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Abstract
Electron energy-loss spectroscopy (EELS) is an analytical technique that measures the change in
kinetic energy of electrons after they have interacted with a specimen. When carried out in a modern
transmission electron microscope, EELS is capable of giving structural and chemical information
about a solid, with a spatial resolution down to the atomic level in favourable cases. The energy
resolution is typically 1 eV but can approach 0.1 eV if an electron-beam monochromator is used. This
review provides an overview of EELS instrumentation and of the physics involved in the scattering of
kilovolt electrons in solids. Features of the energy-loss spectrum are discussed, including plasmon
peaks, inner-shell ionization edges and fine structure related to the electronic densities of states.
Examples are given of the use of EELS for the measurement of local properties, including specimen
thickness, mechanical and electronic properties (such as bandgap) and chemical composition. Factors
that determine the spatial resolution of the analysis are outlined, including radiation damage to the
specimen. Comparisons are made with related techniques, particularly x-ray absorption spectroscopy.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Electron energy-loss spectroscopy (EELS) involves
measurement of the energy distribution of electrons that have
interacted with a specimen and lost energy due to inelastic
scattering. If the incident electrons have a kinetic energy

of a few hundred electron volts and are reflected from the
surface of the specimen, the technique is called high-resolution
EELS (HREELS). Relatively simple instrumentation can then
provide spectra with an energy resolution down to a few
millielectron volts, sufficient to resolve vibrational as well
as electronic modes of energy loss; this technique is used
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extensively for studying the physics and chemistry of solid
surfaces (Ibach and Mills 1982).

This paper is not about HREELS but about spectroscopy
employing higher energy electrons, typically 100–300 keV, as
used in a transmission electron microscope (TEM). Because
of their greater energy, such electrons can pass completely
through a specimen, provided its thickness is below about
1 µm. The electromagnetic lenses of the TEM can be used
to focus them into a ‘probe’ of very small diameter (1 nm or
even 0.1 nm) or to produce a transmitted-electron image of the
specimen, with a spatial resolution down to atomic dimensions.
As a result, EELS carried out in a TEM is capable of very high
spatial resolution. Combined with the low specimen thickness,
this implies spectroscopic analysis of extremely small volumes
of material.

For comparison, x-ray absorption spectroscopy (XAS)
currently has a lateral resolution of around 30 nm if carried out
using synchrotron radiation focused by a zone plate. Owing
to the weaker interaction of photons with matter, XAS uses
a thicker specimen, which is sometimes an advantage since it
allows easier specimen preparation. Also, XAS can examine a
specimen surrounded by air or water vapour, whereas the TEM
usually places the specimen in a high vacuum.

Much of the spectral information obtainable from EELS is
similar to that given by synchrotron-XAS, so the TEM-EELS
combination has been referred to as a synchrotron in a
microscope (Brown 1997). Because EELS can be combined
with transmission imaging, electron diffraction and x-ray
emission spectroscopy, all in the same instrument, the
technique has become important for studying the physics and
chemistry of materials.

Figure 1(a) shows a typical energy-loss spectrum,
recorded up to a few tens of electron volts, sometimes called
the low-loss region. The first peak, the most intense for a very
thin specimen, occurs at 0 eV and is therefore called the zero-
loss peak. It represents electrons that did not undergo inelastic
scattering (interaction with the electrons of the specimen)
but which might have been scattered elastically (through
interaction with atomic nuclei) with an energy loss too small to
measure. The width of the zero-loss peak, typically 0.2–2 eV,
reflects mainly the energy distribution of the electron source.

Other low-loss features arise from inelastic scattering by
conduction or valence electrons. The most prominent peak,
centred around 22 eV in figure 1(a), results from a plasma
resonance of the valence electrons. The increase in intensity
around 54 eV represents inelastic scattering from inner-shell
electrons, in this case the M2 and M3 subshells (3p1/2 and 3p3/2

electrons) of iron atoms. Its characteristic shape, a rapid rise
followed by a more gradual fall, is termed an ionization edge;
it is the exact equivalent of an absorption edge in XAS. Other
ionization edges occur at a higher energy loss in figure 1(b):
a fluorine K-edge (excitation of 1s electrons) followed by
iron L3 and L2 edges (representing excitation of Fe 2p3/2 and
2p1/2 electrons). Before discussing how these various features
provide us with information about the specimen, we will
briefly examine the principles and instrumentation involved
in obtaining energy-loss spectra in the TEM.

Figure 1. Energy-loss spectrum of an iron fluoride film: (a)
low-loss region with a logarithmic intensity scale and (b) part of the
core-loss region, with linear vertical scale. Courtesy of Feng Wang,
National Institute for Nanotechnology, Edmonton, Canada.

2. Instrumentation

TEM-EELS instrumentation is based on the magnetic prism,
in which a uniform magnetic field B (of the order of 0.01 T)
is generated by an electromagnet with carefully shaped
polepieces; see figure 2. Within this field, electrons follow
circular paths of radius R and are deflected through an angle of
typically 90◦. The sideways force on an electron isF = Bev =
mv2/R where, e, v and m are the electron speed, charge and
relativistic mass, giving a bend radius that depends on speed
and therefore on electron energy:

R = (m/e)(1/B)v. (1)

While this behaviour resembles the bending and dispersion of
a beam of white light by a glass prism, the electron prism
also has a focusing action. Electrons that stray from the
central trajectory (the optic axis) in a direction perpendicular
to the field (figure 2(a)) experience an increase or decrease
in their path length within the field, giving rise to a greater
or lesser deflection angle. If the entrance beam originates
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Figure 2. Dispersive and focusing properties of a magnetic prism
(a) in a plane perpendicular to the magnetic field and (b) parallel to
the field. Solid lines represent zero-loss electrons (E = 0); dashed
lines represent those that have lost energy during transmission
through the specimen.

from a point object, electrons of a given energy are returned
to a single image point. The existence of different electron
energies then results in a focused spectrum in a plane passing
through that point. In addition, the fringing field at the
polepiece edges focuses electrons that deviate in a direction
y parallel to the magnetic field (figure 2(b)). By adjusting the
angles of the polepiece edges, the focusing power in these two
perpendicular directions can be made equal (double-focusing
condition), giving a spectrum of small width in the direction
of the applied magnetic field. As a result of second-order
aberrations, the focusing is imperfect but these aberrations
can be corrected by curving the polepiece edges, allowing an
energy resolution better than 1 eV for an entrance angle of up
to several milliradians (of the order of 0.3◦).

The simplest form of energy-loss system consists of a
conventional TEM fitted with a magnetic prism below its
image-viewing chamber (figure 3(a)). By tilting the TEM
screen to a vertical position, electrons are allowed to enter
the spectrometer, where they are dispersed according to their
kinetic energy, which is their incident energy E0 minus any
energy loss E occurring in the specimen. The spectrometer
object point is an electron-beam crossover produced just below
the bore of the final (projector) TEM lens. A spectrometer
entrance aperture, typically variable from 1 to 5 mm in
diameter, limits the range of entrance angles and ensures
adequate energy resolution. This kind of system requires little
or no modification of the TEM, which operates according to
its original design and specification.

An alternative strategy is to incorporate a spectrometer
into the TEM imaging column (figure 3(b)). For image
stability, it is important to preserve a vertical TEM column,
so there are usually four magnetic prisms that bend the beam
into the shape of a Greek letter �, hence the name ‘omega
filter’. An energy-loss spectrum is produced just below the
filter and subsequent TEM lenses project it onto the viewing

Figure 3. Three procedures for TEM-based energy-loss
spectroscopy: (a) conventional TEM with a magnetic-prism
spectrometer below the viewing screen, (b) TEM incorporating an
in-column imaging filter and (c) scanning-transmission (STEM)
system.

screen or onto an electronic detector, usually employing a CCD
camera. Alternatively, these lenses may focus a plane (within
the spectrometer) that contains an image of the specimen,
utilizing the imaging properties of a magnetic prism. A narrow
slit inserted at the spectrum plane can remove all electrons
except those within a small energy window, resulting in an
energy-filtered (EFTEM) image on the TEM screen or the
CCD camera. Provided its image aberrations are corrected by
quadrupole and sextupole lenses, the post-column magnetic
prism (figure 3(a)) can also produce EFTEM images, as in the
GIF spectrometer marketed by the Gatan Company.

A third type of system (figure 3(c)) is based on the
scanning-transmission electron microscope (STEM), in which
a field-emission source and strong electromagnetic lenses are
used to form a small probe that can be raster-scanned across
the specimen. A dark-field image, representing transmitted
electrons scattered through relatively large angles, is formed
by feeding the signal from a ring-shaped (annular) detector
to a display device scanned in synchronism with the probe
scan. Electrons scattered through smaller angles enter a single-
prism spectrometer, which produces an energy-loss spectrum
for a given position of the probe on the specimen (Browning
et al 1997). Inserting a slit in the spectrum plane then gives
an energy-filtered image, obtained this time in serial mode.
Alternatively, the whole spectrum is read out at each probe
position (pixel), resulting in a large spectrum-image data set
that can be processed off-line (Jeanguillaume and Colliex
1989). Similar data can be obtained from an EFTEM system
(figure 3(b)) by recording a sequence of EFTEM images of
different energy loss, selected by changing the spectrometer
current or the microscope high voltage.

Although energy-loss spectra were originally recorded
by placing a photographic film at the spectrum plane, this
arrangement soon gave way to electronic acquisition. In
a serial-recording system, a narrow slit is placed in the
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spectrum plane and the spectrum scanned past the slit by
varying the magnetic field of the prism or the microscope
high voltage; raising the voltage selects a higher energy loss,
for a given slit position. A single-channel electron detector
behind the slit produces an electrical signal proportional to the
electron intensity at each energy loss; it usually consists of
a scintillator, to convert the electrons to visible photons, and
a photomultiplier tube that acts as a high-sensitivity photon
detector. This simple system works well but provides noisy
data at high-energy loss, where the electron intensity is weak.
The reason lies not in the photomultiplier tube, which is a low-
noise detector, but in the fact that only a small range of energy
loss is sampled at any instant, resulting in pronounced shot
noise due to the limited number of electrons being recorded.

To facilitate recording higher energy losses, parallel-
recording detectors were developed. They contain no energy-
selecting slit, so no electrons are wasted. An extended range of
the energy-loss spectrum is projected by an electron lens onto
a fluorescent screen, coupled to a CCD camera whose output is
fed into the data-recording computer. Although this procedure
has largely replaced serial recording, it gives spectral peaks
with extended tails that arise from light scattering in the
fluorescent screen. These tails can be removed by spectrum
processing (deconvolution) or minimized by using a high
spectral dispersion (although this limits the energy range of
the data).

The energy resolution of an energy-loss spectrum is
determined by several factors, including aberrations of
the electron spectrometer. By curving the polepieces of
the magnetic prism and by using weak multipole lenses for
fine tuning, these aberrations can be almost eliminated. The
energy resolution is then determined by the width of the
energy distribution provided by the electron source, seen as
the width of the zero-loss peak. Thermionic sources, such
as the tungsten filament or heated LaB6 source used in many
electron microscopes, provide an energy width between 1 and
2 eV. A Schottky source (heated Zr-coated W tip) gives a width
of about 0.7 eV. A CFEG source (field-emission from a cold
tungsten tip) gives typically 0.5 eV, although a fast readout of
the spectrum combined with software re-alignment can reduce
this width to below 0.3 eV (Kimoto and Matsui 2002, Nehayah
et al 2007).

Further improvement in energy resolution is possible by
inserting an electron monochromator after the electron source.
The monochromator is an energy filter tuned to a narrow
energy band at the centre of the emitted-energy distribution.
Although either magnetic-prism or electrostatic-prism designs
are possible, a popular choice is the Wien filter, which uses both
electric and magnetic fields and results in an energy spread of
about 0.2 eV (Tiemeijer 1999).

Another recent development is the correction of TEM-
lens aberrations by multipole lenses that are adjusted and
aligned under computer control. Used to correct the spherical
aberration of a probe-forming lens (e.g. the objective lens of
a STEM), the corrector allows electrons to be focused into a
probe of diameter below 0.1 nm (Krivanek et al 1999). Similar
techniques can be used to correct the spherical and chromatic
aberration of the first imaging lens (objective) of a conventional

TEM (Haider et al 1998). Although subatomic resolution
might seem unnecessary, it greatly assists the atomic-scale
analysis of individual defects in crystalline materials.

3. The physics of EELS

When electrons pass through a specimen, they are scattered
(changed in direction) by interaction with atoms of the solid.
This interaction (or collision) involves electrostatic (Coulomb)
forces, arising from the fact that the incident electron and the
components of an atom (nucleus and atomic electrons) are all
charged particles. For convenience we can divide the scattering
into elastic and inelastic, depending on whether or not the
incident electron responds to the field of the nucleus or to its
surrounding electrons.

3.1. Elastic scattering

Elastic scattering involves the interaction of an incident
electron with an atomic nucleus. Because the nuclear mass
greatly exceeds the rest mass of an electron (by a factor 1823A

where A = atomic weight or mass number), the energy
exchange is small and usually unmeasurable in a TEM-EELS
system. For elastic scattering by a single atom (and in an
amorphous material, to a first approximation) the differential
cross section that represents the probability of scattering per
unit solid angle � is (Lenz 1954)

dσe/d� = [4Z2/(k2
0T )](θ2 + θ2

0 )−2. (2)

Here Z is the atomic number, k0 is the electron wavenumber
(2π /wavelength) and T is a ‘nonrelativistic’ incident energy
given by

T = m0v
2
0/2 = E0[1 + E0/(2m0c

2)]/[1 + E0/(m0c
2)], (3)

where m0c
2 = 511 keV is the electron rest energy. The

parameter T is somewhat less than the actual kinetic energy
E0 because the relativistic mass of the electron exceeds its
rest mass m0; see table 1. In equation (2), θ represents the
scattering angle of the electron and θ0 ≈ Z1/3/(k0a0) is the
angular width of the scattering distribution, a0 being the first
Bohr radius (53 × 10−12 m). For Z = 6 and E0 = 100 keV,
θ0 ≈ 20 mrad ≈ 0.35◦, meaning that the angular distribution
of elastic scattering is quite narrow for the incident-electron
energies used in a TEM; see figure 4. To be scattered through
a large angle (θ � θ0), the electrons must pass very close
to the nucleus; not surprisingly equation (2) then becomes
the Rutherford formula for scattering of an electron from an
unscreened nucleus. At smaller angles, the scattered intensity
falls below the Rutherford value; the term θ0 represents nuclear
screening by the atomic electrons.

A crystalline specimen scatters electrons over a similar
angular range but the scattering is confined to discrete angles
(Bragg angles; see figure 4). The elastic scattering is then
called diffraction. Because of atomic vibration, electrons can
also undergo phonon scattering, which broadens the angular
width of each Bragg beam and involves an energy transfer of
the order of kT (≈25 meV at T ≈ 300 K) that is unmeasurable
in a TEM-EELS system. For this reason and the fact that it
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Table 1. Parameters T = m0v
2/2, γ T , γ = m/m0, deBroglie

wavelength λ and wavenumber k0 = 2π/λ, as a function of the
kinetic energy E0 of an electron.

E0 T γ T λ k0

(keV) (keV) (keV) γ (pm) (nm−1)

30 27.6 29.2 1.059 6.98 900
100 76.8 91.8 1.196 3.70 1697
200 123.6 171.9 1.391 2.51 2505
300 154.1 244.5 1.587 1.97 3191

1000 226.3 669 2.957 0.87 7205

Figure 4. Curves show the angular distribution of elastic and
inelastic scattering, calculated for 200 keV electrons in amorphous
carbon. Vertical bars represent the relative intensities of the elastic
Bragg beams in crystalline diamond when the crystal axes are
parallel to the incident beam.

involves interaction with atomic nuclei, phonon scattering is
often termed quasi-elastic.

For the small fraction of incident electrons that are
scattered through large angles, elastic scattering does involve
an appreciable energy transfer E given by

E = Emax sin2(θ/2). (4)

For the extreme case of 180◦ backscattering, E = Emax ≈
E0/(457 A) ≈ 18 eV for a carbon atom and E0 = 100 keV.
If E0 is several hundred kilo-electron volts, this ‘elastic’
scattering can be sufficient to displace an atom from its lattice
site in a crystal, giving rise to a form of radiation damage called
knock-on or displacement damage.

3.2. Inelastic scattering

Coulomb interaction between the incident electron and atomic
electrons gives rise to inelastic scattering. Similarity in mass
between the projectile (incident electron) and the target (atomic
electron) allows the energy exchange (loss) to be appreciable:
typically a few electron volts up to hundreds of electron volts.

For most inelastic collisions, the double-differential cross
section is given by a small-angle approximation:

d2σi/d� dE = (4γ 2/q2)(R/E)(df/dE)

= (4a2
0R

2/T )[(1/E)(df/dE)](θ2 + θ2
E)−1, (5)

where q is the magnitude of the scattering wavevector, a0 =
53 × 10−12 m, R = 13.6 eV (the Rydberg energy) and df/dE

is an energy-differential optical oscillator strength, a function
of energy loss E but not of scattering angle θ . As seen from
equation (5), the angular distribution of inelastic scattering is
a Lorentzian function whose half-width (at half-height) is the
characteristic angle θE = E/(2γ T ). Although the relativistic
factor γ (the fractional increase in relativistic mass of the
incident electron) is greater than 1, the term γ T is slightly less
than the kinetic energy E0 of the incident electrons, as shown
in table 1. For an energy loss of E = 25 eV, θE = 0.14 mrad,
illustrating the fact that inelastic scattering involves angles
even smaller than those for elastic scattering; see figure 4.

Apart from the 1/E and angular terms in equation (5),
which together represent a monotonic decay (E−1 for large
θ , E−3 for very small θ ), df/dE represents the energy
dependence of inelastic scattering. This energy-differential
oscillator strength also applies to photon-induced transitions,
showing the close connection between energy-loss and optical
spectra. The correspondence is only approximate: when
a photon is absorbed, the momentum transfer corresponds
to a wavenumber qp = ω/c = 2πE/(hc), E being the
transferred energy. The momentum hq/(2π) transferred by an
inelastically scattered electron depends on its scattering angle;
energy and momentum conservation lead to

q2 = k2
0(θ

2 + θ2
E). (6)

The minimum momentum transfer corresponds to θ = 0 and
qmin = k0θE, so for the same energy transfer

qmin/qp = (2πγm0v/h)[E/(2γ T )][hc/(2πE)] = c/v. (7)

Provided the incident-electron energy is at least 100 keV
(v/c ≈ 0.55) and the energy-loss spectrum is recorded using
a really small angle-limiting spectrometer entrance aperture
(β � θE), the transferred momentum is only a factor of 2
larger than for photon absorption. The energy-loss spectrum
then reflects optical (direct) electronic transitions that obey a
dipole sum rule: the angular-momentum quantum number l of
the target atom must increase or decrease by one (	l = ±1).

The E-dependence df/dE is characteristic of the
specimen, hence the usefulness of EELS. We now discuss some
of the mechanisms that give rise to this energy dependence.

3.3. Plasmon excitation

A prominent form of inelastic scattering in solids involves
plasmon excitation. This phenomenon arises from the fact that
outer-shell electrons (conduction electrons in a metal, valence
electrons in a semiconductor or insulator) are only weakly
bound to atoms but are coupled to each other by electrostatic
forces; their quantum states are delocalized in the form of an
energy band.
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Figure 5. Plasmon wake of a 100 keV electron travelling through aluminium, calculated from the dielectric properties (P E Batson, personal
communication). The electron is represented by the bright dot on the left; alternate dark and bright bands represent positive and negative
regions of space charge that trail behind the electron.

Figure 6. Energy-loss spectrum of a thin region of silicon (thin line) and of a thicker area (thick line), with their zero-loss peaks matched in
height. Plasmon peaks occur at multiples of the plasmon energy (Ep = 16.7 eV). The broad feature starting around 100 eV is a silicon L23

ionization edge.

When a fast-moving electron passes through a solid, the
nearby atomic electrons are displaced by Coulomb repulsion,
forming a correlation hole (a region of net positive potential
of size ∼1 nm) that trails behind the electron. Provided
the electron speed exceeds the Fermi velocity, the response
of the atomic electrons is oscillatory, resulting in regions
of alternating positive and negative space charge along the
electron trajectory; see figure 5. The effect is known as a
plasmon wake, in analogy to the wake of a boat travelling on
water at a speed higher than the wave velocity or an aircraft
flying faster than the speed of sound. The wake periodicity in
the direction of the electron trajectory is λw = v/fp where fp

is a plasma frequency given (in Hz) by

2πfp = ωp = [ne2/(ε0m)]1/2. (8)

Here n is the density of the outer-shell (conduction or valence)
electrons and m is their effective mass. The frequency fp is of
the order of 1016 Hz, equivalent to the ultraviolet region of the
electromagnetic spectrum.

As the electron moves through the solid, the backward
attractive force of the positive correlation hole results in energy
loss. The process can be viewed in terms of the creation of
pseudoparticles known as plasmons, each of which carries a
quantum of energy equal to Ep = hfp = (h/2π)ωp. The
inelastic scattering is then interpreted as the creation of a
plasmon at each scattering ‘event’ of the transmitted electron,

giving an energy-loss spectrum consisting of a peak at an
energy loss E = Ep and at multiples of that energy; see
figure 6.

The probability Pn of n plasmon-loss events in a specimen
of thickness t is given by Poisson statistics:

Pn = (1/n!)(t/L)n exp(−t/L), (9)

where the plasmon mean free path (MFP) L is the average
distance between scattering events. The integrated intensity
In of each plasmon peak is then given by

In = PnIt = (1/n!)(t/L)n exp(−t/L)It = (1/n!)(t/L)nI0,

(10)

where It is the total integral of the spectrum, including its
zero-loss component I0. In the absence of elastic scattering, It

would be the incident-beam intensity; in practice, it represents
electrons that, after transmission through the specimen, are
scattered through angles small enough to be accepted by the
spectrometer entrance aperture (semiangle β).

The spectrometer entrance aperture also cuts off some
inelastic scattering (less than the elastic because of the
narrower angular distribution), reducing the inelastic intensity
from In to In(β). As a result of a fortuitous property of the
Lorentzian angular distribution, In(β)/In = [I1(β)/I1]n to a
good approximation, which allows equation (10) to be used
in the presence of an angle-limiting aperture as long as L is
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Figure 7. Permittivity and energy-loss function calculated from the Drude model for (a) a free-electron gas with Ep = 15 eV, � = 1.5 eV
(typical of aluminium recorded by a TEM-EELS system) and (b) Ep = 21 eV, Eb = 14 eV, � = 20 eV, which gives an energy-loss function
representative of amorphous Al2O3.

replaced by a value L(β) that depends (logarithmically) on the
spectrometer collection angle β (Egerton 1996).

Based on equation (10), the plural-scattering component
of an energy-loss spectrum can be removed by Fourier-log
deconvolution (Johnson and Spence 1974). Because of the
property just discussed, this procedure is accurate even for
spectra recorded with an angle-limiting aperture, provided the
aperture is centred on the optic axis (θ = 0). For spectra
recorded off-axis (large q), more complicated procedures are
necessary.

Since plasmon generation is caused by the electric field
of the incident electron, a similar effect can be created by an
electromagnetic wave. As a result, the energy-loss spectrum
is related to the dielectric properties of the specimen. In
fact, the middle term (1/E)(df/dE) in equation (5) can be
replaced by Im[−1/ε(E)] = ε2/(ε

2
1 + ε2

2), known as the
energy-loss function, where ε(E) is a complex permittivity
whose real and imaginary parts are ε1 and ε2. As a result
of this connection, energy-loss spectra can be processed to
give ε1(E) and ε2(E) data over a wide range of photon
energy E, ranging from the visible to the x-ray region. The
processing involves Kramers–Kronig transformation to get
Re(1/ε) and various normalization procedures (Egerton 1996,
Alexander et al 2008).

The dielectric formalism allows energy-loss spectra to be
simulated. In the simple Drude model (Raether 1980), the
outer-shell atomic electrons are approximated by a Fermi sea
of free electrons (jellium) for which the complex permittivity is

ε = 1 − E2
p/(E

2 + iE�)

= 1 − E2
p/(E

2 + �2) + i�E2
p/[E(E2 + �2)]. (11)

The energy-loss function is then

Im[−1/ε(E)] = E�E2
p/[(E2 − E2

p)
2 + (E�)2]. (12)

The parameter � represents plasmon damping and is
approximately the full width at half maximum (FWHM) of
the plasmon peak in the energy-loss spectrum. Equation (12)

Figure 8. Plasmon energy (in eV) for elements, as measured (solid
circles) and as given by the free-electron formula (open circles).
Agreement is good except for the transition metals (22 < Z < 29),
where the d-electrons contribute to an M23 ionization edge at higher
energy loss (35–60 eV) rather than to the plasmon peak.

describes the shape of this peak; see figure 7(a). Note that for
the free-electron case, the resonance peak occurs when ε1(E)

is close to zero; at this energy, there is no peak in ε2(E) that
would give rise to a peak in the optical-absorption spectrum.

Except for the transition elements, whose d-electrons are
not entirely free to take place in collective motion, the free-
electron approximation: equation (8) with m = m0, gives
plasmon-peak energies quite close to those observed by EELS;
see figure 8. This remains true even for semiconductors such
as silicon and insulators such as diamond or alkali halides; see
table 2. To take part in plasmon oscillation, the outer-shell
electrons need not be capable of long-range motion (charge
transport).

The Drude model can be extended to semiconductors and
insulators by giving the electrons a binding energyEb, resulting
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Table 2. Measured and calculated plasmon energy, plasmon-peak width (FWHM), cutoff angle θc (mrad) and MFP Lp(θc) for
E0 = 100 keV.

Ep (eV) Ep (eV) h�/2π (eV) θc (mrad) Lp(θc) (nm)
Material measured free-electron = FWHM E0 = 100 keV E0 = 100 keV

Al 15.0 15.8 0.5 7.7 119
Be 18.7 18.4 4.8 7.1 102
Si 16.7 16.6 3.2 6.5 115
GaAs 15.9 15.7 5.5
MgO 22.3 24.3 6.7
NaCl 15.5 15.7 15

in a permittivity

ε = 1 − E2
p/(E

2 − E2
b + iE�)

= 1 − E2
p(E

2 − E2
b)/[(E2 − E2

b)
2 + E2�2]

+ iE�E2
p/[(E2 − E2

b)
2 + E2�2], (13)

giving a plasmon peak displaced to an energy slightly higher
than Ep, as illustrated for amorphous Al2O3 in figure 7(b).
Note that the broad plasmon resonance now occurs at ε1 ≈ ε2

and ε1 never becomes zero or negative.
As shown in table 2, the plasmon peak represents a sharp

resonance in some materials, including Al and alkali metals,
and also some semiconductors such as silicon and GaAs. Other
materials, such as carbon and organic compounds, show broad
plasmon peaks; the peak width h�/(2π) is large due to strong
plasmon damping. Transfer of plasmon energy to individual
electrons (single-electron excitation) is one cause of damping
and becomes more probable at higher q, so the plasmon-peak
width increases with increasing scattering angle. Damping
can also increase at very small angles, due to grain-boundary
scattering in a polycrystalline material (Krishnan and Ritchie
1970). The plasmon width is higher in amorphous materials
(Egerton 1996); for example, 3.9 eV in amorphous silicon
compared with 3.2 eV in the crystalline phase.

An n-type semiconductor has a separate plasma resonance
associated with its conduction-band electrons. However, their
concentration is typically below 1019 cm−2, giving a plasmon
energy below 0.25 eV, not resolvable by most TEM-EELS
systems.

Carbon represents an interesting case. Assuming four
valence electrons per atom, diamond has a free-electron
plasmon energy of 31 eV. The measured loss spectrum shows
a broad peak centred around 33 eV and about 13 eV in width,
corresponding to a well-damped plasmon resonance. Graphite
is a semi-metal with one weakly bound π -electron per atom,
giving free-electron plasmon energy of 12.6 eV as well as a
22 eV resonance due to all four electrons. In practice, two
resonance peaks are observed, at 7 and 27 eV; the resonance
frequencies are forced apart due to coupling between the
two groups of oscillators (Raether 1980). For single-sheet
graphene, these peaks are red-shifted to 4.7 and 14.6 eV
(Eberlein et al 2008).

Organic compounds give a broad low-loss peak, typically
centred around 23 eV but with some fine structure at lower
energy loss. In compounds containing double bonds, a further
peak at around 6 eV is sometimes interpreted as a plasmon
resonance of π -electrons. However, vapour-phase aromatic

hydrocarbons show a similar peak, which must therefore be
interpreted in terms of π–π∗ transitions (Koch and Otto 1969).
A peak in the range 6–7 eV is often taken as evidence of
double bonds or an aromatic structure. Ice also shows a broad
resonance around 20 eV, accompanied by a fine structure below
10 eV due to interband transitions (Sun et al 1993).

Plasmon dispersion means that the plasmon peak shifts
to higher energy with increasing scattering angle and
wavenumber, by an amount proportional to q2. This behaviour
is sometimes used to identify a spectral peak as representing a
bulk (volume) plasmon, rather than single-electron excitation
where the energy is expected to be independent of q.

The free-electron approximation provides a value for the
MFP for plasmon excitation:

Lp(β) ≈ (4a0T/Ep)[ln(1 + β2/θ2
Ep)]

−1

= 8πa0T e−1h−1(ε0m0uA/ρ)1/2z−1[ln(1 + β2/θ2
Ep)]

−1,

(14)

where u is the atomic mass unit, ρ is the physical density
and z is the number of quasi-free electrons per atom. The
natural-logarithm term represents integration of equation (5)
up to a collection angle β, taking E ≈ Ep such that θEp =
Ep/(2γ T ). This term causes the MFP to decrease somewhat
with increasing collection angle, by about a factor of 2 between
β = 1 and 10 mrad.

In reality, equation (14) is a small-angle approximation,
valid for scattering angles less than a critical angle θc (known
as the dipole region). The wavenumber q associated with
inelastic scattering is given by equation (6) and increases with
scattering angle. When the phase velocity ωp/q of the plasmon
wave exceeds the Fermi velocity of the material, energy
can be transferred to individual electrons and the plasmon
mode becomes highly damped; the effective oscillator strength
df/dE falls rapidly to zero when θ exceeds θc. For β > θc,
β should therefore be replaced by θc in equation (14), giving
a total MFP appropriate to large collection angles.

The plasmon total MFP exhibits a cyclic dependence on
the atomic number Z due to the cyclic nature of the number z

of quasi-free electrons per atom. This behaviour was recently
confirmed by experiment and the free-electron formula found
to give a MFP within a few per cent of the experimental values
(Iakoubovskii et al 2008a, 2008b).

3.4. Surface plasmons and radiation loss

Even before a beam electron enters the specimen, its electric
charge polarizes the entrance surface. In the case of a
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conductor, this sets up a longitudinal charge-density wave
cos(qx−ωt) whose angular frequency of oscillation ω satisfies
a boundary condition at the surface:

εa(ω) + εb(ω) = 0, (15)

where εb(ω) and εa(ω) are relative permittivities of the
specimen and its surroundings. The simplest case is an
interface between vacuum and a free-electron metal: εa(ω) = 1
and εb(ω) = 1 − ω2

p/ω
2. Equation (15) then gives ω = ωs =

ωp/
√

2, indicating that the energy-loss spectrum will include
a surface-plasmon peak centred about an energy Es given by

Es = (h/2π)(ωp/
√

2) = Ep/
√

2. (16)

For an insulator/metal boundary, where the permittivity of the
insulator has a positive real part ε1 and both insulator and
metal have negligible imaginary parts at frequencies close to
ωs, equation (15) gives

Es = Ep/(1 + ε1)
1/2. (17)

In agreement with experiment (Powell and Swan 1960), Stern
and Ferrell (1960) showed that equation (17) applies to an
oxidized metal surface provided the oxide layer is thicker than
about 3 nm. They also derived an expression for the probability
of scattering (per unit solid angle �) of the incident electron
as a result of surface-plasmon excitation:

dPs/d� = h[π2a0m0v(1 + ε1)]
−1θθE(θ2 + θ2

E)−2f (θ, θi, ψ),

(18)

where θE = E/(γm0v
2) = E/(2γ T ) as previously; θi is the

angle between the surface normal and the incident beam; ψ

is the angle between the plane of incidence and the detector
and f (θ, θi, ψ) = [(1 + θ2

E/θ2)/ cos2(θi) − (tan θi cos ψ +
θE/θ)2]1/2 ≈ 1 for θi < 0.1 rad, θ � θE.

For θi = 0 (normal incidence), f (θ, θi, ψ) = 1 and
the scattered-electron intensity is zero at θ = 0, rising to a
maximum at θ = θE/

√
3 and then falling proportional to θ−3

for θ � θE. Since θE is very small (<0.1 mrad typically), the
surface-plasmon intensity is concentrated into even smaller
angles than volume-plasmon scattering, which falls as θ−2 for
θ � θE. Surface-mode contributions to the loss spectrum
can therefore be minimized by displacing the angle-selecting
aperture away from optic axis or by using a collection aperture
with a central stop.

Alternatively, if an axial and relatively large collection
aperture is used (β � θE), the probability of surface-plasmon
excitation at a single interface, for normal incidence (θi = 0)
and integrated around the Es peak, is (Ritchie 1957, Stern and
Ferrell 1960)

Ps = h[2a0m0v(1 + ε1)]
−1, (19)

which is of the order of 1% at each surface for 100 keV
incident electrons. This means that surface-plasmon peaks are
prominent (relative to bulk-plasmon peaks) only for rather thin
specimens (t < 20 nm). There is also a negative contribution
(−Ps/2) around the bulk-plasmon energy Ep, arising from the
so-called begrenzungs effect (Ritchie 1957).

Figure 9. Angular distribution of surface-plasmon scattering within
the plane of incidence, for electron beams with various angles of
incidence θi relative to the surface-normal.

As the specimen is tilted away from perpendicular
incidence, the angular distribution of surface-plasmon
scattering becomes asymmetrical relative to the optic axis
(see figure 9) and the integrated intensity increases by a
factor ≈1/ cos θi. For large θi, surface-plasmon scattering
dominates over bulk-plasmon peaks, as in the case of surface-
reflection spectra where electrons are elastically reflected back
into vacuum after penetrating only a short distance into the
specimen (Powell 1968). A similar situation exists when
the electrons are focused into a fine probe (sub-nanometre
diameter) positioned within a few nanometres beyond the edge
of a particle. In this aloof mode of spectroscopy, energy
losses due to surface plasmons predominate (Howie 1983,
Batson 2008).

To predict the energy dependence of surface-loss intensity,
we must know the energy dependence of the permittivities on
both sides of the interface. For perpendicular incidence, the
interface-loss probability integrated up to an angle β is

dPs/dE = (πa0k0T )−1[(1/θE) tan−1(β/θE)]

×{Im[−4/(εa + εb)] − Im[−1/εa] − Im[−1/εb]}. (20)

This expression is symmetric with respect to the two
media; the direction of travel of the electron does not matter.
Negative terms of the form Im(−1/ε) indicate that the
interface plasmon intensity occurs at the expense of volume-
plasmon intensity (the energy-integrated oscillator strength
being unaltered by the interface). This is the begrenzungs
effect, which arises because the bulk-plasmon wake requires a
distance λp/4 = (π/2)(v/ωp) to become established on each
side of the interface (Garcia de Abajo and Echenique 1992,
Egerton 1996).

Our previous equations all assume that the thickness
t of each material is large enough that there is negligible
electrostatic coupling between the surface-plasmon fields at
its two surfaces: qst � 1, where qs = k0θ for perpendicular
incidence. Kröger (1968) gave a more complete derivation of
the energy-loss intensity for an electron transmitted through a
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Figure 10. (a) Schematic and contour plot (grey background) showing the calculated energy-loss and angular dependence of intensity for a
50 nm Si specimen with 300 keV incident electrons. (b) Calculated energy-loss spectra for 2.1 mrad collection semiangle, 300 keV incident
electrons and various thicknesses of Si, assuming no surface-oxide layer. Reproduced from Erni and Browning (2008), copyright Elsevier.

foil of any thickness, including coupling of the plasmon modes
between the two surfaces and a relativistic retardation effect
related to the generation of Čerenkov radiation. His formula
for the energy-loss intensity contains seven terms, of which
the last three vanish for normal incidence (θi = 0). The first
term is proportional to specimen thickness and corresponds to
bulk losses; other terms represent surface excitations. Several
of the terms contain a resonance denominator that becomes
zero at a certain energy loss E, corresponding to emission of
Čerenkov radiation when the electron speed v is higher than
the speed of light: c/ε1(E)1/2 in the specimen. This radiation
loss gives rise to peaks (at a few electron volts loss) that
can interfere with bandgap measurements in semiconductors
(Stöger-Pollach et al 2006). In the TEM, the Čerenkov and
surface-plasmon contributions can be minimized by using
an off-axis collection aperture or an on-axis aperture with
a central stop (Stöger–Pollach 2008). However, these steps
are only effective for near-parallel illumination; a highly-
focused STEM probe involves incident convergence angles of
several millirads.

Erni and Browning (2008) have evaluated the Kröger
equations for several semiconductors and an insulator (Si3N4);
see figure 10. Volume retardation leads to a peak in
the energy-loss spectrum below 10 eV and a peak in the
angular distribution below 0.1 mrad, but when the specimen is
thinner than about 300 nm, surface-mode scattering becomes
important and results in guided-light modes arising from total
internal reflection of the Čerenkov radiation. Above 100 nm
thickness, the low-loss spectra are dominated by the volume
plasmon and Čerenkov peaks, around 10 nm by volume and
surface plasmons and at very low thickness by surface and
guided-light modes. The guided modes have a dispersion
lying between the light line for vacuum (ω = cq) and that
in the semiconductor (ω = cq/n = cq/ε

1/2
1 ), as explained by

Raether (1980).

Both Čerenkov and surface-plasmon modes complicate
the Kramers–Kronig process of obtaining dielectric data from
EELS measurements. Čerenkov effects are particularly severe
in the case of insulators such as diamond (Zhang et al
2008). New Čerenkov modes have been predicted for electrons
passing close to small particles (Itskovsky et al 2008) and new
surface-plasmon modes in small particles have been revealed
by energy-filtered imaging (Nehayah et al 2007). This is an
active area of research, made possible by recent improvements
in energy resolution.

3.5. Single-electron excitation and fine structure

In addition to the collective response, a transmitted electron
can excite individual atomic electrons to quantum states of
higher energy. Evidence for these single-electron excitations
is seen in the form of fine-structure peaks that occur at energies
above or below the plasmon peak or that modulate its otherwise
smooth profile. If a strong single-electron peak occurs at
energy Ei, the plasmon peak is displaced in energy in a
direction away from Ei, in accordance with coupled-oscillator
theory (Raether 1980).

Single-electron transitions are readily observed in the
energy-loss spectra of transition metals, where d-electrons
contribute multiple peaks, in organic compounds and in
hydrated biological specimens, partly due to the water content
(Sun et al 1993). Polymers show some fine structure (and a
7 eV peak if double bonds are present) together with a
broad peak in the range 20–25 eV, showing plasmon-like
dispersion, which can be interpreted as a plasmon resonance
(Barbarez et al 1977).

The angular distribution of the single-electron intensity
is the same as for volume plasmons but there is a more
gradual falloff from the Lorentzian formula at higher angles.
Dispersion (change in peak energy with angle) should be
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Figure 11. Energy-loss function of KBr from energy-loss
measurements (Keil 1968; full line) compared with optical data
(dashed line). Peaks below 10 eV are due to exciton states; the
13–14 eV peak may be a plasmon resonance. Reproduced from
Raether (1980) with kind permission of Springer Science and
Business Media.

negligible, which is sometimes used to determine if a peak
arises from collective or single-electron excitation.

In a non-metal, the low-loss fine structure represents
interband transitions that can be calculated with the aid of
density-functional theory (Keast 2005). The spectral intensity
is related to the joint density of states between conduction
and valence bands. Ideally the inelastic intensity should
remain zero up to an energy loss equal to the bandgap energy.
However, exciton peaks can occur due to transitions to exciton
states below the conduction band, as in the case of alkali
halides; see figure 11.

3.6. Core-electron excitation

The atomic electrons that are located in inner shells
(labelled K, L etc from the nucleus outwards) have binding
energies that are mostly hundreds or thousands of electron
volts. Their excitation by a transmitted electron gives rise to
ionization edges in the energy-loss spectrum, the equivalent of
absorption edges in XAS. Since core-electron binding energies
differ for each element and each type of shell, the ionization
edges can be used to identify which elements are present in
the specimen. They occur superimposed on a background that
represents energy loss due to valence electrons (for example,
the high-energy tail of a plasmon peak) or ionization edges
of lower binding energy. This background contribution can
be extrapolated and removed for quantitative elemental or
structural analysis.

In a solid specimen, inner-shell excitation implies
transitions of the core electrons to empty states above the Fermi
level. Because of the strong binding of these electrons to the
nucleus, collective effects are less important than for valence-
electron excitation, allowing the basic shapes and properties
of the edges to be approximated by single-atom theory. As
we saw in equation (5), a key quantity in the atomic theory
of inelastic scattering is df/dE, known as the generalized
oscillator strength (GOS) since it is in general a function of
transferred momentum q (related to the electron scattering

Figure 12. Bethe surface for K-shell ionization of a carbon atom,
based on a hydrogenic model (Egerton 1979). The oscillator
strength is zero for energy loss below the ionization threshold EK.

angle θ ) as well as transferred energy E (Inokuti 1971). For the
hydrogen atom (Coulombic wavefunctions), df/dE is given
by an analytical formula and this can be adapted to other atoms
by suitable scaling. A plot of the hydrogenic GOS for K-shell
ionization of a carbon atom as a function of q and E, the Bethe
surface, is shown in figure 12.

The E-dependence at the left-hand boundary of figure 12
indicates that this ionization edge has a sawtooth shape: a rapid
rise at the ionization threshold followed by a monotonic decay,
typical of K-edges. This decaying df/dE leads to a core-loss
differential cross section:

d2σc/d� dE = (4a2
0R

2/T )(1/E)[df (q, E)/dE]

×(θ2 + θ2
E)−1, (21)

and a corresponding core-loss intensity that resembles an
inverse power law: BE−s. Just above the ionization
threshold EK (and qa0 < 1), the GOS approximates to its
q-independent optical value df (0, E)/dE and equation (21)
predicts a Lorentzian angular dependence. This dipole
region corresponds to scattering with a relatively large impact
parameter from strongly-bound core electrons. Integrating up
to a scattering angle β gives

dσc/dE ≈ (4πa2
0R

2/T )(1/E)[df (0, E)/dE] ln(1 + β2/θ2
E).

(22)

For E � EK, the oscillator strength becomes concentrated
around a non-zero q, given by (qa0)

2 ≈ E/R, which forms
a Bethe ridge on the GOS plot; see figure 12. This situation
approximates to close-collision Rutherford scattering from a
free and stationary electron, for which momentum and energy
conservation would lead to a single scattering angle, uniquely
related to energy loss: θ ≈ (E/E0)

1/2.
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Other atomic shells (L, M, etc) have corresponding Bethe
surfaces but are split into several components with different
bonding energies. The L-edge has three components; the L1

edge (2s excitation) has the hydrogenic sawtooth shape but is
relatively weak (especially for small collection angle β) since
it violates the dipole sum rule (	l = ±1). L2 and L3 edges
(excitation of 2p1/2 and 2p3/2 electrons) satisfy the sum rule
but many of them have a rounded profile because the effective
potential (for angular quantum number l = 1) is delayed by
a centrifugal-barrier term (Inokuti 1971, Inokuti et al 1978).
For lower-Z elements, the thresholds are so close in energy
that the two edges overlap and are described as L23.

Other L-edges have sharp peaks at the threshold, known as
white lines, because they appeared as white areas when an x-ray
absorption spectrum was recorded as a photographic negative.
Examples include the L2 and L3 edges of transition metals and
their compounds, where the white lines can be attributed to
a high density of empty d-states just above the Fermi level.
M-edges are similar; M4 and M5 edges (3d excitation) are
rounded (with delayed maxima) in metals such as Nb, Mo
and Ag but show sharp white-line peaks in rare-earth metals
(e.g. La) due to a high density of final f-states. An atlas showing
the edge shapes for most chemical elements is available in print
form (Ahn and Krivanek 1983) and on CD (Ahn 2004).

Unless recorded from specimens that are very thin
(t/L � 1, where L is the plasmon MFP), an ionization edge
is broadened in energy as a result of plural scattering. Here
plural scattering means the excitation of one or more plasmons
or interband transitions by the same transmitted electron that
generated the core excitation. Plural scattering causes the
thin-specimen edge profile to be convolved with that of the
low-loss spectrum, increasing the intensity at energies 10 eV
or more beyond the threshold; see figure 13. If the low-
loss spectrum has been measured, the plural scattering can
be removed by a Fourier-ratio deconvolution (Egerton and
Whelan 1974). In principle, this procedure also allows spectra
to be ‘sharpened’ (enhanced in energy resolution) but the noise
content is then amplified. Bayesian techniques (maximum-
entropy or maximum-likelihood deconvolution) have been
explored as a way of dealing more effectively with this noise
problem (Overwijk and Reefman 2000, Kimoto et al 2003,
Gloter et al 2003, Lazar et al 2006, Egerton et al 2006a).

3.7. Core-loss fine structure

White-line peaks are just one example of fine structure in an
ionization edge. In general, the core-loss intensity Jc(E) (i.e.
spectral intensity minus pre-edge background) is given by an
expression known as the Fermi golden rule:

Jc(E) ∝ dσc/dE ∝ M(E)2N(E) ∝ (df/dE)N(E). (23)

Here M(E) represents an atomic matrix element, closely
related to the atomic oscillator strength df/dE, while N(E)

is the density of final states in the electron transition. As
indicated in equation (23), solid-state effects modulate the
basic shape of the edge derived from atomic theory. Core-loss
EELS therefore provides a measure of the energy dependence
of the density of empty states in the conduction band, similar to

Figure 13. Background-subtracted Fe L-edge (showing L3 and L2

white lines at 712 and 724 eV) recorded from thick and thin
specimens, and after removal of plural scattering by Fourier-ratio
deconvolution.

XAS and complementary to an x-ray photoelectron spectrum
(XPS), which reflects the density of filled valence-band states.

The density of states determined by electrical measure-
ments differs from N(E), which is a local density of states
(LDOS) evaluated at the excited atom. As a result, N(E)

varies at different crystallographic sites, leading to dissimilar
fine structure in the corresponding ionization edges. Further,
N(E) is a symmetry-projected density of states, governed by
the dipole selection rule. The excitation of K-shell (1s) elec-
trons reveals the density of empty 2p states, whereas L2 or L3

(2p) excitation uncovers 3d and (to a lesser extent) 3s states.
In principle, equation (23) involves a joint density of the

initial and final states involved in the transition or a convolution
of the appropriate densities of states. However, the core-
level initial state is relatively sharp in energy, a delta function
in the first approximation. To a better approximation, it is
represented by a Lorentzian function whose natural width
ranges from a fraction of an electron volt (for light elements) to
several electron volts for heavier elements (Krause and Oliver
1979). This initial-state broadening arises from the short life of
the core hole, which is rapidly filled, leading to x-ray or Auger
emission. Final-state broadening reflects the lifetime of the
excited core electron and depends on its kinetic energy (i.e.
energy loss above threshold). Since the core hole increases the
charge at the centre of the atom by one unit, its effect is often
simulated (in fine-structure calculations) by using a potential
that corresponds to the next-higher element in the periodic
table, the so-called Z + 1 approximation.

There are two basic methods of calculating ionization-
edge fine structure. The first of these involves a reciprocal-
space calculation of band structure and LDOS. For example,
the full-potential linearized augmented plane wave (FLAPW)
method can be implemented by using the Wien2k computer
program (Hébert 2007). The second procedure is a real-space
calculation, originally used for simulation of an extended x-ray
absorption fine structure (EXAFS). This structure arises from
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Figure 14. Nitrogen K-loss spectrum of cubic GaN, as recorded by
a monochromated TEM-EELS system and as calculated by
real-space (FEFF) and band-structure (Wien2k) methods. Reprinted
with permission from Moreno et al (2006), copyright American
Institute of Physics.

interference between the excited-electron wave, wavevector
k = (2π/h)[2m(E − Ec)]1/2, with waves backscattered from
each shell (index j , radius Rj ) of the surrounding atoms, whose
backscattering amplitude is fj (k). In the single-scattering
approximation of Sayers et al (1971), the normalised fine-
structure intensity is

χ(k) = �j [Nj/(kR2
j )]fj (k) sin(2kRj + 2δc + φ)

×[exp(−2Rj/λa(k)] exp(−2σ 2k2). (24)

2kRj represents the phase difference due to the return path
length 2Rj while 2δc and φ are phase shifts due to the central
and backscattering atoms. The exponential terms represent
attenuation of the ejected-electron wave by inelastic scattering
and phonon excitation. Equation (24) successfully predicts
EXAFS or extended energy-loss fine structure (EXELFS)
but in the near-edge region (within 50 eV of the threshold)
multiple scattering becomes important and must be included
in the theory (Moreno et al 2007). The calculation is then
referred to as a multiple-scattering (MS or RSMS) calculation.
Real-space calculations are particularly useful for aperiodic
systems (e.g. isolated molecules) where the band-structure
approach can be cumbersome (although possible by analysing
a hypothetical crystal of repeating molecules). Equation (24)
can be evaluated for different numbers of atomic shells (range
of j ) and this procedure is usually carried out to ensure
that the chosen range of j is large enough for convergence.
Calculations on various materials indicate that the volume of
specimen giving rise to the fine structure has a diameter of the
order of 1 nm, centred on the excited atom (Wang et al 2008a).

Although both methods of calculation are still being
refined, there is now reasonable agreement between the
predictions of real-space and reciprocal-space calculations and
improved correlation with experimental data; see figure 14.

3.8. Chemical shifts

In x-ray photoelectron spectroscopy (XPS), where electrons
are excited from atomic core levels of a solid into the adjacent

Figure 15. Energy-loss spectrum of graphite, recorded with a
small-diameter probe and large collection angle. The K-edge shows
peaks due to transitions of 1s electrons to π∗ and σ ∗ antibonding
state. Reproduced from Batson (2008), copyright Elsevier.

vaccum, a chemical shift of the associated spectral peak
represents a change in core-level energy arising from the
change in the effective charge on the atom. In EELS, changes
in the chemical environment of an atom can cause a similar
shift in the threshold energy of an ionization edge, up to a
few electron volts. But at the edge threshold, the final state of
the core electron lies just above the Fermi level and below the
vacuum level, so in this case any chemical shift includes not
only the effect of electron transfer to the atom but also change
in valence-band width, due to redistribution of the coordinates
of neighbouring atoms. This second factor is predominant in
the case of metals and it implies that, while the core-loss fine
structure reflects the density of unoccupied states above the
Fermi level, the chemical shift carries information about the
occupied states (Muller 1999). The ionization threshold of
a metal generally increases upon oxidation and this positive
chemical shift can be attributed to the formation of an energy
gap which elevates the empty conduction-band states to higher
energy.

3.9. Core-loss spectroscopy of anisotropic materials

While the energy-loss spectrum of a cubic crystal is
independent of its orientation relative to the electron beam,
this is not true for an anisotropic crystal. A good example
is graphite, a uniaxial hexagonal material with σ hybridized
wavefunctions providing strong interatomic bonding within
basal planes and π orbitals directed perpendicular to these
planes. The K-loss spectrum represents transitions from 1s
states to empty π∗ and σ ∗ antibonding orbitals lying above
the Fermi level. The π∗ component gives rise to a sharp peak
at 285.4 eV, the σ component to a broad peak centred around
292.5 eV; see figure 15.

Leapman et al (1983) give expressions for the angular
dependence of these two components (within the tilt plane)
when the specimen is oriented so that the z-axis (perpendicular
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Figure 16. (a) Calculated and measured angular distributions of π and σ intensity in the K-loss spectrum of graphite, within the plane of tilt
and for the specimen oriented with a tilt angle γ = −45◦ (Leapman et al 1983). (b) Axial (z) and basal-plane (xy) intensities as a function
of the collection angle (Klie et al 2003). Reprinted with permission, copyright American Institute of Physics.

to the basal plane) makes an angle γ relative to the incident
beam:

J (π) ∝ cos2(α − γ )/(θ2 + θ2
E), (25)

J (σ ) ∝ sin2(α − γ )/(θ2 + θ2
E). (26)

Here α ≈ tan−1(θ/θE) is the angle between the direction
of momentum transfer and the incident-beam direction. For
γ = 0, J (π) ∝ θ2

E/(θ2 +θ2
E)2 and J (σ ) ∝ θ2/(θ2 +θ2

E)2, so the
π -intensity has a narrow forward-peaked angular distribution,
falling by a factor of 4 between θ = 0 and θ = θE. Conversely,
the σ intensity is zero at θ = 0 and rises to a maximum at θ ≈
±θE; the sum of these two components is Lorentzian. Tilting
the specimen makes these angular distributions asymmetric
(qualitatively similar to the surface-plasmon case, figure 9) and
allows the two components to be measured separately. Tilting
to 45◦ is advantageous because it maximizes the separation
between the two angular distributions and makes their relative
intensities similar; see figure 16(a).

For a uniaxial crystal (MgB2), Klie et al (2003) have
integrated the z-axis and basal-plane (xy) intensities over all
azimuthal angles and up to a scattering angle β. For an electron
beam parallel to the c-axis, these integrated intensities are equal
when β = θE (solid curves in figure 16(b)).

To act as a reference when analysing anisotropic crystals,
it is useful to have a core-loss spectrum that is independent
of orientation. This can be achieved by using a spectrometer
entrance aperture that admits scattering up a particular angle
θm, known as the magic angle. Nonrelativistic theory gives
θm ≈ 4θE but this relation was shown to be inaccurate
following the development of fully relativistic equations of
core-loss scattering (Jouffrey et al 2004, Schattschneider et al
2005, Sun and Yuan 2005), an extension of earlier theory
due to Møller (1932). The relativistic retardation effect
results in a force perpendicular to the scattering vector q and
this transverse excitation introduces additional terms in the
expression for scattered intensity. Fano (1956) added the
transverse and longitudinal effects incoherently, permissible

for an isotropic specimen, but for an anisotropic crystal there
is an interference term that cannot be neglected.

The magic-angle condition provides a spectrum identical
to that recorded from a random-polycrystalline (orientation-
averaged) isotropic material and in this condition the π and σ

interference terms exactly cancel. This occurs at θm = FθE

where F ≈ 4 in the nonrelativistic limit, falling to 2.25 for
E0 = 100 keV and 1.46 for E0 = 200 keV (Schattschneider
et al 2005). Implications of these relativistic effects for the
analysis of fine structure are being evaluated (Hebert et al
2006, Hu et al 2007). Recently Sorini et al (2008) have
suggested that dielectric effects may increase F for energy
losses below 100 eV.

4. Applications and limitations of TEM-EELS

As discussed in the introduction, EELS is one of several
techniques for materials analysis in the TEM and is usually
employed in conjunction with electron diffraction and imaging.

4.1. Thickness measurement

It is often useful to know the local thickness of a TEM
specimen, for example, to obtain defect or elemental
concentrations from a TEM image or energy-loss spectrum.
Among several in situ methods for thickness measurement,
EELS provides a technique that is general (applicable to
crystalline and amorphous samples) and relatively rapid (it
involves recording the low-loss spectrum, where the intensity
is relatively high).

The most common procedure is the log-ratio method,
based on the measurement of the integrated intensity I0 of a
zero-loss peak relative to the integral It of the whole spectrum.
Poisson statistics of inelastic scattering, equation (9), leads to
the formula

t/L = loge(It/I0), (27)
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where L is a plasmon or total-inelastic MFP. To capture most
of the intensity, It need only be integrated up to about 200 eV,
assuming a typically thin TEM specimen (t < 200 nm). If
necessary, the spectrum can be extrapolated until the spectral
intensity becomes negligible. Equation (27) can be rapidly
implemented at each pixel of a spectrum image, yielding a
semi-quantitative thickness map.

The ratio t/L provides a measure of the relative thickness
of different areas of a specimen (if it has a uniform
composition); knowing the absolute thickness t requires a
value of the inelastic MFP for the incident-electron energy
E0 and collection angle β used to record the data. If no angle-
limiting TEM aperture is used, lens bores limit β to a value
in the range 100–200 mrad, large enough to make L a total
MFP, which is tabulated for common materials at electron
energies of 100 and 200 keV (Egerton 1996, Iakoubovskii et al
2008a, 2008b). This MFP is also appropriate when a large
TEM objective aperture is used (e.g. β ≈ 30 mrad), although a
correction for incident-probe convergence (semiangle α) may
then be necessary (Iakoubovskii et al 2008a, 2008b).

If the collection angle is small enough to correspond to
the dipole region of scattering, a β-dependent MFP can be
estimated from equation (14), with Ep taken as the energy of
the main peak in the low-loss spectrum. If the mean atomic
number of the specimen is known, other empirical procedures
are available for calculating L(E0, β) (Egerton 1996). The
accuracy of the log-ratio method depends largely on how well
the MFP is known, which varies from one material to another,
but as a rough guide, thickness can probably be measured to
about 20% accuracy in most cases.

A potentially more accurate thickness measurement
applies a Kramers–Kronig sum rule to the low-loss
spectrum J (E):

t = (4a0T/I0)[1 − Re(1/ε)]−1

×
∫

J (E)E−1[ln(1 + β2/θ2
E)]−1dE. (28)

The integral is over all energy losses, excluding the zero-loss
peak and can be evaluated by running a short computer script,
given as a menu item in the Gatan software that is commonly
used to acquire and process EELS data. As equation (28) is
based on dipole theory, the spectrum should be collected with
a small value of β and α (both less than 10 mrad). The 1/E

weighting in equation (28) implies that the spectrum need only
be recorded up to an energy loss of around 100 eV but that
the energy resolution must be sufficient to allow the spectral
intensity to fall close to zero after the zero-loss peak, so that any
tail of that peak can be excluded from the integral. A potential
disadvantage is the need to know Re(1/ε) at E ≈ 1 eV.
However this quantity can be taken as zero for a metal or
semi-metal and as 1/n2 for a semiconductor or insulator whose
refractive index is n in the visible region. Therefore the
method actually requires less information about the specimen
composition than the log-ratio method. Equation (28) assumes
that Fourier-log deconvolution has been used to remove plural
scattering from J (E), although this step can be avoided if the
specimen is thinner than 100 nm and empirical corrections are
applied for plural scattering and surface-plasmon excitation
(Egerton 1996).

The Bethe or f -sum rule
∫
(df/dE)dE = Z provides a

measurement a local mass thickness, based on

ρt = uT (4πa2
0)R

2I0(A/Z)

∫
EJ(E)[ln(1 + β2/θ2

E)]−1 dE,

(29)

where u = 1.67 × 10−27 kg is the atomic mass unit.
Because of the E-weighting in equation (29), energy resolution
is unimportant but plural scattering and any instrumental
background must be properly removed, since the spectrum
needs to be integrated up to a high energy loss (Crozier and
Egerton 1989). Alternatively a ‘partial sum rule’ can be
assumed, integrating up to an energy just below the ionization
threshold of a particular inner shell and replacing the atomic
number Z by the number of electrons per atom in all shells
of lower binding energy, including conduction or valence
electrons. In the case of carbon, this means integrating up to
about 280 eV and taking Z = 4 (but A = 12) in equation (29).
A significant advantage of equation (29) is that it is relatively
insensitive to the chemical composition of the specimen; for
light-element materials (including organic compounds and
biological tissue), A/Z can be taken as approximately 2 if
the spectrum is measured and integrated up to about 1000 eV
(Crozier and Egerton 1989). Little used up to now, this method
probably deserves more attention.

4.2. Electronic properties of semiconductors and insulators

As the size of silicon devices shrinks towards nanometre
dimensions, TEM and EELS are used increasingly to study
device properties. For example, it is useful to know how the
bandgap of a semiconductor or a dielectric changes within a
device. The TEM provides the necessary spatial resolution
but since these bandgaps are at most a few electron volts,
energy resolution is also vital and a monochromated system
(FWHM ≈0.2 eV) is almost essential. Monochromated TEM-
EELS allowed Browning et al (2007)) to measure the increase
in bandgap with decreasing particle size of CdSe quantum dots;
see figure 17.

One technical problem is the overwhelming intensity of
the zero-loss peak, whose (E > 0) tail extends to several times
the FWHM. Stoeger-Pollach (2008) compared four methods
of removing this tail and recommended a procedure involving
Fourier-ratio deconvolution rather than subtraction methods.
To minimize an additional tail due to the point-spread function
of the electron detector, the spectrum is recorded with high
dispersion (e.g. 0.05 eV/channel). Problems also arise from
surface-plasmon and retardation (Cerenkov) modes, which
add peaks below 10 eV. These latter contributions can be
minimized by using an off-axis detector or by subtracting
the spectra recorded with small and large collection angles
(Stoeger-Pollach 2008), equivalent to a collection aperture
with a central stop.

Rafferty and Brown (1998) pointed out that the low-loss
fine structure involves a joint density of states multiplied by a
matrix element that differs in the case of direct and indirect
transitions. Assuming no excitonic states, their analysis
showed that the onset of energy-loss intensity at the bandgap
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Figure 17. Bandgaps measured by EELS (with error bars)
compared with those from optical measurements (square data
points) and theoretical studies (triangles). From Browning et al
(2007), by permission of Cambridge University Press.

Figure 18. Inelastic intensity recorded from cubic GaN using a
monochromated TEM-EELS system. Above the bandgap energy
(Eg = 3.1 eV), data are fitted to the direct-gap expression
(E − Eg)

0.5, at lower energy to the indirect-gap expression
(E − Eg)

1.5 where Eg = 2 eV. Reproduced from Lazar et al (2003),
copyright Elsevier.

energy Eg is proportional to (E − Eg)
1/2 for a direct gap and

(E − Eg)
3/2 for an indirect gap.

Cubic GaN is a direct-gap material whose inelastic
intensity (after subtracting the zero-loss tail) fits well to
(E − Eg)

1/2 for E > Eg (Lazar et al 2003). For E > Eg,
there is some residual intensity that may be evidence of indirect
transitions in a surface-oxide layer, since it can be fitted to a
(E − Eg)

3/2 function; see figure 18.
Figure 19 shows low-loss spectra recorded from the

anatase phase of TiO2 (indirect gap ≈3.05 eV) and from a

related hydroxylated material H2Ti3O7 in the form of 8 nm
diameter multiwalled nanotubes. Below 5 eV, the spectra can
be fitted to a (E − Eg)

1.5 function but in the case of the
nanotube, some additional intensity below 4 eV may indicate
transitions involving defect states introduced by the hydroxyl
groups (Wang et al 2008b). Note that these fits were performed
on the spectra recorded with an off-axis spectrometer entrance
aperture (q ∼ 1 nm−1), in order to minimize unwanted surface-
plasmon and Cerenkov-loss contributions. Conversely, an
electron probe focused a few nanometres outside a nanotube
or small particle (aloof mode) generates mainly surface rather
than bulk-mode excitations.

Crystalline defects greatly affect the electrical and
mechanical properties of materials, often adversely. High-
resolution TEM can reveal the atomic arrangement of
individual defects while EELS gives information on their
local electronic structure and bonding. Combining this
information can lead to an understanding of how the atomic
structure and physical properties are related. Using a high-
resolution STEM, Batson et al (1986) could detect inelastic
scattering due to localized states (within the 1.26 eV bandgap
of GaAs) at a single misfit dislocation. Although strong
diffraction in a crystalline specimen makes the interpretation
of inelastic scattering more complicated, channelling directs
the electrons down atomic columns (if the beam is aligned
with a crystal axis) and improves the spatial resolution (Loane
et al 1988). The high-resolution STEM uses an annular
dark-field (ADF) detector that collects high-angle elastic
scattering (proportional to Z2) that provides good atomic-
number contrast in a high-resolution ADF image. Given
adequate probe stability, this image allows the electron beam to
be positioned on an atomic column and held there long enough
to enable useful spectra to be recorded (Duscher et al 1998).

4.3. Plasmon spectroscopy

The plasmon energy is related to mechanical properties of
a material; large Ep implies a high valence-electron density,
arising from short interatomic distances and/or a large number
of valence electrons per atom, both of which lead to strong
interatomic bonding. More specifically, the elastic, bulk and
shear modulus all correlate with the square of the plasmon
energy, although there is a fair amount of scatter; see figure 20.
Oleshko and Howe (2007) have used this relation to deduce the
mechanical properties of metal-alloy precipitates that are too
small to be probed by nanoindentation techniques. Gilman
(1999) showed that Ep is also correlated with surface energy,
Fermi energy, polarizability (for metals) and band gap (for
semiconductors). The implications have yet to be exploited.

Daniels et al (2003) used plasmon-loss mapping to
investigate the mechanical properties of graphitic materials
at a spatial resolution of 1.6 nm. By taking the ratio of
intensities at 22 and 27 eV (either side of the σ + π -plasmon
peak), they removed image contrast due to variations in
specimen orientation and thickness. The plasmon energy
itself was shown to be independent of specimen orientation
but it increased after the specimen was annealed, indicating
an increase in density and stronger bonding. Plasmon-loss
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Figure 19. Low-loss spectra from (a) H2Ti3O7 nanotube and (b) anatase TiO2, recorded as a function of the magnitude q of the
inelastic-scattering vector. Insets at top show fits of the inelastic intensities to a (E − Eg)

1.5 function. Reprinted with permission from Wang
et al (2008b), copyright American Institute of Physics.

Figure 20. Bulk modulus plotted against plasmon energy for
various elements. Reprinted with permission from Oleshko and
Howe (2007), copyright American Institute of Physics.

spectroscopy or mapping is attractive for examining radiation-
sensitive materials because the intensity greatly exceeds the
core-loss intensity, so recording times (for achieving adequate
signal/noise ratio) and radiation dose are much lower.

Silicon nanoparticles could provide a light-emission
system that would make optoelectronics compatible with
silicon-processing technology. Yurtsever et al (2006)
fabricated a dispersion of Si particles, by annealing silicon
oxide films deposited by chemical-vapour deposition of silane.
Cross-sectional (XTEM) samples showed little contrast, the
MFPs for Si and SiO2 being very similar. However the
plasmon energies differ: 17 eV in Si but 23 eV in SiO2, so
energy-selective imaging gives a two-dimensional view of the
nanoparticles. A more useful three-dimensional visualization
was obtained with the aid of electron tomography, based on
a series of TEM images recorded at many different specimen
tilts (Gass et al 2006, Frank 2007); in this case, up to ±60◦ tilt

Figure 21. Tomographic reconstruction of silicon particles in
silicon oxide. White ‘fog’ represents the plasmon-loss (17 eV)
intensity; the silicon particles are rendered as mesh images at a
constant intensity threshold. Reprinted with permission from
Yurtsever et al (2006), copyright American Institute of Physics.

in 4◦ increments. Computer software allowed alignment and
reconstruction of the 17 ± 2 eV images in three dimensions;
see figure 21. The particles themselves have soft outlines,
probably reflecting the delocalization of plasmon scattering
(∼2 nm, see later) but they were delineated by choosing a
threshold intensity and representing the intensity contour as
a mesh image. This technique made the particles more visible
and showed that they have irregular shapes. Their complex
morphology may explain the broad spectral range of photo-
and electro-luminescence observed in this material, while the
large surface area of each particle could account for the high
efficiency of light emission.

French et al (1998) have used spectrum-imaging
combined with Kramers–Kronig analysis to study dispersion
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Figure 22. Procedure for elemental quantification, based on
background extrapolation and integration of the intensity (above
background) over a range 	 beyond the edge threshold.

(van der Waals) forces in silicon nitride. Characterized by
Hamaker constants, these forces are important in determining
intergranular strength in ceramic materials.

4.4. Elemental analysis

Because each ionization edge occurs at an energy loss
that is characteristic of a particular element, EELS can be
used to identify the elements present within the region of
specimen defined by the electron beam. If the background
to a particular edge can be extrapolated and subtracted,
the remaining core-loss intensity provides a quantitative
estimate of the concentration of the corresponding element,
assuming the collection semiangle β of the spectrum is
known. Extrapolation usually assumes a power-law energy
dependence: AE−r , where A and r are determined from least-
squares fitting to the pre-edge background. The core-loss
intensity is then integrated over an energy range 	 beyond the
edge threshold; for 	 > 50 eV, the near-edge fine structure is
averaged out and the resulting integral Ic(β, 	) represents the
amount of the element, independent of its atomic environment
(figure 22).

Although the angular distribution of scattering is a
complicated mixture of elastic, plasmon and plural scattering,
the areal density of the element (N atoms per unit area) can be
estimated from the simple formula:

Ic(β, 	) ≈ NIl(β, 	)σ(β, 	). (30)

If the local specimen thickness t is known, the elemental
concentration n is given by n = N/t . The quantity
σ(β, 	) is a partial cross section, calculated for core-loss
scattering up to an angle β and energy range 	 beyond the
threshold. For K-shells, this cross section is available from the
hydrogenic model (Egerton 1979); for other shells, Hartree–
Slater calculations or experimental measurements are used
(Rez 1982, Hofer 1987). The term Il(β, 	) in equation (30)
represents an integral of the low-loss spectrum up to an energy

loss 	, including the entire zero-loss peak. Both Ic and Il

can be measured in arbitrary units since only their ratio is
required to deduce N ; there is no need to calibrate the recorded
intensities or measure the electron-beam current. For typical
values of t and β, equation (30) makes approximate allowance
for elastic and plural-inelastic scattering (Egerton 1996).

As an example, Crozier (2007) used equation (30) to
measure the amount of nitrogen, oxygen and silicon within
a STEM probe focused onto a thin Si3N4 membrane in the
presence of water vapour. Decrease in nitrogen and the
development of an oxygen K-edge within a few seconds
indicated the transformation of silicon nitride into silicon
oxide. Using the latter as a nanolithography mask offers the
possibility of patterning at 15 nm resolution.

Although equation (30) provides absolute (standardless)
quantification, elemental ratios are often more useful.
Applying equation (30) to two elements (A and B) and
dividing gives

nA/nB = NA/NB

= [IA
c (β, 	)/IB

c (β, 	)][σ B
c (β, 	)/σ A

c (β, 	)]. (31)

Since t and Il cancel, neither the low-loss region nor the
specimen thickness is needed to obtain the concentration
ratio nA/nB.

Equation (30) also forms a basis for energy-selected
imaging, where the aim is an elemental map showing the
spatial distribution of a given element, the equivalent of an
x-ray elemental map (Friel and Lyman 2006). Division of the
Ic and Il images roughly compensates for variations in elastic
scattering (diffraction-contrast artefacts) although thickness
variations still show up in the image. Alternatively, Ic can
be displayed directly, provided the spectrum is recorded with a
large collection aperture (β > 50 mrad) that admits most of the
elastic scattering. With an aberration-corrected spectrometer
and probe-forming lens, this simple procedure has been shown
to provide elemental mapping down to the atomic scale; see
figure 23.

The possibility of very high spatial resolution is one
reason to prefer EELS to energy-dispersive x-ray spectroscopy
(EDXS) as a method of elemental analysis in the TEM.
Although EDXS provides a more convenient technique,
avoiding the need for spectrometer alignment for example, its
spatial resolution is limited to several nanometres as a result
of x-rays generated by scattered electrons and stray electrons
in the TEM column. Also the energy resolution of EDXS is
currently ∼100 eV, so the technique does not offer the kind of
structural information that is available from EELS.

If the ratio of two core-loss signals is displayed, the result
is an elemental-ratio image in which variations in specimen
orientation, thickness and beam current are suppressed,
according to equation (31). Dividing core-loss intensity by that
of the preceding background gives a jump-ratio image showing
the elemental distribution in a semi-quantitative way and with
a better signal/noise ratio than an elemental map (Hofer et al
1995, Crozier 1995).

Accurate subtraction of the background from the core-
loss signal is difficult in some cases: where the elemental
concentration is low or where two ionization edges are
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Figure 23. Atomic-scale elemental mapping: the 64 × 64-pixel images show columns of La, Ti, total and Mn atoms from (a) La-M, (b) Ti-L
and (c) Mn-L edges recorded from La0.7Sr0.3MnO3 by spectrum imaging. Reprinted from Muller et al (2008), courtesy of American
Association for the Advancement of Science (AAAS).

separated in energy by less than 50 eV. It is then preferable
to represent the spectrum as a power-law background (arising
from a plasmon peak, for example) and core-loss profile for
each edge:

J (E) = AE−r + C1Jc1(E) + C2Jc2(E) + · · · . (32)

The core-loss profiles can be calculated or (better)
measured using elemental standards of known thickness
and composition. The weightings (C1, C2, . . .) of each
contribution are adjusted by multiple least-squares (MLS)
fitting and their values converted to relative concentrations,
knowing an ionization cross section for each element
(Leapman 2004a, Bertoni and Verbeeck 2008).

4.5. Spatial resolution of EELS

The spatial resolution of an energy-loss spectrum or an energy-
filtered image depends on many factors (Egerton 2007). Some
are instrumental and involve the electron optics of the TEM
column; strongly excited lenses of small focal length (<2 mm)
achieve low coefficients of spherical and chromatic aberration
and a point resolution below 0.2 nm, while the aberration
correction gives further improvement. However, such high
performance is only meaningful when the TEM has highly
stable power supplies and is operated in an environment
where changes in magnetic field, ambient pressure and
temperature changes are minimized by careful room design
(Muller et al 2006).

Other resolution factors relate to the physics of electron
scattering. Elastic scattering causes a broadening of a focused
electron probe, by an amount that increases with specimen
thickness (Goldstein et al 1977). Although this broadening
limits the resolution of x-ray emission spectroscopy, the
effective broadening is less for EELS if an angle-limiting
aperture is used to eliminate electrons scattered through larger
angles. Beam broadening is also less in a crystalline specimen,
as a result of electron channelling down atomic columns
(Loane et al 1988).

Although beam broadening can be minimized by using an
ultrathin specimen, there is another factor that is independent
of thickness and inherent to the inelastic scattering itself:
delocalization of the scattering. Delocalization can be
understood in a semi-quantitative way in terms of a single-
scattering model, treating beam broadening as a separate effect

Figure 24. Delocalization of inelastic scattering as a function of
energy loss, for 100 keV incident energy. The dashed curve shows
equation (33) with median scattering angle evaluated from Bethe
atomic scattering theory, solid line with 〈θ〉 based on a plasmon
model. From Egerton (2007), copyright Elsevier.

and regarding the delocalization distance L as a wave-optical
resolution limit arising from the limited angular range of the
inelastic scattering:

L50 = 0.52λ/〈θ〉. (33)

Equation (33) is essentially the Rayleigh criterion for
resolution, with the factor 0.52 chosen to reflect the fact that
L50 is a diameter containing 50% of the inelastic scattering;
λ is the transmitted-electron wavelength and 〈θ〉 is a median
angle that contains 50% of the inelastic scattering, small
enough so that 〈θ〉 ≈ sin〈θ〉 in the Rayleigh formula. For
a Lorentzian angular distribution of inelastic scattering, 〈θ〉 ≈
(θEθc)

1/2, where θc is the highest angle that reaches the
electron detector. Equation (33) provides a fair approximation
to both measurements and more exact calculations of the
delocalization distance; see figure 24.

As seen in figure 24, delocalization amounts to 2–3 nm
for plasmon losses, which could account for the fuzziness
in figure 21. However, L50 falls with increasing energy
loss (broader angular distribution) and is below 0.5 nm for
E > 100 eV. This explains why, despite the low intensity,
higher energy ionization edges are preferred when aiming for
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Figure 25. (a) Annular-dark-field Z-contrast STEM image of
calcium titanate containing 4% La. (b) Core-loss spectra taken with
the beam stationary at positions 1–6, demonstrating that the atomic
column at 3 contained La, believed to be a single atom. Reprinted
with permission from Varela et al (2004). Copyright (2004) by the
American Physical Society.

atomic-resolution spectroscopic imaging (Kimoto et al 2007,
Muller et al 2008).

M45-edge (850 eV) spectra were used to identify which
atomic columns contained lanthanum in ADF-STEM images
of La-doped calcium titanate; see figure 25. Intensity
simulations indicated that these columns contained only
a single La atom. With the aid of electron-channelling
calculations, it may even be possible to use the core-loss
intensity to estimate the depth of each atom, thereby providing
three-dimensional atomic imaging (Varela et al 2005).

The dashed curve in figure 24 assumes a Lorentzian
angular distribution of core-loss scattering. If core losses
well above an ionization-edge threshold are measured, 〈θ〉 will
approximate to the larger Bethe-ridge angle and the value of
L50 is reduced (Kimoto et al 2008).

If the spectrometer collection aperture cuts off an
appreciable part of the scattering, delocalization effects are
more complicated. The Bethe atomic theory of scattering can
be generalized to give the following expression for inelastic
cross section:

σ = 2πm/(k0h
2)

∫ ∫ ∫
ψ∗

0 (r, z)W(r, r ′)ψ0(r
′, z) dr dr ′ dz.

(34)

Here ψ0 is a wavefunction of the incident electron; the
integrations are over specimen thickness (0 < z < t) and
over radial coordinates perpendicular to z. The function W is
an effective nonlocal potential, related to the mixed dynamical
form factor (Kohl and Rose 1985, Schattschneider et al 2000).
It includes the effect of probe and detector geometry and is
a function of two independent spatial coordinates (r and r ′).
As a result, equation (34) incorporates the effect of the phase
of the transmitted electron and its diffraction by the specimen,
making σ a sensitive function of the angle between the electron
and the crystal. Calculations show that the inelastic intensity
is not always proportional to the z-integrated current density,

implying that energy-filtered STEM images cannot always
be visually interpreted but require computer modelling to be
understood on an atomic scale (Oxley and Pennycook 2008).

4.6. Magnetic measurements

The mixed dynamical form factor (MDFF) is also involved in
recent attempts to use EELS to determine magnetic (electron-
spin) properties of materials (Schattschneider et al 2008).
This kind of measurement can be achieved using circularly
polarized x-rays; but instead of using a spin-polarized electron
source (whose intensity is weak), a regular TEM is used
together with an energy-loss spectrometer or omega filter.
The experiment involves measuring core-loss spectra at two
carefully chosen locations in the diffraction plane. Under
dynamical diffraction conditions, inelastic interference due to
MDFF terms increases or decreases the electron intensity by
several per cent (at the L3 and L2 white-line peaks of Co,
Fe or Ni), dependent on the spin direction and the location
of the detector in the diffraction plane. Subtraction of the
two spectra then gives a signal of opposite sign at the two
edges and although the signal is weak and noisy, a resolution
down to 6 nm has been achieved for the L23 edges of Co. The
aim is to apply this method to spintronic devices and achieve
better spatial resolution than is possible from x-ray absorption
measurements.

4.7. Radiation damage

In many materials, the practical limit to spatial resolution is
set by radiation damage. For organic and some inorganic
compounds, the damage mechanism is radiolysis (ionization
damage): the breaking of chemical bonds as a result of
inelastic scattering. Since this same scattering provides
the EELS signal, the signal/damage ratio is independent
of the accelerating voltage; damage occurs even for low-
energy incident electrons, as used in HREELS (Chen et al
2003), although it is confined to the surface of the specimen.
X-rays, used in XAS, also cause radiolysis, although for core-
loss fine-structure studies the damage has been estimated
to be a factor of several hundred less, depending on the
width of the energy range analysed (Rightor et al 1997).
This advantage arises because x-ray photons excite only the
transitions being measured whereas electrons excite all energy
losses simultaneously. X-ray damage is estimated (Henderson
1995) to be a factor of 103–104 larger than for electrons when
the information being sought comes from elastic scattering
(i.e. diffraction).

For metallic and semi-metallic specimens, there is no
radiolysis but displacement damage (due to elastic scattering)
occurs at high radiation dose. This process occurs only above a
threshold incident energy, which is above 200 keV for medium-
Z and heavier elements. However, the displacement of surface
atoms (electron-beam sputtering) has a lower energy threshold
(Egerton et al 2006b). Although the required electron dose
is high, sputtering is expected to be quite rapid in a focused
aberration-corrected electron probe, where the current density
can exceed 106 A cm−2.
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Table 3. Electron dose to produce damage and the corresponding limit to spatial resolution, for 20 nm specimen thickness and 200 keV
incident energy (Egerton 2007). The spread in Dc values corresponds to different specimen materials within each category. The last column
relates to the detection of 10% calcium (at SNR = 5) from the L23-edge.

Damage Type of Damage dose d (nm) for d (nm)
mechanism specimen Dc (C cm−2) low-loss EELS for 350 eV-EELS

Radiolysis Organic 10−3–1 <0.5 1–300
Radiolysis Inorganic 0.1–106 <0.05 0.01–30
Sputtering Metallic 2000–40 000 <5 × 10−4 <0.2

Radiation damage limits the number of electrons incident
on each resolution element of size d to (Dc/e)d

2, where e

is the electronic charge and Dc a critical dose (charge per
unit area) needed to cause the damage. The number of
inelastically scattered electrons (the EELS signal) is therefore
limited to n ≈ (t/L)(Dc/e)d

2, where t is the specimen
thickness and L is some effective MFP that depends on
the specimen and the inelastic-scattering process involved.
Associated with these n electrons is an electron-beam shot
noise n1/2, giving a signal/noise ratio SNR = n/n1/2 = n1/2,
assuming Poisson statistics where the standard deviation is the
square root of the mean value. Combining the two expressions
gives (t/L)(Dc/e)d

2 = n = (SNR)2 and taking SNR = 5
(the so-called Rose criterion for visibility), the resolution limit
imposed by radiation damage is

d ≈ 5(L/t)1/2(e/Dc)
1/2. (35)

Estimates of d are given in table 3, which shows that
radiation damage sets the spatial-resolution limit (d > atomic
dimensions) for organic specimens and some inorganic
compounds. For more radiation-resistant specimens, other
factors (as discussed in section 4.5) are likely to be more
important, except perhaps for core-loss spectroscopy using
high-E edges (Egerton 1996).

Although radiation damage acts as a limitation to
any electron-beam measurement, EELS offers a method of
characterizing this damage for a particular type of specimen.
Change in thickness (mass loss) can be monitored from the low-
loss region and the loss of specific elements from ionization
edges (Egerton 1996).

4.8. Use of chemical shifts and near-edge fine structure

The oxidation state of an element can be judged from the
chemical shift or from the near-edge fine structure, such as
the L3/L2 ratio in the case of a transition metal. Daulton
et al (2003) used both techniques and plotted chromium L3/L2

ratios and L3 threshold energy for a variety of inorganic
compounds with Cr in oxidation states between 2 and 6. As
seen in figure 26, the data cluster into groups, confirming
a correlation between both types of measurement. They
also examined Shewanella oneidensis bacteria, using an
environmental cell that kept the specimen hydrated in the TEM
and found that the resulting data fell into the Cr(III) region
(see figure 26), confirming that these bacteria can be active
sites for reduction in the toxic Cr(VI) species in chromium-
contaminated water.

Figure 26. Chromium L3/L2 ratio plotted against L3 threshold
energy for inorganic compounds (data points within curved
boundaries) and measured for S. oneidensis (central data point with
large error bars). Reproduced from Daulton et al (2003), with
permission of Cambridge University Press.

Energy-filtered (EFTEM) imaging has been used to plot
L3/L2 ratios as an intensity map, in order to display variations
in the valence state of Mn and Co in mixed-valence specimens
(Wang et al 1999). The existence of a chemical shift must
be considered when using core-loss spectroscopy to examine
interfaces, for example, using the ‘spatial difference’ method
(Muller et al 1998).

As integrated circuits become increasingly miniaturized,
the thickness of the gate oxide in a field-effect transistor has
fallen towards 1 nm in order to reduce gate voltage and power
dissipation. Since this corresponds to only five Si atoms
across, the properties of the oxide might be expected to depart
considerably from the bulk values. High-resolution STEM of
cross-sectional (XTEM) specimens, combined with core-loss
EELS, provides a way of investigating these effects (Batson
1993). Figure 27 shows how the background-subtracted
oxygen-K edge changes as the STEM probe approaches
the Si interface from a native oxide. The threshold shifts
downwards by     3 eV, indicating a reduced bandgap, and
the sharp threshold peak disappears. This peak arises from
backscattering of the ejected core electron from nearest-
neighbour oxygen atoms (Si atoms backscatter much less than
oxygen), so its absence close to the interface indicates a silicon-
rich environment: a suboxide SiOx where x < 2. Similar
results were obtained for thermally grown oxide, as used in
device fabrication. From the analysis of the two components
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Figure 27. Oxygen K-loss spectra from the native oxide on silicon
(solid line b) and from the region near the Si interface (data a).
Reproduced from Muller et al (1999), with permission of Nature
Publishing Group.

of the near-edge structure, the suboxide was estimated to have
a width of 0.75 nm, out of a total thermal-oxide width of 1.6 nm
(Muller et al 1999).

In general, the near-edge fine structure can give useful
information on interatomic bonding (Browning et al 1997)
but for quantitative results it is important to avoid edges
that are strongly affected by the presence of the core hole,
such as cations in ionic materials (Rez and Muller 2008).
Principal-component analysis (PCA) is a useful technique
for isolating the different fine-structure components present
in a spectrum-image dataset and thereby produce a map
showing chemical and bonding information. Since one of the
components is random noise, this technique can also reduce
the image noise without sacrificing spatial or energy resolution
(Bosman et al 2006).

5. Conclusions

Within the last decade, TEM-based energy-loss spectroscopy
has undergone steady development. Gun monochromators
have become commercially available, making the TEM-EELS
energy resolution comparable to that typical of XAS
(∼0.1 eV). Partly for this reason, and also prompted by
demands of the semiconductor industry and nanotechnology
initiatives, more attention has been given to the low-loss
region of the spectrum. This has led to renewed interest in
the theory of surface-plasmon and Čerenkov losses in thin
specimens, as first investigated by Kröger (1968). Core-
loss spectroscopy has benefited from a better understanding
of relativistic effects and of the delocalization of inelastic
scattering in crystalline materials. Bayesian deconvolution
techniques have been applied to both low-loss and core-loss
regions with the aim of revealing additional fine structure.
Taking advantage of such developments and of the improved
stability of a modern TEM, EELS is being applied to the
structural and chemical analysis of practical materials down
to the atomic scale. Once instrumental limitations have been

overcome, the ultimate spatial resolution is set by scattering
delocalization and radiation damage to the specimen.

Future instrumental developments may include improved
monochromator designs and the adoption of high-brightness
electron sources, possibly based on carbon nanotubes (Fransen
et al 1999). Another useful development would be an
energy-loss spectrometer for transmission EELS and energy-
filtered imaging in a scanning electron microscope (SEM).
Because the SEM uses an accelerating voltage of 30 keV
or lower, transmission measurements will be restricted to
ultrathin specimens, such as nanotubes and nanoparticles.
However, the low electron energy provides higher STEM-
image contrast and makes it easier to achieve good energy
resolution. With the addition of a suitable monochromator, it
might be possible to achieve an energy resolution (∼10 meV)
sufficient to examine vibrational modes of energy loss and
to investigate the chemical bonding and phonon modes in
nanostructures. After correction of lens aberrations, atomic
resolution at 30 keV should be possible (Krivanek et al 2008).

Further information on the basic theory and practice of
TEM-EELS is given in introductory form by Brydson (2001)
in greater detail by Egerton (1996) and in two multi-author
volumes edited by Reimer (1995) and Ahn (2004). Research
papers on TEM-EELS are to be found in microscopy journals,
particularly Ultramicroscopy and Micron, and scattered among
various physics and materials science journals. A recent review
by Spence (2006) is largely complementary to the present
one, with more emphasis on STEM, channelling effects and
applications to glasses and nanotubes. A short review of
biophysical applications has been given by Leapman (2004b).
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Stöger-Pollach M, Franco H, Schattschneider P, Lazar P S,
Schaffer B W, Grogger B W and Zandbergen H W 2006

24

http://dx.doi.org/10.1016/j.micron.2007.09.009
http://dx.doi.org/10.1063/1.1583132
http://dx.doi.org/10.1016/0030-4018(69)90003-0
http://dx.doi.org/10.1103/PhysRevLett.24.1117
http://dx.doi.org/10.1016/S0304-3991(99)00013-3
http://dx.doi.org/10.1007/BF01390952
http://dx.doi.org/10.1016/S0304-3991(03)00114-1
http://dx.doi.org/10.1016/j.ultramic.2006.04.024
http://dx.doi.org/10.1016/j.conb.2004.08.004
http://dx.doi.org/10.1103/PhysRevB.28.2361
http://dx.doi.org/10.1107/S0108767388006403
http://dx.doi.org/10.1002/andp.19324060506
http://dx.doi.org/10.1103/PhysRevB.73.073308
http://dx.doi.org/10.1016/j.micron.2006.03.011
http://dx.doi.org/10.1016/S0304-3991(99)00029-7
http://dx.doi.org/10.1103/PhysRevB.57.8181
http://dx.doi.org/10.1038/21602
http://dx.doi.org/10.1016/j.ultramic.2006.04.017
http://dx.doi.org/10.1126/science.1148820
http://dx.doi.org/10.1038/nphys575
http://dx.doi.org/10.1063/1.2437576
http://dx.doi.org/10.1016/S0968-4328(99)00111-0
http://dx.doi.org/10.1016/j.micron.2007.10.020
http://dx.doi.org/10.1103/PhysRev.175.972
http://dx.doi.org/10.1103/PhysRev.118.640
http://dx.doi.org/10.1103/PhysRevB.58.10326
http://dx.doi.org/10.1016/0304-3991(82)90213-3
http://dx.doi.org/10.1021/jp9622748
http://dx.doi.org/10.1103/PhysRev.106.874
http://dx.doi.org/10.1103/PhysRevLett.27.1204
http://dx.doi.org/10.1016/S0968-4328(99)00112-2
http://dx.doi.org/10.1103/PhysRevB.72.045142
http://dx.doi.org/10.1063/1.2836680
http://dx.doi.org/10.1103/PhysRevB.77.115126
http://dx.doi.org/10.1088/0034-4885/69/3/R04
http://dx.doi.org/10.1103/PhysRev.120.130
http://dx.doi.org/10.1016/j.micron.2008.01.023


Rep. Prog. Phys. 72 (2009) 016502 R F Egerton
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