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Abstract— Empirical studies have stressed that aspect-oriented 
decompositions can cause non-obvious flaws in the modularity 
of certain design concerns. Without proper design evaluation 
mechanisms, the identification of these flaws can become 
counter-productive and impractical. Nowadays, modularity 
assessment is mostly supported by metric-based heuristics 
rooted at conventional attributes, such as module cohesion and 
coupling. However, such conventional module-driven 
assessment cannot be tailored to the design concerns. This 
paper proposes and systematically evaluates a representative 
suite of concern-sensitive heuristic rules. The accuracy of the 
heuristics is assessed through their application to six systems. 
The analysis was based on the heuristics support for: (i) 
addressing the shortcomings of conventional metrics-based 
assessments, (ii) reducing the manifestation of false positives 
and false negatives, and (iii) finding the presence of design 
flaws relative to both classes and aspects. 

Resumo— Estudos experimentais recentes mostraram que 
decomposições orientadas a aspectos podem causar anomalias 
na modularidade do design de certos interesses e que tais 
anomalias muitas vezes não são óbvias. Sem mecanismos de 
avaliação de design apropriados, a identificação dessas 
anomalias pode se tornar contraproducente e impraticável. 
Atualmente, a avaliação da modularidade de design orientado 
a aspectos é na maioria das vezes apoiada por heurísticas 
baseadas em métricas que quantificam atributos 
convencionais, como coesão e acoplamento de módulos. No 
entanto, essa avaliação dirigida por atributos convencionais 
não leva em conta os interesses que guiam o design. Esse artigo 
propõe e avalia sistematicamente um conjunto de regras 
heurísticas sensíveis a interesses. A acurácia das heurísticas foi 
avaliada por meio de sua aplicação em seis diferentes sistemas. 
A análise se baseou na capacidade das heurísticas de: (i) tratar 
das limitações de abordagens de avaliação baseadas em 
métricas convencionais, (ii) detectar a presença de anomalias 
de design relacionadas a classes  e aspectos, e (iii) reduzir a 
manifestação de falsos positivos e falsos negativos. 

Keywords-software design; modularity assessment; metrics; 
aspect-oriented software development 

1  INTRODUCTION 
Aspect-oriented software development (AOSD) [16] is a 

recently proposed paradigm with the goal of enhancing 
design modularisation through new composition 
mechanisms. Aspects are new units of modularity for 
encapsulating crosscutting concerns, i.e., system features or 
properties that naturally affect many system modules [16]. 
However, the achievement of modular aspectual designs is 
far from being trivial as the separation of certain concerns 
with aspects can be harmful [9, 12]. Inaccurate concern 
modularisations can lead to multiple design flaws [9, 14]. 
They can promote violations of important concern-specific 
modularity principles, such as higher concern coupling and 
wider concern interfaces [2, 9, 12-14]. Even the 
“aspectisation” of conventional crosscutting concerns, such 
as exception handling [9], concurrency control [14], and the 
Observer design pattern [11, 15], might impose negative 
effects on the system modularity [2, 9, 14]. 

As a result, aspectual decompositions require proper 
mechanisms for detecting key categories of concern-driven 
design flaws, such as modularity anomalies [12, 17, 18]. 
Metrics and heuristics are traditionally the fundamental 
mechanisms for assessing design modularity [4, 17, 18, 20]. 
To date, aspect-oriented design assessment has been mostly 
rooted at extensions of module-level metrics [4, 22, 23] that 
have been historically explored in software engineering. For 
instance, Sant’Anna [22], Ceccato [3] and their colleagues 
defined metrics for aspectual coupling and cohesion based 
on Chidamber and Kemerer’s metrics [4]. However, these 
measures do not treat concerns as first-class assessment 
abstractions. Similarly, existing heuristic rules [17, 18] are 
also based on such traditional modularity metrics and do not 
promote concern-sensitive design evaluation either. 

The recognition that concern identification and analysis 
are important through software design activities is not new. 
In fact, with the emergence of AOSD, there is a growing 
body of relevant work in the software engineering literature 
focusing either on concern representation and identification 
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techniques [5, 7, 21] or on concern analysis tools [8, 21]. 
However, there is not much knowledge on the efficacy of 
concern-driven assessment mechanisms for design 
modularity. Even though we can qualify some recently-
proposed metrics as “concern-oriented” [5, 22], there is a 
lack of design heuristics to support concern-sensitive 
assessment. More fundamentally, there is no systematic 
study that investigates if this category of heuristic rules 
enhances the process of evaluating aspectual designs. 

In this context, the contributions of this paper are 
threefold. First, after revisiting existing assessment 
mechanisms, it discusses the limitations of conventional 
metrics-based heuristics (Section 2). Second, it presents a 
suite of heuristics with the distinguishing characteristic of 
exploiting concerns as explicit abstractions in the design 
assessment process (Section 4). The heuristic rules rely on a 
set of concern-driven metrics (Section 3) and target at 
detecting overlapping categories of modularity problems, 
namely concern diffusion, crosscutting patterns [7], and 
classical design flaws [10, 20]. Third, this paper provides a 
systematic evaluation on the accuracy of the concern-
sensitive heuristics in the context of six applications: three of 
them are medium-sized academic prototypes and the other 
three are larger software projects. We have analysed both 
OO and aspectual designs of such systems, which encompass 
heterogeneous forms of crosscutting and non-crosscutting 
concerns (Section 5). The overall result of our evaluation 
indicates that concern-sensitive heuristics (i) enhance most 
of the shortcomings of conventional assessment mechanisms, 
and (ii) present superior identification rates of modularity 
flaws compared to conventional heuristics. 

2 ASPECTUAL DESIGN ASSESSMENT 
This section discusses some metrics and conventional 

heuristics for modularity evaluation of aspect-oriented (AO) 
systems (Section 2.1). It also points out limitations of these 
conventional assessment mechanisms (Section 2.2). 

2.1 Conventional Modularity Assessment 
A number of AO metrics [3, 22, 23] have been recently 

defined to quantify design modularity. However, most of 
these metrics are based on extensions of metrics for OO 
design assessment, such as Chidamber and Kemerer’s 
Coupling between Objects (CBO) and Lack of Cohesion in 
Methods (LCOM) [4]. There are also some AO metrics 
based on dependence graphs [23] that capture different facets 
of coupling and cohesion. All these metrics are often rooted 
at attributes such as syntax-based module cohesion, coupling 
between modules, and module interface complexity. 

Despite the extensive use of metrics, if used in isolation 
metrics are often too fine grained to quantify 
comprehensively an investigated modularity flaw [18]. In 
order to overcome this limitation of metrics, some 
researchers [17, 18] proposed a mechanism called design 
heuristic rule (or detection strategy) for formulating metrics-
based rules that capture deviations from good design 
principles. A heuristic rule is a composed logical condition, 
based on metrics, which detects design fragments with 
specific problems. To the best of our knowledge, all current 

design heuristics are based on conventional module-driven 
metrics. Therefore, a common characteristic of all those 
heuristics is that they are restricted to properties of 
modularity units explicitly defined in AO or OO languages, 
such as classes, aspects, and operations. 

2.2 Limitation of Conventional Heuristics 
Although many design modularity flaws are related to the 

inadequate modularisation of concerns [2, 12, 14], most of 
the current quantitative assessment approaches do not 
explicitly consider concern as a measurement abstraction. 
This imposes certain shortcomings in order to effectively 
detect and correct design impairments. Also, this limitation 
becomes more apparent in the age of AOSD since different 
forms of design composition and decompositions have been 
brought. 

To illustrate the limitations of conventional metric-based 
heuristic rules, we analyse the effectiveness of one of 
Marinescu’s rules [18] in the light of a partial design showed 
in Figure 1. The analysed rule aims at detecting a specific 
kind of modularity flaws, namely the Shotgun Surgery bad 
smell [10]. Bad Smells are proposed by Kent Beck in 
Fowler’s book [10] to diagnose symptoms that may be 
indicatives of something wrong in the design. Shotgun 
Surgery occurs when a change in a characteristic (or 
concern) of the system implies many changes to a lot of 
different places [10]. The reason for choosing Shotgun 
Surgery as illustrative is because it is believed to be 
symptom of design flaws caused by a poor modularisation of 
concerns [19]. Therefore, it might be avoided with the use of 
aspects. Marinescu’s heuristic rule [18] for detecting 
Shotgun Surgery is based on two conventional coupling 
metrics. This rule is defined as follows. 

 
Shotgun Surgery := ((CM, TopValues(20%)) and (CC, 

HigherThan(5)) 
 
CM stands for the Changing Method metric [17], which 

counts the number of distinct methods that access an 
attribute or call a method of the given class. CC stands for 
the Changing Classes metric [17], which counts the number 
of classes that access an attribute or call a method of the 
given class. TopValues and HigherThan are filtering 
mechanisms which can be parameterised with a value 
representing the threshold. For instance, the Shotgun Surgery 
heuristic above says that a class should not be the 20% with 
highest CM and should not have CC higher than 5. 

Applying CC and CM, we obtain CC = 0 and CM = 15 
for the MetaSubject interface (Figure 1). Based on these 
values and computing the Marinescu’s heuristic, this 
interface is not regarded as a suspect of Shotgun Surgery. 
This occurs because CC is 0, since no class in the system 
directly accesses MetaSubject. Nevertheless, this interface 
can be clearly considered as Shotgun Surgery because 
changes on its methods would trigger many other changes in 
every class implementing it and potentially in classes calling 
its overridden methods. For instance, a rename of the 
addObserver() method in the MetaSubject interface 
causes updates to the classes Component and 
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ConcreteBind (Figure 1) and several other classes which 
call addObserver(). 

This example aims at showing how conventional 
heuristic rules are limited to point out the overall influence of 
one concern – the Observer design pattern in this case – in 
other parts of the design. Particularly, the Marinescu’s rule 
was not able to detect that a significant number of classes 
include design elements related to the Observer pattern and, 
as a consequence, that they could be affected due to a change 
in this concern. In fact, this rule could not highlight the 
complete impact of the Observer pattern because it considers 
only measures based on the module and method abstraction. 

3 CONCERN-DRIVEN METRICS 
In order to address the limitations of conventional 

heuristic rules discussed in the previous section, we defined a 
suite of heuristics that makes the evaluation process sensitive 
to the design concerns. The concern-sensitive heuristics are 
based on the combination of concern metrics and 
conventional metrics. This section defines the concern 
metrics used by the proposed suite of heuristics (Section 4). 
All the metrics presented in this section have a common 
underlying characteristic that distinguishes them from 
conventional metrics (Section 2): they capture information 
about concerns traversing one or more design modularity 
units. A concern is often not defined by the “boundaries” of 
modules in modelling or programming languages [21], such 
as components (e.g., classes or aspects), and operations (e.g., 
methods or advice). 

Metrics Definition. Each concern-driven metric of this 
section is presented in terms of a definition, measurement 
purpose, and an example. As far as the example is 
concerned, we rely on an OO design slice of a middleware 
system [2] presented in Figure 1. This figure shows a partial 

class diagram realising both Factory Method and Observer 
patterns [11]. Elements of the design are shadowed to 
indicate which pattern they implement. The concern metrics 
are computed based on the mapping of concerns to design 
elements. We used FEAT [21] for supporting semi-automatic 
concerns identification and ConcernMorph [8] for concern 
measurement. The choice of the concerns to be measured 
depends on the nature of the assessment goals; some 
examples will be given in this section and through our 
evaluation (Section 5). 

3.1 Concern Scattering and Tangling 
The metric Concern Diffusion over Components (CDC) 

[22] counts the number of classes and aspects that have some 
influence of a certain concern, thereby enabling the designer 
to assess the degree of concern scattering. For instance, 
Figure 1 shows that there is behaviour related to the Factory 
Method pattern in six components (MetaObject, 
MetaObjFactory, and respective subclasses). Therefore, 
the value of the CDC metric for the Factory Method concern 
is six (Figure 1, Table (a)). 

Unlike CDC, the metric Number of Concerns per 
Component (NCC) quantifies the concern tangling from the 
system components’ point of view. It counts the number of 
concerns each class or aspect implements. The goal is to 
support designers on the observance of intra-component 
tangling degree. The value of this metric for the 
MetaObjComposite is two (Figure 1, Table (b)), since this 
component implements the concerns of both Factory Method 
and Observer patterns. 

3.2 Concern Materialisation and Coupling 
The metric Concern Attributes (CA) counts the number 

of attributes (including inter-type attributes in aspects) that 
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Figure 1.  Concern metrics applied to the Observer and Factory Method patterns 
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contribute to the realisation of a certain concern. Similarly, 
Concern Operations (CO) counts the number of methods, 
constructors, and advices that participate in the concern 
realisation. The goal of CA and CO is to quantify how many 
internal component members are necessary for the 
materialisation of a specific concern. The example in Figure 
1 shows that the value of CO is ten for the Factory Method 
design pattern, since this is the number of operations 
implementing it. In the same example we see that four 
attributes realise this design pattern (CA = 4). 

Concern-Sensitive Coupling (CSC) quantifies the number 
of components a given class or aspect realising the concern is 
coupled to. In other words, CSC counts the number of 
coupling connections is associated to the concern of interest 
in a specific component. Similarly, the metric Intra-
Component Concern Sensitive Coupling (ICSC) counts the 
number of internal attributes accessed and internal methods 
called by a concern in a given component. Additionally, 
these attributes and methods (i) have to implement another 
concern rather than the assessed one and (ii) cannot be 
inherited nor introduced in the class by inter-type 
declaration. Figure 1 shows that Factory Method is coupled 
to six components in the MetaObjComposite class 
(CSC=6) and uses no internal member of this class realising 
the Observer pattern (ICSC=0). Sequence diagrams are 
required to count CSC and ICSC at the design level, but we 
omitted them for the sake of simplicity. 

4 CONCERN-SENSITIVE HEURISTICS 
This section presents heuristic rules as mechanisms for 

supporting concern-sensitive modularity analysis. These 
rules are defined in terms of combined information collected 
from concern metrics (Section 3) and conventional 
modularity metrics. Table I presents four conventional 
metrics which are used by the proposed heuristics. Table I 
also includes references (1st column) and a short description 
of each metric (2nd column). Each heuristic expression 
embodies modularity knowledge about the realisation of a 
concern in the respective OO or AO designs. The motivation 
of concern-sensitive heuristics is to minimise the 
shortcomings of conventional metrics-based heuristics 
illustrated in Section 2. Our hypothesis to be tasted in 
Section 5.2 is that most of these problems can be ameliorated 
through the application of concern-aware heuristics. 

Heuristics Structure. All heuristic rules are expressed 
using conditional statements in the form: IF <condition> 
THEN <consequence>. The condition part encompasses one 

or more metrics’ outcomes related to the design concern 
under analysis. If the condition is not satisfied, then the 
concern analysis is concluded and the concern classification 
is not refined. In case the condition holds, the role of the 
consequence part is to describe a change or refinement of the 
target concern classification. The heuristic rules were 
structured in such a way that the classification is 
systematically refined into a more specialised category. In 
other words, finding bad symptoms they gradually generate 
warnings with higher gravity. The generated warnings 
encompass information that helps the designers to 
concentrate on certain concerns or parts of the design which 
are potentially problematic. The proposed heuristics suite is 
structured to detect three major groups of concern-related 
flaws: (i) concern diffusion (Section 4.1), (ii) patterns of 
crosscutting concerns (Section 4.2), and (iii) specific design 
flaws (Section 4.3).  

4.1 Concern Diffusion 
Heuristic rules of this section, named concern diffusion 

heuristics, classify the way each concern manifests itself 
through the software modularity units. Concern can be 
classified into one (or more) of the six categories: Isolated, 
Tangled, Little Scattered, Highly Scattered, Well 
Modularised, and Crosscutting. A tangled concern is 
interleaved with other concerns in at least one component 
(i.e., class or aspect). If the concern is not tangled in any 
component, it is considered as isolated. A scattered concern 
spreads over multiple components. If a concern is scattered, 
it is also tangled as a consequence. Our classification makes 
a distinction between highly scattered and little scattered 
concerns based on the number of affected components. A 
concern is crosscutting only if it is both tangled with other 
concerns and scattered over multiple system components. As 
we present later, even little scattered concerns might be 
considered as crosscutting in some scenarios. Crosscutting 
concerns generate warnings of inadequate separation of 
concerns and, consequently, opportunities for refactoring 
[10, 19]. 

Figure 2 presents definitions of rules denoting transitions 
between two concern classifications. Figure 2 also presents a 
diagram that makes it explicit the application order of the 
concern diffusion heuristics. This order was defined based on 
our empirical knowledge on analysing concern metrics [7, 
12, 13, 22]. For instance, we usually check whether a 
concern is tangled or not (by means of NCC) before 
proceeding with a further concern scattered analysis (by 

TABLE I.  TRADITIONAL SOFTWARE ENGINEERING METRICS [3, 4, 22] 

Metrics Definitions 
Number of Components (NC) [22] Counts the number of classes, interfaces and aspects. 
Number of Attributes (NOA) [22] Counts the number of attributes of each class, interface or aspect. 
Number of Operations (NOO) [22] Counts the number of methods and advice of each class or aspect. 
Coupling between Components 
(CBC) [3, 4, 22] 

Counts the number of other classes and aspects which a class or an 
aspect is coupled to. 
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means of CDC). The first two rules, R01 and R02, use the 
metric Number of Concerns per Component (NCC) to 
classify the concern as isolated or tangled. If the NCC value 
is one for every component realising the analysed concern, it 
means that there is only the analysed concern in these 
components and, therefore, the concern is isolated. However, 
if NCC is higher than one in at least one component, it 
means that the concern is tangled with other concerns in that 
component, e.g., Factory Method and Observer patterns in 
MetaObjComposite (Figure 1). 

 

 
Rules R03 and R04 (Figure 2) verify whether a concern, 

besides tangled, is scattered over multiple components. 
These heuristics use the metrics Concern Diffusion over 
Components (CDC) and Number of Components (NC) to 
calculate the percentage of system components affected by 
the concern of interest. Based on this percentage, the concern 
is classified as highly scattered or little scattered. As you 
might have already noticed, one of the most sensitive parts in 

a heuristic rule is the selection of threshold values. Our 
strategy for these rules is to use 50 % as default. Note that, 
developers should be aware of highly scattered concerns 
because they can potentially cause design flaws, such as 
Shotgun Surgery [10] (Section 4.3). 

As tangling and scattering might mean different levels of 
crosscutting, both highly scattered and little scattered 
concerns can be classified as well-encapsulated or 
crosscutting concerns. Rules R05 and R06 decide whether a 
little scattered concern is either well-encapsulated or 
crosscutting. R07 and R08 perform similar analyses for a 
highly scattered concern. These four rules use the metrics 
Concern Attributes (CA) and Concern Operations (CO) and 
two size metrics (Table I): Number of Attributes (NOA) and 
Number of Operations (NOO). They calculate for each 
component the percentage of attributes and operations which 
implements the concern being analysed. 

The role of the heuristics R05 and R07 is to detect 
components that dedicate a large number of attributes and 
operations (more than 50%) to realise the dominant concern. 
If a concern is dominant in all components where it is, this 
concern is classified as well-encapsulated. The reasoning 
behind this classification is that a concern is not harmful to 
classes or aspects in which it is dominant, and, therefore, it 
does not need to be removed. Similarly, a concern is 
classified as crosscutting (rules R06 and R08) if the 
percentage of attributes and the percentage of operations 
related to the concern are low (less than 50%) in at least one 
component. Hence, a concern is classified as crosscutting if 
it is located in at least one component which has another 
concern as dominant. 

4.2 Patterns of Crosscutting Concerns 
Inspired by Ducasse, Girba and Kuhn [5], we defined 13 

patterns of crosscutting concerns in our previous work [7]. 
This section illustrates how the concern-sensitive heuristics 
can be used to identify two of those crosscutting patterns, 
namely black sheep and octopus. Additional heuristics can 
be further defined to cover all 13 patterns. Black sheep and 
octopus were originally defined as follows. 

Black sheep is a property that crosscuts the system, but 
touches very few elements [5]. 

Octopus is a property which is well encapsulated in a few 
parts, but also spreads across other parts, as a crosscutting 
concern does [5]. 

Therefore, black sheep and octopus are actually 
specialised categories of crosscutting concerns. Figure 3 
shows two heuristic rules, R09 and R10, which aim at 
identifying black sheep and octopus concerns, respectively. 
Figure 3 also defines two conditions A (Little Dedication) 
and B (High Dedication) used by these rules. We explicitly 
separate the conditions from the rules not only to make the 
rules easier to understand but also to reuse the little 
dedication condition in both heuristics. In rules R09 and 
R10, a concern previously classified as crosscutting (Section 
4.1) is thoroughly inspected in terms of how much each 
component dedicates itself to the crosscutting concern 
realisation. 

R01 - Isolated: 
if NCC = 1 for every component with CONCERN then CONCERN is ISOLATED 
R02 - Tangled: 
if NCC > 1 for at least one component then CONCERN is TANGLED 
R03 - Little Scattered: 
if CDC / NC of CONCERN < 0.5 then TANGLED CONCERN  is LITTLE SCATTERED 
R04 - Highly Scattered: 
if CDC / NC of CONCERN  0.5 then TANGLED CONCERN is HIGHLY SCATTERED 
R05 - Well Encapsulated: 
if (CA / NOA  0.5) and (CO / NOO  0.5) for every component 
then LITTLE SCATTERED CONCERN is WELL-ENCAPSULATED 
R06 - Crosscutting: 
if (CA / NOA < 0.5) and (CO / NOO < 0.5) for at least one component 
then LITTLE SCATTERED CONCERN is CROSSCUTTING 
R07 - Well Encapsulated: 
if (CA / NOA  0.5) and (CO / NOO  0.5) for every component 
then HIGHLY SCATTERED CONCERN is WELL-ENCAPSULATED 
R08 - Crosscutting: 
if (CA / NOA < 0.5) and (CO / NOO < 0.5) for at least one component 
then HIGHLY SCATTERED CONCERN is CROSSCUTTING 

 

Tangled

R01 R02

R03 R04

R05 R06 R07 R08

CrosscuttingWell
Encapsulated

Isolated

Highly
Scattered

Little
Scattered

Concern
Bad symptomsGood symptoms

 
 

Figure 2.  Concern classification and heuristics for concern diffusion 
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The heuristic rule R09 classifies a crosscutting concern 
as black sheep if all components which have this concern 
dedicate only a few percentage points of attributes and 
operations to that concern (less than 33 %). We choose the 
value of 33 % for the little dedication condition based on (i) 
threshold values used by other authors [5, 17], and (ii) a 
meaningful ratio that represents the definition ‘touches very 
few elements’ of black sheep [5]. In fact, Lanza and 
Marinescu [17] suggest the use of meaningful threshold 
values, such as 0.33 (1/3), 0.5 (1/2), and 0.67 (2/3). 

The next rule R10 verifies if crosscutting concerns not 
classified as black sheep are a potential octopus. According 
to this heuristic, a concern is classified as octopus if every 
component realising parts of this concern has either little 
dedication (condition A) or high dedication (condition B) to 
it. Besides, at least two components have to be little 
dedicated to the concern (tentacles of the octopus) and at 
least one component has to be highly dedicated (body of the 
octopus). We define a component as highly dedicated to a 
concern when the percentage of attributes and operations are 
higher than 67%. Again, thresholds values try to be a 
meaningful approximation of the octopus’ definition [5]. 

4.3 Concern-Aware Design Flaws 
This section describes how the concern-sensitive 

heuristics could be also applied to detect well-known design 
flaws, such as bad smells [10, 20]. We use three bad smells 
to illustrate the concern heuristics: Shotgun Surgery (Section 
2.2), Feature Envy [10], and God Class [20]. Feature Envy is 
related to the misplacement of a piece of code, such as an 
operation or attribute, i.e., the feature seems more interested 
in a component other than the one it actually is in [10]. God 
Class refers to a component (class or aspect) which performs 
most of the work, delegating only minor details to a set of 
trivial classes and using data from them [20]. We selected 
these three bad smells because (i) previous work related 
them to crosscutting concerns [20] and (ii) they are 
representatives of three different groups of flaws discussed 
by Marinescu [18]. Hence, addressing different categories of 
flaws allows us to correlate our results with Marinescu’s 
studies [18]. 

Figure 4 shows concern-sensitive heuristic rules for 
detecting the three bad smells aforementioned. The first rule, 
R11, aims at detecting Feature Envy and uses a combination 
of concern metrics, coupling metrics, and size metrics. To be 
considered Feature Envy, a crosscutting concern has to 
satisfy two conditions: C (High Inter-Component Coupling) 

and D (Low Intra-Component Coupling). The concern under 
assessment has high inter-component coupling when its 
percentage of coupling (CSC/CBC) is higher than the 
percentage of internal component members ((CA+CO) / 
(NOA+NOO)) that realise this concern. In other words, the 
ratio of coupling to size (measured in terms of attributes and 
operations) of such crosscutting concern is higher than the 
same ratio for all other concerns in the same component. 
Similar computation is performed for identifying low intra-
component coupling. 

The remaining two heuristics for bad smells R12 and R13 
(Figure 4) are intended to detect Shotgun Surgery and God 
Class. Differently from the previous rules, R12 is composed 
of outcomes from other heuristics. More precisely, a concern 
is classified as Shotgun Surgery if it was previously 
identified as Tangled (R02), Highly Scattered (R04), and 
Crosscutting (R08). Finally, a component is flagged as God 
Class (R13) if, besides high number of internal members 
(attributes and operations), it implements many concerns. 
R13 distinguishes high and low number of internal members 
by comparison with the average size of all other system 
components (NOAsystem/NC and NOOsystem/NC). This 
last rule uses a threshold value of 2 for the metric Number of 
Concern per Component (NCC). The reasoning is that a 
component implementing more than two concerns tends to 
aggregate too much unrelated responsibility. 

5 EVALUATION 
This section introduces a systematic evaluation of the 

concern-sensitive heuristics in 6 applications (Section 5.1) 
implemented in Java (OO) and AspectJ (AO). We applied 
the heuristic rules to 23 concern instances of both OO and 
AO versions of these applications. The concerns were 
selected because they exercise different heuristics. The 
heuristics evaluation is undertaken under three dimensions: 
(i) applicability for addressing metrics limitations (Section 
5.2); (ii) accuracy to identify and classify crosscutting 
concerns in both OO and AO systems (Section 5.3); and (iii) 
the usefulness to detect design flaws in comparison with 
conventional heuristics (Section 5.4). Section 5.5 discusses 
threats to validity of our evaluation. 

5.1 Selection of the Target Applications 
In previous comparative studies [2, 9, 12-14], we applied 

AO metrics (e.g., metrics in Table I, Section 4) to a number 
of software systems. In this paper we selected six systems of 
our previous studies in order to apply and assess the accuracy 

Condition A - Little Dedication: (CA / NOA < 0.33) and (CO / NOO < 0.33)  
Condition B - High Dedication: (CA / NOA  0.67) and (CO / NOO  0.67)) 
R09 - Black Sheep: 
if (Little Dedication) for every component with CONCERN then CROSSCUTTING CONCERN is BLACK SHEEP 
R10 - Octopus: 
if ((Little Dedication) or (High Dedication) for every component with CONCERN)  
    and ((Little Dedication) for at least 2 component and (High Dedication) for at least 1 component with CONCERN)  
then CROSSCUTTING CONCERN is OCTOPUS 

Figure 3.  Heuristics for Black Sheep and Octopus 
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of our concern-sensitive heuristics. Three of them [2, 13, 15] 
are medium-sized academic prototypes carefully designed 
with modularity attributes as main drivers. The other three 
systems are larger software projects, namely Health Watcher 
[14], CVS plugin [9], and a measurement tool [6]. Table II 
summarises the six studies, the nature of the concerns, and 
provides a complete list of the evaluated concerns. These 
studies were selected for several reasons. First, they 
encompass both AO and OO implementations and their 
assessments were previously based on metrics. It allowed us 
to evaluate whether concern-sensitive heuristics are helpful 
to enhance a design assessment exclusively based on metrics 
(Section 5.2). Furthermore, the modularity problems in all 
the selected systems have been correlated with external 
software attributes, such as reusability [9, 13, 15], design 
stability [2, 14], and manifestation of ripple effects [14]. 

Another reason is the heterogeneity of concerns found in 
these systems (2nd column, Table II), which include widely-
scoped architectural concerns, such as persistence and 
exception handling, and more localised ones, such as some 
design patterns. They also encompass different 
characteristics and different degrees of complexity. These 
systems are representatives of different application domains, 
ranging from simple design pattern instances (1st system) to 
reflective middleware systems (2nd), real-life Web-based 
applications (5th), and multi-agent systems (6th). Finally, 
such systems will also serve as effective benchmarks 
because they involve scenarios where the “aspectisation” of 
certain concerns is far from trivial [2, 9, 13, 14]. We took the 
analysed concerns from these previous studies. Complete 
descriptions of such concerns and systems can be found in 
their respective publications (1st column of Table II). 

5.2 Solving Measurement Shortcomings 
The goal of this section is to discuss whether and how 

concern-sensitive heuristics address the limitation of 
conventional modularity assessment. For achieve this goal, 
this section presents six of problems (labelled A to F) that 
affect not only conventional metrics but also the use of 
concern metrics (Section 3). It also classifies these problems 
into four main categories. Due to space constraints, results of 
the conventional and concern metrics for all systems are 
available in our supplementary website [1]. 

Table II provides an overview of the application of the 
first two suites of rules (Sections 4.1 and 4.2) in the target 
systems. Note that the first study is subdivided in terms of 
design patterns (2nd column); the pattern roles were assessed 

(3rd column). The 3rd and 4th columns show all 23 concerns 
analysed in the respective studies and the best means of 
modularisation (OO or AO decomposition) based on 
specialists and literature claims [2, 9, 12-15]. Specialists are 
researchers that participated in development, maintenance, or 
assessment of the systems. Their opinions were acquired by 
asking them to fill a questionnaire (available at [1]). The 
columns of Table II, labelled 01 to 10, present the answers 
‘yes’ (y) or ‘no’ (n) of the concern diffusion heuristics (rules 
01-08), black sheep (rule 09), and octopus (rule 10). Blank 
cells mean that the rule is not applicable. Finally, the last 
column indicates: (i) how the heuristics classify each concern 
and (ii) if the classification matches with the best proposed 
solution (‘hit’) or not (‘fail’). The obtained heuristic 
classification of concerns includes isolated, well-
encapsulated (‘well-enc.’), crosscutting, black sheep, and 
octopus. 

False crosscutting warnings. We identified in this study 
at least two examples of problems in this category: (A) false 
scattering and tangling warnings and (B) false coupling or 
cohesion warnings. Problem A occurs when concern metrics 
erroneously warn the developer of a possible crosscutting 
concern. However, a subsequent careful analysis shows that 
the concern is well encapsulated. Similarly, Problem B leads 
developers to an unnecessary search for design flaws, but, in 
this situation, the false warning is caused by traditional 
metrics, such as coupling and cohesion ones. Figure 1 
(Section 2) presents an example of this problem category in 
an instance of the Factory Method pattern [11]. OO 
abstractions provide adequate means of modularising 
Factory Method (e.g., the main purpose of classes which 
implement this pattern is to realise it). However, the values 
of the concern metrics show some level of scattering and 
tangling in the classes realising this pattern (tables in Figure 
1). In this case, the false warning was a result of the 
Observer-specific concerns crosscutting classes of the 
Factory Method pattern, i.e., it is not a problem of this latter 
pattern implementation at all. Our case studies indicate that 
shortcomings of this category are ameliorated with concern-
sensitive heuristic support. For instance, Problem A 
discussed above (Factory Method) does not produce a false 
warning when the heuristic rules are applied (Table II). 

Hiding concern-sensitive flaws. Sometimes, design 
flaws are hidden in measurements just because (C) metrics 
are not able to reveal an existing modularity problem. We 
illustrate this limitation in the light of a partial class diagram 

Condition C - High Inter-Component Coupling: (CSC / CBC) > ((CA+CO) / (NOA+NOO))  
Condition D - Low Intra-Component Coupling: (ICSC / ((NOA+NOO)-(CA+CO))) < ((CA+CO) / (NOA+NOO)) 
R11 - Feature Envy: 
if (High Inter-Component Coupling) and (Low Intra-Component Coupling) and (NCC > 1)  
then CROSSCUTTING CONCERN is FEATURE ENVY 
R12 - Shotgun Surgery: 
if CONCERN is (Tangled) and (Highly Scattered) and (Crosscutting) then CROSSCUTTING CONCERN is SHOTGUN SURGERY 
R13 - God Class: 
if (NCC >2) and (NOA > (NOAsystem/NC)) and (NOO > (NOOsystem/NC)) then COMPONENT is a GOD CLASS 

Figure 4.  Heuristic rules for bad smells 

89



presented in Figure 5. This figure highlights elements that 
implement the Singleton and Facade patterns. It also shows 
some concern metrics for these patterns. Although Singleton 
has a lower average metric value than Facade, the former 
presents a crosscutting nature and the latter does not. 
Therefore, in this example, concern metrics would probably 
not warn the developer about the crosscutting phenomena 
relative to Singleton [2, 12]. The application of concern 
heuristics overcomes this measurement shortcoming by 
correctly classifying the Singleton pattern as black sheep – a 
specialised category of crosscutting concerns. 

Lack of mapping to flaw-causing concerns. Two 
examples of problems are classified in this category: (D) 
measurement does not show where (which design elements) 
the problem is and (E) measurement does not relate design 
flaws to concerns causing them. One example of Problem D 

is the Collaboration concern of the Portalware system (Table 
II) which is high scattered and tangled, e.g., CDC metric is 
15 [1]. Nevertheless, in a more detailed analysis we found 
out that only six components have tangling among 
Collaboration and other system concerns. Hence, focusing on 
Collaboration the developer needs to inspect (and perhaps 
improve) the design of only six components (and not 15). In 
order to solve this problem, the concern-sensitive heuristics 
classified Collaboration as octopus (Table II). Furthermore, 
Rule 10 identified that the octopus’ tentacles only touch six 
components (which are indeed crosscut by Collaboration). 

Controversial outcomes from concern metrics. A 
problem of this category occurs if (F) the results of different 
metrics do not converge to the same outcome, making the 
designer’s interpretation difficult. We have identified some 
occurrences of this problem in our studies, like the 

TABLE II.            RESULTS OF THE HEURISTICS FOR CONCERN DIFFUSION IN THE OO SYSTEMS. 

Studies Nature of the 
Concerns Concerns Best 

Solution
Heuristic Rules  Results 01 02 03 04 05 06 07 08 09 10 

(1) Patterns 
library 
[11, 14] 

D
es

ig
n 

Pa
tte

rn
s Builder Director role OO n y y n y n     well-enc. / hit 

Chain of Resp. Handler role AO n y n y   y n   well-enc. / FAIL 
Factory Method Creator role OO n y n y   n y n n crosscutting / FAIL 

Observer Observer role AO n y n y   n y n y octopus / hit 
Subject role AO n y n y   n y n y octopus / hit 

Mediator Colleague role AO n y n y   n y n y octopus / hit 
Mediator role AO n y n y   y n   well-enc. / FAIL 

(2) OpenOrb 
Middleware  
[2] 

Design patterns and 
their compositions. 

Fact. Method OO n y y n y n     well-enc. / hit 
Observer AO n y y n n y   n y octopus / hit 
Façade OO y n         isolated / hit 
Singleton AO n y y n n y   y n black sheep / hit 

(3) 
Measurement 
tool [2, 6] 

Prototype AO n y y n n y   y n black sheep / hit 
State AO n y y n y n     well-enc. / FAIL 
Interpreter AO n y y n n y   n y octopus / hit 
Proxy  AO n y y n n y   n n crosscutting / hit 

(4) CVS core 
plugin [8] Recurring 

architectural 
crosscutting and non-
crosscutting concerns 

Exc. Handling AO n y n y   n y n y octopus / hit 
Business OO n y n y   y n   well-enc. / hit 

(5) Health 
Watcher [8, 13] 

Concurrency AO n y n y   n y n y octopus / hit 
Distribution AO n y n y   n y n y octopus / hit 
Persistence AO n y n y   n y n y octopus / hit 

(6) Portalware 
[12] 

Domain-specific 
concerns 

Adaptation AO n y y n n y   n n crosscutting / hit 
Autonomy AO n y y n n y   n n crosscutting / hit 
Collaboration AO n y n y   n y n y octopus / hit 

...
instance
getCapsuleInstance()
server()
...

CapsuleImpl

Legend:
Facade Pattern

Singleton Pattern

Part of Singleton

112Singleton
651Façade
COCACDCPattern

112Singleton
651Façade
COCACDCPattern

compLocalCapsule
endPointManager
dispatcherFactory
protocolFactory
metamodel
init()
createReceptacle()
localbind()
component()
composite()
getMetaObject()

OpenOrb

2OpenOrb
1CapsuleImpl

NCCComponent

2OpenOrb
1CapsuleImpl

NCCComponent

 
Figure 5.  Concern metrics for Facade and Singleton. 
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Adaptation concern (Portalware). Applying the concern 
metrics to Adaptation, the CDC value is 3 (indicating low 
scattering) while other concern metrics present high values 
(e.g., CA=10 and CO=22) [1]. Hence, the concern metrics 
have contradictory values in the sense that it is hard to 
conclude whether Adaptation is a crosscutting concern. 
Concern heuristics addressed this category of shortcomings 
in a number of cases. For instance, although Adaptation has 
contradictory results for concern metrics, the heuristics have 
successful identified it as an octopus (Table II), meaning that 
it is also a crosscutting concern. 

5.3 Accuracy of the Concern-Sensitive Heuristics 
This section evaluates the heuristics accuracy comparing 

their outcomes with the specialists’ opinion or with the best 
known solutions (4th column of Table II). For this analysis, 
we count how many times the heuristics match previous 
knowledge (hits) and how many times they do not match 
(false positives or false negatives). A false positive is a case 
where the concern heuristics answered ‘yes’ while it should 
have been ‘no’, i.e., where they erroneously reported a 
warning. On the other hand, a false negative is the case 
where the rules answered ‘no’ while it should have been 
‘yes’; thus, where they failed to identify a design flaw. In 
this step of our evaluation, in addition to the original designs, 
we also discuss the results for the aspectual ones (their 
detailed data for the heuristics application are available in 
our website [1]). The aspectual implementations aim at 
modularising one or more crosscutting concerns.  

Table III provides overviews of the hits, false positives 
(FP) and false negatives (FN) of the rules for the 46 concern 
instances involved in this experiment (23 in OO and 23 in 
AO designs). The rows of this table are organised in three 
parts: the object-oriented instances (OO), the aspect-oriented 
instances (AO), and the general data of both paradigms 
(OO+AO). Each row describes the absolute numbers and its 
percentage in relation to the total number of concerns. 

According to data in Table III, the heuristics failed in 
about 20% of the case studies (6 false positives and 3 false 
negatives). Focusing on the OO designs, we found out 1 
false positive and 3 false negatives. The false positive occurs 
with the Creator role of the Factory Method pattern (Table 
II). In this pattern, the GUIComponentCreator class which 
plays the Creator role has also GUI-related elements, such as 
the showFrame() method [15]. Our conclusion is that, 
although the Factory Method pattern is not a crosscutting 
concern [12, 15], this particular instance presents a problem 
of separation of concerns. Therefore, the concern-sensitive 
heuristics were able to detect a problem which has not been 
reported by the specialists. 

 

Simple Program Slices. The heuristics also presented 3 
occurrences of false negatives: (i) Chain of Responsibility 
(CoR) pattern, (ii) Mediator role of the Mediator pattern, and 
(iii) State pattern. The CoR pattern was not detected as a 
crosscutting concern because the pattern instance is too 
simple (due to its library nature [15]) in order to expose the 
pattern’s crosscutting nature [2, 12]. In fact, classes playing 
the Handler role have only three members: the successor 
attribute, the handleClick() method, and one constructor. 
Since the first two realise the CoR pattern, the heuristics 
classify this concern as Well-Encapsulated (i.e., the main 
purpose of all components). A similar situation occurs with 
the Mediator design pattern (Table II).  

Selection and Granularity of Concerns. Moreover, the 
State pattern is a false negative in the third case study due to 
the assessment strategy of using patterns, instead of roles, as 
concerns. Although State has two roles (Context and State), 
it was considered as a single concern in the third case study. 
Additionally, the state transitions (part of State role) occur in 
classes playing the Context role. In other words, one role 
crosscuts only the other role, and the concern heuristics were 
unable to expose the pattern as a crosscutting concern. 
Hence, our conclusion for OO designs is that finer grained 
concerns, such as roles of design patterns, enable higher 
precision of the heuristics. 

Table III presents five false positives in the heuristic 
assessment of aspectual systems. Similarly to State discussed 
above, recurring false positives occur in AO designs when a 
pattern defines more than one role. For instance, four (out of 
five) false positives match this criterion: Subject and 
Observer roles (Observer pattern) and Mediator and 
Colleague roles (Mediator pattern). Although each of these 
patterns is successfully modularised using abstract protocol 
aspects and concrete aspects, their roles share these 
components. Then, the Observer and Mediator roles were 
classified as crosscutting in the aspect protocol while their 
counterparts (Subject and Colleague) were classified as 
crosscutting in the concrete aspects. Therefore, differently 
from OO designs, our analysis suggests selecting the whole 
pattern (instead of its roles) for AO designs. 

Aspect Precedence. The Autonomy concern is also 
misclassified as crosscutting in the AO design of Portalware 
due to a precedence definition between the Adaptation and 
Autonomy aspects. The Adaptation aspect has a declare 
precedence clause with a reference to Autonomy. The 
concern heuristics point out Autonomy code inside the 
Adaptation aspect and, therefore, indicate that the former 
aspect crosscuts the latter. Although this problem really 
exists, there is no way of improve the separation of these two 
concerns in the Portalware system due to AspectJ constraints 
[14]. 

5.4 Specific Design Flaws Detection 
This section evaluates whether our concern heuristics are 

useful to detect specific design flaws. In particular, we 
applied rules R11 to R13 (Figure 4) to identify Shotgun 
Surgery [10], Feature Envy [10] and God Class [20] bad 
smells in our six systems (Section 5.1). We also 
independently applied the conventional heuristic rules 

TABLE III.            STATISTICS FOR CONCERN DIFFUSION HEURISTICS. 

Studies Hits (%) FP (%) FN (%) Total (%) 
OO 19 (82.6) 1 (4.3) 3 (13.0) 23 (100) 
AO 18 (78.3) 5 (21.7) 0 (0.0) 23 (100) 
OO + AO 37 (80.4) 6 (13.0) 3 (6.5) 46 (100) 
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proposed by Marinescu [17, 18] for detecting the same bad 
smells. The application of each rule pointed out design 
fragments suspect of having one of the three aforementioned 
bad smells. We then compared the results from the two suites 
of rules (concern-sensitive and conventional) by undertaking 
a manual investigation in all suspect design fragments. In 
circumstances when the existence of a bad smell was not 
clear about, we contacted professionals and researchers with 
long-term experience on the development and assessment of 
the target designs. The manual investigation allowed us to 
verify whether the suspect design fragments were indeed 
affected by the design flaw. 

After this inspection, the total number of suspects for 
each bad smell was classified in two categories: (i) ‘Hits’: 
those heuristically suspect fragments that have confirmed to 
be affected by the bad smell, and (ii) ‘False Positives’: those 
heuristically suspect fragments that revealed not to be 
affected by the bad smell. Table IV summarises the results of 
applying both concern-sensitive heuristics and conventional 
ones. This table shows the total number of hits and false 
positives (FP) for each bad smell and the percentage (under 
brackets) regarding the total number of suspect fragments. 
Note that the results in Table IV are given in different view 
points. In concern-sensitive rules, the values for Shotgun 
Surgery and Feature Envy (R11 and R12) represent the 
number of concerns (since R11 and R12 classify concerns). 
On the other hand, God Class and conventional rules 
presents the results in terms of number of classes or 
operations. 

Data of Table IV show that concern-sensitive heuristics 
presented superior accuracy than conventional rules for 
detecting all three studied design flaws. The former 
presented no more than 20% of false positives, whereas the 
latter exhibited many false positives. We could also verify 
that this advantage in favour of our rules was mainly due to 
the fact that they are sensitive to the design concerns. For 
instance, many false positives of the conventional rule for 
Shotgun Surgery occurred because its metrics do not 
distinguish coupling between classes of the same concern 
and classes with different concerns. 

 

 
5.5 Study Constraints 

The goal of this paper was to assess how concern-
sensitive heuristics can reduce false positives and false 

negatives of metrics and conventional heuristics. However, 
we have not assessed the reliability and feasibility of concern 
identification. For instance, detecting the Exception 
Handling concern is almost 100% automated because it is 
clearly marked in the systems by language constructs, such 
as try-catch blocks. On the other hand, concerns like 
Persistence, Distribution and Concurrency are more 
application dependents leading to a more complex 
identification process. Fortunately, recently proposed 
approaches and tools facilitate the concern mining [8, 21]. 

We evaluated the applicability of the approach by 
defining thirteen concern-sensitive heuristic rules that are 
classified in three categories. Based on their application to 
six systems, we have shown that concern heuristics are 
accurate means of flaw detection and are usable in practice. 
However, we do not claim that our data are statistically 
relevant due to the reduced number of case studies. We have 
also not used rigorous statistical methods in the empirical 
evaluation. Nonetheless, we are considering the sample 
representative of the population due to the heterogeneity of 
systems and concerns involved in this study (Section 5.1). 

The definition of proper threshold values intrinsically 
characterises any assessment approach [17, 18]. Our strategy 
based on our empirical evidence was to use: (i) 50% as 
default for the concern diffusion heuristics (Section 4.1), (ii) 
a meaningful ratio [17] that represents the definition of black 
sheep and octopus [5] (Section 4.2), and similar thresholds 
used by Marinescu [17, 18] in the heuristics for bad smells 
(Section 4.3). Of course those values might need to be varied 
depending on application particularities and assessment 
goals. 

6 CONCLUDING REMARKS 
This paper (i) presented a suite of concern-sensitive 

heuristic rules, and (ii) investigated the hypothesis that these 
heuristics offer enhancements over typical metrics-based 
assessment approaches. The heuristics suite can be extended 
and, by no means, we claim that the suite of rules proposed 
in this paper is complete. For instance, Section 4.2 presents 
heuristics for only two from a catalogue of 13 crosscutting 
patterns [7]. Furthermore, the heuristic suite for concern-
aware design flaws (Section 4.3) focuses on bad smells and 
could be extended to deal with additional sorts of modularity 
flaws. 

Our investigation indicated promising results in favour of 
concern-sensitive heuristics for determining concerns that 
should be aspectised. It also pointed out that the heuristics 
have around 80% of precision (Sections 5.3 and 5.4). 
Additionally, heuristics provided enhancements both in 
purely OO and in aspectual design assessment. But, we also 
identified some problems in the accuracy of the heuristics 
when (Section 5.3): (i) they were applied to small design 
slices (patterns library [15]), and (ii) there was a presence of 
concern overlapping. Similar problems remained when the 
heuristics were applied to the corresponding aspectual 
designs. For instance, some concerns were misclassified in 
scenarios involving an explicit precedence declaration 
between two or more aspects. However, even in presence of 
these intricate concern interactions (all systems, but the 

TABLE IV.             STATISTICS FOR THE HEURISTICS RELATED TO BAD 
SMELLS. 

Bad 
Smell 

Concern-Sensitive 
Rules 

Conventional 
Rules 

Hits (%) FP (%) Hits (%) FP (%)
Shotgun 
Surgery 8 (89%) 1 (11%) 9 (56%) 7 (44%)

Feature 
Envy 3 (100%) 0 (0%) 1 (17%) 5 (83%)

God 
Class 8 (80%) 2 (20%) 1 (17%) 5 (83%)
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patterns library) the heuristics presented acceptable rates 
(Tables II and III). Of course, our study is an initial stepping 
stone on understanding how concerns can be useful 
assessment abstractions. Further analyses are required to 
confirm or refute our findings. 
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