
Applying and Evaluating Concern-Sensitive Design Heuristics

Eduardo Figueiredo
Computing Department

Lancaster University
Lancaster, UK

e.figueiredo@lancaster.ac.uk

Claudio Sant’Anna
Computer Science Department

Federal University of Bahia (UFBA)
Salvador, Brazil

santanna@dcc.ufba.br

Alessandro Garcia, Carlos Lucena
Informatics Department, Opus Research Group - LES

PUC-Rio
Rio de Janeiro, Brazil

{afgarcia,lucena}@inf.puc-rio.br

Abstract— Empirical studies have stressed that aspect-oriented
decompositions can cause non-obvious flaws in the modularity
of certain design concerns. Without proper design evaluation
mechanisms, the identification of these flaws can become
counter-productive and impractical. Nowadays, modularity
assessment is mostly supported by metric-based heuristics
rooted at conventional attributes, such as module cohesion and
coupling. However, such conventional module-driven
assessment cannot be tailored to the design concerns. This
paper proposes and systematically evaluates a representative
suite of concern-sensitive heuristic rules. The accuracy of the
heuristics is assessed through their application to six systems.
The analysis was based on the heuristics support for: (i)
addressing the shortcomings of conventional metrics-based
assessments, (ii) reducing the manifestation of false positives
and false negatives, and (iii) finding the presence of design
flaws relative to both classes and aspects.

Resumo— Estudos experimentais recentes mostraram que
decomposições orientadas a aspectos podem causar anomalias
na modularidade do design de certos interesses e que tais
anomalias muitas vezes não são óbvias. Sem mecanismos de
avaliação de design apropriados, a identificação dessas
anomalias pode se tornar contraproducente e impraticável.
Atualmente, a avaliação da modularidade de design orientado
a aspectos é na maioria das vezes apoiada por heurísticas
baseadas em métricas que quantificam atributos
convencionais, como coesão e acoplamento de módulos. No
entanto, essa avaliação dirigida por atributos convencionais
não leva em conta os interesses que guiam o design. Esse artigo
propõe e avalia sistematicamente um conjunto de regras
heurísticas sensíveis a interesses. A acurácia das heurísticas foi
avaliada por meio de sua aplicação em seis diferentes sistemas.
A análise se baseou na capacidade das heurísticas de: (i) tratar
das limitações de abordagens de avaliação baseadas em
métricas convencionais, (ii) detectar a presença de anomalias
de design relacionadas a classes e aspectos, e (iii) reduzir a
manifestação de falsos positivos e falsos negativos.

Keywords-software design; modularity assessment; metrics;
aspect-oriented software development

1 INTRODUCTION
Aspect-oriented software development (AOSD) [16] is a

recently proposed paradigm with the goal of enhancing
design modularisation through new composition
mechanisms. Aspects are new units of modularity for
encapsulating crosscutting concerns, i.e., system features or
properties that naturally affect many system modules [16].
However, the achievement of modular aspectual designs is
far from being trivial as the separation of certain concerns
with aspects can be harmful [9, 12]. Inaccurate concern
modularisations can lead to multiple design flaws [9, 14].
They can promote violations of important concern-specific
modularity principles, such as higher concern coupling and
wider concern interfaces [2, 9, 12-14]. Even the
“aspectisation” of conventional crosscutting concerns, such
as exception handling [9], concurrency control [14], and the
Observer design pattern [11, 15], might impose negative
effects on the system modularity [2, 9, 14].

As a result, aspectual decompositions require proper
mechanisms for detecting key categories of concern-driven
design flaws, such as modularity anomalies [12, 17, 18].
Metrics and heuristics are traditionally the fundamental
mechanisms for assessing design modularity [4, 17, 18, 20].
To date, aspect-oriented design assessment has been mostly
rooted at extensions of module-level metrics [4, 22, 23] that
have been historically explored in software engineering. For
instance, Sant’Anna [22], Ceccato [3] and their colleagues
defined metrics for aspectual coupling and cohesion based
on Chidamber and Kemerer’s metrics [4]. However, these
measures do not treat concerns as first-class assessment
abstractions. Similarly, existing heuristic rules [17, 18] are
also based on such traditional modularity metrics and do not
promote concern-sensitive design evaluation either.

The recognition that concern identification and analysis
are important through software design activities is not new.
In fact, with the emergence of AOSD, there is a growing
body of relevant work in the software engineering literature
focusing either on concern representation and identification

2009 XXIII Brazilian Symposium on Software Engineering

978-0-7695-3844-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SBES.2009.14

83

techniques [5, 7, 21] or on concern analysis tools [8, 21].
However, there is not much knowledge on the efficacy of
concern-driven assessment mechanisms for design
modularity. Even though we can qualify some recently-
proposed metrics as “concern-oriented” [5, 22], there is a
lack of design heuristics to support concern-sensitive
assessment. More fundamentally, there is no systematic
study that investigates if this category of heuristic rules
enhances the process of evaluating aspectual designs.

In this context, the contributions of this paper are
threefold. First, after revisiting existing assessment
mechanisms, it discusses the limitations of conventional
metrics-based heuristics (Section 2). Second, it presents a
suite of heuristics with the distinguishing characteristic of
exploiting concerns as explicit abstractions in the design
assessment process (Section 4). The heuristic rules rely on a
set of concern-driven metrics (Section 3) and target at
detecting overlapping categories of modularity problems,
namely concern diffusion, crosscutting patterns [7], and
classical design flaws [10, 20]. Third, this paper provides a
systematic evaluation on the accuracy of the concern-
sensitive heuristics in the context of six applications: three of
them are medium-sized academic prototypes and the other
three are larger software projects. We have analysed both
OO and aspectual designs of such systems, which encompass
heterogeneous forms of crosscutting and non-crosscutting
concerns (Section 5). The overall result of our evaluation
indicates that concern-sensitive heuristics (i) enhance most
of the shortcomings of conventional assessment mechanisms,
and (ii) present superior identification rates of modularity
flaws compared to conventional heuristics.

2 ASPECTUAL DESIGN ASSESSMENT
This section discusses some metrics and conventional

heuristics for modularity evaluation of aspect-oriented (AO)
systems (Section 2.1). It also points out limitations of these
conventional assessment mechanisms (Section 2.2).

2.1 Conventional Modularity Assessment
A number of AO metrics [3, 22, 23] have been recently

defined to quantify design modularity. However, most of
these metrics are based on extensions of metrics for OO
design assessment, such as Chidamber and Kemerer’s
Coupling between Objects (CBO) and Lack of Cohesion in
Methods (LCOM) [4]. There are also some AO metrics
based on dependence graphs [23] that capture different facets
of coupling and cohesion. All these metrics are often rooted
at attributes such as syntax-based module cohesion, coupling
between modules, and module interface complexity.

Despite the extensive use of metrics, if used in isolation
metrics are often too fine grained to quantify
comprehensively an investigated modularity flaw [18]. In
order to overcome this limitation of metrics, some
researchers [17, 18] proposed a mechanism called design
heuristic rule (or detection strategy) for formulating metrics-
based rules that capture deviations from good design
principles. A heuristic rule is a composed logical condition,
based on metrics, which detects design fragments with
specific problems. To the best of our knowledge, all current

design heuristics are based on conventional module-driven
metrics. Therefore, a common characteristic of all those
heuristics is that they are restricted to properties of
modularity units explicitly defined in AO or OO languages,
such as classes, aspects, and operations.

2.2 Limitation of Conventional Heuristics
Although many design modularity flaws are related to the

inadequate modularisation of concerns [2, 12, 14], most of
the current quantitative assessment approaches do not
explicitly consider concern as a measurement abstraction.
This imposes certain shortcomings in order to effectively
detect and correct design impairments. Also, this limitation
becomes more apparent in the age of AOSD since different
forms of design composition and decompositions have been
brought.

To illustrate the limitations of conventional metric-based
heuristic rules, we analyse the effectiveness of one of
Marinescu’s rules [18] in the light of a partial design showed
in Figure 1. The analysed rule aims at detecting a specific
kind of modularity flaws, namely the Shotgun Surgery bad
smell [10]. Bad Smells are proposed by Kent Beck in
Fowler’s book [10] to diagnose symptoms that may be
indicatives of something wrong in the design. Shotgun
Surgery occurs when a change in a characteristic (or
concern) of the system implies many changes to a lot of
different places [10]. The reason for choosing Shotgun
Surgery as illustrative is because it is believed to be
symptom of design flaws caused by a poor modularisation of
concerns [19]. Therefore, it might be avoided with the use of
aspects. Marinescu’s heuristic rule [18] for detecting
Shotgun Surgery is based on two conventional coupling
metrics. This rule is defined as follows.

Shotgun Surgery := ((CM, TopValues(20%)) and (CC,

HigherThan(5))

CM stands for the Changing Method metric [17], which

counts the number of distinct methods that access an
attribute or call a method of the given class. CC stands for
the Changing Classes metric [17], which counts the number
of classes that access an attribute or call a method of the
given class. TopValues and HigherThan are filtering
mechanisms which can be parameterised with a value
representing the threshold. For instance, the Shotgun Surgery
heuristic above says that a class should not be the 20% with
highest CM and should not have CC higher than 5.

Applying CC and CM, we obtain CC = 0 and CM = 15
for the MetaSubject interface (Figure 1). Based on these
values and computing the Marinescu’s heuristic, this
interface is not regarded as a suspect of Shotgun Surgery.
This occurs because CC is 0, since no class in the system
directly accesses MetaSubject. Nevertheless, this interface
can be clearly considered as Shotgun Surgery because
changes on its methods would trigger many other changes in
every class implementing it and potentially in classes calling
its overridden methods. For instance, a rename of the
addObserver() method in the MetaSubject interface
causes updates to the classes Component and

84

ConcreteBind (Figure 1) and several other classes which
call addObserver().

This example aims at showing how conventional
heuristic rules are limited to point out the overall influence of
one concern – the Observer design pattern in this case – in
other parts of the design. Particularly, the Marinescu’s rule
was not able to detect that a significant number of classes
include design elements related to the Observer pattern and,
as a consequence, that they could be affected due to a change
in this concern. In fact, this rule could not highlight the
complete impact of the Observer pattern because it considers
only measures based on the module and method abstraction.

3 CONCERN-DRIVEN METRICS
In order to address the limitations of conventional

heuristic rules discussed in the previous section, we defined a
suite of heuristics that makes the evaluation process sensitive
to the design concerns. The concern-sensitive heuristics are
based on the combination of concern metrics and
conventional metrics. This section defines the concern
metrics used by the proposed suite of heuristics (Section 4).
All the metrics presented in this section have a common
underlying characteristic that distinguishes them from
conventional metrics (Section 2): they capture information
about concerns traversing one or more design modularity
units. A concern is often not defined by the “boundaries” of
modules in modelling or programming languages [21], such
as components (e.g., classes or aspects), and operations (e.g.,
methods or advice).

Metrics Definition. Each concern-driven metric of this
section is presented in terms of a definition, measurement
purpose, and an example. As far as the example is
concerned, we rely on an OO design slice of a middleware
system [2] presented in Figure 1. This figure shows a partial

class diagram realising both Factory Method and Observer
patterns [11]. Elements of the design are shadowed to
indicate which pattern they implement. The concern metrics
are computed based on the mapping of concerns to design
elements. We used FEAT [21] for supporting semi-automatic
concerns identification and ConcernMorph [8] for concern
measurement. The choice of the concerns to be measured
depends on the nature of the assessment goals; some
examples will be given in this section and through our
evaluation (Section 5).

3.1 Concern Scattering and Tangling
The metric Concern Diffusion over Components (CDC)

[22] counts the number of classes and aspects that have some
influence of a certain concern, thereby enabling the designer
to assess the degree of concern scattering. For instance,
Figure 1 shows that there is behaviour related to the Factory
Method pattern in six components (MetaObject,
MetaObjFactory, and respective subclasses). Therefore,
the value of the CDC metric for the Factory Method concern
is six (Figure 1, Table (a)).

Unlike CDC, the metric Number of Concerns per
Component (NCC) quantifies the concern tangling from the
system components’ point of view. It counts the number of
concerns each class or aspect implements. The goal is to
support designers on the observance of intra-component
tangling degree. The value of this metric for the
MetaObjComposite is two (Figure 1, Table (b)), since this
component implements the concerns of both Factory Method
and Observer patterns.

3.2 Concern Materialisation and Coupling
The metric Concern Attributes (CA) counts the number

of attributes (including inter-type attributes in aspects) that

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

refresh()

<<interface>>
MetaObserver

refresh()

<<interface>>
MetaObserver state

getInstanceName()

MetaObject
state
getInstanceName()
state
getInstanceName()

MetaObject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

nextPreHandler
nextPosHandler
addPreMethod()
addPostMethod()
handlePreMethods()
handlePostMethods()

MetaObjEncapsule

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

Observer design pattern Factory Method design pattern

2
4
CA

12
10
CO

6Observer
6Factory Method

CDCConcerns

2
4
CA

12
10
CO

6Observer
6Factory Method

CDCConcerns(a)

MetaObjComposite
Component ICSCCSCICSCCSCNCC

ObserverFactory Method

6 0 1 12MetaObjComposite
Component ICSCCSCICSCCSCNCC

ObserverFactory Method

6 0 1 12

(b)

refresh()

Figure 1. Concern metrics applied to the Observer and Factory Method patterns

85

contribute to the realisation of a certain concern. Similarly,
Concern Operations (CO) counts the number of methods,
constructors, and advices that participate in the concern
realisation. The goal of CA and CO is to quantify how many
internal component members are necessary for the
materialisation of a specific concern. The example in Figure
1 shows that the value of CO is ten for the Factory Method
design pattern, since this is the number of operations
implementing it. In the same example we see that four
attributes realise this design pattern (CA = 4).

Concern-Sensitive Coupling (CSC) quantifies the number
of components a given class or aspect realising the concern is
coupled to. In other words, CSC counts the number of
coupling connections is associated to the concern of interest
in a specific component. Similarly, the metric Intra-
Component Concern Sensitive Coupling (ICSC) counts the
number of internal attributes accessed and internal methods
called by a concern in a given component. Additionally,
these attributes and methods (i) have to implement another
concern rather than the assessed one and (ii) cannot be
inherited nor introduced in the class by inter-type
declaration. Figure 1 shows that Factory Method is coupled
to six components in the MetaObjComposite class
(CSC=6) and uses no internal member of this class realising
the Observer pattern (ICSC=0). Sequence diagrams are
required to count CSC and ICSC at the design level, but we
omitted them for the sake of simplicity.

4 CONCERN-SENSITIVE HEURISTICS
This section presents heuristic rules as mechanisms for

supporting concern-sensitive modularity analysis. These
rules are defined in terms of combined information collected
from concern metrics (Section 3) and conventional
modularity metrics. Table I presents four conventional
metrics which are used by the proposed heuristics. Table I
also includes references (1st column) and a short description
of each metric (2nd column). Each heuristic expression
embodies modularity knowledge about the realisation of a
concern in the respective OO or AO designs. The motivation
of concern-sensitive heuristics is to minimise the
shortcomings of conventional metrics-based heuristics
illustrated in Section 2. Our hypothesis to be tasted in
Section 5.2 is that most of these problems can be ameliorated
through the application of concern-aware heuristics.

Heuristics Structure. All heuristic rules are expressed
using conditional statements in the form: IF <condition>
THEN <consequence>. The condition part encompasses one

or more metrics’ outcomes related to the design concern
under analysis. If the condition is not satisfied, then the
concern analysis is concluded and the concern classification
is not refined. In case the condition holds, the role of the
consequence part is to describe a change or refinement of the
target concern classification. The heuristic rules were
structured in such a way that the classification is
systematically refined into a more specialised category. In
other words, finding bad symptoms they gradually generate
warnings with higher gravity. The generated warnings
encompass information that helps the designers to
concentrate on certain concerns or parts of the design which
are potentially problematic. The proposed heuristics suite is
structured to detect three major groups of concern-related
flaws: (i) concern diffusion (Section 4.1), (ii) patterns of
crosscutting concerns (Section 4.2), and (iii) specific design
flaws (Section 4.3).

4.1 Concern Diffusion
Heuristic rules of this section, named concern diffusion

heuristics, classify the way each concern manifests itself
through the software modularity units. Concern can be
classified into one (or more) of the six categories: Isolated,
Tangled, Little Scattered, Highly Scattered, Well
Modularised, and Crosscutting. A tangled concern is
interleaved with other concerns in at least one component
(i.e., class or aspect). If the concern is not tangled in any
component, it is considered as isolated. A scattered concern
spreads over multiple components. If a concern is scattered,
it is also tangled as a consequence. Our classification makes
a distinction between highly scattered and little scattered
concerns based on the number of affected components. A
concern is crosscutting only if it is both tangled with other
concerns and scattered over multiple system components. As
we present later, even little scattered concerns might be
considered as crosscutting in some scenarios. Crosscutting
concerns generate warnings of inadequate separation of
concerns and, consequently, opportunities for refactoring
[10, 19].

Figure 2 presents definitions of rules denoting transitions
between two concern classifications. Figure 2 also presents a
diagram that makes it explicit the application order of the
concern diffusion heuristics. This order was defined based on
our empirical knowledge on analysing concern metrics [7,
12, 13, 22]. For instance, we usually check whether a
concern is tangled or not (by means of NCC) before
proceeding with a further concern scattered analysis (by

TABLE I. TRADITIONAL SOFTWARE ENGINEERING METRICS [3, 4, 22]

Metrics Definitions
Number of Components (NC) [22] Counts the number of classes, interfaces and aspects.
Number of Attributes (NOA) [22] Counts the number of attributes of each class, interface or aspect.
Number of Operations (NOO) [22] Counts the number of methods and advice of each class or aspect.
Coupling between Components
(CBC) [3, 4, 22]

Counts the number of other classes and aspects which a class or an
aspect is coupled to.

86

means of CDC). The first two rules, R01 and R02, use the
metric Number of Concerns per Component (NCC) to
classify the concern as isolated or tangled. If the NCC value
is one for every component realising the analysed concern, it
means that there is only the analysed concern in these
components and, therefore, the concern is isolated. However,
if NCC is higher than one in at least one component, it
means that the concern is tangled with other concerns in that
component, e.g., Factory Method and Observer patterns in
MetaObjComposite (Figure 1).

Rules R03 and R04 (Figure 2) verify whether a concern,

besides tangled, is scattered over multiple components.
These heuristics use the metrics Concern Diffusion over
Components (CDC) and Number of Components (NC) to
calculate the percentage of system components affected by
the concern of interest. Based on this percentage, the concern
is classified as highly scattered or little scattered. As you
might have already noticed, one of the most sensitive parts in

a heuristic rule is the selection of threshold values. Our
strategy for these rules is to use 50 % as default. Note that,
developers should be aware of highly scattered concerns
because they can potentially cause design flaws, such as
Shotgun Surgery [10] (Section 4.3).

As tangling and scattering might mean different levels of
crosscutting, both highly scattered and little scattered
concerns can be classified as well-encapsulated or
crosscutting concerns. Rules R05 and R06 decide whether a
little scattered concern is either well-encapsulated or
crosscutting. R07 and R08 perform similar analyses for a
highly scattered concern. These four rules use the metrics
Concern Attributes (CA) and Concern Operations (CO) and
two size metrics (Table I): Number of Attributes (NOA) and
Number of Operations (NOO). They calculate for each
component the percentage of attributes and operations which
implements the concern being analysed.

The role of the heuristics R05 and R07 is to detect
components that dedicate a large number of attributes and
operations (more than 50%) to realise the dominant concern.
If a concern is dominant in all components where it is, this
concern is classified as well-encapsulated. The reasoning
behind this classification is that a concern is not harmful to
classes or aspects in which it is dominant, and, therefore, it
does not need to be removed. Similarly, a concern is
classified as crosscutting (rules R06 and R08) if the
percentage of attributes and the percentage of operations
related to the concern are low (less than 50%) in at least one
component. Hence, a concern is classified as crosscutting if
it is located in at least one component which has another
concern as dominant.

4.2 Patterns of Crosscutting Concerns
Inspired by Ducasse, Girba and Kuhn [5], we defined 13

patterns of crosscutting concerns in our previous work [7].
This section illustrates how the concern-sensitive heuristics
can be used to identify two of those crosscutting patterns,
namely black sheep and octopus. Additional heuristics can
be further defined to cover all 13 patterns. Black sheep and
octopus were originally defined as follows.

Black sheep is a property that crosscuts the system, but
touches very few elements [5].

Octopus is a property which is well encapsulated in a few
parts, but also spreads across other parts, as a crosscutting
concern does [5].

Therefore, black sheep and octopus are actually
specialised categories of crosscutting concerns. Figure 3
shows two heuristic rules, R09 and R10, which aim at
identifying black sheep and octopus concerns, respectively.
Figure 3 also defines two conditions A (Little Dedication)
and B (High Dedication) used by these rules. We explicitly
separate the conditions from the rules not only to make the
rules easier to understand but also to reuse the little
dedication condition in both heuristics. In rules R09 and
R10, a concern previously classified as crosscutting (Section
4.1) is thoroughly inspected in terms of how much each
component dedicates itself to the crosscutting concern
realisation.

R01 - Isolated:
if NCC = 1 for every component with CONCERN then CONCERN is ISOLATED
R02 - Tangled:
if NCC > 1 for at least one component then CONCERN is TANGLED
R03 - Little Scattered:
if CDC / NC of CONCERN < 0.5 then TANGLED CONCERN is LITTLE SCATTERED
R04 - Highly Scattered:
if CDC / NC of CONCERN 0.5 then TANGLED CONCERN is HIGHLY SCATTERED
R05 - Well Encapsulated:
if (CA / NOA 0.5) and (CO / NOO 0.5) for every component
then LITTLE SCATTERED CONCERN is WELL-ENCAPSULATED
R06 - Crosscutting:
if (CA / NOA < 0.5) and (CO / NOO < 0.5) for at least one component
then LITTLE SCATTERED CONCERN is CROSSCUTTING
R07 - Well Encapsulated:
if (CA / NOA 0.5) and (CO / NOO 0.5) for every component
then HIGHLY SCATTERED CONCERN is WELL-ENCAPSULATED
R08 - Crosscutting:
if (CA / NOA < 0.5) and (CO / NOO < 0.5) for at least one component
then HIGHLY SCATTERED CONCERN is CROSSCUTTING

Tangled

R01 R02

R03 R04

R05 R06 R07 R08

CrosscuttingWell
Encapsulated

Isolated

Highly
Scattered

Little
Scattered

Concern
Bad symptomsGood symptoms

Figure 2. Concern classification and heuristics for concern diffusion

87

The heuristic rule R09 classifies a crosscutting concern
as black sheep if all components which have this concern
dedicate only a few percentage points of attributes and
operations to that concern (less than 33 %). We choose the
value of 33 % for the little dedication condition based on (i)
threshold values used by other authors [5, 17], and (ii) a
meaningful ratio that represents the definition ‘touches very
few elements’ of black sheep [5]. In fact, Lanza and
Marinescu [17] suggest the use of meaningful threshold
values, such as 0.33 (1/3), 0.5 (1/2), and 0.67 (2/3).

The next rule R10 verifies if crosscutting concerns not
classified as black sheep are a potential octopus. According
to this heuristic, a concern is classified as octopus if every
component realising parts of this concern has either little
dedication (condition A) or high dedication (condition B) to
it. Besides, at least two components have to be little
dedicated to the concern (tentacles of the octopus) and at
least one component has to be highly dedicated (body of the
octopus). We define a component as highly dedicated to a
concern when the percentage of attributes and operations are
higher than 67%. Again, thresholds values try to be a
meaningful approximation of the octopus’ definition [5].

4.3 Concern-Aware Design Flaws
This section describes how the concern-sensitive

heuristics could be also applied to detect well-known design
flaws, such as bad smells [10, 20]. We use three bad smells
to illustrate the concern heuristics: Shotgun Surgery (Section
2.2), Feature Envy [10], and God Class [20]. Feature Envy is
related to the misplacement of a piece of code, such as an
operation or attribute, i.e., the feature seems more interested
in a component other than the one it actually is in [10]. God
Class refers to a component (class or aspect) which performs
most of the work, delegating only minor details to a set of
trivial classes and using data from them [20]. We selected
these three bad smells because (i) previous work related
them to crosscutting concerns [20] and (ii) they are
representatives of three different groups of flaws discussed
by Marinescu [18]. Hence, addressing different categories of
flaws allows us to correlate our results with Marinescu’s
studies [18].

Figure 4 shows concern-sensitive heuristic rules for
detecting the three bad smells aforementioned. The first rule,
R11, aims at detecting Feature Envy and uses a combination
of concern metrics, coupling metrics, and size metrics. To be
considered Feature Envy, a crosscutting concern has to
satisfy two conditions: C (High Inter-Component Coupling)

and D (Low Intra-Component Coupling). The concern under
assessment has high inter-component coupling when its
percentage of coupling (CSC/CBC) is higher than the
percentage of internal component members ((CA+CO) /
(NOA+NOO)) that realise this concern. In other words, the
ratio of coupling to size (measured in terms of attributes and
operations) of such crosscutting concern is higher than the
same ratio for all other concerns in the same component.
Similar computation is performed for identifying low intra-
component coupling.

The remaining two heuristics for bad smells R12 and R13
(Figure 4) are intended to detect Shotgun Surgery and God
Class. Differently from the previous rules, R12 is composed
of outcomes from other heuristics. More precisely, a concern
is classified as Shotgun Surgery if it was previously
identified as Tangled (R02), Highly Scattered (R04), and
Crosscutting (R08). Finally, a component is flagged as God
Class (R13) if, besides high number of internal members
(attributes and operations), it implements many concerns.
R13 distinguishes high and low number of internal members
by comparison with the average size of all other system
components (NOAsystem/NC and NOOsystem/NC). This
last rule uses a threshold value of 2 for the metric Number of
Concern per Component (NCC). The reasoning is that a
component implementing more than two concerns tends to
aggregate too much unrelated responsibility.

5 EVALUATION
This section introduces a systematic evaluation of the

concern-sensitive heuristics in 6 applications (Section 5.1)
implemented in Java (OO) and AspectJ (AO). We applied
the heuristic rules to 23 concern instances of both OO and
AO versions of these applications. The concerns were
selected because they exercise different heuristics. The
heuristics evaluation is undertaken under three dimensions:
(i) applicability for addressing metrics limitations (Section
5.2); (ii) accuracy to identify and classify crosscutting
concerns in both OO and AO systems (Section 5.3); and (iii)
the usefulness to detect design flaws in comparison with
conventional heuristics (Section 5.4). Section 5.5 discusses
threats to validity of our evaluation.

5.1 Selection of the Target Applications
In previous comparative studies [2, 9, 12-14], we applied

AO metrics (e.g., metrics in Table I, Section 4) to a number
of software systems. In this paper we selected six systems of
our previous studies in order to apply and assess the accuracy

Condition A - Little Dedication: (CA / NOA < 0.33) and (CO / NOO < 0.33)
Condition B - High Dedication: (CA / NOA 0.67) and (CO / NOO 0.67))
R09 - Black Sheep:
if (Little Dedication) for every component with CONCERN then CROSSCUTTING CONCERN is BLACK SHEEP
R10 - Octopus:
if ((Little Dedication) or (High Dedication) for every component with CONCERN)
 and ((Little Dedication) for at least 2 component and (High Dedication) for at least 1 component with CONCERN)
then CROSSCUTTING CONCERN is OCTOPUS

Figure 3. Heuristics for Black Sheep and Octopus

88

of our concern-sensitive heuristics. Three of them [2, 13, 15]
are medium-sized academic prototypes carefully designed
with modularity attributes as main drivers. The other three
systems are larger software projects, namely Health Watcher
[14], CVS plugin [9], and a measurement tool [6]. Table II
summarises the six studies, the nature of the concerns, and
provides a complete list of the evaluated concerns. These
studies were selected for several reasons. First, they
encompass both AO and OO implementations and their
assessments were previously based on metrics. It allowed us
to evaluate whether concern-sensitive heuristics are helpful
to enhance a design assessment exclusively based on metrics
(Section 5.2). Furthermore, the modularity problems in all
the selected systems have been correlated with external
software attributes, such as reusability [9, 13, 15], design
stability [2, 14], and manifestation of ripple effects [14].

Another reason is the heterogeneity of concerns found in
these systems (2nd column, Table II), which include widely-
scoped architectural concerns, such as persistence and
exception handling, and more localised ones, such as some
design patterns. They also encompass different
characteristics and different degrees of complexity. These
systems are representatives of different application domains,
ranging from simple design pattern instances (1st system) to
reflective middleware systems (2nd), real-life Web-based
applications (5th), and multi-agent systems (6th). Finally,
such systems will also serve as effective benchmarks
because they involve scenarios where the “aspectisation” of
certain concerns is far from trivial [2, 9, 13, 14]. We took the
analysed concerns from these previous studies. Complete
descriptions of such concerns and systems can be found in
their respective publications (1st column of Table II).

5.2 Solving Measurement Shortcomings
The goal of this section is to discuss whether and how

concern-sensitive heuristics address the limitation of
conventional modularity assessment. For achieve this goal,
this section presents six of problems (labelled A to F) that
affect not only conventional metrics but also the use of
concern metrics (Section 3). It also classifies these problems
into four main categories. Due to space constraints, results of
the conventional and concern metrics for all systems are
available in our supplementary website [1].

Table II provides an overview of the application of the
first two suites of rules (Sections 4.1 and 4.2) in the target
systems. Note that the first study is subdivided in terms of
design patterns (2nd column); the pattern roles were assessed

(3rd column). The 3rd and 4th columns show all 23 concerns
analysed in the respective studies and the best means of
modularisation (OO or AO decomposition) based on
specialists and literature claims [2, 9, 12-15]. Specialists are
researchers that participated in development, maintenance, or
assessment of the systems. Their opinions were acquired by
asking them to fill a questionnaire (available at [1]). The
columns of Table II, labelled 01 to 10, present the answers
‘yes’ (y) or ‘no’ (n) of the concern diffusion heuristics (rules
01-08), black sheep (rule 09), and octopus (rule 10). Blank
cells mean that the rule is not applicable. Finally, the last
column indicates: (i) how the heuristics classify each concern
and (ii) if the classification matches with the best proposed
solution (‘hit’) or not (‘fail’). The obtained heuristic
classification of concerns includes isolated, well-
encapsulated (‘well-enc.’), crosscutting, black sheep, and
octopus.

False crosscutting warnings. We identified in this study
at least two examples of problems in this category: (A) false
scattering and tangling warnings and (B) false coupling or
cohesion warnings. Problem A occurs when concern metrics
erroneously warn the developer of a possible crosscutting
concern. However, a subsequent careful analysis shows that
the concern is well encapsulated. Similarly, Problem B leads
developers to an unnecessary search for design flaws, but, in
this situation, the false warning is caused by traditional
metrics, such as coupling and cohesion ones. Figure 1
(Section 2) presents an example of this problem category in
an instance of the Factory Method pattern [11]. OO
abstractions provide adequate means of modularising
Factory Method (e.g., the main purpose of classes which
implement this pattern is to realise it). However, the values
of the concern metrics show some level of scattering and
tangling in the classes realising this pattern (tables in Figure
1). In this case, the false warning was a result of the
Observer-specific concerns crosscutting classes of the
Factory Method pattern, i.e., it is not a problem of this latter
pattern implementation at all. Our case studies indicate that
shortcomings of this category are ameliorated with concern-
sensitive heuristic support. For instance, Problem A
discussed above (Factory Method) does not produce a false
warning when the heuristic rules are applied (Table II).

Hiding concern-sensitive flaws. Sometimes, design
flaws are hidden in measurements just because (C) metrics
are not able to reveal an existing modularity problem. We
illustrate this limitation in the light of a partial class diagram

Condition C - High Inter-Component Coupling: (CSC / CBC) > ((CA+CO) / (NOA+NOO))
Condition D - Low Intra-Component Coupling: (ICSC / ((NOA+NOO)-(CA+CO))) < ((CA+CO) / (NOA+NOO))
R11 - Feature Envy:
if (High Inter-Component Coupling) and (Low Intra-Component Coupling) and (NCC > 1)
then CROSSCUTTING CONCERN is FEATURE ENVY
R12 - Shotgun Surgery:
if CONCERN is (Tangled) and (Highly Scattered) and (Crosscutting) then CROSSCUTTING CONCERN is SHOTGUN SURGERY
R13 - God Class:
if (NCC >2) and (NOA > (NOAsystem/NC)) and (NOO > (NOOsystem/NC)) then COMPONENT is a GOD CLASS

Figure 4. Heuristic rules for bad smells

89

presented in Figure 5. This figure highlights elements that
implement the Singleton and Facade patterns. It also shows
some concern metrics for these patterns. Although Singleton
has a lower average metric value than Facade, the former
presents a crosscutting nature and the latter does not.
Therefore, in this example, concern metrics would probably
not warn the developer about the crosscutting phenomena
relative to Singleton [2, 12]. The application of concern
heuristics overcomes this measurement shortcoming by
correctly classifying the Singleton pattern as black sheep – a
specialised category of crosscutting concerns.

Lack of mapping to flaw-causing concerns. Two
examples of problems are classified in this category: (D)
measurement does not show where (which design elements)
the problem is and (E) measurement does not relate design
flaws to concerns causing them. One example of Problem D

is the Collaboration concern of the Portalware system (Table
II) which is high scattered and tangled, e.g., CDC metric is
15 [1]. Nevertheless, in a more detailed analysis we found
out that only six components have tangling among
Collaboration and other system concerns. Hence, focusing on
Collaboration the developer needs to inspect (and perhaps
improve) the design of only six components (and not 15). In
order to solve this problem, the concern-sensitive heuristics
classified Collaboration as octopus (Table II). Furthermore,
Rule 10 identified that the octopus’ tentacles only touch six
components (which are indeed crosscut by Collaboration).

Controversial outcomes from concern metrics. A
problem of this category occurs if (F) the results of different
metrics do not converge to the same outcome, making the
designer’s interpretation difficult. We have identified some
occurrences of this problem in our studies, like the

TABLE II. RESULTS OF THE HEURISTICS FOR CONCERN DIFFUSION IN THE OO SYSTEMS.

Studies Nature of the
Concerns Concerns Best

Solution
Heuristic Rules Results 01 02 03 04 05 06 07 08 09 10

(1) Patterns
library
[11, 14]

D
es

ig
n

Pa
tte

rn
s Builder Director role OO n y y n y n well-enc. / hit

Chain of Resp. Handler role AO n y n y y n well-enc. / FAIL
Factory Method Creator role OO n y n y n y n n crosscutting / FAIL

Observer Observer role AO n y n y n y n y octopus / hit
Subject role AO n y n y n y n y octopus / hit

Mediator Colleague role AO n y n y n y n y octopus / hit
Mediator role AO n y n y y n well-enc. / FAIL

(2) OpenOrb
Middleware
[2]

Design patterns and
their compositions.

Fact. Method OO n y y n y n well-enc. / hit
Observer AO n y y n n y n y octopus / hit
Façade OO y n isolated / hit
Singleton AO n y y n n y y n black sheep / hit

(3)
Measurement
tool [2, 6]

Prototype AO n y y n n y y n black sheep / hit
State AO n y y n y n well-enc. / FAIL
Interpreter AO n y y n n y n y octopus / hit
Proxy AO n y y n n y n n crosscutting / hit

(4) CVS core
plugin [8] Recurring

architectural
crosscutting and non-
crosscutting concerns

Exc. Handling AO n y n y n y n y octopus / hit
Business OO n y n y y n well-enc. / hit

(5) Health
Watcher [8, 13]

Concurrency AO n y n y n y n y octopus / hit
Distribution AO n y n y n y n y octopus / hit
Persistence AO n y n y n y n y octopus / hit

(6) Portalware
[12]

Domain-specific
concerns

Adaptation AO n y y n n y n n crosscutting / hit
Autonomy AO n y y n n y n n crosscutting / hit
Collaboration AO n y n y n y n y octopus / hit

...
instance
getCapsuleInstance()
server()
...

CapsuleImpl

Legend:
Facade Pattern

Singleton Pattern

Part of Singleton

112Singleton
651Façade
COCACDCPattern

112Singleton
651Façade
COCACDCPattern

compLocalCapsule
endPointManager
dispatcherFactory
protocolFactory
metamodel
init()
createReceptacle()
localbind()
component()
composite()
getMetaObject()

OpenOrb

2OpenOrb
1CapsuleImpl

NCCComponent

2OpenOrb
1CapsuleImpl

NCCComponent

Figure 5. Concern metrics for Facade and Singleton.

90

Adaptation concern (Portalware). Applying the concern
metrics to Adaptation, the CDC value is 3 (indicating low
scattering) while other concern metrics present high values
(e.g., CA=10 and CO=22) [1]. Hence, the concern metrics
have contradictory values in the sense that it is hard to
conclude whether Adaptation is a crosscutting concern.
Concern heuristics addressed this category of shortcomings
in a number of cases. For instance, although Adaptation has
contradictory results for concern metrics, the heuristics have
successful identified it as an octopus (Table II), meaning that
it is also a crosscutting concern.

5.3 Accuracy of the Concern-Sensitive Heuristics
This section evaluates the heuristics accuracy comparing

their outcomes with the specialists’ opinion or with the best
known solutions (4th column of Table II). For this analysis,
we count how many times the heuristics match previous
knowledge (hits) and how many times they do not match
(false positives or false negatives). A false positive is a case
where the concern heuristics answered ‘yes’ while it should
have been ‘no’, i.e., where they erroneously reported a
warning. On the other hand, a false negative is the case
where the rules answered ‘no’ while it should have been
‘yes’; thus, where they failed to identify a design flaw. In
this step of our evaluation, in addition to the original designs,
we also discuss the results for the aspectual ones (their
detailed data for the heuristics application are available in
our website [1]). The aspectual implementations aim at
modularising one or more crosscutting concerns.

Table III provides overviews of the hits, false positives
(FP) and false negatives (FN) of the rules for the 46 concern
instances involved in this experiment (23 in OO and 23 in
AO designs). The rows of this table are organised in three
parts: the object-oriented instances (OO), the aspect-oriented
instances (AO), and the general data of both paradigms
(OO+AO). Each row describes the absolute numbers and its
percentage in relation to the total number of concerns.

According to data in Table III, the heuristics failed in
about 20% of the case studies (6 false positives and 3 false
negatives). Focusing on the OO designs, we found out 1
false positive and 3 false negatives. The false positive occurs
with the Creator role of the Factory Method pattern (Table
II). In this pattern, the GUIComponentCreator class which
plays the Creator role has also GUI-related elements, such as
the showFrame() method [15]. Our conclusion is that,
although the Factory Method pattern is not a crosscutting
concern [12, 15], this particular instance presents a problem
of separation of concerns. Therefore, the concern-sensitive
heuristics were able to detect a problem which has not been
reported by the specialists.

Simple Program Slices. The heuristics also presented 3
occurrences of false negatives: (i) Chain of Responsibility
(CoR) pattern, (ii) Mediator role of the Mediator pattern, and
(iii) State pattern. The CoR pattern was not detected as a
crosscutting concern because the pattern instance is too
simple (due to its library nature [15]) in order to expose the
pattern’s crosscutting nature [2, 12]. In fact, classes playing
the Handler role have only three members: the successor
attribute, the handleClick() method, and one constructor.
Since the first two realise the CoR pattern, the heuristics
classify this concern as Well-Encapsulated (i.e., the main
purpose of all components). A similar situation occurs with
the Mediator design pattern (Table II).

Selection and Granularity of Concerns. Moreover, the
State pattern is a false negative in the third case study due to
the assessment strategy of using patterns, instead of roles, as
concerns. Although State has two roles (Context and State),
it was considered as a single concern in the third case study.
Additionally, the state transitions (part of State role) occur in
classes playing the Context role. In other words, one role
crosscuts only the other role, and the concern heuristics were
unable to expose the pattern as a crosscutting concern.
Hence, our conclusion for OO designs is that finer grained
concerns, such as roles of design patterns, enable higher
precision of the heuristics.

Table III presents five false positives in the heuristic
assessment of aspectual systems. Similarly to State discussed
above, recurring false positives occur in AO designs when a
pattern defines more than one role. For instance, four (out of
five) false positives match this criterion: Subject and
Observer roles (Observer pattern) and Mediator and
Colleague roles (Mediator pattern). Although each of these
patterns is successfully modularised using abstract protocol
aspects and concrete aspects, their roles share these
components. Then, the Observer and Mediator roles were
classified as crosscutting in the aspect protocol while their
counterparts (Subject and Colleague) were classified as
crosscutting in the concrete aspects. Therefore, differently
from OO designs, our analysis suggests selecting the whole
pattern (instead of its roles) for AO designs.

Aspect Precedence. The Autonomy concern is also
misclassified as crosscutting in the AO design of Portalware
due to a precedence definition between the Adaptation and
Autonomy aspects. The Adaptation aspect has a declare
precedence clause with a reference to Autonomy. The
concern heuristics point out Autonomy code inside the
Adaptation aspect and, therefore, indicate that the former
aspect crosscuts the latter. Although this problem really
exists, there is no way of improve the separation of these two
concerns in the Portalware system due to AspectJ constraints
[14].

5.4 Specific Design Flaws Detection
This section evaluates whether our concern heuristics are

useful to detect specific design flaws. In particular, we
applied rules R11 to R13 (Figure 4) to identify Shotgun
Surgery [10], Feature Envy [10] and God Class [20] bad
smells in our six systems (Section 5.1). We also
independently applied the conventional heuristic rules

TABLE III. STATISTICS FOR CONCERN DIFFUSION HEURISTICS.

Studies Hits (%) FP (%) FN (%) Total (%)
OO 19 (82.6) 1 (4.3) 3 (13.0) 23 (100)
AO 18 (78.3) 5 (21.7) 0 (0.0) 23 (100)
OO + AO 37 (80.4) 6 (13.0) 3 (6.5) 46 (100)

91

proposed by Marinescu [17, 18] for detecting the same bad
smells. The application of each rule pointed out design
fragments suspect of having one of the three aforementioned
bad smells. We then compared the results from the two suites
of rules (concern-sensitive and conventional) by undertaking
a manual investigation in all suspect design fragments. In
circumstances when the existence of a bad smell was not
clear about, we contacted professionals and researchers with
long-term experience on the development and assessment of
the target designs. The manual investigation allowed us to
verify whether the suspect design fragments were indeed
affected by the design flaw.

After this inspection, the total number of suspects for
each bad smell was classified in two categories: (i) ‘Hits’:
those heuristically suspect fragments that have confirmed to
be affected by the bad smell, and (ii) ‘False Positives’: those
heuristically suspect fragments that revealed not to be
affected by the bad smell. Table IV summarises the results of
applying both concern-sensitive heuristics and conventional
ones. This table shows the total number of hits and false
positives (FP) for each bad smell and the percentage (under
brackets) regarding the total number of suspect fragments.
Note that the results in Table IV are given in different view
points. In concern-sensitive rules, the values for Shotgun
Surgery and Feature Envy (R11 and R12) represent the
number of concerns (since R11 and R12 classify concerns).
On the other hand, God Class and conventional rules
presents the results in terms of number of classes or
operations.

Data of Table IV show that concern-sensitive heuristics
presented superior accuracy than conventional rules for
detecting all three studied design flaws. The former
presented no more than 20% of false positives, whereas the
latter exhibited many false positives. We could also verify
that this advantage in favour of our rules was mainly due to
the fact that they are sensitive to the design concerns. For
instance, many false positives of the conventional rule for
Shotgun Surgery occurred because its metrics do not
distinguish coupling between classes of the same concern
and classes with different concerns.

5.5 Study Constraints

The goal of this paper was to assess how concern-
sensitive heuristics can reduce false positives and false

negatives of metrics and conventional heuristics. However,
we have not assessed the reliability and feasibility of concern
identification. For instance, detecting the Exception
Handling concern is almost 100% automated because it is
clearly marked in the systems by language constructs, such
as try-catch blocks. On the other hand, concerns like
Persistence, Distribution and Concurrency are more
application dependents leading to a more complex
identification process. Fortunately, recently proposed
approaches and tools facilitate the concern mining [8, 21].

We evaluated the applicability of the approach by
defining thirteen concern-sensitive heuristic rules that are
classified in three categories. Based on their application to
six systems, we have shown that concern heuristics are
accurate means of flaw detection and are usable in practice.
However, we do not claim that our data are statistically
relevant due to the reduced number of case studies. We have
also not used rigorous statistical methods in the empirical
evaluation. Nonetheless, we are considering the sample
representative of the population due to the heterogeneity of
systems and concerns involved in this study (Section 5.1).

The definition of proper threshold values intrinsically
characterises any assessment approach [17, 18]. Our strategy
based on our empirical evidence was to use: (i) 50% as
default for the concern diffusion heuristics (Section 4.1), (ii)
a meaningful ratio [17] that represents the definition of black
sheep and octopus [5] (Section 4.2), and similar thresholds
used by Marinescu [17, 18] in the heuristics for bad smells
(Section 4.3). Of course those values might need to be varied
depending on application particularities and assessment
goals.

6 CONCLUDING REMARKS
This paper (i) presented a suite of concern-sensitive

heuristic rules, and (ii) investigated the hypothesis that these
heuristics offer enhancements over typical metrics-based
assessment approaches. The heuristics suite can be extended
and, by no means, we claim that the suite of rules proposed
in this paper is complete. For instance, Section 4.2 presents
heuristics for only two from a catalogue of 13 crosscutting
patterns [7]. Furthermore, the heuristic suite for concern-
aware design flaws (Section 4.3) focuses on bad smells and
could be extended to deal with additional sorts of modularity
flaws.

Our investigation indicated promising results in favour of
concern-sensitive heuristics for determining concerns that
should be aspectised. It also pointed out that the heuristics
have around 80% of precision (Sections 5.3 and 5.4).
Additionally, heuristics provided enhancements both in
purely OO and in aspectual design assessment. But, we also
identified some problems in the accuracy of the heuristics
when (Section 5.3): (i) they were applied to small design
slices (patterns library [15]), and (ii) there was a presence of
concern overlapping. Similar problems remained when the
heuristics were applied to the corresponding aspectual
designs. For instance, some concerns were misclassified in
scenarios involving an explicit precedence declaration
between two or more aspects. However, even in presence of
these intricate concern interactions (all systems, but the

TABLE IV. STATISTICS FOR THE HEURISTICS RELATED TO BAD
SMELLS.

Bad
Smell

Concern-Sensitive
Rules

Conventional
Rules

Hits (%) FP (%) Hits (%) FP (%)
Shotgun
Surgery 8 (89%) 1 (11%) 9 (56%) 7 (44%)

Feature
Envy 3 (100%) 0 (0%) 1 (17%) 5 (83%)

God
Class 8 (80%) 2 (20%) 1 (17%) 5 (83%)

92

patterns library) the heuristics presented acceptable rates
(Tables II and III). Of course, our study is an initial stepping
stone on understanding how concerns can be useful
assessment abstractions. Further analyses are required to
confirm or refute our findings.

ACKNOWLEDGMENT
This work was partially supported by FAPESB and by

the National Institute of Science and Technology for
Software Engineering (INES), funded by CNPq (grant
573964/2008-4). We would like to thanks the anonymous
reviewers for their valuable comments. Eduardo was
supported by CAPES.

REFERENCES
[1] Figueiredo, E., Sant'Anna, C., Garcia, A. and Lucena, C. Concern-

Sensitive Design Heuristics. URL:
http://www.lancs.ac.uk/postgrad/figueire/concern/heuristics/

[2] Cacho, N. et al. (2006) Composing Design Patterns: A Scalability
Study of Aspect-Oriented Programming. Proc. of the Int’l Conf. on
Aspect-Oriented Software Dev. (AOSD), Germany.

[3] Ceccato, M., and Tonella, P. (2004) Measuring the Effects of
Software Aspectization. Proc. of the 1st workshop on Aspect Reverse
Engineering, The Netherlands.

[4] Chidamber, S., and Kemerer, C. (2004) A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 476-
493.

[5] Ducasse, S., Girba, T., and Kuhn, A. (2006) Distribution Map. Proc.
of the International Conference on Software Maintenance (ICSM),
Philadelphia, USA, 203-212.

[6] Figueiredo, E., Garcia, A. and Lucena, C. (2006) AJATO: An
AspectJ Assessment Tool. Proc. of the European Conf. on Object-
Oriented Programming (ECOOP), demo, Nantes.

[7] Figueiredo, E. et al. (2009) Crosscutting Patterns and Design
Stability: An Exploratory Analysis. Proc. of the Int’l Conf. on
Program Comprehension (ICPC), Vancouver, Canada.

[8] Figueiredo, E., Whittle, J. and Garcia, A. (2009) ConcernMorph:
Metrics-based Detection of Crosscutting Patterns. Proc. of the joint
ESEC/FSE meeting, demo session, Amsterdam.

[9] Filho, F. et al. (2006) Exceptions and Aspects: The Devil is in the
Details. Proc. of Int’l Symposium on Foundations of Software
Engineering (FSE), pp. 152-162. Portland, USA.

[10] Fowler, M. (1999) Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Reading, MA, USA.

[11] Gamma, E. et al. (1995) Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, USA.

[12] Garcia, A. et al. (2006) Modularizing Design Patterns with Aspects:
A Quantitative Study. Transactions on Aspect-Oriented Software
Development, 1, 36-74.

[13] Garcia, A. et al. (2004) Separation of Concerns in Multi-Agent
Systems: An Empirical Study. Software Engineering for Multi-Agent
Systems II, LNCS 2940.

[14] Greenwood, P. et al. (2007) On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. Proc. of
ECOOP, Berlin, Germany.

[15] Hannemann, J., and Kiczales, G. (2002) Design Pattern
Implementation in Java and AspectJ. Proc. of the Int’l Conf. on OOP,
Systems, Lang. and App. (OOPSLA), 161-173.

[16] Kiczales, G. et al. (1997) Aspect-Oriented Programming. In Proc. of
the European Conf. on Object-Oriented Programming (ECOOP),
LNCS 1241, Springer, 220-242.

[17] Lanza, M., and Marinescu, R. (2006) Object-Oriented Metrics in
Practice. Springer, USA.

[18] Marinescu, R. (2004) Detection Strategies: Metrics-Based Rules for
Detecting Design Flaws. Proc. of the International Conference on
Software Maintenance (ICSM), 350 - 359.

[19] Monteiro, M., and Fernandes, J. (2005) Towards a Catalog of Aspect-
Oriented Refactorings. Proc. of the Int’l Conf. on AOSD, Chicago,
111-122.

[20] Riel, A. (1996) Object-Oriented Design Heuristics. Addison-Wesley,
Reading, MA, USA.

[21] Robillard, M., and Murphy, G. (2007) Representing Concerns in
Source Code. ACM Transactions on Software Engineering and
Methodology (TOSEM), 16, 1.

[22] Sant’Anna, C. et al. (2003) On the Reuse and Maintenance of Aspect-
Oriented Software: An Assessment Framework. Proc. of the Braz.
Symp. on Software Eng. (SBES), 19-34.

[23] Zhao, J. (2002) Towards a Metrics Suite for Aspect-Oriented
Software. Technical-Report SE-136-25, Information Processing
Society of Japan (IPSJ).

93

