level

localiser. The more CPU intensive MAO then runs on the smaller subset of places that

have successfully passed the area and place filtering steps. Like other room-level

localisers, MAO’s CPU usage is linear in the number of potential places under

consideration, so reducing the set under its consideration can reduce battery
315 consumption considerably when many places are cached.
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Figure 4. Interaction between Molé’s client and server components. Two paths are shown: (a)
a bind coming from a surveyor (client A), being added to the bind database, and being
processed into an area’s fingerprint file (e.g. Keilalahdentie 2.sig) and (b) a user’s device (client
B) updating its local cache of fingerprints for the areas that it is potentially in. First, it queries
to see which areas match a random ‘loud’ MAC with getArea(), then it fetches the fingerprint
files for those areas. After its cache is up-to-date, it can form a position estimate locally.
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4.2. Server components

Figure 4 shows Molé’s four main server components and the key methods clients use

to make binds and access fingerprints. Molé’s server side is designed to run elastically

‘in the cloud:’ its client-facing components, the Map Server and Fingerprint Server
320 are easy to replicate. The figure shows the two paths of client actions: (a) binding and

(b) localising. A client bind is sent to the Map Server, which acts as a write-back

cache. The Fingerprint Builder periodically monitors the database for places with

new binds (or entirely new places). For each of these places, it aggregates all recent

binds and determines a new fingerprint. Fingerprints for other places in the same
325 area are cached in the database. The builder then writes out each changed area’s

collection of fingerprints in a single area fingerprint file. Because these files change

infrequently and are named by the fully-qualified area, they can be trivially cached,

versioned and compared.
Molé’s server components are currently hosted on Amazon Web Services.1 While

330 we show only one server instance in the figure, it is fairly trivial to replicate and scale

the server components because they can be divided geographically; that is, the bind

database, in particular, can be partitioned down to the level of individual areas if

necessary. Because area fingerprint files change slowly over time after their initial

creation period, we serve these files with an efficient static web server. Replicas could
335 be further pushed toward the client with a content delivery network. To receive

fingerprints created by other nearby users, clients poll for changes in their current

area’s fingerprint at one minute intervals.
The source code for Molé has been released under an open source license and we

invite contributions.2 The client components are � 7k lines of Qt/Cþþ; the server is
340 written in Java and Perl and relies on several open source libraries.

5. Evaluation

We have successfully tested Molé in preliminary trials at several labs, using Nokia

N900 tablets. Here, we examine Molé in detail, both at the algorithmic and end-user

level:

345 . We find that MAO’s weight (based on response rate) and RSSI readings

contribute independently to uniquely identifying a place (Section 5.1).
. Through a set of controlled experiments, we find that MAO has favour-

able accuracy results as compared to a state-of-the-art Bayes localiser,

achieving better performance when places are physically adjacent
350 (Section 5.2).

. We show that use of a motion detector can result in a dramatic improvement

in update delay and in unpolluted fingerprint creation in organic settings

(Section 5.3).
. We show how MAO can be used to estimate the physical distance between

355 two objects (Section 5.4).
. Using the results from a deployment in a two story building, we show

that Molé can rapidly crowd-source an accurate location system

(Section 5.5).
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5.1. Using response rate

360 Before we examine Molé’s performance, it is reasonable to ask whether it is valid to
use response rate as the basis for MAO’s weighting factor at all. That is, is the response

rate supplying distinct and consistent information as compared with RSSI values, or

could one be substituted for the other? Specifically, we ask: (a) Are they redundant

quantities? (b) Is response rate consistent over visits to the same space? (c) Do they
365 increase differentiability between different spaces? (d) How does response rate

relate to ‘negative information’, e.g. the absence of an AP and (e) Does the weight

improve end-to-end accuracy? We also examine the effect of weight experimentally

in Section 5.2.
First, using bind data from different alpha users of Molé, we find that they are

370 not redundant quantities. In Figure 4, we show a scatter plot of the average RSSI

value versus the response rate for the same MAC. The data is from 81 binds from

different indoor environments (e.g. labs, houses); response rate is the fraction of
scans where the MAC was seen in each bind. In this data set, the two are only

moderately correlated (�2¼ 0.62), suggesting that response rate, and therefore
375 Molé’s normalised weighting measure, provide additional information beyond

received signal strength.
Second, to examine consistency over time, we compared an older set of binds to a

newer one for eight rooms in one of our labs. The older set were all generated at least

six months earlier than the newer set. Fingerprints in each place contained 31 distinct
380 MAC addresses on average. We found a strong correlation for both response rate

(�2¼ 0.73) and RSSI (�2¼ 0.87), suggesting that these mainly independent values

stay consistent over time, and, therefore, can separately assist in identifying

individual places.
Third, we examine whether MAO’s weight is correlated with RSSI overlap; that is,

385 when comparing across places, is it providing additional, differentiable information.

Using a professionally collected scan data set from a nine-story building which

contains more than 1400 distinct places, we compared the weight !aþ!b

2 and the

overlap O(�) for all MACs in common across places (� 150 million entries). When
overlap is computed with Gaussians, we find a correlation of �2¼ 0.11 and, when it is

390 computed using kernelised histograms, that of �2¼ 0.08. A random sample of the

data using Gaussian overlap is shown in Figure 5, illustrating their independence.

We also divided the rooms that were close to each other and far away (less than the
median distance of 12m or greater than that, respectively), and found the correlation

essentially unchanged. Collectively, this set of results suggests that not only are
395 response rate and weight consistent over time, but also that they provide independent

information for comparison among places.
Fourth, we discuss the relationship between response rate and what previous

work has referred to as ‘negative information’. For example, Letchner et al. (2005)

use the absence of an AP to bias the estimate in cases where the positive (presence)
400 information is sparse or symmetric. We similarly use the absence of APs to reduce

ambiguity between two sets of scans (fingerprints). In mao’s case, we penalise the

overlap when APs are missing; Letchner et al. solve this by assigning an out-of-range

dBm value to the missing APs. What is significantly different is the extent to which
we penalize missing APs: if an AP is rarely seen in a given place, MAO only weakly

405 penalises for its absence; conversely, it penalises strongly if an AP ‘ought’ to be seen.
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How often does this occur? If response rates were highly bimodal, then these two
approaches would be effectively the same. In Figure 7, we show two distributions of
response rates for the same nine-story building, as collected by two different types of
devices at different times. The data show that 35–40% of access points had a

410 response rate of �20%. In a short scan on a user’s device, there is a reasonable
likelihood that these APs would not be sensed. However, they could well be part of
the fingerprint for that same space because the AP is occasionally sensed there
(especially if the fingerprint is an aggregation of crowd-sourced scans). Because
response rates range fairly uniformly, applying the same penalty for all missing APs

415 too strongly penalizes APs that are unlikely to be observed and too weakly penalizes
APs whose presence is expected.
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Figure 6. While response rate and received signal strength are moderately correlated
(Figure 5), the average weight !aþ!b

2 and overlap O(�)Q5 only exhibit very low correlation. In this
data set, taken from a nine-story building, the two quantities only have �2¼ 0.11. This lack of
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Lastly, we examined the effect of eliminating the weighting factor on positioning
accuracy. In simulation, we prepared a scan data set from the same nine-story
building as above. We first excluded places with fewer than three visible APs or fewer

420 than 10 scans, removing 6% of places. Next, we assigned a fingerprint to each place,
assuming knowledge of all scans of the place. For each place, we took eight scan
samples to build a ‘user’ fingerprint, and then observed which place had the
maximum matching fingerprint. If the place the localiser estimated was the same as
the user’s, this was deemed a spot-on estimate. We repeated this test 1000 times for

425 each place: for example, an accuracy of 80% means that we correctly localised 800
1000

times. Using the scan trace, Figure 8 shows the effect of weighting according to
response rate as compared to weighting each AP equally, i.e. setting w ¼ 1

�. While it is
possible other refinements exist, such as weighting according to the maximum RSSI
value seen for the given AP, it is clear that a reasonable weighting is more accurate
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430 than simply valuing all APs equally. In addition to comparing MAO to a Bayesian
localiser, we confirm the positive effect of basing a weight on response rate
experimentally in the following section.

5.2. Positioning algorithms

To examine Molé’s positioning performance in a controlled setting, we conducted
435 three experiments in two different labs, shown in Figure 9. The goal of these

experiments is to compare mao with a state-of-the-art naı̈ve Bayes algorithm, using
both Gaussian summaries and kernelised histograms.

In Lab A, we conducted two end-to-end comparisons: a ‘nearby’ experiment and
a ‘distant’ experiment. In the ‘nearby’ experiment, the target rooms were adjacent to

440 each other, separated by less than three meters, and had glass walls on one side. In
the ‘distant’ experiment, the targets are spread uniformly over the floor. In both
experiments, we placed a stationary spot-check device in each target room. The spot-
check devices did not move throughout the experiment; they polled the server for
new fingerprints at one minute intervals, performed scans at ten second intervals,

445 and computed four estimates – one for each algorithm – using the same set of scans
and fingerprints at the same time. Another device acted as the roving, crowd-
sourcing surveyor. With it in hand, a member of our team walked to 6–8 rooms on
the floor, including those being tested, and bound each room with 2–3min worth of
scans. The bind data was sent to the server, processed into a fingerprint, and made

450 available for download by the spot-check tablets. The bind database was cleared
before each experiment.

Results from the ‘distant’ experiment showed that all of the algorithms were able
to perfectly distinguish rooms when the rooms under test were tens of meters apart.
Here, the target rooms were R1, R4, and R10, as highlighted in Figure 9(a). The

455 mean distance between each of these target rooms and all of the other rooms where
binds were performed (R2, R3, R5, R11 and R13) was 21.59m, 15.90m and 22.59m,
respectively. Data from the spot-check tablet in Room R4 are shown in Figure 10.
Initially, all devices select Room R1 because that was the only entry in the database.
The roving survey tablet binds Room R4 at minute 10. After the spot-check tablet

460 fetches the area’s new fingerprint, which now includes R10, all of the algorithms
change their prediction to R10. Even with binds in three rooms that are less than
14m away, (R5, R11 and R13), the algorithms continue to estimate the correct room
to the end of the experiment.

In contrast to the ‘distant’ experiment, the ‘nearby’ one exemplifies the challenges
465 in fine-grain WiFi localisation. The three rooms (R7, R8 and R9) are small meeting

rooms, each 5.8m2. They lie in a line with the two end rooms 2.7m from the center
one, R8. The entry walls and doors are glass, and join a common hallway. We
examined the average spot-on hit rate for each room’s stationary tablet, in addition
to the mean error and its deviation. The results show that, while Bayes with

470 Gaussians had the lowest mean error for the two end rooms, MAO with kernelised
histograms had the best overall performance: its average hit rate was 90.7% while
Bayes with Gaussians, the next best, was 68.4%. Two interesting behaviors, in
particular, are apparent from examining time-series plots for the stationary tablets.
First, MAO is more willing to shift between rooms – sometimes to its advantage,
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Figure 9. Floor plans for the two different labs where we conducted experiments. (a) Lab A
third floor map. Stationary tablets for ‘nearby’ experiment were placed in R7, R8 and R9 (in
red); those for the ‘distant’Q4 experiment were places in R1, R4 and R10 (in green); (b) Lab A
second floor map. Volunteers spent about 25% of their time on this floor during the crowd-
sourcing experiment (Section 5.5); (c) Lab B Map.
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475 sometimes to its detriment. It does this because it has no hysteresis, or prior, like naı̈

Bayes does. MAO with Gaussians was particularly unstable in this experiment (see, for

example, minutes 22–25 in Figure 11). Second, MAO with kernelised histograms was

the only algorithm able to consistently differentiate between the two immediately

adjacent spaces; this is what leads it to having the highest average hit rate. From this,
480 we conclude that any of the algorithms are acceptable in medium to coarse grained

scenarios, as in the ‘distant’ experiment, but that MAO with kernelised histograms

may supply the best average-case performance if room-grain accuracy is required.
In Lab B, we had more spot-check tablets available and conducted a larger-scale,

longer duration experiment. We first instrumented the tablets to run six localisers in
485 parallel, each producing an estimate using the same set of scans at the same time. In

particular, we wanted to see the effect of different parameters for MAO with kernelised

histograms in a live setting. Referring to Equation (4), we ran MAO: (a) with no

weight, treating all APs equally (as in Figure 8) and with no penalty for missing APs,

(b) with weight but no penalty, weighting APs by response rate, but still without the
490 �!a� p and �!b� p factors, and (c) with weight and a penalty, where p ¼ 1

4 (since

the tablets were stationary, the motion detector was not a factor). We placed 14 spot-

check devices in different rooms in the lab, including three in public spaces without
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doors between them (320, 321 and 322 in Figure 9). Using two roving devices, we
bound the spaces starting in room 312 and moving clockwise around the lab; each

495 bind contributed approximately 5min worth of scans (about 30 scans). All data
collection was done during an active workday with people moving around the lab
during the experiment.

We examined the spot-on accuracy of the stationary tablets during two periods:
immediately after all of the rooms had been bound and 24 h later. We report on the

500 later data although the results were similar. We highlight three aspects of the results,
shown in Table 1. First, in contrast to previous simulation results which found that
Bayes with Gaussians exhibits accuracies above 95% (Haeberlen et al. 2004), it had a
spot-on hit rate of 82.5% in this more challenging live setting (i.e. the largest mean
error). Second, as in the ‘nearby’ experiment above, no algorithm was able to

505 consistently differentiate between small, adjacent offices that had doors open to a
common hallway (309, 310, 311 and 312); the centroids of the rooms are about 2.5m
apart. MAO with kernelised histograms and with a weak penalty for missing APs
performed best, on average, but it could not consistently select the spot-on choice. If
we examine the rooms that were selected, however, MAO with kernelised histograms

510 did choose one of the four ‘nearby’ rooms in 94.4% of cases, while the topmost
Bayesian algorithm selected a nearby room in 88.3% of cases. We conjecture that it
may be possible to reflect this uncertainty back to the user by highlighting a set of
rooms instead of supplying only a single room as the result. Our third main result
from this experiment was that MAO with weighted kernelised histograms together

515 with a small penalty for missing APs performed best overall. In particular, it was
significantly more stable throughout the lab and was 10% more accurate than Bayes
with kernelised histograms, the current state-of-the-art.

5.3. Motion detection

We wanted to examine the effect of using a motion detector to improve update lag
520 and fingerprint clarity. Update lag occurs when a person moves from one room to

another but the localiser does not reflect the new room immediately. This lag occurs
because the localiser uses stale data: scans collected in a previous room or while
walking are still being used to form the estimate of the current location. We
performed an experiment where we examined the use of a simple motion detector to

525 expire old scans; the user’s fingerprint repopulated with scans when the user stopped
moving. Intuitively, we would like to use as many scans as possible, but only if those
scans come from the location the user is actually in.

Figure 12 illustrates how using a walk detector can significantly improve the user
experience. In this experiment, we walked from room A to room B to room C,

530 staying in room B for about two minutes. We logged the raw accelerometer readings
at 10ms intervals (Figure 12a) and ran two instances of Molé on the same device,
both running MAO with Gaussians. One instance did not use the motion detector and
the other used the periodic motion detector described in Section 4.1, sampling for
0.5 s every 10 s. All fingerprints were cached and did not change during the

535 experiment.
When Molé did not use a motion detector (Figure 12b), the estimate lagged

behind the ground truth for one to two minutes because it used stale scans.
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When the instance running the motion detector detects motion (the dashed lines in
Figure 12c), the localiser’s scan queue is immediately truncated and there is far less

540 delay before the correct space is chosen.
A second significant benefit to using a motion detector in a crowd-sourced

positioning system is improved fingerprint clarity. In a crowd-sourced environment,
a user can walk into a room, notice the estimate is incorrect, and immediately send a
correcting bind. Unfortunately, this can lead to scans collected prior to the user

545 entering the room becoming part of the fingerprint: a polluted fingerprint. To
mitigate this problem, we truncate the on-device ‘bind’ queue whenever walking is
detected. This queue constitutes the scans that will be bound to the place if the user
makes a correction.

To illustrate fingerprint pollution, we conducted the same ‘nearby’ experiment as
550 described in Section 5.2 only with the motion detector switched off. Figure 13

illustrates two instances where the fingerprint for Room R9, where the spot-check
tablet is located, is polluted by binds in other rooms. When the roving tablet binds
Room R7 for the second time at minute 20, we observe a shift in the estimates from
R9 to R7. This occurred because many of the scans that were collected in Room R9

555 were not dropped when the user walked into Room R7, causing R7’s fingerprint to
become similar to R9’s. The second instance is when Room R14 is bound at minute
39, soon after the user leaves the target room, R9. Again, this causes R14 and R9 to
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Figure 12. Using a motion detector to vary the number of scans used by the localiser
significantly reduces update lag, presenting more up-to-date results to the user.
(a) Accelerometer magnitude (at 10 10ms intervals). (b) and (c) Place estimates with motion
detector. Each þ shows when the localiser received a new scan and produced a new estimate.
The dashed line shows when the periodic motion detector determined that the user was
walking.
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erroneously have similar fingerprints, resulting in the localisers vacillating between
several locations. As Figure 9 shows, with the motion detector switched on,

560 fingerprints do not become polluted when new binds occur.

5.4. Using fingerprint similarity

One advantage of MAO as compared to Bayesian localisers is that it provides
an abstract similarity function between any two fingerprints, either by using
Equation (4) directly or by replacing O(�) with the overlap of the two histograms.

565 Inferring physical distance from fingerprint distance has many uses, from the
canonical ‘finding the nearest printer’ to proximity-based notifications and device-
pairing (Krumm and Hinckley 2004).

By processing the scans from the 1400 room building discussed above, we found
that a useful correlation existed between the physical distance and fingerprint

570 similarity across pairs of rooms. Using MAO with Gaussians, we show the correlation
for this data set in Figure 14. Given objects or spaces tagged with fingerprints, this
suggests that MAO can be used to estimate physical distances between them at a finer
grain than simply observing that they can see the same MAC, for example. In this
data set, spaces which had a fingerprint similarity 40.5 were always less than 100

575 feet apart (closer spaces have a similarity nearer to 1). Because the fingerprint
similarity computation is fairly trivial, it would also be possible to see if any k devices
were likely to be within some physical distance of one another.

A second use for fingerprint similarity is that, even when the correct place is not
the most similar to the user’s fingerprint, it is almost always one of of the most

580 similar. Because MAO returns a similarity score for each potential place, it is possible
to look down the list of returned places beyond the top ranked place. Figure 15
shows that the correct place is almost always in the top four ranked places. In a
visual map application, all of the highly ranked places could be highlighted if one did
not stand out, assisting the user in making a correction.

585 We foresee several algorithmic and user-facing uses for fingerprint similarity.
First, similarity can be translated into degrees of proximity (e.g. nearby, distant). We
have added a ‘proximity’ user interface to Molé, allowing a user to see which other
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users are nearby (it is not enabled by default). Second, fingerprint similarity could be
used to construct multiple fingerprints per space. Some ‘rooms’ are, in fact, long

590 hallways or large outdoor areas: a single fingerprint does not capture the signal
variation throughout. By comparing binds for the same space, the Fingerprint
Builder could decide to either merge them into a single fingerprint or to create an
additional fingerprint associated with the same space. A final related use is outlier
detection: if sets of scans linked to the same space are very different, an error

595 condition can be raised, potentially lowering the confidence in other contributions by
the same user. Evaluating uses of proximity and fingerprint similarity is future work.

5.5. Crowd-sourcing behaviour

For our last experiment, we wanted to understand whether Molé could be used by
untrained participants. We first modified the user interface to include a positive
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600 feedback button (‘Estimate OK’), signifying that the displayed estimate was, in fact,

correct. We recruited four volunteers from Lab A; they had seen us testing Molé

previously, but were otherwise untrained. Before giving the tablets to the volunteers,

we performed one bind in Room R1 on an empty database. In effect, this initialised

the hierarchy shown on all of the tablets so the volunteers would only need to edit the
605 room label. They were given instructions to walk from room to room, fixing the

estimate when it was wrong and clicking ‘Estimate OK’ when it was correct. They

were allowed to wait up to 30 s (three scans) for the estimate to become correct

before marking ‘OK’ and up to 60 s (six scans) before binding a correction.
In the middle of the workday, the volunteers then surveyed two floors for 70min,

610 splitting their time about 75/25 across the third and second floors, respectively

(Figure 9). Two of the meeting rooms, R14 and R17, were occupied during the

experiment, and so were left unbound. Figure 16 shows how coverage and spot-on

hit rate changed during the experiment. We calculated hit rate as a 10min moving

average of spot-on accuracy (i.e. when the volunteer clicked ‘Estimate OK’); this
615 included the first bind for each room which is, by definition, an incorrect estimate.

Once the rooms were surveyed after minute 50, the hit rate remained above 85%

as it had done in our controlled experiments. No incorrect floor estimates

were encountered. More qualitatively, the results show that a space shared by

many people – approximately 150 people work on the two floors covered in the
620 experiment – can be collaboratively surveyed by only a handful.

The volunteers provided us with feedback on Molé’s usability and utility. They

found the motion detector was occasionally not sensitive enough and that the device

needed to be artificially shaken when it did not detect their walking (we had

instructed them to do this). Because binds are sent to the server and not immediately
625 applied to the binding client’s area fingerprint cache (Figure 4), there can be up to a

20 s delay in reflecting binds back to the user; several volunteers found this

confusing. We plan on fixing this and the motion detector in upcoming versions. In

general, the volunteers found Molé highly accurate, although they noticed the

estimates were most often wrong in the same small, adjacent rooms we used for the
630 ‘nearby’ case (Section 5.2). They enthusiastically described several potential use cases

such as navigating shopping malls, airports, and museums, finding promotions when

shopping and locating friends.
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Figure 16. Four untrained volunteers were able to quickly survey a two-story lab, with
resulting accuracies above 85%. No floor errors were encountered.
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6. Related work

Molé builds on two decades of prior work on positioning in GPS-less environments.
635 Early systems, such as Active Badge (Want et al. 1992) and Cricket (Priyantha et al.

2000), used customised beacons and receivers, developing both main components of
their respective positioning systems. As WiFi and cellular beacons have come to

provide long-lived physical beacons at no additional infrastructure cost and as
people have come to regularly carry personal mobile devices, the parameters of the

640 indoor positioning problem have, in general, become more constrained: most

research now assumes a fixed beaconing infrastructure is available, but whose main
purpose is communication, not positioning. Since then, as first presented in the

Radar project more than a decade ago (Bahl and Padmanabhan 2000), researchers
have tended to focus on two main approaches to GPS-less positioning: (a) a ‘radio

645 map’ approach, where first the position of the beacons is estimated, and then the
position of the mobile device is ‘triangulated’ using methods such as a RSSI-to-

distance conversion (e.g. Griswold et al. 2004) or angle-of-arrival (e.g. Niculescu and
Badrinath 2003), and (b) a ‘fingerprint’ approach where the position of the beacons

is ignored, and, instead, some method is used to select the best matching grid point or
650 place from a database (e.g. Haeberlen et al. 2004). Both of these broad classes require

periodic surveying, which is typically a manual, laborious process and both classes

have merit depending on the application. In general, the radio map approach is far
more compact (its storage is O(radio beacons)), while the fingerprint approach is

O(spaces). However, because of the confounding properties of varying building
655 materials and multipath (Hashemi 1993, Pahlavan et al. 1998), most comparisons

have found the fingerprint approach to be more accurate (e.g. �10m for the radio
map of Griswold et al. vs. a few meters for Haeberlen et al.). Very recent work using

multiple antennae may again open up this question to debate (Xiong and Jamieson
2012). Molé uses fingerprints for positioning (approach ‘b’ above): end-users collect

660 its fingerprints through crowd-sourcing, and it uses MAO for position estimation.
Haeberlen et al. (2004) suggested summarising RSSI distributions with

Gaussians. We used the overlap coefficient of pairs of Gaussian summaries,

weighted by response rate, as one of MAO’s localisers (we found that using the overlap

of kernelised histograms provided superior accuracy, however). Lemelson et al.
665 (2009) use unweighted Gaussian overlap – not to localise – but to anticipate the likely

estimate localisation error for a given point. They show that points with very similar
fingerprints (as determined by the overlap function) tend to have poor localisation

accuracy, because they are often confused with adjacent points. An example where
this method without the weighting would clearly perform poorly is a case where

670 many spaces occasionally observe many APs, and always observe exactly one unique
AP. In this case, the no-weighting method would lose the single unique characteristic

in the noise, whereas the weighting method would select the right space. Although
this is an extreme example, it illustrates a problem that often occurs in environments

with dense but intermittent AP coverage. Our results show that Gaussian overlap
675 with weighting is clearly superior to a weighting based on response rate, which

performs the worst of the algorithms under test in Table 1.
The response rate of an AP, which MAO uses as a weighting function for its

overlap coefficient, has also been considered as an alternative to RSSI measurements
for RF-based localisation. Cheng et al. (2005) explored the use of the response rate
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680 for 802.11-based localisation in outdoor environments, showing that it has a strong
correlation to the distance from the originating AP. Bargh and de Groote (2008)
used the response rate for Bluetooth-based localisation as an alternative to signal
strengths, which is much more difficult to obtain on Bluetooth devices than on
802.11 devices. Relatedly, Letchner et al. (2005) use ‘negative information’ – the

685 absence of an AP – to bias the estimate toward places where that AP is absent. We
showed in Section 5.1 how, because many APs may only be sensed from rarely in a
given place, that this use of negative information is quite rigid and unlikely to give
good results. In this work, we combined the response rate with the signal strength,
achieving significant gain in localisation accuracy compared to using the signal

690 strength alone.
We showed how Molé varies the length of the localiser’s scan queue to use many

recent scans, but only if those scans are likely to be from the current place.
Truncating the scan queue on movement detection also prevented bind pollution
(Section 5.3). Several pieces of prior work have used accelerometer-based motion

695 detection in location systems in different ways. Kim et al. (2010) use motion
detection to save energy: after a user has arrived at a place and enough scans have
been collected, and the variance in the motion detected is low enough, the WiFi
radios are turned off. Once the motion variance exceeds its threshold, WiFi scanning
is resumed. Shafer and Chang (2010) detect movement and, if walking is detected,

700 perform what they refer to as a ‘full localisation’, which presumably entails taking
many scans over a short period after truncating the scan queue. If a user’s walk is
longer than the movement detection period, this can result in significantly more
battery drain than our method because long series of scans will be repeatedly
discarded. They also propose using low variance to detect idleness, choosing to scan

705 slowly rather than switch off WiFi entirely. Bolliger et al. (2009) describe
asynchronous interval labelling which allows sets of scans collected during the same
stationary period to be retroactively bound at a more convenient time. Earlier,
Krumm and Horvitz (2004) used WiFi, not accelerometers, to infer motion, using a
hidden Markov model to identify motion and location simultaneously.

710
7. Conclusion

This article presented Molé, a mobile organic localisation engine, and focused
primarily on its positioning algorithm MAO. In addition to MAO, we described in detail
its hierarchical arrangement of places, which allows for unambiguous interpretation
of users’ location input, and its ‘cloud’-based server design, which improves

715 scalability and privacy. Together, these components contribute to a positioning
system that can run compactly on a broad range of mobile devices and scale
worldwide. In particular, through controlled experiments and simulations, we
showed that our localisation algorithm was 10% more accurate than the current
state-of-the-art. This boost in accuracy occurred because we used discriminating

720 information – a weighting based on response rate – that prior work had ignored. We
also showed how the use of a motion detector can significantly reduce user-perceived
estimation latency and eliminate bind pollution, where scans collected outside of a
room spuriously become part of that room’s fingerprint. Finally, we gave Molé to
untrained users and found that they could quickly survey a medium-sized building,
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725 resulting in an accurate, shared location database that could be used for many
applications.

In the future, we plan to extend the hierarchical and scalable structure of Molé to
a visual map-based UI and to construct a browser plug-in version of Molé to work
with more mobile devices and operating systems. We also plan to research combining

730 slow background scans, an idleness detector, and a distinguishing MAO score to
generate automatic binds that maintain an area’s fingerprints as access points change
over time due to maintenance events.
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