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This article is the first part of an investigation into the scattering of fluid coupled
structural waves by an angular discontinuity at the junction of two plates of
different material properties. These two thin elastic plates are semi-infinite in
extent therefore forming the faces of an infinite wedge, the interior of which
contains a compressible fluid. A plane unattenuated structural wave is incident
along the lower face of the wedge and is scattered at the apex. The edges of the
elastic plates may be joined in a variety of different ways, for example, they may
be pin-jointed to an external structure or welded to each other. In the former
case, the plates will experience only the usual flexural vibrations whereas in the
latter case longitudinal (in-plane) disturbances will be generated and will
propagate away from the wedge apex.

An exact explicit solution is sought in terms of a Sommerfeld integral
representation for the fluid velocity potential. This permits the boundary-value
problem to be recast as a functional difference equation which is easily solved in
terms of the Maliuzhinets special function (Maliuzhinets, Soviet Phys. DokL 3
1958). The chosen ansatz for the solution is of a different form from that used
previously by the authors for the less complicated membrane wedge problem. The
new ansatz has several analytic and numerical advantages which enable the
reflection and transmission coefficients to be expressed explicitly in a compact
form that is ideal for computation.

In the second part of this study a full numerical investigation of the reflection
and transmission coefficients will be presented for a variety of interesting
parameter ranges and edge conditions.

1. Introduction

The transmission and reflection of waves at discontinuities in physical structures
has long been of interest to engineers. Examples include electromagnetic and
acoustical waveguides, where the material properties of the propagating medium,
the cross-sectional area of the guide, or the properties of the boundary itself, may
all change abruptly. Such effects are utilized in vehicle silencer design to 'smooth
out' the pressure fluctuations created by the engine and hence reduce the noise
emission. The same problems can arise in solid structures, where vibrational
waves created by engines, gearboxes, external turbulent flows or other hydroelas-
tic sources often propagate with little loss of energy. At abrupt changes in the
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I J. B. LAWRIE AND L D. ABRAHAMS

structure those elastic (or other) waves may reflect or scatter some of this energy,
sometimes with quite large and deleterious effects. Submarines are mainly
composed of structural members covered by thin metal plates or shells, both of
which are good waveguides for transmitting the engine's low-frequency vibra-
tions. At, for example, points where the elastic plates are welded together or
whenever side-spars are connected to the main members this energy can be
channelled and indeed focused. It is not uncommon for parts of such structures
that are quite remote from the vibrational source to have quite serious noise
problems.

To understand the way in which energy is distributed around a complex
structure it is necessary to study the fundamental component problems: the weld
point; the point where one member joins another etc. These individual scatterers
cannot easily be combined to obtain the full solution, as multiple reflections or
scattering often occurs, but their solution is required none the less. This paper will
concentrate on the transmission problem for elastic waves on thin plates in
underwater or aeroacoustic situations. It is a straightforward matter to calculate
the in vacuo transmission and reflection of elastic waves at the interface of two
planar, semi-infinite flat plates, of different materials, joined at their edges.
However, the same is not true if one or both sides of the plates are immersed in
fluid since the structural wave energy can be shed into the fluid via complex
scattering at plate edges. This important problem was first studied by Brazier-
Smith (1987) and again recently by Norris and Wickham (1995). In both papers
the Wiener-Hopf technique was employed. In a similar vein Cannell (1975)
solved the problem of diffraction of plane acoustic waves in an infinite fluid
containing a semi-infinite plate. It is not only discontinuities in material properties
that cause reflection and scattering of plate waves, a change in slope can have the
same effect. The fundamental problem for investigation in this context is that of
two semi-infinite thin elastic plates, joined at their free edges and containing
within the wedge thus formed a compressible fluid. For ease of mathematical
exposition fluid is only contained in the interior wedge region, -/3 < 9 < 0, where
6 and /3 are illustrated in Fig. 1.

The model problem is perhaps most physically interesting because there are a
wide variety of ways in which the two plate edges can be joined. These can lead to
very different reflection, transmission and scattering results, including the mode
conversion from flexural to longitudinal vibrations. For example, the two plates
can be clamped to an external structure so that their displacements and slopes at
the edge are zero. Alternatively, if there are no external forces or moments at the
wedge apex, and the plates are hinged, then each plate experiences a force from
the other plate, but zero moment. In the former case no in-plane, or longitudinal,
vibrations are induced whereas the latter example will generate such travelling
waves. For multiple scattering problems, involving several 'inner' problems of this
type, it is important to understand and classify all these possible cases and to
calculate the energy at infinity in each component. The induced longitudinal
motions from one apex may travel a long distance with little attenuation (these
are not coupled to the fluid) but then scatter energy into the fluid and structure
when next it meets an angular discontinuity. This paper therefore seeks to
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SCATTERING OF WAVES I: ANALYTIC SOLUTION

FIG. 1. The physical configuration

present a solution to the plate/fluid wedge model for general edge conditions and
plate types. An exact, explicit solution is presented in a form convenient for
numerical evaluation, and a complete classification of all the edge conditions is
made. In order not to overface the reader, the work is split into two parts. This,
the first article, is concerned with a brief derivation of the exact solution for
arbitrary plate and fluid parameter values and wedge angle. The reflection and
transmission coefficients for unattenuated plate waves are explicitly given herein,
as well as a prescription of the procedure for the complete range of edge
conditions. In part n, numerical results will be presented for a variety of
physically interesting cases.

The solution method of this work employs a Sommerfeld integral representa-
tion. This is the natural far-field form for a function which is most easily
expressed in polar coordinates and which satisfies the wave equation. For
boundary-value problems in which the wedge faces are of impedance or
higher-order type (that is, consisting of combinations of the unknown function
and its derivatives normal and tangential to the surface), then the application of a
Sommerfeld transform reduces the problem to a functional difference equation.
Maliuzhinets (1958) and Williams (1959) were the first to solve such equations for
impedance boundaries. For higher-order conditions, such a membrane or elastic
plate, Maliuzhinets's approach does not follow through in a straightforward
manner. Instead, particular solutions of the difference equation must be added in
correct combinations to ensure satisfaction of the specific edge conditions. This
was suggested by Osipov (1994) and independently by Abrahams and Lawrie
(1995) and Lawrie and Abrahams (19%), the latter articles addressing the fluid
loaded membrane wedge for arbitrary wedge angle. Recently, Osipov and Norris
(Osipov & Norris, 1996; Norris & Osipov, 1996) have also turned their attention
to plane wave scattering by membrane and elastic faced wedges.
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4 J. B. HWRIE AND I. D. ABRAHAMS

This article builds upon the work presented in (Abrahams & Lawrie, 1995) and
so for brevity the solution scheme is merely offered to the reader rather than
derived. A more extensive bibliography can be found in that paper. However, it is
worth mentioning here that an alternative approach to the solution of such
problems was offered by Abrahams (1986, 1987) who then employed the
Kontorovich-Lebedev transform, which is the analogue of the Mellin transform
for the wave equation. Further alternative procedures for wedge-type scattering
problems (for example, see (Davis, 1996)) are available in the literature, but
these are not so useful for high-order boundary conditions.

There is a significant increase in complexity of the solution when comparing
the present boundary-value problem for two arbitrary elastic plates with that of
the membrane wedge. This is due to the additional number of edge constraints
required, the number of attenuated coupled plate wave modes and the potential
coupling to in-plane plate vibrations. In order to simplify the analytical form of
the solution, and to significantly reduce the associated difficulties of computing
the particular integrals, it is most convenient here to work with a solution ansatz
modified from that offered in (Abrahams & Lawrie, 1995). It can be shown
(Lawrie & Abrahams, 1996) that the two are in fact equivalent to each other (as
they must be since the solution is unique), and to that proposed by Norris and
Osipov (1996). This point will be amplified in the text.

The paper is organized as follows. In the following section the boundary-value
problem is reduced, via the introduction of a Sommerfeld integral representation,
to a pair of coupled inhomogeneous difference equations satisfied by a function
with certain specified analyticity properties. This function is assumed to a take a
special form (3.4) in Section 3.1, which is shown to satisfy the difference
equations. A precise number of free coefficients in this solution are to be specified
by satisfaction of the plate edge conditions. By expanding the solution about the
apex in Section 3.2, these coefficients are related directly to the plate
displacements and their derivatives at the edges. In this way a low-order linear
system of equations for these coefficients is obtained, which can be inverted for
any given set of edge constraints. Having fully specified the solution, Section 4
yields the reflection and transmission plate wave coefficients due to an incoming
unattenuated plate wave. These will be evaluated in part II for a range of
interesting edge conditions and across all wedge angles. The comprehensive range
of such conditions, and their mathematical specifications, is the subject of the
penultimate Section, 5. Finally, concluding remarks to this article are presented in
Section 6.

2. The boundary-value problem

An inviscid compressible fluid, of sound speed c0 and density p, occupies the
wedge shaped region defined in terms of a cylindrical polar coordinate system
(r, 6, z) by -/3 < 8 < fi, 0 *s r < °°. The fluid is bounded by two thin elastic plates
which, when undisturbed, lie along the rays 8 = ±/3. A small disturbance to either
plate or to the fluid will result in a fluid pressure perturbation, p(r, 8, z, t), which
satisfies the usual wave equation. The fluid pressure and plate motions,
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 5

7j±(r, z, t) (where the superscripts + and - are used to denote the displacements
of the upper and lower plates respectively), are coupled through the fluid velocity
potential, <P(r, 9, z, t), according to the relationships

p(r, 9, z, 0 = "P 77 if, 8, z, t) (11)
of

and

—L (r, Z, t) = — - (r, ±/3, z, t). (12)
dt r dO

In this article it is assumed without loss of generality that the small disturbance
takes the form of a plane structural wave of unit amplitude and raidan frequency
w which propagates from infinity along the lower plate towards the wedge apex.
The incident wave is incorporated into the fluid velocity potential and has the
form

&{r, 6, z, t) = Re {e-*-»«(^-/'-«e-1-} (13)

where the constant Xx is defined later in the text and k = <o/c0 is the fluid
wavenumber. This choice of forcing together with the physical geometry ensures
that the scattered sound field is independent of z. A solution with harmonic time
dependence is sought and using this information the two dimensional velocity
potential may be expressed in the form

<P(r,e,t) = Re{<t>(r,e)e-i°*}- (2.4)

For convenience the time dependence is henceforth suppressed.
The full boundary-value problem can now be stated in terms of the complex

velocity potential, <f>(r, 9), as

with 'plate' boundary conditions given by

f ^ - M 4 j ~ + «i«-i^(-ifcr-«c"-1>W. »«-/B (2-6)
LOT J T ao n_i

and

In (2.6), (2.7) the quantity (i (v) is the in vacuo wavenumber and at (a2) is the
fluid loading parameter for the lower (upper) plate (for definitions of these
quantities see, for example, (Cannell, 1975)). The terms on the right-hand side of
(2.6) and (2.7) are a linear combination of the Dirac delta function and its
derivatives. These correspond directly to physical forces and moments applied to
the plates at the wedge apex (Leppington, 1978). A discussion of these quantities
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6 J. B. LAWRIE AND L D. ABRAHAMS

is given in Section 5; however, it is important to note here that the full
specification of the boundary-value problem requires appropriate edge conditions
to be applied to both plates at r = 0. The edge conditions depend on the physical
problem under consideration and it is not uncommon for different conditions to
be applied to the lower and upper plates. The coefficients An and Bn in (2.6) and
(2.7) are defined such that they have the same physical dimensions as the fluid
velocity potential; the factor (—\k~f~n is introduced purely for algebraic con-
venience in the subsequent analysis. Finally, in addition to (2.5), (2.6) and (2.7) it
is necessary to impose certain restrictions on the velocity potential. That is,
4>{r, 6) must be finite at r = 0 and, with the exception of the incident wave (23)
and its images, must comprise only of outgoing or decaying waves as r - » » .

In order to obtain an exact solution of the above boundary-value problem it is
convenient to express the velocity potential as a Sommerfeld integral. Thus,

(2.8)

where the path of integration comprises a U -shaped loop lying above the real
axis and a D -shaped loop lying below the real axis; see Fig. 2. Any singularities

o-

Fio. 2. The complex j-plane showing the Sommerfeld integration contour 7 = 71 + ft- Any poles
lying in the right-hatched region (that is, hatching with negative slope) correspond to incoming waves,
and poles in the left-hatched region (positive slope lines) give exponentially growing terms as r—»».
Also, r, and F2 are the steepest descent contours, and the poles at pf, j = 0,1,3 correspond to the
unattenuated incoming wave, an unattenuated outgoing wave, and a typical leaky wave respectively
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 7

of the integrand (which only take the form of poles) lie strictly outside the
regions enclosed by either loop; those of physical interest are contained between
the horizontal portions of both loops. Note that the upper loop commences at
Jt/2 + ioo, loops round the hill of the exponent at a finite point of the complex
s-plane, and terminates at -3n/2 + i=°. Similarly, the lower loop starts at
-n /2 - i«> and ends at 3n/2 - i». It is easy to deduce that, expressed in this form,
the velocity potential automatically satisfies the reduced wave equation. The
object is thus to determine the function f(s + 8) such that <f>(r, d) satisfies (2.6),
(2.7). An additional requirement on f(s + 6) is that, with the exception of the
poles corresponding to the incident wave and appropriate images, its poles must
lie in the correct regions of the complex s-plane to represent only outgoing waves.
On substituting (2.8) into (2.6) and (2.7) and using the properties of the
Sommerfeld integral to represent each delta function in the appropriate form (see
(Abrahams & Lawrie, 1995)), it is found that f(s) satisfies the following two
functional difference equations:

where

Pis)f(s-p)

Qis)fis + P]

i + P(s)fi-s-fi

) + Qis)fi~s + l

n - l

A

n-\

cos""1

cos"'1

(s)sin

(s)sin

is),

is),

(29)

(210)

P(s) = sin5 (s) - 2 sin3 (s) + a sin (s) + \c, P(s) =-P(-s), (2.11)

n(5) + id, Q(s) = -Q(-s), (2.12)

and the non-dimensional coefficients are defined by a = 1 - fi*/k*, c = a1/k
s,

b = 1 - vA/k*, d = a2/k
5. It is convenient to write P(s), Q(s) in the following

form:

P(s) = f l sin (j) -s in (X,), Q(s) = f l sin (s) - sin (Yj), (113)

where

Re(^,) ,Re(y,) = 0, Im(*,), Im(Y,)<0 (214)

correspond to the wavenumbers of unattenuated plate waves on the lower and
upper surfaces respectively (see 2.3). The other complex-valued coefficients are
defined to lie in the ranges

-Jt/2 « Re (X3), Re (Y3) < 0, Im (X,), Im (Y3) > 0, (215)

- n/2 « Re (X5), Re (Y5) < 0, Im {X5)t Im (Y5) < 0, (216)

and

X,= -Xl+U Y,= -Yy+1, ; = 2,4, (217)

where the overbar in the last equation signifies complex conjugate.
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8 J. B. LAWRIE AND L D. ABRAHAMS

3. E n d solution of the boundary-value problem

3.1 Solution of the difference equations

It is a relatively straightforward procedure to write down a suitable ansatz for
the solution of the difference equations (2.9), (2.10). From a previous paper by
the authors (Abrahams & Lawrie, 1995) the chosen ansatz could take the form

(* + B, * , ) + £ Angn{s) + £ Bnhn(s)}, (3.1)
n - l n - 1 >

where fo(s) is a solution to the homogeneous system of difference equations, the
functions gn(s), hn(s) are particular solutions of (2.9), (2.10) and a(s + B, Xj) is
an eigensolution which corresponds to the incident surface wave on the lower
plate together with its images. The precise form of this eigensolution is found by
noting that an unattenuated plate wave on the lower wedge surface has
wavenumber corresponding to Xx and that the pole that gives rise to this wave
term must lie in the region of the complex s-plane that corresponds to incoming
waves. For convenience, the incident wave is chosen to have unit amplitude and
thus, following Maliuzhinets (1958), a(s, z) is denned as

*'Z^= ~ 4/3sin 2 i / s i n fa ^ + ̂ sin4/3sin 2 i / s i n fa ^ + ̂ sin 7B ** ~ '̂
This eigensolution can be easily shown to satisfy the relations

(r(a,z) = a(-a,z), a(a +2/3, z) = a(a -20, z). (3.3)

The ansatz, given in expression (3.1), is not the only form of solution possible.
Indeed, other forms may be more or less convenient for the purposes of this
paper. Norris and Osipov (1996) postulated an alternative ansatz to (3.1), but the
computationally most efficient form (as will be discussed later) is taken to be

Hs)=Ms)a(s + f3, Xy)v(s - fi, YA £ A#H(s) + £ Bnhn(s)\ (3.4)

The eigensolution a(s - /3, Yx) includes an incoming wave contribution (and its
images) on the upper plate which, by correct choice of the constants An, Bn, must
be removed if no such forcing is insinuated.

The function fi^s) is defined for the general wedge problem in (Lawrie &
Abrahams, 1996) and the appropriate form for this particular problem is

1fa)=M'Ms). (3-5)

Ms) = FI M0(s -Xj-fi+ ^JMp{s + x,-fi-?), (3.6)

Ms) = ft M0(s -Yj + B+ ^)M,(S + YJ + P-P), (3.7)
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 9

where the reflection relations fi(s + P) = /i(/3 - s) and fz{s- P) = fz{-s - p)
should be noted. The Maliuzhinets function, Afp(z), was first defined in a paper
by Maliuzhinets (1958) and its properties are given in some detail in (Abrahams
& Lawrie, 1995, Appendix A). It remains to define the particular solutions
gn(s),hn(s). These sets of functions (n = 1,2,3,4) are particular integrals of
the difference equations (2.9) and (2.10). Each set of functions is defined in terms
of a pair of constant-coefficient first-order functional difference equations
which are obtained by substituting a(s + p, X^a^s - p, Yi)fo(s)gn(s) and
a(s + p, Xi)a(s - p, Yi)fo(s)hn(s) into (2.9) and (2.10) respectively. Thus, using
(3.3), gn(s) satisfies

and

gn(s + p) = gn(J3-s), (3.9)

whilst hn(s) satisfies

hn(s-p) = hn(-s-p). (3.11)

It is a relatively straightforward procedure to obtain integral representations for
gn(s) and hn(s) as defined by (3.8) to (3.11). Full details of the method by which
these are derived are given in (Abrahams & Lawrie, 1995); a similar representa-
tion, for general inhomogeneous terms is given by Tuzhilin (1973). For brevity we
merely quote the appropriate results to be

gn(s)=-

f )/0(a - fi)<r(a, Xx)a{a - 2/3, 7,) sin

and

cos" ' (a) sin (a) cos jnalAp)
- -da, (3.12)

cog"-1(tt)sin(a)co8(wq/4fl)
(<*)M<* + P)a(a + 2p, X1)a(a, Yt) sin {«(o + 0- s)/4p} "

The integral representation for gn(s) is defined for s lying in the strip
0 < Re (s + p) < 4p indented around several of the zeros of P(a)fo(a) as shown in
Fig. 3. The bounding line of the strip at 4/3 is of identical form to that shown
(that is, the strip is the area swept out by moving the contour in Fig. 3 a distance
40 to the right). Note that the indentations shown in Fig. 3 at ±{Yj + 2p), j = 3, 5
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10 J. B. LAWRIE AND L D. ABRAHAMS

-XA •

W<
A3Qi

-X2.

y5+2/3

Ira (a)

„ O -x.

. X 2

' ) x
^=D -Y3-2fi

•xA

Re (a)

FIG. 3. Integration contour for gH(s) indented around the pole singularities of the integrands

only occur for small enough wedge angles: /3 < — Re (Yj)/2, j = 3,5. For values of
s outside this strip it is necessary to employ the difference equation (3.8) as a
continuation formula. Likewise, the integral representation for hn(s) is defined for
s lying in -40 < Re (s — (i)<0, again suitably indented. This is the strip formed
by taking the contour shown in Fig. 3, interchanging the X and Y labels, and then
moving this contour a distance 4/3 to the left. Thus, for hn(s), -Y3 lies within the
strip, but not X3 + 2/3 etc. For values of s outside the strip, (3.10) is the
continuation formula of hn(s).

3.2 The near-field expansion

Embedded in expression (3.4) are the constants An and Bn, n = 0,1,2,3 which,
as yet, have not been specified. At least eight conditions (depending on the edge
constraints and incoming wave specification, see Section 5) are required in order
to determine these constants. Two independent conditions are obtained by
insisting that f(s) is 0(1) as s—* ±°o. The latter constraint is necessary in order
that the fluid velocity potential be bounded as r->0. It is a straightforward
procedure to show that

/o(5)=0(e-3 to /20, *->ieo, (3.14)

and

s, X) = - £ 2 sin
Pj-\

(3-15)

It follows that the terms in the parentheses of (3.4) must be O(e3ta/2p) as s --*• i°°.
In order to enforce this behaviour it is necessary to determine the behaviour of
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 1 1

gn(s) and hn(s) as s->i<». Fortunately, the asymptotic forms for the quantities
gn(s) and hn(s) are easDy derived and are quoted here as

gn(s) = t K^J*"2* + O(e3to/2*), s - ioo, (3.16)

hn(s) = £ A ^ * * + Otf*"2*), s - i», (3.17)
7-1

where the coefficients KM and A ,̂, n = 1 , . . . , 4 , y = 1,2 are given in explicit
integral form by

do (3.18)

a. (3.19)

" 20 .U P(a)fo(a-p)a(a,X1)a(a-2p,Y1)
and

- i ( - i y + 1 f1* cos""1 (a) sin (a) sin {jn(a +

Enforcement of the correct growth at infinity, that is, eliminating the e 1 " ^ and
gim/0 terms within the parentheses of (3.4), gives two equations for the unknown
edge coefficients. Thus,

£ AnKjn + £ B.Xp, =0, j-1,2. (3.20)
n - l n - l

As already mentioned, the ansatz (3.4) will, as written, give incoming
unattenuated transverse plate waves on both upper and lower plates. These arise
from poles at s = A r

1- /3, — Yx + P in the explicit tr terms, a(s + p,Xi),
cr(s - p, Yx) respectively. To eliminate the incoming upper plate wave, its residue
is set to zero:

£ Angn{-Yx + P) + £ BHhn(-Yx + P) = 0 (3.21)
n - l n - l

and to enforce the lower incoming plate wave amplitude to be unity, the residue
of f(s) atXr-p must be 1:

r- - B)a(X1 - 2p, y-)(£ A#H(XX - p) + £ BHhn(Xi - p)) = 1. (3.22)
\ i - l n-l '

For convenience, the constants in (321) and (322) are written as
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12 J. B. LAWRIE AND L D. ABRAHAMS

for all n, so that the four equations may be written as

KA + AB = F, (3.25)

where the elements of K,A are Kp,, \p,,j,n = 1,2,3,4 respectively, whilst the
vectors A, B and F are comprised of An, Bn and

( 3 2 6 )

This matrix system is incomplete, viz. four equations for eight unknowns, and
further equations for An and Bn must be added before these constants are fully
determined. These additional conditions are obtained by applying the edge
conditions, and in order for this to be done it is necessary to obtain the near-field
expansion of the plate displacements.

The near-field behaviour of the plates, that is, the form of i}*(r) as r—»0, is
found by rewriting the integral expression for 7j±(r) as

^ f sin (s){f{
2nu> Jri

7,*(r) = ̂  f sin (s){f{s ± /3) +f(-s ± flje""'"'" ds, (3.27)
2nu> J

where the path of integration is the upper of the two loops which together
comprise y (see Fig. 2). Consider the plate lying along the ray 6 = -fi; the
behaviour of i?~(r) as r —* 0 is obtained by expanding the integrand as \s\ - • » and
then integrating term by term. (As explained in (Abrahams & Lawrie, 1995), this
process is permissible because there are no poles within the loop yi and thus it
can be moved upwards as far from the origin as desired.) It is a straightforward
matter to show that

7 1 - 1

(3.28)

On substituting this expression into (3.27) and utilizing the result

= Jv{kr)e.-{YKfl (3.29)- — f
2 l tJr,

it is found that

~8 S A" *\{J3(kr) + 5J5(kr)}, r^O, (3.30)
n-i (,-i/c; or

where Co is the fluid sound speed. It is now easily deduced that

}2 (—ikr}3

(3.31)
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SCATTERING OF WAVES I; ANALYTIC SOLUTION 13

and a similar analysis for the upper plate yields the result

(3.32)

These two expansions will be employed in Section 5 to deduce the remaining
coefficient equations for a range of different edge conditions.

4. The reflection and transmission coefficients

Of considerable interest in any application of the model problem are the
reflection and transmission coefficients and it is instructive to be able to plot these
quantities as a function of the wedge half-angle p. In order to do so uniform
expressions must be obtained and this section deals with the derivation of these
formulae.

The reflection coefficient is the residue contribution to <f>(r, 8) arising from the
pole ats = -X1-n- p. That is, using R to denote the reflection coefficient,

R= lim (s + Xl + n + P)fo(.s)cr(s + p, Xj)a(s - p, YJ

] (4.1)
B - l J

This pole lies to the left of the strip -p<Re(s)<3p for which the integral
representation for gn(s) is denned. However, for Re (s) < -p a valid expression
for gn(s) is easily obtained by recourse to the difference equation (3.8). This gives
an expression in terms of gn(s + 4jP), where the counter / is chosen such that
s + 4//3 lies in the indented strip. In order that the final expression for R be both
uniform in p and easily computable, it is expedient to re-express gn(s + 4//3) in
terms of an integral whose path of integration is straight along the imaginary axis
from 0 to +i». This is achieved by first contracting the range of integration of
(3.12) onto the upper portion of the contour and then subtracting out various
poles. The final expression for gn(s). Re (s) < -p comprises of a sum of ; terms
arising from application of the difference equation together with a straight line
integral, gX(s + 4//3) and four finite sums of residues. A similar procedure is
demonstrated in greater detail in (Lawrie & Abrahams, 1996). Thus, for
Re (s) < -p, it is found that

a(s + p, XJais - p, Yl)Us)P(.s + P)

(s + p,r)Gn(r,pr)

r [Q(s - 2p)P(s)]' |,_r/0(-r + 3pMr, X,)a(r - 2fi,

where [ ]' |,_r indicates the derivative of the quantity in square brackets evaluated
at s = r, r takes the four values

r = X3, X5, Y3 + 2p, Y5 + 2p, (4.3)
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1 4 J. B. LAWRIE AND L D. ABRAHAMS

pr is the associated integer such that

and ;' has the integer value

1 WA fr\ 1 Po fv\

(4.5)
4 4/3 ' 4 4/3

Further, g^(z) is the straight line integral

in which -p<z<3/3, and

Gn{z, p) = 2 cos""1 U + 4mp) sin (z + 4m/9)

M
Note that Gn(z, p) = 0 if p « 0 , which corresponds to the situation in which no
poles are traversed during deformation to a vertical contour. Also, in (4.7) and
below, the product n^_! is taken as unity.

Likewise, the point s = -Xx -n-P lies in or to the left of the strip
-30 < Re (s) < p and it follows that a similar procedure must be employed in
order to obtain valid and computable forms for the functions hn(s). In this case
the counter u is chosen such that -3/3 < s + 4u/3 < p and it is found that

(s + p, XJais - p, Y1)f0(s)P(s + p)Q(s + 3p)

v(s-p,t)P(t-2p)Hn(t,q,)
r [P(* " 2p)Q(s))' \,.,fo(t - 3p)a(t + 2ft X,)a{t, Yt)'

in which
r [P(s - 2p)Q(s)) |,_,/oC - 3|3)cr(r + 2p, X,)a{t, Y,)

for each of the values of t
/=y3 , Y5, X3 + 2p, Xs + 2p, (4.10)

and

Also

h*( \ ^ r « W ( « ) sin (a)g(z-ft a)
A Z ; ° 2« A ^ ( a ^ a + P)a(a + 2/3, ^)o-(a, y,) °' l ' '
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 15

where again the path of integration is straight, - 3 0 < Re (z) < B, and

Hn{z, q) = Z cos""1 (z + 4m/3) sin (z + 4m0)

ftP(z20 + 4fl3){g(z+4Qfl)ff)
M

for q > 0. In a similar fashion to Gn(z, p), the term Hn(z, q) = 0 for q « 0.
Using gn(s) and /jn(s) in the forms given above it is now possible to evaluate

expression (4.1). Note that in the second terms of (42), (4.8) the pole at
s = — Xi — K — p comes from a zero of the polynomial P(s + /3) in the de-
nominator and not from fc(s) as this function is cancelled. After some effort it is
found that

R = - —sin—o-(*x + Jt, Xl)(i(Xl + n + 2p, y,)Af,(2/3 - w/2)A^(2tf, + 2/3 + n/2)
JT 4/3

x fl A / ^ j + Jf, + 2/5 + n/2)M0(Xl -X, + 2p + 3n/2)
t-2

5

x [ ] M^(^ + y, + n/2)Mfi(Xt -Y, + 3n/2)

X 2 U - g « " ^ i - K -18 + 4//5) + BnhX-Xt - 7i - /3 + 4«/3)

_

_

* /JnGn(-^! - 7t,;) A BnHn(-X, - n + 2/3, u)P(^)
^ P'(Jf) tl P'(^)G(^-20) • ^ ;

- 2B)P(s)]' |,-r/o(3/5 - r)a(r, * , M r - 2/3, yx)

y P(t - 20)o-(^1 + 71 + 2/3, t)Hn(t, q,) 1
r [P(s - 2B)Q(s)]' \,-,fo(t - 3B)a(t + 2/3, ^)cr(r, y,) J

In contrast to that for the reflection coefficient, the pole that gives rise to the
transmission coefficient lies to the right of the indented strip - 3 0 < Re (s) < /3 at
the point s = Yi + n + B. This has little effect on the analysis other than that the
difference equations for gn(s) and hn(s) must be iterated in the opposite direction.
Using T to denote the transmission coefficient it is found that

T= lim (s-Y1-n

*) + £ Bnhnf 2
n - 1

(s)}. (4.15)
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1 6 J. B. LAWRIE AND L D. ABRAHAMS

After a considerable amount of algebra this can be expressed in the form

T = ^ s i n — <r(Yx + 2p + n, Xx)a{Yx + n, Yx)Mp(2p - n/2)Mp(2Yx + 2p + JI/2)

x f [ Mp(Y, + Y, + 2/3 + nl2)Mp(Yx -Ye + 2p+ 3n/2)

x IJ Mp{Yx + Xf + n/2)Mp(Yx -X, + 3n/2)

4 r
x E l^ng^i'i + P+n~4u/3) + Bnh*iYx + p+n-AjP)

_ y Q (r - 2PMYx + 2p + n, r)Gn{r, pr)
'juyr, AX)cr\r Lp, ix)

" f [P(s - 2p)Q(s)]' \,.,fo(t - 3p)a(t + IP, Xx)a{t, Y

y AnQ(Y1)Gn(2p-Yi-n,u) y BnHn{-Y,~n,j)
n% P(Yl-2p)Q'(Y1) & Q'{Yl) ' K )

5. The edge conditions

In the previous section it was noted that only four conditions for the constants
An and Bn, n = 1,2,3,4 can be specified by imposing finiteness of fluid pressure
and the correct incoming wave condition. Therefore, four additional conditions
are required and these are obtained by consideration of the physical constraints
applied to the plates at the wedge apex. However, for certain important -cases six
conditions are in fact required because of the necessary introduction of two
extra scalar constants. In these rather special situations the matrix system (which
incorporates (3.25)) is thus increased in size to 10 x 10.

In this section a variety of edge conditions will be described. The first
subsection deals with the simplest sets of edge conditions corresponding to
situations in which the plate edges do not interact. For example, the plate
displacements may be zero and the gradients or moments specified. In these
cases, all possible combinations of uncoupled constraints lead to four additional
conditions for the coefficients An, Bn. The second subsection deals with the more
complicated situation which can arise when the wedge apex is free to rotate and
translate in space (that is, no external forces constrain the apex displacement).
The edge conditions on both plates are now intrinsiciaUy coupled and this results
in the generation of 'in-plane' as well as 'out-of-plane' displacements within the
plate. Such motions are incorporated into the analysis of the edge behaviour and,
as mentioned above, this increases the size of the system of linear equations to be
solved.
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 17

5.1 Independent edge conditions

The simplest edge conditions are those that may be applied to the two plates
independently. These are appropriate if the wedge apex is constrained by external
forces or moments in such a way as to fix its location in space, or if the plate
edges move without touching. Below are summarized the most commonly found
constraints acting on thin plates, and note should be taken of the fact that either
plate can independently experience any one of them.

(I) Clamped plate. A clamped edge, often referred to as 'built-in', constrains
the plate to maintain zero displacement and gradient. That is,

7,r(0)-0, (5.1)

which, if applied to the upper surface, gives

B4 = 2*3 = 0 (5.2)

from (332), and when specified to the lower plate gives, from (331),

A4 = A3 = 0. (5.3)

(II) Pin-jointed. Either plate may be pin-jointed to a fixed point in space, in
which case it will be constrained to have zero displacement and zero moment at
the origin. It is easy to show that this yields the edge-conditions

T,(0) = TUO) = 0, (5.4)

which translates to the coefficient values

B4 = B2 = 0 (5.5)

when applied to the upper plate, and

A4 = A2 = 0 (5.6)

for the lower surface.

(III) Free edge. A third set of conditions is appropriate to the common
situation in which the edge of a plate is free of both external moments and forces.
In terms of the plate displacement (Junger & Feit, 1986):

1?n-(0) = 7^(0) = 0 (5.7)
and so, from (332),

B2 = fli = 0 (5.8)
for a free upper plate, and

A2 = A^0 (5.9)

for the same condition applied to the lower one. Note, these only hold if the two
plates do not touch each other during their motion.

In some physical situations it may be appropriate, as mentioned above, to apply
different edge conditions to the two plates. For example, the lower plate may be
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18 J. B. LAWRIE AND L D. ABRAHAMS

free (HI) whilst the upper plates is clamped (I) which corresponds to the
conditions

A2 = A1 = B4 = B3 = 0. (5.10)

Alternatively, the lower plate may be pin-jointed (II) whilst the upper plate is
free (HI) which gives rise to conditions (5.6) and (5.8). Any combination of the
clamped, pin-jointed or free edge conditions may be applied to the plates
although, obviously, some sets of conditions are more realistic than others.

Certain physical situations can arise in which the edges are partially
constrained. That is, external forces may restrict the motion of the apex to one
direction only. For example a sliding pin-joint permits motion in a specified
direction (say, vertically or horizontally). Partially constrained edges will generate
in-plane compressional waves of the type discussed fully in the next subsection.

5.2 Coupled edge

If the wedge apex is free to move in space then in general the edge constraints
applied to the two plates will be coupled. As a thin elastic plate resists motion in
both its transverse and longitudinal directions, it is also necessary to account for
in-plane motion. That is, compressional waves of the type that couple to
transverse vibrations in shells and shell-like structures (see, for example, (Lawrie,
1986) or (Zhang & Abrahams, 1995). In-plane plate motion is usually governed
by a linearized wave equation of the form

where f * is the in-plane displacement in the upper (lower) plate, k* = <o/Cp,

is the square of the speed of compressional waves in the upper (lower) plate, and
E±, pp, v* are the Young's modulus, density and Poisson's ratio of the respective
surfaces. Note that the plate coefficients /i and v appearing in (2.6), (2.7) are
related to the compressional wavenumber via

v2 = Vi2*;/ / i+ , ^ 2 = Vi2 k;/h~ (5.13)

in which h± is the thickness of the corresponding plate.
On taking the outgoing solution of (5.11) and expanding for small r, it is found

that

i-»0, (5.14)

where (Q are the transmission coefficients of the in-plane waves. These two
unknowns must be determined along with the coefficients An and Bn of (3.4), and
so two additional conditions are required on top of the four already discussed in
Section 5.1.
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SCATTERING OF WAVES I: ANALYTIC SOLUTION 19

Flo. 4. The external force applied at the plate edges (Fx, Fy) and the nonnal and shear stresses in the
upper and lower plates

Before examining specific cases, it is useful to obtain general edge conditions
for coupled plates. First, any external forces at the wedge vertex must be
balanced, for all time, by stresses in the plates. Figure 4 illustrates this balance,
where Re (Fxe~[wr), Re (/-ye"'"*) are external forces (per unit span in the
z-direction) applied in the horizontal and vertical directions respectively, and p*
and n* are the longitudinal (normal) and transverse (shear) stresses generated by
the upper and lower plates as shown. Resolving forces gives

(h+p+ +h~p~) cos p + (h+n+ - h~n~) sin P = Fx,

(h+p+ -h~p~) sin p-(h+n+ + h~n~) cos p = Fy.

(5.15)

(5.16)

The stresses at the elastic plate edges are easily related to the unknown
coefficients (Junger & Feit, 1986), and are found to be

where

(5.18)

Second, the condition that the plates remain in contact at the wedge apex gives,
by resolving displacements, the following relationship between the two plate
edges:

/ Co \ /co
\Ajcol

 = Vsi
cos (20) -sin(2/B)\/ ti \
sin (20) cos (2/3) )\BJcJ'

(5.19)

Here, BJco, A4/c0 are the transverse displacements at the origin of the upper and
lower plates respectively, as is easily seen from (331), (332).

(IV) Hinged corner. The case of two plates joined by at their edges by a
frictionless hinge is now examined. If there is no external support to hold the

 at Pennsylvania State U
niversity on February 20, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


2 0 J. B. LAWRIE AND L D. ABRAHAMS

edge in place then there are no forces, Fx = Fy = 0, and the hinge implies that both
plates experience zero torque. The latter condition gives, as in (II) above (5.4),
(5.5),

A2 = B2 = 0 (5.20)
and with zero forces:

(d+Co + d'Co) cos p + (c + 5 t - cM,) sin /3 = 0, (5.21)

(d+($ - d~{a)sinp - ( c ^ + cM,)cos0 = 0. (5.22)

Hence (520) to (522) and continuity at the edge (5.19) give six equations. These,
with (325), give ten equations for the ten unknowns An, Bn, n = 1 , . . . , 4 and Co
and so all the coefficients can be determined.

(V) Welded corner. If the two plates are welded together, and not constrained
by external forces or moments, then the apex angle can be (approximately)
assumed to remain fixed at 2/3. Therefore, the constant angle condition

r,r
+(0) = 1,7(0) (5.23)

and zero external moment
T , ^ 0 ) + 7,-(0) = 0 (5.24)

replace the edge conditions (520) above. Hence, in terms of the unknown
coefficients,

B3 = A3, B2=-A2, (5.25)

equations (521), (5.22), (5.19) and (325) specify the problem uniquely.

(VI) Sliding pin-joint. As an example of more complicated edge conditions,
the case of a pin-joint, free to slide in the horizontal direction only, will be
considered. If the joint is assumed to be frictionless then it is a hybrid of
conditions (II) and (IV) above. First, displacements are in the horizontal direction
only, and so, from continuity (5.19),

(o cos P - (BJc0) sin p = Co cos 0 + (AJc0) sin p, (5.26)

Co sin p + {BJCQ) COS P = - Co sin P + (Ajc0) cos p = 0. (527)

Secondly, no moment on each plate edge allows (520) to hold and finally, zero
force in the horizontal direction implies (521). Once again, (5.26), (527), (520)
and (5.21) give six equations, which with (3.25) are enough to determine all the
ten unknown coefficients. Most other edge conditions which may be encountered
can be dealt with in an identical fashion.

6. Discussion and conclusions

In this article an ansatz for the solution to scattering of fluid coupled structural
waves at an angular discontinuity has been presented. That ansatz has been
applied to determine the reflected and transmitted waves generated when a
plane structural wave is incident towards the apex of a fluid wedge of arbitrary
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SCATTERING OF WAVES L ANALYTIC SOLUTION 21

angle bounded by two elastic plates of dissimilar material properties. As
mentioned previously, the solution is different in form from those offered by
Abrahams and Lawrie (1995) and Osipov and Norris (1996) for the solution of
the membrane wedge problem. The new ansatz, whilst undoubtedly equivalent to
these previous formulations, has several advantages which make it both
particularly compact in form and useful for computational purposes. To recapita-
late, the function f(s) is assumed to take the form

f(s) =fo(sMs + ft XrMs - p, ¥,){ £ A^s) + £ Bnhn(s)}, (6.1)
<-n- l n - l }

where the quantities fo(s), a(s, z),gn(s) and hn(s) are defined in equations (3.5)
to (3.11). The eigensolutions cr(s + /3, Xx), ffa - P, Vj) contain poles at Xx - fi,
-Yx + fi which correspond to incoming structural waves on the lower and upper
plates respectively. Thus, there is a choice of forcing and without loss of
generality one pole can be suppressed by suitable choice of the constants An and
Bn. In this article the forcing was introduced along the lower plate.

One advantage of this form of the solution is that the particular integrals gf(s)
and /i£(s) ((4.6) and (4.12) respectively) assume a simpler form than those used
previously, in that the integrand is free of poles on the path of integration. This
avoids the need to remove such singularities by subtracting out appropriate terms
from the integrand (Abrahams & Lawrie, 1995) or for a principal value
interpretation of the integrals (Osipov & Norris, 1996). Numerically, this avoids a
considerable amount of work in obtaining an accurate evaluation; for example, in
the approach employed previously by the authors, the term subtracted in order to
remove the singularity decayed (as a -»i<») with a different exponent to that of
the original integrand.

Further, the ansatz used herein is symmetric with respect to forcing and
geometry. One can choose whether to introduce the forcing term along the lower
plate or the upper plate simply by swopping the right-hand sides of (3.21) and
(3.22). This reflects the inherent symmetry in the problem; that is,

<Hr,e)-4>a(r,-0), (6.2)

where <f>a is the adjoint wedge problem in which the upper and lower plates, and
the incident plate forcing, are interchanged. A consequence of (6.2) is that, simply
by interchanging Xt and Yj, j = 1,2,3,4,5, the results for the adjoint problem can
be retrieved directly from the solution presented here. Using to denote the
operation of replacing Xt by Yj, it is a simple matter to show that

P(s) = Q(s), An = -Bn, Bn = -An (6.3)
and

Ms)=fo(-s), $%s) = h*(-s), fi%s) = g%-s). (6.4)
It follows that

R-Ta, t = Ra (6.5)
which indicates that the reflection and transmission coefficients for the adjoint
problem (Ra and 7 )̂ are obtained by interchanging X} and Yj in the transmission
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2 2 J. B. LAWRIE AND I. D. ABRAHAMS

and reflection coefficients obtained in Section 4. This provides a useful check on
the solution, and can easily be verified for (4.14) and (4.16).

Finally, it should be noted that the forcing can be generalized. Instead of a
structural wave, in fact any incident wave can be taken. The solution form then
becomes, for example,

f(s)=fo(sMs + p, 0O + PMs -p, y,)f £ Angn(s) + £ Bnhn(s)\ (6.6)

where 80 is the (complex) angle of incidence of the plane wave forcing term and
can take any value inside the strip 0 < Re (0O + P) < 2/3 indented as shown in Fig.
3. The symmetry of the solution is not lost but, with the generalized forcing given
in (6.6), the particular integrals gn(s) now have contours indented around the
singularities on the imaginary line at ±X\. Whilst considerably less convenient for
computational purposes, this poses no insurmountable problem and may be dealt
with as discussed above. Note that the particular integrals hn(s) do not exhibit the
same problem.

To summarize, this article is the first part of an investigation into the scattering
of structural waves at an angular discontinuity. Expressions for the reflection and
transmission coefficients have been derived and a full discussion of the various
edge conditions has been presented. In the second part of this work comprehen-
sive numerical results will be offered for a range of edge conditions and across
all wedge angles (that is, 0 < p < it). Particular emphasis will be given to edge
conditions and combinations of fluid and elastic plate constants that are of
physical interest. Of particular focus will be the amount of the incident wave
energy which is converted into each of the reflected and transmitted transverse
and longitudinal plate modes and into the scattered field.
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