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Abstract

In this paper, a new mathematical framework to the analysis of millimeter wave cellular networks is

introduced. Its peculiarity lies in considering realisticpath-loss and blockage models, which are derived

from recently reported experimental data. The path-loss model accounts for different distributions of

line-of-sight and non-line-of-sight propagation conditions and the blockage model includes an outage

state that provides a better representation of the outage possibilities of millimeter wave communications.

By modeling the locations of the base stations as points of a Poisson point process and by relying on a

noise-limited approximation for typical millimeter wave network deployments, simple and exact integral

as well as approximated and closed-form formulas for computing the coverage probability and the

average rate are obtained. With the aid of Monte Carlo simulations, the noise-limited approximation is

shown to be sufficiently accurate for typical network densities. The proposed mathematical framework is

applicable to cell association criteria based on the smallest path-loss and on the highest received power. It

accounts for beamforming alignment errors and for multi-tier cellular network deployments. Numerical

results confirm that sufficiently dense millimeter wave cellular networks are capable of outperforming

micro wave cellular networks, both in terms of coverage probability and average rate.

Index Terms

Millimeter Wave Communications, Multi-Tier Cellular Networks, Stochastic Geometry.

I. INTRODUCTION

In spite of common belief, recently conducted channel measurements have shown that mil-

limeter wave (mmWave) frequencies may be suitable for cellular communications, provided

that the cell radius is of the order of 100-200 meters [1]. Based on these measurements, the

authors of [2] have recently investigated system-level performance of mmWave cellular networks

and have compared them against conventional micro wave (µWave) cellular networks. The

obtained results have highlighted that mmWave cellular communications may outperformµWave

cellular communications, by assuming similar cellular network densities, provided that a sufficient

beamforming gain is guaranteed between Base Stations (BSs)and Mobile Terminals (MTs).

Manuscript received October 14, 2014. M. Di Renzo is with CNRS–SUPELEC–University of Paris–Sud XI, 3 rue Joliot–
Curie, 91192 Gif–sur–Yvette, France (e–mail: marco.direnzo@lss.supelec.fr). This work is supported in part by the European
Commission under the auspices of the FP7–PEOPLE MITN–CROSSFIRE project (grant 317126).
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These preliminary but encouraging results have motivated several researchers to investigate

potential and challenges of mmWave cellular communications for wireless access, in light of the

large and unused spectrum that is available at these frequencies [3], [4].

System-level performance evaluation of cellular networksis widely recognized to be a math-

ematically intractable problem [5]. This is due to the lack of tractable approaches for modeling

the locations of the BSs and the other-cell interference. Only recently, a new mathematical

methodology has gained prominence due to its analytical tractability, its capability of capturing

the inherent performance trends of currently deployed cellular networks, and the possibility of

studying next-generation heterogeneous network deployments. This emerging approach exploits

results from stochastic geometry and relies on modeling thelocations of the BSs as points of

a point process [5]. Usually, the Poisson Point Process (PPP) is used due to its mathematical

tractability [6]. Recent results on cellular networks modeling based on stochastic geometry are

available in [7]-[10], to which the reader is referred for a comprehensive literature review.

Motivated by the mathematical flexibility of the PPP-based abstraction modeling, researchers

have recently turned their attention to study system-levelperformance of mmWave cellular

networks with the aid of stochastic geometry. The aim is to develop mathematical frameworks

specifically tailored to account for the peculiarities of mmWave propagation channels and trans-

mission schemes [11]-[14]. In fact, currently available mathematical frameworks for modeling

µWave cellular networks are not directly applicable to mmWave cellular networks. The main

reasons are related to the need of incorporating realistic path-loss and blockage models, which

are significantly different fromµWave communications. For example, the authors of [1] and [2]

have pointed out that Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) links need to be

appropriately modeled and may have different distributions, due to the more prominent impact

of spatial blockages at mmWave frequencies compared toµWave frequencies. Also, in mmWave

communications a new outage state may be present in additionto LOS and NLOS states, which

better reflects blockage effects at high frequencies and accounts for the fact that a link may

be too weak to be established. In addition, large-scale antenna arrays are expected to be used

for directional beamforming in mmWave systems, in order to overcome the increased path-loss

at mmWave frequencies and to provide other-cell interference isolation. Therefore, directional

beamforming needs to be included in the mathematical modeling and performance evaluation.

Recently reported results on stochastic geometry modelingof mmWave cellular communica-
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tions take these aspects into account only in part [13], [14]. The approach proposed in [13] is

mathematically tractable for dense cellular network deployments and relies on an equivalent LOS

ball approximation. The interference-limited nature of the mmWave cellular networks analyzed in

[13] is, in part, due to the considered ultra-dense network deployment and to the relatively small

transmission bandwidth used for the analysis (i.e., 100 MHz). Larger transmission bandwidths

of the order of 1-2 GHz are, on the other hand, expected to be used in future mmWave cellular

systems [2], [4], [14], [15], which may enhance the impact ofthermal noise compared to the

other-cell interference. The approach proposed in [14] uses a similar LOS ball approximation,

but is applicable to medium/sparse network deployments. Furthermore, it is validated by using

actual building locations from dense urban deployments in the cities of New York and Chicago.

The three-state link statistical model empirically derived in [2] is, however, not explicitly taken

into account either in [13] or in [14]. Also, the impact of cell association criteria, beamforming

alignment errors and multi-tier other-cell interference are not considered in [13] and [14]. Similar

comments apply to [16], which highlights the importance of considering realistic blockage models

for accurate system-level performance evaluation of mmWave cellular communications. Against

this background, in the present paper a new methodology to the stochastic geometry modeling

and performance evaluation of mmWave cellular communications is proposed, which explicitly

accounts for the empirical path-loss and blockage models reported in [2], for different cell

association criteria, beamforming pointing errors and multi-tier deployments.

The paper is organized as follows. In Section II, system model and modeling assumptions are

introduced. In Section III, the statistical distribution of deterministic and random transformations

of the path-loss is provided. In Section IV, the frameworks for computing coverage and rate of

cellular networks are described, by considering a cell association based on the smallest path-loss

and on the highest received power. In Section V, the frameworks in Section IV are generalized,

by incorporating beamforming alignment errors and multi-tier deployments. In Section VI, the

analysis is validated via numerical simulations and the performance of mmWave andµWave

cellular networks are compared. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

A. PPP-Based Abstraction Modeling

A bi-dimensional downlink cellular network is considered,where a probe MT is located,

without loss of generality thanks to the Slivnyak theorem [17, vol. 1, Th. 1.4.5], at the origin
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and the BSs are modeled as points of a homogeneous PPP, denoted byΨ, of densityλ. The MT

is assumed to be served by the BS providing either the smallest path-loss (Section IV-A) or the

highest received power (Section IV-B) to it. The serving BS is denoted byBS(0). Similar to [5,

Sec. VI], full-frequency reuse is considered. For notational simplicity, the set of interfering BSs

is denoted byΨ(\0) = Ψ\BS(0). The distance from a generic BS to the MT is denoted byr.

B. Directional Beamforming Modeling

Thanks to the small wavelength, mmWave cellular networks are capable of exploiting direc-

tional beamforming for compensating for the increased path-loss at mmWave frequencies and

for overcoming the additional noise due to the large transmission bandwidth. As a desirable

bonus, directional beamforming provides interference isolation, which reduces the impact of

the other-cell interference. Thus, antenna arrays are assumed at both the BSs and the MT for

performing directional beamforming. For mathematical tractability and similar to [13], [14], the

actual antenna array patterns are approximated by a sectored antenna model. In particular, the

antenna gain of a generic BS,GBS (·), and of the MT,GMT (·), can be formulated as follows:

Gq (θ) =











G
(max)
q if |θ| ≤ ωq

G
(min)
q if |θ| > ωq

(1)

whereq ∈ {BS,MT}, θ ∈ [0, 2π) is the angle off the boresight direction,ωq is the beamwidth

of the main lobe,G(max)
q andG(min)

q are the array gains of main and side lobes, respectively.

The MT and its serving BS,BS(0), are assumed to estimate the angles of arrival and to adjust

their antenna steering orientations accordingly. In the absence of alignment errors, therefore,

the maximum directivity gain can be exploited on the intended link. Thus, the directivity gain

of the intended link isG(0) = G
(max)
BS G

(max)
MT . The beams of all non-intended links are assumed

to be randomly oriented with respect to each other and to be uniformly distributed in [0, 2π).

Accordingly, the directivity gains of the interfering links, G(i) for i ∈ Ψ(\0), are randomly

distributed. Based on (1), their Probability Density Function (PDF) can be formulated as follows:

fG(i) (g) =
ωq

2π
δ
(

g −G(max)
q

)

+
(

1− ωq

2π

)

δ
(

g −G(min)
q

)

(2)

whereq ∈ {BS,MT} andδ (·) is the Kronecker’s delta function.
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C. Beamforming Alignment Errors Modeling

The maximum directivity gain offered by directional beamforming, i.e., G(0) = G
(max)
BS G

(max)
MT ,

can be achieved only in the absence of beamsteering errors. Due to practical considerations,

however, perfectly aligning the transmitter and the receiver may be difficult, especially if the

beamwidth of the main lobe is quite small, as in mmWave systems for enhancing other-cell

interference isolation. Indeed, the authors of [18] have recently reported that several tradeoffs

affecting the performance of directional networks emerge in the presence of beamforming

alignment errors. In the present paper, a beamsteering error model similar to [18] is considered.

Let θ∗q for q ∈ {BS,MT} be the angles corresponding to error-free beamsteering. Let εq for

q ∈ {BS,MT} denote the additive beamsteering errors. In particular,εBS andεMT are assumed

to be randomly distributed, to be independent of each other and to have a symmetric distribution

aroundθ∗BS andθ∗MT, respectively. LetF|εq| (x) = Pr {|εq| ≤ x} be the Cumulative Distribution

Function (CDF) of|εq| for q ∈ {BS,MT}. Then, the PDF of the directivity gain of the intended

link, G(0), can be formulated asfG(0) (g) = (fGBS
⊗ fGMT

) (g), where⊗ denotes the convolution

operator, andfGBS
(·) and fGMT

(·) are the PDFs of the directivity gains of serving BS,BS(0),

and MT, which, from (1), can be explicitly written as follows(q ∈ {BS,MT}):

fGq
(g) = F|εq|

(ωq

2

)

δ
(

g −G(max)
q

)

+
(

1− F|εq|

(ωq

2

))

δ
(

g −G(min)
q

)

(3)

For example, if the beamsteering errors follow a Gaussian distribution with mean equal to

zero and variance equal toσ2
q,BE for q ∈ {BS,MT}, then|εq| follows a half-normal distribution

and, thus,F|εq| (x) = erf
(

x
/(√

2σq,BE

))

and1 − F|εq| (x) = erfc
(

x
/(√

2σq,BE

))

, whereerf (·)
anderfc (·) denote the error function and the complementary error function, respectively.

D. Link State Modeling

Let an arbitrary link of lengthr, i.e., the distance from a generic BS to the MT is equal to

r. Motivated by recent experimental findings on mmWave channel modeling [2, Sec. III-D], a

three-state statistical model for each link is assumed, according to which a link can be in a LOS,

NLOS or in an outage (OUT) state. A LOS state occurs if there isno blockage between BS

and MT. A NLOS state, on the other hand, occurs if the BS-to-MTlink is blocked. An outage

state occurs if the path-loss between BS and MT is so high thatno link between them can be

established. In this latter case, the path-loss of the link is assumed to be infinite. In practice,
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outages occur implicitly when the path-loss in either a LOS or a NLOS state is sufficiently

large. In [2, Fig. 7], with the aid of experimental results, it is proved that adding an outage state,

which is usually not observed for transmission atµWave frequencies, provides a more accurate

statistical description of the inherent coverage possibilities at mmWave frequencies.

From [2, Eq. 8], the probabilities of occurrencepLOS (·), pNLOS (·), pOUT (·) of LOS, NLOS

and outage states, respectively, as a function of the distance r can be formulated as follows:

pOUT (r) = max
{

0, 1− γOUTe
−δOUTr

}

pLOS (r) = (1− pOUT (r)) γLOSe
−δLOSr

pNLOS (r) = (1− pOUT (r))
(

1− γLOSe
−δLOSr

)

(4)

where (δLOS, γLOS) and (δOUT, γOUT) are parameters that depend on the propagation scenario

and on the carrier frequency being considered. Examples areavailable in [2, Table I].

Under the assumption that the BSs are modeled as points of a homogeneous PPP and that

the events that the BS-to-MT links are in LOS, NLOS or outage state are independent,Ψ can

be partitioned into three (one for each link state) independent and non-homogeneous PPPs,i.e.,

ΨLOS, ΨNLOS andΨOUT, such thatΨ = ΨLOS∪ΨNLOS∪ΨOUT. This originates from the thinning

property of the PPPs [17]. From (4), the densities of the PPPsΨLOS, ΨNLOS andΨOUT are equal

to λLOS (r) = λpLOS (r), λNLOS (r) = λpNLOS (r) andλOUT (r) = λpOUT (r), respectively.

E. Path-Loss Modeling

Based on the channel measurements in [2], the path-loss of LOS and NLOS links is as follows:

lLOS (r) = (κLOSr)
βLOS , lNLOS (r) = (κNLOSr)

βNLOS (5)

wherer denotes a generic BS-to-MT distance,κLOS andκNLOS can be interpreted as the path-

loss of LOS and NLOS links at a distance of 1 meter, respectively, βLOS andβNLOS denote the

power path-loss exponents of LOS and NLOS links, respectively. As mentioned in Section II-D,

the path-loss of the links that are in an outage state is assumed to be infinite,i.e., lOUT (r) = ∞.

This model is usually known as the “close-in” path-loss model [19], [20].

The path-loss model in (5) is general enough for modeling several practical propagation

conditions. For example, it can be linked to the widespread used(α, β) or “floating-intercept”

path-loss model [1], [2], by settingκLOS = 10αLOS/(10βLOS) andκNLOS = 10αNLOS/(10βNLOS), where

αLOS andαNLOS are defined in [2, Table I]. It is worth mentioning that in the floating-intercept
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model, unlike the close-in model, the parameters(α, β) have no physical interpretation and they

denote only the floating intercept and the slope of the best linear fit of empirical data [19], [20].

F. Fading Modeling

In addition to the distance-dependent path-loss model of Section II-E, each link is subject to a

random complex channel gain, which, for a generic BS-to-MT link, is denoted byh. According

to [2], the power gain|h|2 is assumed to follow a Log-Normal distribution with mean (indB)

equal toµ(dB) and standard deviation (in dB) equal toσ(dB). Thus,|h|2 takes into account large-

scale shadowing. In general,µ(dB) andσ(dB) for LOS and NLOS links are different [2]. In what

follows, they are denoted byµ(dB)
s andσ(dB)

s , wheres = {LOS,NLOS} denotes the link state.

As mentioned in Section II-D, for mathematical tractability, (shadowing) correlations between

links are ignored. Thus, the fading power gains of LOS and NLOS links are assumed to be

independent but non-identically distributed. As recentlyremarked and verified with the aid of

simulations in [13], this assumption usually causes a minorloss of accuracy in the evaluation

of the statistics of the Signal-to-Interference-plus-Noise-Ratio (SINR). For ease of description,

fast-fading is neglected in the present paper, but it may be readily incorporated.

G. Cell Association Criterion

Two cell association criteria are considered. In Section IV-A, the MT is assumed to be served

by the BS providing the smallest path-loss to it. In Section IV-B, the MT is assumed to be served

by the BS providing the highest received power to it. In the first case study, thus, shadowing is

not taken into account for cell association. The second casestudy, on the other hand, provides

the best achievable performance at the cost of estimating large-scale shadowing [22].

1) Cell Association Based on the Smallest Path-Loss: Let L(0)
LOS, L(0)

NLOS and L
(0)
OUT be the

smallest path-loss of LOS, NLOS and OUT links, respectively. They can be formulated as:

L(0)
s =











min
n∈Ψs

{

ls
(

r(n)
)}

if Ψs 6= ∅

+∞ if Ψs = ∅
, L

(0)
OUT = min

n∈ΨOUT

{

lOUT

(

r(n)
)}

= +∞ (6)

where s = {LOS,NLOS}, r(n) denotes the distance from a generic BS to the MT, and∅
denotes an empty set. Hence, the path-loss of the serving BS,BS(0), can be formulated as

L(0) = min
{

L
(0)
LOS, L

(0)
NLOS, L

(0)
OUT

}

.
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2) Cell Association Based on the Highest Received Power: Let P (0)
LOS, P (0)

NLOS andP (0)
OUT be the

inverse of the highest normalized received power of LOS, NLOS and OUT links, respectively.

The received powers are normalized with respect to the transmit power of the BSs, since it is the

same for all active BSs, and with respect to the directivity gain of BSs and MT, since they are

the same in the absence of beamsteering errors. The impact ofbeamsteering errors is not taken

into account during cell association. In Section V-B, different transmit powers and directivity

gains are considered for each tier of BSs (heterogeneous cellular network) and, thus, they will

be included in the cell association. Thus,P
(0)
LOS, P (0)

NLOS andP (0)
OUT can be formulated as follows:

P (0)
s =











min
n∈Ψs

{

ls
(

r(n)
)

/

∣

∣

∣
h
(n)
s

∣

∣

∣

2
}

if Ψs 6= ∅

+∞ if Ψs = ∅
, P

(0)
OUT

(a)
= min

n∈ΨOUT











lOUT

(

r(n)
)

∣

∣

∣
h
(n)
OUT

∣

∣

∣

2











= +∞ (7)

where a notation similar to (6) is used,
∣

∣

∣
h
(n)
s̄

∣

∣

∣

2

for s̄ = {LOS,NLOS,OUT} denotes the fading

power gain related to LOS, NLOS and OUT BSs, respectively, and (a) holds because
∣

∣

∣
h
(n)
OUT

∣

∣

∣

2

6= 0

almost surely. Hence, the inverse of the normalized received power of the serving BS,BS(0),

can be formulated asP (0) = min
{

P
(0)
LOS, P

(0)
NLOS, P

(0)
OUT

}

.

Remark 1: Based on the link state model of Section II-D, a link may be in an outage state.

Accordingly, the event that all the available BSs are in an outage state may occur with a non-zero

probability. By using the notation in (6) and (7), this occurs if ΨLOS = ΨNLOS = ∅. In this case,

no BSs are available to serve the MT and it is said to be in acommunication blockage state. �

H. Problem Formulation

Let U (0) be the intended received power,i.e., the power received at the MT and transmitted

by the serving BS,BS(0). If the MT is in a communication blockage state, thenU (0) = 0.

Otherwise,U (0) > 0 and it depends on the cell association being used. Thus, it isfurther detailed

in Section IV. The SINR of the downlink cellular network under analysis can be formulated as

SINR = U (0) (σ2
N + Iagg)

−1, whereσ2
N is the noise power andIagg is the aggregate other-cell

interference,i.e., the total interference generated by the BSs inΨ(\0). In particular,σ2
N is defined

asσ2
N = 10σ

2
N (dBm)/10, whereσ2

N (dBm) = −174+10 log10 (BW)+FdB, BW is the transmission

bandwidth andFdB is the noise figure in dB. The aggregate other-cell interference is defined as

Iagg =
∑

i∈Ψ(\0)

(

PG(i)
∣

∣h(i)
∣

∣

2
/

l
(

r(i)
)

)

, whereP is the transmit power of the BSs andl (·) is

the path-loss of Section II-E, which depends on a BS being in aLOS, NLOS or outage state.
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From the SINR, coverage probability (Pcov) and average rate (R) can be formulated as [10]:

P(cov) (T) = Pr {SINR ≥ T} (8)

R = ESINR {BW log2 (1 + SINR)} =
BW

ln (2)

∫ +∞

0

P(cov)
(

et − 1
)

dt

=
BW

ln (2)

∫ +∞

0

P(cov) (t)

t+ 1
dt

(a)≈ BW

ln (2)

NGCQ
∑

u=1

w(u)P
(cov)

(

x(u)
)

x(u) + 1

(9)

whereT > 0 is a reliability threshold andE {·} denotes the expectation operator. The approxima-

tion in (a) follows from the Gauss-Chebyshev Quadrature (GCQ) rule [21, Eq. (25.4.39)], where

w(u) andx(u) for u = 1, 2, . . . ,NGCQ are weights and abscissas of the quadrature, respectively,

which are available in closed-form in [7, Eq. (13)]. The approximation in (a) is especially useful

when the coverage probability cannot be formulated in a closed-form expression.

In the next sections, new mathematical expressions forP(cov) are provided. The analytical

formulation is based on the noise-limited approximation ofmmWave cellular communications,

i.e., SINR ≈ SNR = U (0)
/

σ2
N , which has been observed in recent studies, both with the aid

of numerical simulations and field measurements [2], [14], [15]. In Section VI, the validity and

the accuracy of the noise-limited approximation are substantiated with the aid of Monte Carlo

simulations, which account for the other-cell interference as well. Therefore, for simplicity, in

the rest of the manuscript the SINR is not used anymore and only the SNR is considered. From

the coverage probability, the average rate is obtained from(9). Thus, less emphasis is put on it.

Remark 2: If a communication blockage occurs,i.e., U (0) = 0, thenSNR = 0 and coverage

probability and average rate are equal to zero. The coverageis zero regardless ofT > 0. �

III. A NALYSIS AND APPROXIMATIONS OFTRANSFORMATIONS OF THEPATH-LOSS

In this section, we provide general results for the distribution of transformations of the path-

loss of mmWave systems, which account for LOS, NLOS and outage states. These results are

useful for computing the coverage probability and the average rate in Section IV.

Lemma 1: Let Φ = {ΦLOS,ΦNLOS,ΦOUT}, whereΦLOS =
{

lLOS

(

r(n)
)

/

A(n)
LOS, n ∈ ΨLOS

}

,

ΦNLOS =
{

lNLOS

(

r(n)
)

/

A(n)
NLOS, n ∈ ΨNLOS

}

and ΦOUT =
{

lOUT

(

r(n)
)

/

A(n)
OUT, n ∈ ΨOUT

}

are transformations of the path-loss of LOS, NLOS and OUT BSs, respectively, which is defined

in Sections II-D and II-E. LetA(n)
s̄ for n ∈ Ψs̄ and s̄ ∈ {LOS,NLOS,OUT} be:

1) A set of equal constants,i.e., A(n)
s̄ = As̄ for n ∈ Ψs̄, or
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2) a set of independent and identically distributed random variables withAs̄ denoting a

random variable having the same distribution as anyA(n)
s̄ for n ∈ Ψs̄.

Let the link state model in (4). Then,Φ is a PPP with intensity as follows:

ΛΦ ([0, x)) =











Λ̃Φ ([0, x)) if (ALOS,ANLOS) are constants

Λ̄Φ ([0, x)) if (ALOS,ANLOS) are randomvariables
(10)

where the following definitions hold:

Λ̃Φ ([0, x)) = ΛLOS ([0,ALOSx)) + ΛNLOS ([0,ANLOSx))

Λ̄Φ ([0, x)) = EALOS
{ΛLOS ([0,ALOSx))}+ EANLOS

{ΛNLOS ([0,ANLOSx))}

ΛLOS ([0, x)) = Υ0 (x; s = LOS) , ΛNLOS ([0, x)) = Υ1 (x; s = NLOS)−Υ0 (x; s = NLOS)

(11)

Υ0 (x; s) = K2

(

e−W +We−W − e−Vsx1/βs − Vsx
1/βse−Vsx1/βs

)

H (x− Zs)

+K1

(

1− e−Qsx1/βs −Qsx
1/βse−Qsx1/βs

)

H̄ (x− Zs) +K1

(

1− e−R −Re−R
)

H (x− Zs)

Υ1 (x; s) = πλκ−2
s x2/βsH̄ (x− Zs) + πλ

(

δ−1
OUT ln (γOUT)

)2H (x− Zs)

+ 2πλδ−2
OUTγOUT

(

γ−1
OUT + γ−1

OUT ln (γOUT)− e−Tsx1/βs − Tsx
1/βse−Tsx1/βs

)

H (x− Zs)

(12)

whereH (·) is the Heaviside function,̄H (x) = 1−H (x), K1 = 2πλγLOSδ
−2
LOS,K2 = 2πλγLOSγOUT

× (δLOS + δOUT)
−2, R = δLOSδ

−1
OUT ln (γOUT),W = (δLOS + δOUT) δ

−1
OUT ln (γOUT), Qs = δLOSκ

−1
s ,

Ts = δOUTκ
−1
s , Vs = (δLOS + δOUT) κ

−1
s , Zs =

(

κsδ
−1
OUT ln (γOUT)

)βs for s = {LOS,NLOS}.

Proof : See Appendix I. �

Corollary 1: Let δOUT = 0, γOUT = 1, i.e., pOUT (r) = 0 in (4). ΛΦ (·) in (10) holds with

Υ0 (x; s) = K1

(

1− e−Qsx1/βs −Qsx
1/βse−Qsx1/βs

)

, Υ1 (x; s) = πλκ−2
s x2/βs, s = {LOS,NLOS}.

Proof : It follows directly from (12), sinceZs → +∞ for s = {LOS,NLOS}. �

Lemma 2: Let Φ(0) = min {Φ} be the smallest element of the PPPΦ introduced inLemma

1. Its CDF, i.e., FΦ(0) (x) = Pr
{

Φ(0) ≤ x
}

, can be formulated as follows:

FΦ(0) (x) = 1− exp (−ΛΦ ([0, x))) (13)

whereΛΦ (·) is defined in (10).

Proof : It follows by applying the void probability theorem of PPPs[23, Corollary 6]. �

Remark 3: The transformation of the path-loss inLemma 1 accounts for cell associations
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based on both the smallest path-loss and the highest received power. In particular, the first case

study is obtained by setting(ALOS,ANLOS) = (1, 1), while the second case study follows by

setting
(

A(n)
LOS,A

(n)
NLOS

)

=

(

∣

∣

∣
h
(n)
LOS

∣

∣

∣

2

,
∣

∣

∣
h
(n)
NLOS

∣

∣

∣

2
)

for n ∈ ΨLOS andn ∈ ΨNLOS. �

Remark 4: In [23], the intensity of the PPP of the path-loss is computedunder the assumption

of a single-state link model,i.e., no outage state exists and the distributions of LOS and NLOS

links are the same. Thus,Lemma 1 generalizes the results in [23], by taking into account the

peculiarities of mmWave communications. Also, it reduces to [23] under the same assumptions.

In [23], it is shown that the impact of Log-Normal shadowing on the cell association based on

the highest received power criterion consists of a scaling factor of the PPP density, which is a

function of the fractional moments of the Log-Normal distribution.Lemma 1, on the other hand,

shows that Log-Normal shadowing has a more complicated impact in mmWave systems. �

A. Two-Ball Approximation

From (10) and (11), it is apparent that the intensity ofΦ is available in closed-form ifALOS

andANLOS are constants. The expectation in (11), on the other hand, needs to be computed if

they are random variables. To the best of the author’s knowledge, however, the expectation in (11)

cannot be computed in closed-form if the channel power gainsfollow a Log-Normal distribution.

The computation of the expectation may be possible, however, for other fading distributions. This

originates from the mathematical intractability of the Log-Normal distribution and from the fact

that no closed-form expression for its Laplace transform exists. In order to overcome this issue,

we propose an approximation for modeling the state of links in LOS, NLOS and outage.

The proposed approach consists of computing the link state probabilities based on a “two-ball”

approximation of (4). More specifically, the probabilitiesin (4) are approximated as follows:














ps̄ (r) ≈ p
(approx)
s̄ (r) = q

[0,D1]
s̄ 1[0,D1) (r) + q

[D1,D2]
s̄ 1(D1,D2) (r) + q

[D2,∞]
s̄ 1[D2,+∞) (r)

∑

s̄∈{LOS,NLOS,OUT}

q
[0,D1]
s̄ =

∑

s̄∈{LOS,NLOS,OUT}

q
[D1,D2]
s̄ =

∑

s̄∈{LOS,NLOS,OUT}

q
[D2,∞]
s̄ = 1

(14)

wheres̄ ∈ {LOS,NLOS,OUT}, D2 ≥ D1 ≥ 0 are the radii of the approximating balls,1[a,b) (·)
is the indicator function, which is defined as1[a,b) (r) = 1 if r ∈ [a, b) and 1[a,b) (r) = 0 if

r /∈ [a, b), and q
[a,b]
s̄ denotes the probability that a link of lengthr ∈ [a, b) is in states̄. The

second equality in (14) guarantees that each link of lengthr is only in one of the three possible

statess̄ ∈ {LOS,NLOS,OUT}. In what follows, it is referred to asapproximation constraint.
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Remark 5: The rationale behind (14) originates from the visual inspection of [2, Fig. 7]. It is

apparent from [2, Fig. 7], in fact, that two breaking distances (D1 andD2) emerge for arbitrary

values of the link lengthr, which result in three connectivity regions: the first, forr ∈ [0, D1),

where the links are most likely to be either in LOS or NLOS; thesecond, forr ∈ (D1, D2),

where the links can be in any state; and the third, for[D2,+∞), where the links are most likely

to be in outage. Equation (14) accounts for this empirical observation for anyq[a,b]s̄ . �

Remark 6: The two-ball approximation in (14) may be seen as a generalization of the single-

ball approximation introduced in [12], [14]. Compared to these papers, in particular, it accounts

for the outage state that emerges in mmWave communications.In addition, the approach for

estimating the parameters of the approximation is different and based on a technique introduced

in the present paper for the first time, which is referred to aspath-loss intensity matching. �

Before describing the path-loss intensity matching approach for computing the parameters of

the approximation in (14),i.e.,
(

D1, D2, q
[0,D1]
s̄ , q

[D1,D2]
s̄ , q

[D2,∞]
s̄

)

for s̄ ∈ {LOS,NLOS,OUT},

Lemma 1 needs to be generalized based on the link state model in (14).

Lemma 3: LetΦ(approx) =
{

Φ
(approx)
LOS ,Φ

(approx)
NLOS ,Φ

(approx)
OUT

}

, whereΦ(approx)
LOS =

{

lLOS

(

r(n)
)

/

A(n)
LOS,

n ∈ Ψ
(approx)
LOS

}

, Φ(approx)
NLOS =

{

lNLOS

(

r(n)
)/

ANLOS, n ∈ Ψ
(approx)
NLOS

}

,Φ(approx)
OUT =

{

lOUT

(

r(n)
)

/

A(n)
OUT,

n ∈ Ψ
(approx)
OUT

}

are transformations of the path-loss of LOS, NLOS and OUT BSs, respectively,

where the path-loss model is defined in Section II-E and the link state model is given by (14),

i.e., Ψ
(approx)
s̄ for s̄ ∈ {LOS,NLOS,OUT} has the same definition asΨs except that (4) is

replaced by (14). LetA(n)
s̄ for n ∈ Ψs̄ and s̄ ∈ {LOS,NLOS,OUT} be defined as inLemma 1.

Then,Φ(approx) is a PPP with intensity given in (10) and (11), which are obtained by replacing

Λs (·) for s ∈ {LOS,NLOS} with Λ
(approx)
s (·) defined as follows:

Λ(approx)
s ([0, x)) = −G(3)

s +
(

G(1)
s x2/βs + G(3)

s

)

H̄
(

x− (κsD1)
βs

)

+ G(4)
s H

(

x− (κsD1)
βs

)

+ G(2)
s x2/βsH̄

(

x− (κsD2)
βs

)

+
(

G(6)
s x2/βs + G(5)

s

)

H
(

x− (κsD2)
βs

)
(15)

whereG(1)
s = πλκ−2

s

(

q
[0,D1]
s − q

[D1,D2]
s

)

, G(2)
s = πλκ−2

s q
[D1,D2]
s , G(3)

s = πλD2
1q

[D1,D2]
s , G(4)

s =

πλD2
1q

[0,D1]
s , G(5)

s = πλD2
2

(

q
[D1,D2]
s − q

[D2,∞]
s

)

andG(6)
s = πλκ−2

s q
[D2,∞]
s .

Proof : The proof follows the same steps as the proof ofLemma 1. The only difference lies

in replacingps (·) in (30) with p
(approx)
s (·) in (14) and by computing the related integrals.�

Corollary 2: Let Λ(approx)
s (·) in (15) for s ∈ {LOS,NLOS}. Let As be a Log-Normal random

variable with mean (in dB) and standard deviation (in dB) equal to µ
(dB)
s andσ(dB)

s , respectively.
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Then, the following holds fors ∈ {LOS,NLOS}:

Λ̄(approx)
s ([0, x)) = EAs

{

Λ(approx)
s ([0,Asx))

}

= G(1)
s x2/βsmAs

(

2/βs, (κsD1)
βs

/

x
)

+ G(2)
s x2/βsmAs

(

2/βs, (κsD2)
βs

/

x
)

− G(3)
s F̄As

(

(κsD1)
βs

/

x
)

+ G(4)
s F̄As

(

(κsD1)
βs

/

x
)

+ G(5)
s F̄As

(

(κsD2)
βs

/

x
)

+ G(6)
s x2/βsm̄As

(

2/βs, (κsD2)
βs

/

x
)

(16)

wheremAs
(ν, y) = (1/2) exp {νµs + (1/2) ν2σ2

s} erfc
(

νσs

/√
2− (ln (y)− µs)

/(√
2σs

))

, FAs
(y)

= 1/2 + (1/2) erf
(

(ln (y)− µs)
/(√

2σs

))

, m̄As
(ν, y) = exp {νµs + (1/2) ν2σ2

s} − mAs
(ν, y),

F̄As
(y) = 1− FAs

(y), µs = µ
(dB)
s ln (10)/10 andσs = σ

(dB)
s ln (10)/10.

Proof : See Appendix I. �

Remark 7: Based onLemma 3 and Corollary 2, the intensityΛ̄Φ (·) in (11) can be ex-

pressed in closed-form as̄ΛΦ ([0, x)) ≈ Λ̄
(approx)
Φ ([0, x)) = Λ̄

(approx)
LOS ([0, x)) + Λ̄

(approx)
NLOS ([0, x)).

This shows the usefulness of the two-ball approximation in the presence of a realistic channel

model. Likewise, the approximatioñΛΦ ([0, x)) ≈ Λ̃
(approx)
Φ ([0, x)) = Λ

(approx)
LOS ([0,ALOSx)) +

Λ
(approx)
NLOS ([0,ANLOSx)) holds. Thus, the CDF ofmin

{

Φ(approx)
}

follows from Lemma 2 and the

approximationFΦ(0) (x) ≈ 1− exp
(

−Λ̄
(approx)
Φ ([0, x))

)

holds. �

We are now in the position of describing the procedure for computing the 15 parameters of

the approximation in (14),i.e.,
(

D1, D2, q
[0,D1]
s̄ , q

[D1,D2]
s̄ , q

[D2,∞]
s̄

)

for s̄ ∈ {LOS,NLOS,OUT}.

Let the PPP of the path-lossL = {LLOS, LNLOS, LOUT} based on (4). FromLemma 1 and

Remark 3, its intensity isΛL ([0, x)) = Λ̃Φ ([0, x))
∣

∣

∣

ALOS=ANLOS=1
= ΛLOS ([0, x))+ΛNLOS ([0, x)),

where ΛLOS (·) and ΛNLOS (·) are defined in (11). Let the PPP of the path-lossL(approx) =
{

L
(approx)
LOS , L

(approx)
NLOS , L

(approx)
OUT

}

based on (14). FromLemma 3 and Remark 7, its intensity is

Λ
(approx)
L ([0, x)) = Λ̃

(approx)
Φ ([0, x))

∣

∣

∣

ALOS=ANLOS=1
= Λ

(approx)
LOS ([0, x)) + Λ

(approx)
NLOS ([0, x)), where

Λ
(approx)
LOS (·) andΛ(approx)

NLOS (·) are in (15). The proposed matching procedure consists of twosteps:

1) The first step lies in computing the 15 parameters in (14) asthe best fit of theunconstrained

optimization problem as follows (x ∈ [0,+∞), s̄ ∈ {LOS,NLOS,OUT}):

min
(

D1,D2,q
[0,D1]
s̄ ,q

[D1,D2]
s̄ ,q

[D2,∞]
s̄

)

{

1

2

∥

∥

∥
ln (ΛL ([0, x)))− ln

(

Λ
(approx)
L ([0, x))

)
∥

∥

∥

2

F

}

(17)

where‖·‖F denotes the Frobenius norm. The initial point for solving (17) is randomly

chosen. The optimization problem is unconstrained, since the approximation constraint in
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TABLE I: Three-state link and path-loss models from [2, Table I] and corresponding two-ball approximation obtained by using the
algorithm described in Section III-A. The probabilities ofbeing in an outage state are, by definition,q

[0,D1]
OUT = 1−q

[0,D1]
LOS −q

[0,D1]
NLOS ,

q
[D1,D2]
OUT = 1− q

[D1,D2]
LOS − q

[D1,D2]
NLOS andq[D2,∞]

OUT = 1− q
[D2,∞]
LOS − q

[D2,∞]
NLOS .

Carrier frequency (Fc) Three-state link and path-loss models ([2, Table I], (4), (5)) Two-ball approximation

αLOS = 61.4 dB, βLOS = 2 D1 = 56.9945, D2 = 201.4371

28 GHz αNLOS = 72 dB, βNLOS = 2.92 q
[0,D1]
LOS = 0.8282, q[0,D1]

NLOS = 0.1718

δLOS = 1/67.1, γLOS = 1 q
[D1,D2]
LOS = 0.1216, q[D1,D2]

NLOS = 0.7424

δOUT = 5.2 γOUT = 1/30 q
[D2,∞]
LOS = 0, q[D2,∞]

NLOS = 0

αLOS = 69.8 dB, βLOS = 2 D1 = 53.6287, D2 = 195.3275

73 GHz αNLOS = 82.7 dB, βNLOS = 2.69 q
[0,D1]
LOS = 0.8670, q[0,D1]

NLOS = 0.1330

δLOS = 1/67.1, γLOS = 1 q
[D1,D2]
LOS = 0.1339, q[D1,D2]

NLOS = 0.7889

δOUT = 5.2 γOUT = 1/30 q
[D2,∞]
LOS = 0, q[D2,∞]

NLOS = 0

(14) is neglected. The solution of (17) is denoted by
(

D̂1, D̂2, q̂
[0,D1]
s̄ , q̂

[D1,D2]
s̄ , q̂

[D2,∞]
s̄

)

.

2) The second step lies in computing the 15 parameters in (14)as the best fit of thecon-

strained optimization problem still formulated as in (17), but by taking into account the

approximation constraint in (14) and by assuming as the initial point of the search the

solution of the first step,i.e.,
(

D̂1, D̂2, q̂
[0,D1]
s̄ , q̂

[D1,D2]
s̄ , q̂

[D2,∞]
s̄

)

.

Remark 8: In practice, the unconstrained and constrained optimization problems can be solved

by using the Matlab built-in functionslsqcurvefit and fmincon. The reason why a two-step

approach is proposed is that we have found that solving first an unconstrained optimization

problem provides results that are (almost) independent of the initial starting point of the search.

The reason why the logarithm of the intensity instead of the intensity itself is matched is due

to the possibility of better controlling the accuracy of theexponential functions inΛL (·). �

By applying the proposed two-step approximation techniqueto the empirical three-state link

model proposed in [2, Table I], the approximation in Table I is obtained. The accuracy of this

approximation is studied in Section VI. Besides being more mathematically tractable without

loosing in accuracy, the two-ball approximation allows us to draw some interesting conclusions

about the connectivity potential of mmWave communications. In particular:

1) If the BS-to-MT distancer is less than (about) 50 meters,i.e., r < D1, we note that

no link outage occurs. In other words, a link can be either in aLOS or a NLOS state.

Furthermore, the probability of being in a LOS state is greater than 80%.

2) If the BS-to-MT distancer is greater than (about) 50 meters but less than (about) 200

meters,i.e., r ∈ [D1, D2], we note that a link can be in any of the three possible states.

Furthermore, most likely, the MT is served by a NLOS BS.
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3) If the BS-to-MT distancer is greater than (about) 200 meters,i.e., r > D2, we note that

the link is most likely to be in outage: no communication between BS and MT is possible.

4) The distanceD2 identifies a critical operating regime, which is specific of mmWave

communications and that it is not observed atµWave communications that are characterized

by a two-state link model. It is worth noting thatD2 is approximately equal to 200 meters,

which is in agreement with the conclusions drawn in [1] and [2].

5) The link state probabilities originating from the two-ball approximation in Table I provide

useful guidelines on how to choose the average cell radius ofmmWave systems. Radii of

the order of 50 meters are expected to guarantee a very good connectivity, at the cost of

a denser deployment. Radii larger than 200 meters, on the other hand, are expected to be

too big for establishing a sufficiently reliable connectionbetween BS and MT.

6) Table I shows that the connectivity properties of mmWave networks operating at 28 GHz

and 73 GHz are very similar. This is an important finding, since 28 GHz and 73 GHz

represent the lower- and the upper-end, respectively, of the frequency range currently being

considered for mmWave cellular communications.

B. Communication Blockage Probability

As mentioned inRemark 1, the peculiarity of the three-state link model in Section II-D lies

is the presence of communication blockages if no BSs are available for serving the MT. The

following lemma provides a closed-form expression of the probability that this event occurs.

Lemma 4: The probabilityPblockage = Pr {ΨLOS = ∅ ∩ΨNLOS = ∅} that a communication

blockage occurs can be formulated asPblockage = exp (−Λblockage), where:

Λblockage = πλ
(

δ−1
OUT ln (γOUT)

)2
+ 2πλδ−2

OUTγOUT

(

γ−1
OUT + γ−1

OUT ln (γOUT)
)

(18)

Proof : See Appendix I. �

Remark 9: The communication blockage probability in (18) is independent of the cell asso-

ciation criterion. Also,Pblockage = 0 if δOUT = 0, i.e., pOUT (r) = 0 in (4). In general, thus,

let PLOS and PNLOS be the probabilities that the MT is served by a LOS and a NLOS BS,

respectively, we havePLOS + PNLOS + Pblockage = 1 andPLOS + PNLOS ≤ 1. This implies that

the coverage probability may be zero even forT = 0. This occurs ifPLOS = PNLOS = 0 and

Pblockage = 1. A similar comment applies to the average rate. By direct inspection of (18), this
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occurs ifδOUT → +∞, which corresponds topLOS (r) = pNLOS (r) = 0 andpOUT (r) = 1 in (4).

As discussed in Section III-A, there is a critical distance where this operating regime emerges,

which corresponds to 200 meters for the considered mmWave channel model. �

IV. M ODELING COVERAGE PROBABILITY AND AVERAGE RATE

A. Smallest Path-Loss Cell Association

Assume a cell association based on the smallest path-loss and no beamsteering errors. From

(6), U (0) = PG(0)
∣

∣

∣
h
(0)
s

∣

∣

∣

2
/

L(0), wheres = LOS or s = NLOS if the MT is served by a LOS

or a NLOS BS, respectively, andU (0) = 0 if a communication blockage occurs. Then, the SNR

can be formulated as follows:

SNR
(a)
=

PG(0)
∣

∣

∣
h
(0)
LOS

∣

∣

∣

2

σ2
NL

(0)
δ
{

L(0) − L
(0)
LOS

}

+
PG(0)

∣

∣

∣
h
(0)
NLOS

∣

∣

∣

2

σ2
NL

(0)
δ
{

L(0) − L
(0)
NLOS

}

(19)

where (a) takes into account that the distribution of LOS andNLOS links is different.

Proposition 1: Let the SNR in (19). The coverage probability in (8) can be formulated as

follows:

P(cov) (T) = P
(cov)
LOS (T) + P

(cov)
NLOS (T)

P(cov)
s (T) =

1

2

∫ +∞

0

erfc

(

ln
(

Tx
/

γ(0)
)

− µs√
2σs

)

Λ
(1)
Ls

([0, x)) exp (−ΛL ([0, x))) dx
(20)

wheres = {LOS,NLOS}, γ(0) = PG(0)
/

σ2
N , µs andσs are defined inCorollary 2, ΛL ([0, x)) =

ΛLOS ([0, x))+ΛNLOS ([0, x)), whereΛLOS (·) andΛNLOS (·) are defined inLemma 1, Λ(1)
LLOS

([0, x)) =

Υ
(1)
0 (x; LOS), whereΥ(1)

0 (·; ·) is the first derivative ofΥ0 (·; ·) defined inLemma 1, i.e.,Υ(1)
0 (x; s) =

dΥ0 (x; s)/dx, Λ(1)
LNLOS

([0, x)) = Υ
(1)
1 (x; NLOS) − Υ

(1)
0 (x; NLOS), whereΥ(1)

1 (·; ·) is the first

derivative ofΥ1 (·; ·) defined inLemma 1, i.e., Υ(1)
1 (x; s) = dΥ1 (x; s)/dx. Υ(1)

0 (·; ·) andΥ(1)
1 (·; ·)

can be formulated as follows:

Υ
(1)
0 (x; s) = K2

(

e−W +We−W − e−Vsx1/βs − Vsx
1/βse−Vsx1/βs

)

δ (x− Zs)

−K1

(

1− e−Qsx1/βs −Qsx
1/βse−Qsx1/βs

)

δ (x− Zs) +K1

(

1− e−R − Re−R
)

δ (x− Zs)

+K2

(

V 2
s

/

βs

)

x2/βs−1e−Vsx1/βsH (x− Zs) +K1

(

Q2
s

/

βs

)

x2/βs−1e−Qsx1/βs H̄ (x− Zs)

(a)
= K2

(

V 2
s

/

βs

)

x2/βs−1e−Vsx1/βsH (x− Zs) +K1

(

Q2
s

/

βs

)

x2/βs−1e−Qsx1/βsH̄ (x− Zs)

(21)
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Υ
(1)
1 (x; s) = −πλκ−2

s x2/βsδ (x− Zs) + πλ
(

δ−1
OUT ln (γOUT)

)2
δ (x− Zs)

+ 2πλδ−2
OUTγOUT

(

γ−1
OUT + γ−1

OUT ln (γOUT)− e−Tsx1/βs − Tsx
1/βse−Tsx1/βs

)

δ (x− Zs)

+ 2πλκ−2
s β−1

s x2/βs−1H̄ (x− Zs) + 2πλδ−2
OUTγOUTT

2
s β

−1
s x2/βs−1e−Tsx1/βsH (x− Zs)

(b)
= 2πλκ−2

s β−1
s x2/βs−1H̄ (x− Zs) + 2πλδ−2

OUTγOUTT
2
s β

−1
s x2/βs−1e−Tsx1/βsH (x− Zs)

(22)

Proof : See Appendix II. �

Proposition 1 provides an exact single-integral expression of the coverage probability. In

particular, the two-ball approximation in Section III-A, which may be obtained by replacing

ΛLOS (·) andΛNLOS (·) with Λ
(approx)
LOS (·) andΛ

(approx)
NLOS (·) in (15), respectively, is not used. The

average rate can be computed from (9),e.g., by using the GCQ formulation. In the most

general setup considered in this paper, (20) cannot be further simplified, even using the two-ball

approximation. A simplified formulation can be obtained, however, in some special cases.

Corollary 3: Let the SNR in (19) under the assumption that
∣

∣

∣
h
(0)
LOS

∣

∣

∣
and

∣

∣

∣
h
(0)
NLOS

∣

∣

∣
are indepen-

dent and identically distributed,i.e., µ(dB) = µ
(dB)
LOS = µ

(dB)
NLOS and σ(dB) = σ

(dB)
LOS = σ

(dB)
NLOS. The

coverage probability in (8) can be formulated as follows:

P(cov) (T) =

∫ +∞

0

FL(0)

(

PG(0)

σ2
NT

x

)

f|h(0)|2 (x) dx (23)

whereFL(0) (·) follows from (13) withL(0) = Φ(0)
∣

∣

ALOS=ANLOS=1
, f|h(0)|2 (ξ) = f∣

∣

∣
h
(0)
LOS

∣

∣

∣

2 (ξ) =

f∣
∣

∣
h
(0)
NLOS

∣

∣

∣

2 (ξ) =
(√

2πσx
)−1

exp
(

−(ln (x)− µ)2
/

2σ2
)

is the PDF of
∣

∣

∣
h
(0)
LOS

∣

∣

∣

2

and
∣

∣

∣
h
(0)
NLOS

∣

∣

∣

2

with

µ = µ(dB) (ln (10)/10) andσ = σ(dB) (ln (10)/10).

Proof : See Appendix II. �

Remark 10: In Corollary 3, only the fading parameters of LOS and NLOS channels are

assumed to be the same. The path-loss model and the link stateprobability of LOS and NLOS

links are, on the other hand, still different and formulatedin a general manner. Similar to (20),

(23) is still formulated in an integral form. The latter mathematical formulation has, however,

two main advantages: i) it is simpler to be computed numerically and ii) it is provided in a

general form that is applicable to any distributions,i.e., f|h(0)|2 (·), of the fading power gains.�

Proposition 2: Let the SNR in (19) under the assumption thatγ(0) = PG(0)
/

σ2
N ≫ 1. The
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average rate in (9) can be formulated asR ≈ RLOS + RNLOS, where (s = {LOS,NLOS}):

J s (x) =
1√
π
exp

(

−
(

ln
(

x
/

γ(0)
)

− µs

)2

2σ2
s

)

−
(

ln
(

x
/

γ(0)
)

− µs

)

erfc

(

ln
(

x
/

γ(0)
)

− µs√
2σs

)

Rs = (1/2)

∫ +∞

0

J s (x) Λ
(1)
Ls

([0, x)) exp (−ΛL ([0, x))) dx

(24)

Proof : See Appendix II. �

Remark 11: The approximation in (24) provides a single-integral expression of the average

rate. Its accuracy is expected to increase as the directivity gain,G(0), of the intended link and

the density,λ, of the BSs increase. In this case, in fact,SINR ≈ SNR ≫ 1 (see proof). �

Remark 12: By direct inspection of,e.g., (23), it follows that coverage probability and average

rate increase asP, G(0) and λ increase. They decrease, on the other hand, asσ2
N increases.

Therefore, the performance of mmWave cellular networks improves by increasing the transmit

power, the directivity gain of the intended link and the density of BSs. �

Remark 13: FromLemmas 1 and2, it follows thatProposition 1, Corollary 3 andProposition

2 still hold if pOUT (r) = 0 in (4). Υ0 (·; ·) andΥ1 (·; ·) in Corollary 1 can be used. �

B. Highest Received Power Cell Association

Assume a cell association based on the highest received power and no beamsteering errors.

From (7), U (0) = PG(0)
/

P (0) and the SNR can be written asSNR =PG(0)
/(

σ2
NP

(0)
)

. In

particular,SNR = 0 if a communication blockage occurs.

Proposition 3: Let SNR =PG(0)
/(

σ2
NP

(0)
)

. The coverage probability in (8) is equal to:

P(cov) (T) = FP (0)

(

PG(0)
/(

σ2
NT
)) (a)

= 1− exp
(

ΛP

([

0,PG(0)
/(

σ2
NT
))))

(b)≈ 1− exp
(

Λ
(approx)
P

([

0,PG(0)
/(

σ2
NT
)))

)

(25)

whereΛP ([0, x)) = Λ̄Φ ([0, x)) andΛ
(approx)
P ([0, x)) = Λ̄

(approx)
Φ ([0, x)) are defined in (11) and

Remark 7, respectively.

Proof : (a) follows fromLemma 1 by noting thatP (0) = Φ(0) if ALOS andANLOS are random

variables and (b) follows from the two-ball approximation in Section III-A. �

Remark 14: The equality in (a) provides an exact single-integral expression of the coverage

probability. Hence, the average rate in (9) is formulated interms of a two-fold integral. The two-

ball approximation in (b), on the other hand, provides an approximated closed-form expression
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of the coverage probability, which results in a single-integral expression of the average rate.�

Remark 15: Denote the coverage probabilities in (23) and (25) byP(cov,path−loss) (·) and

P(cov,power) (·), respectively. With the aid of the Jensen inequality applied to the exponential

function, it follows, as expected, thatP(cov,path−loss) (T) ≤ P(cov,power) (T). The price to be paid

for the better performance provided by the cell associationbased on the highest received power

is the need of knowing the instantaneous shadowing power gains. A similar performance trend

is expected to hold when LOS and NLOS links have different distributions. The proof of this

trend is, however, not straightforward from (20). As for theperformance trends that originate

from (25), the same comments as inRemark 12 apply. �

V. GENERALIZATIONS

In Section IV, new frameworks for computing coverage and rate of mmWave systems are

provided, under the assumptions of no beamsteering errors and a single tier of BSs. With

these assumptions, coverage and rate are formulated in an exact single and two-fold integral

expressions, respectively. A closed-form expression of the coverage is provided for high-SNR

and by assuming a cell association based on the smallest path-loss. A closed-form expression

of the coverage is provided by relying on a two-ball approximation for modeling the link state

and by assuming a cell association based on the highest received power. In this section, the

assumptions of Section IV are removed, without increasing the complexity of the frameworks.

A. Beamforming Alignment Errors

By direct inspection of the frameworks for computing coverage probability and average rate

in Section IV, it is apparent that they depend onG(0) = G
(0)
BSG

(0)
MT. In mathematical terms, this

dependency can be highlighted by using the notationP(cov)
(

T;G(0)
)

andR
(

G(0)
)

.

Proposition 4: Let P(cov)
(

·;G(0)
)

and R
(

G(0)
)

be coverage probability and average rate,

respectively, available in Section IV for cell associations based on the smallest path-loss and

the highest received power. Let the beamforming alignment error model in Section II-C. The
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coverage probability can be formulated as follows:

P(cov) (T) = EG(0)

{

P(cov)
(

T;G(0)
)}

=

∫ +∞

0

P(cov) (T; g) fG(0) (g) dg

= F|εBS| (ωBS/2)F|εMT| (ωMT/2)P
(cov)

(

T;G
(max)
BS G

(max)
MT

)

+ F|εBS| (ωBS/2) F̄|εMT| (ωMT/2)P
(cov)

(

T;G
(max)
BS G

(min)
MT

)

+ F̄|εBS| (ωBS/2)F|εMT| (ωMT/2)P
(cov)

(

T;G
(min)
BS G

(max)
MT

)

+ F̄|εBS| (ωBS/2) F̄|εMT| (ωMT/2)P
(cov)

(

T;G
(min)
BS G

(min)
MT

)

(26)

whereF̄|εq| (ωq/2) = 1−F|εq| (ωq/2) for q = {BS,MT}. A similar expression holds for the rate.

Proof : The proof immediately follows from Section II-C and (3). �

Remark 16: The coverage probability in (26) reduces to that computed inSection IV in the

absence of beamsteering errors. In this case, in fact,εBS = εMT = 0 andF|εq| (ωq/2) = 1 for

q = {BS,MT}. Thus, as expected,P(cov) (T) = P(cov)
(

T;G
(max)
BS G

(max)
MT

)

. �

B. Multi-Tier Cellular Deployment

Consider a multi-tier mmWave cellular network, which is made of χ tiers of BSs. The BSs

of each tier are distributed according to a homogeneous PPP of densityλk for k = 1, 2, . . . , χ.

The PPP of thekth tier is denoted byΨk. Each tier of BSs is characterized by a different

transmit powerPk and by different maximum and minimum directivity gainsG(max)
BS,k andG(min)

BS,k ,

respectively, fork = 1, 2, . . . , χ. Beamsteering errors are not considered, since the generalization

immediately follows from Section V-A. The MT is served by theBS providing the highest

received power to it, by taking the transmit power and the directivity gain of the BSs into account.

The BSs of each tier use the same carrier frequency (full-frequency reuse). Accordingly, path-

loss, link state and fading models are the same for all tiers.In mathematical terms, and similar

to Section II-G.2, the received SNR, under a noise-limited approximation, can be formulated as

SNR =G
(max)
MT

/

(

σ2
NP

(0)
)

, where:

P (0) = min

{

χ
⋃

k=1

P
(0)
k,LOS,

χ
⋃

k=1

P
(0)
k,NLOS,

χ
⋃

k=1

P
(0)
k,OUT

}

P
(0)
k,s =















min
n∈Ψk,s

{

ls(r(k,n))
∣

∣

∣
h
(k,n)
s

∣

∣

∣

2
PkG

(max)
BS,k

}

if Ψk,s 6= ∅

+∞ if Ψk,s = ∅

(27)
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and s = {LOS,NLOS}, P (0)
k,OUT = +∞ for k = 1, 2, . . . , χ, andΨk,s denotes the PPP of the

BSs of tierk that are in states.

Proposition 5: Let SNR =G
(max)
MT

/

(

σ2
NP

(0)
)

, whereP (0) is defined in (27). Assume no beam-

steering errors. The coverage probability in (8) can be formulated as follows:

P(cov) (T) = FP (0)

(

G
(max)
MT

/

(

σ2
NT
)

)

= 1− exp
(

ΛP

([

0, G
(max)
MT

/

(

σ2
NT
)

)))

≈ 1− exp
(

Λ
(approx)
P

([

0, G
(max)
MT

/

(

σ2
NT
)

)))
(28)

whereΛP (·) andΛ(approx)
P (·) are defined as follows:

ΛP ([0, x)) =

χ
∑

k=1

∑

s={LOS,NLOS}

E∣

∣

∣
h
(0)
s

∣

∣

∣

2

{

Λs

([

0,PkG
(max)
BS,k

∣

∣h(0)
s

∣

∣

2
x
))}

Λ
(approx)
P ([0, x)) =

χ
∑

k=1

∑

s={LOS,NLOS}

Λ̄(approx)
s

([

0,PkG
(max)
BS,k x

))

(29)

andΛs (·) and Λ̄(approx)
s (·) are defined in (11) and (16), respectively.

Proof : The proof follows by using the same line of though as that ofLemma 1. Since theχ

PPPs are independent, the intensity of
⋃χ

k=1 P
(0)
k,s̄ for s̄ = {LOS,NLOS,OUT} is the summation

of the intensities of theχ tiers. The intensity of each tier can be computed as in the proof of

Lemma 1, by taking into account thatPk and G
(max)
BS,k act as constants and

∣

∣

∣
h
(k,n)
s

∣

∣

∣

2

acts a as

random variable for each tier. The proof is concluded by invoking Lemma 2. �

In summary, by capitalizing on the two-ball approximation introduced in Section III-A, an

approximated closed-form expression of the coverage of general multi-tier mmWave cellular

networks is provided. With the aid ofProposition 4, beamsteering errors can be taken into

account, by still having a closed-form expression. The ratefollows from (9) and, in general, a

single integral needs to be computed. The closed-form mathematical formulation inProposition

5 is based on two main assumptions: 1) mmWave systems are noise-limited and 2) empirically

derived link state models are approximated by a two-ball link state model. The accuracy of these

two approximations is investigated in the next section withthe aid of Monte Carlo simulations.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we illustrate some numerical examples for validating the accuracy of the

proposed mathematical frameworks and for comparing mmWaveandµWave cellular networks.

The frameworks are substantiated with the aid of Monte Carlosimulations, where some modeling
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assumptions used for analytical tractability are not enforced in the system simulator. Notably,

coverage and rate are computed under the noise-limited assumption in Section IV. This approxi-

mation isnot retained in the system simulator, in order to show to which extent the noise-limited

assumption holds for mmWave systems. Monte Carlo simulation results are obtained by using

the system simulator described in [7]-[10], to which the reader is referred for further information.

Unless otherwise stated, the following setup is consideredfor obtaining the numerical exam-

ples, which agrees with previous studies in this field [2], [13], [14]. In particular, channel and

blockage models are taken from [2]. In addition:

• Two mmWave cellular networks are studied, which operate at acarrier frequency,Fc, equal

to Fc = 28 GHz andFc = 73 GHz. The transmission bandwidth isBW = 2 GHz. The

noise figure isNdB = 10. The transmit power for single-tier networks isP = 30 dBm. The

setup for multi-tier networks is summarized in the caption of the figures.

• The path-loss model is as follows [2, Table I]:αLOS = 61.4 dB, βLOS = 2 andαNLOS = 72

dB, βNLOS = 2.92 if Fc = 28 GHz andαLOS = 69.8 dB, βLOS = 2 andαNLOS = 82.7 dB,

βNLOS = 2.69 if Fc = 73 GHz.

• The shadowing model is as follows [2, Table I]:σ
(dB)
LOS = 5.8, σ(dB)

NLOS = 8.7 if Fc = 28 GHz

andσ(dB)
LOS = 5.8, σ(dB)

NLOS = 8.7 if Fc = 73 GHz. On the other hand,µ(dB) is assumed to be

equal to zero for both LOS and NLOS scenarios.

• The blockage model is as follows [2, Table I]:δLOS = 1/67.1, γLOS = 1 and δOUT = 5.2,

γOUT = exp (1/30), for bothFc = 28 GHz andFc = 73 GHz scenarios.

• The directional beamforming model for single-tier networks is as follows [13]:G(max)
BS =

G
(max)
MT = 20 dB, G(min)

BS = G
(min)
MT = −10 dB andωBS = ωMT = 30 degrees. The setup for

multi-tier networks is summarized in the caption of the figures.

• Similar to [13], the density of BSs,λ, is represented as a function of the average cell radius,

i.e., Rc =
√

1/(πλ).

• As for µWave cellular networks, a setup similar to [2] is considered. In particular, we

set Fc = 2.5 GHz, BW = 40 MHz, G(max)
MT = G

(min)
MT = 0 dB andωMT = 360 degrees.

The channel model is chosen as in [2, Eq. (11)],i.e., l (r)(dB) = 22.7 + 36.7 log10 (r) +

26 log10 (2.5). All channels are assumed to be in a NLOS state, with a shadowing standard

deviation equal toσNLOS = 4. No outage state is considered,i.e., pOUT (r) = 0. The rest of

the paraments is the same as for the mmWave cellular network setup.
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• As for the results obtained with the mathematical frameworks, the following holds. The

curves related to the cell association based on the smallestpath-loss are obtained by using

the formulas inProposition 1 for the coverage and (9) for the rate. The curves related to the

cell association based on the highest received power are obtained by using the formulas in

Proposition 3 for the coverage and (9) for the rate. In this second case, only the formulas

obtained by using the two-ball approximation are shown. As for the setups in Section V, the

formulas inProposition 4 and Proposition 5 are used. In all cases, the formulas obtained

from the two-ball approximation are used.

Selected numerical results are illustrated in Figs. 1-12. From these figures, we observe that

the proposed noise-limited approximation is quite accurate for practical densities of BSs. If

Rc ≥ 100 meters for the considered setup, in particular, we observe that mmWave cellular

networks can be assumed to be noise-limited. If the density of BSs increases, on the other

hand, this approximation may no longer hold. The performance gap compared to Monte Carlo

simulations is, however, tolerable and this shows that, in any case, mmWave cellular networks are

likely not to be interference-limited. This finding is in agreement with recent published papers

that considered a simplified blockage model [14]. The figuresalso show that, in general, the

presence of an outage state reduces the coverage probability. This is noticeable, in particular, for

small values of the reliability thresholdT. Furthermore, as expected, the performance gets better

as the average cell radiusRc decreases,i.e., for denser network deployments. Cell associations

based on the smallest path-loss and the highest received power provide, in general, very close

performance. Some figures deserve some additional comments.

In Fig. 4, mmWave andµWave cellular networks are compared by assuming a cell association

based on the smallest path-loss. This figure shows that mmWave systems have the potential of

outperformingµWave systems, provided that the network density is sufficiently high. Otherwise,

µWave systems are still to be preferred, especially for smallvalues of the reliability threshold

T. As expected, mmWave transmission atFc = 28 GHz slightly outperforms its counterpart at

Fc = 73 GHz due to a smaller path-loss.

In Figs. 3 and 6, the rate of mmWave andµWave networks is compared. They show that

mmWave networks are capable of significantly enhancing the average rate. This is mainly due to

the larger transmission bandwidth, which is 50 times larger, in the considered setup, for mmWave

systems. The figure shows, however, that the gain can be larger than the ratio of the bandwidths,
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especially for medium/dense cellular deployments. Figure6 shows an interesting phenomenon:

for dense network deployments,i.e., Rc < 100 meters, the average rate may be larger in the

presence of an outage state. This is because the BSs that are in outage do not contribute to the

other-cell interference. On the other hand, the outage state negatively affects the rate if the BSs

are sparely deployed. A similar trend emerges in Fig. 7 for the coverage probability.

In Figs. 9 and 10, the impact of beamsteering errors is investigated. The figures confirm that

beamsteering errors degrade, in general, the achievable performance. In the considered setup, the

degradation is noticeable if the standard deviation of the pointing error is greater than 6 degrees.

Finally, Figs. 11 and 12 confirm that multi-tier networks provide better performance, especially

for small values of the reliability thresholdT and for large cell radii of the higher tier of BSs. In

spite of the large number of deployed BSs in this setup and thesmall cell radius for the lowest

tier of BSs (Rc = 50 meters for Tier-3), the results confirm that the noise-limited approximation

still holds for mmWave cellular networks. This occurs even though the directivity gain of the

lower tiers of BSs and of the MT is not that high.

VII. CONCLUSION

In the present paper, a new analytical framework for computing coverage probability and

average rate of mmWave cellular networks has been proposed.Its novelty lies in taking into

account realistic channel and blockage models for mmWave propagation, which are based on

empirical data available in the literature. A systematic two-ball approximation for modeling the

link-state of mmWave communications is introduced, which is based on matching the intensities

of the PPPs of empirical three-state and approximated two-ball link models. The proposed

mathematical methodology relies on the noise-limited assumption for modeling mmWave cellular

systems, which is shown to be sufficiently accurate for typical densities of BSs and for envi-

sioned transmission bandwidths. The proposed approach is applicable to different cell association

criteria, to multi-tier cellular deployments and it accounts for beamforming pointing errors. The

numerical examples have confirmed that sufficiently dense mmWave cellular networks have the

inherent capability of outperforming theirµWave counterpart.
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APPENDIX I – PROOFS OF THERESULTS IN SECTION III

A. Proof of Lemma 1

The proof follows by using a methodology similar to [23, Sec.II-A]. In particular, by invoking

the displacement theorem of PPPs [17, Th. 1.10], the processof the scaled propagation losses

Φ =
{

l
(

r(n)
)/

A(n), n ∈ Ψ
}

can be interpreted as a transformation ofΨ, which is still a PPP

on R
+. From Section II-D, we know thatΨ = ΨLOS ∪ ΨNLOS ∪ ΨOUT. SinceΨLOS, ΨNLOS

andΨOUT are independent, the density (or intensity),ΛΦ (·), of Φ =
{

l
(

r(n)
)/

A(n), n ∈ Ψ
}

is

equal to the summation of the intensities ofΦLOS, ΦNLOS andΦOUT. Since the path-loss of the

links in outage is infinite, by definition its intensity is equal to zero. The intensities,ΛΦLOS
(·)

andΛΦNLOS
(·) of ΦLOS andΦNLOS, respectively, on the other hand, can be computed by using

mathematical steps similar to the proof of [23, Lemma 1]. More specifically, we have:

ΛΦs
([0, x)) = 2πλEAs

{
∫ +∞

0

H
(

Asx− (κsr)
βs

)

ps (r) rdr

}

(30)

whereps (·) for s = {LOS,NLOS} is defined in (4).

Equation (10) follows by insertingps (·) of (4) in (30) and by computing the integrals with

the aid of the notable result
∫ b

a
e−crrdr = (1/c2)

(

e−ca + ae−ca − e−cb − be−cb
)

.

B. Proof of Corollary 2

It follows by calculating the expectation of (15), wherex is replaced withAsx, with respect

to As, by using the results:

FAs
(y) = Pr {As ≤ y} =

∫ y

0

fAs
(ξ) dξ = 1/2 + 1/2erf

(

(ln (y)− µs)
/(√

2σs

))

mAs
(ν, y) =

∫ y

0

ξνfAs
(ξ) dξ = (1/2) exp

{

νµs + (1/2) ν2σ2
s

}

× erfc
(

νσs

/√
2− (ln (y)− µs)

/(√
2σs

))

m̄As
(ν, y) =

∫ +∞

y

ξνfAs
(ξ) dξ = exp

{

νµs + (1/2) ν2σ2
s

}

−mAs
(ν, y)

(31)

wherefAs
(ξ) =

(√
2πσsξ

)−1
exp

(

−(ln (ξ)− µs)
2/(2σ2

s)
)

.
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C. Proof of Lemma 4

SinceΨLOS and ΨNLOS are independent, thenPblockage = Pr {ΨLOS = ∅ ∩ΨNLOS = ∅} =

Pr {ΨLOS = ∅}Pr {ΨNLOS = ∅}. From the void probability theorem of PPPs [17], we have:

Pr {Ψs = ∅} = exp

(

−2πλ

∫ +∞

0

ps (r) rdr

)

(32)

for s = {LOS,NLOS} and ps (·) is defined in (4). The integral in (32) can be computed

in closed-form from (30) by lettingx → +∞ for As = 1. The proof follows with the aid

of some simplifications. Alternatively, the proof may be obtained directly fromLemma 1. By

definition of communication blockage, in fact, the equalities Pblockage = Pr
{

Φ(0) = +∞
}

=

Pr
{

L(0) ≥ +∞
}

= 1− FL(0) (x → +∞) hold, from which the proof follows settingAs = 1.

APPENDIX II – PROOFS OF THERESULTS IN SECTION IV

D. Proof of Proposition 1

From (8) and (19), the coverage probability can be formulated, by definition, as follows:

P(cov) (T) = E
L
(0)
LOS











Pr











PG(0)
∣

∣

∣
h
(0)
LOS

∣

∣

∣

2

σ2
NL

(0)
LOS

> T

∣

∣

∣

∣

∣

∣

∣

L
(0)
LOS











Pr
{

L
(0)
NLOS > L

(0)
LOS

∣

∣

∣
L
(0)
LOS
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+ E
L
(0)
NLOS











Pr











PG(0)
∣

∣

∣
h
(0)
NLOS

∣

∣

∣

2

σ2
NL

(0)
NLOS

> T

∣

∣

∣

∣

∣

∣

∣

L
(0)
NLOS











Pr
{

L
(0)
LOS > L

(0)
NLOS

∣

∣

∣
L
(0)
NLOS
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(33)

Denote the first and second addends in (33) byP
(cov)
s (·), wheres = LOS and s = NLOS,

respectively. It can be computed by using the following results:

Pr
{

∣

∣h(0)
s

∣

∣

2
> L(0)

s T
/

γ(0)
∣

∣

∣
L(0)
s

}

(a)
= 1/2− (1/2)erf

(

(

ln
(

L(0)
s T

/

γ(0)
)

− µs

)

/(√
2σs

))

Pr
{

L
(0)
NLOS > L

(0)
LOS

∣

∣

∣
L
(0)
LOS

}

(b)
= exp

(

−ΛNLOS

([

0, L
(0)
LOS

)))

Pr
{

L
(0)
LOS > L

(0)
NLOS

∣

∣

∣
L
(0)
NLOS

}

(c)
= exp

(

−ΛLOS

([

0, L
(0)
NLOS

)))

(34)

where (a) follows from (31), and (b) and (c) follow fromLemma 1, Lemma 2 and Remark 3,

sinceL(0) = Φ(0)
∣

∣

ALOS=ANLOS=1
= min

{

L
(0)
LOS, L

(0)
NLOS

}

, L(0)
LOS = Φ

(0)
LOS

∣

∣

∣

ALOS=1
and L

(0)
NLOS =

Φ
(0)
NLOS

∣

∣

∣

ANLOS=1
. The proof follows by explicitly writing the expectation with respect toL(0)

LOS

andL(0)
NLOS in terms of their PDFs, which can be formulated, similar to (b) and (c), asf

L
(0)
s

(ξ) =
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dPr
{

L
(0)
s < ξ

}/

dξ = Λ
(1)
s ([0, ξ)) exp (−Λs ([0, ξ))), sincePr

{

L
(0)
s < ξ

}

= exp (−Λs ([0, ξ))).

The equalities in (a) and (b) in (21) and (22), respectively,follow by noting that the terms

multiplying the Kronecker’s delta function simplify with each other.

E. Proof of Corollary 3

Since LOS and NLOS links have the same distribution, the SNR in (19) can be equiv-

alently re-written asSNR = PG(0)
∣

∣h(0)
∣

∣

2
/

(

σ2
NL

(0)
)

. Thus, the coverage can be written as

P(cov) (T) = Pr
{

L(0) < PG(0)
∣

∣h(0)
∣

∣

2
/

(σ2
NT)

}

= E|h(0)|2
{

FL(0)

(

PG(0)
∣

∣h(0)
∣

∣

2
/

(σ2
NT)

)}

. The

proof follows fromLemma 1, Lemma 2 andRemark 3, sinceL(0) = Φ(0)
∣

∣

ALOS=ANLOS=1
.

F. Proof of Proposition 2

If PG(0)
/

σ2
N ≫ 1, the average rate can be approximated asR = ESNR {BW log2 (1 + SNR)} ≈

ESNR {BW log2 (SNR)}, where the SNR is defined in (19). Thus, (9) can be simplified as

R ≈ (BW/ln (2))
∫ +∞

0
Pcov (e

t) dt. By inserting the coverage in (20) in this approximated

expression of the rate, the proof follows by swapping the order of integration and by using

the following notable integral:

Js (x) =
1

2

∫ +∞

0

erfc

(

ln
(

etx
/

γ(0)
)

− µs√
2σs

)

dt =
1

2

∫ +∞

0

erfc

(

ln
(

x
/

γ(0)
)

− µs + t√
2σs

)

dt

(35)

whose closed-form solution is available in (24).
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Fig. 1: Coverage probability of a mmWave cellular network atFc =
28 GHz. Smallest path-loss cell association. (a)pOUT(·) in (4). (b)
pOUT(r) = 0. Solid lines: mathematical framework. Markers: Monte
Carlo simulations.
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Fig. 2: Coverage probability of a mmWave cellular network atFc =
73 GHz. Smallest path-loss cell association. (a)pOUT(·) in (4). (b)
pOUT(r) = 0. Solid lines: mathematical framework. Markers: Monte
Carlo simulations.
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Fig. 3: Average rate of a mmWave cellular network atFc = 28
GHz and Fc = 73 GHz. Smallest path-loss cell association. (a)
The normalized rateR/BW is shown. Solid lines: mathematical
framework. Markers: Monte Carlo simulations. (b) Ratio of the average
rates of two mmWave networks atFc = 28 GHz andFc = 73 GHz
and of aµWave network atFc = 2.5 GHz.
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Fig. 4:Coverage probability of mmWave andµWave cellular networks
at Fc = 28 GHz (mmWave),Fc = 73 GHz (mmWave) and
Fc = 2.5 GHz (µWave). Smallest path-loss cell association. For
mmWave networks,pOUT(·) in (4). For theµWave cellular network,
pOUT(r) = 0. (a) Rc = 50 m. (b) Rc = 100 m. (c) Rc = 150 m.
(d) Rc = 200 m.
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Fig. 5: Coverage probability of a mmWave cellular network atFc =
28 GHz (a) andFc = 73 GHz (b). Highest received power cell
association.pOUT(·) in (4). Solid lines: mathematical framework.
Markers: Monte Carlo simulations.
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Fig. 6: Average rate of a mmWave cellular network atFc = 28 GHz
(a) andFc = 73 GHz (b). Highest received power cell association.
pOUT(·) in (4). The normalized rateR/BW is shown. Solid lines:
mathematical framework. Markers: Monte Carlo simulations. The
figure also shows the average rate of the mmWave cellular networks
without outage state (pOUT(·) = 0) and that of aµWave cellular
network atFc = 2.5 GHz. All rates are normalized to the transmission
bandwidth of mmWave cellular networks.
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Fig. 7: Coverage probability of a mmWave cellular network: Impact
of the outage state. Highest received power cell association. pOUT(·)
in (4). (a) Fc = 28 GHz andRc = 50 m. (b) Fc = 73 GHz and
Rc = 150 m.
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Fig. 8: Coverage probability (a, b) and average rate (c) of a mmWave
cellular network: Impact of cell association. PL means based on the
smallest path-loss and RP means based on the highest received power.
pOUT(·) in (4). (a)Rc = 50 m. (b)Rc = 200 m. (c) The normalized
rateR/BW is shown.
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Fig. 9: Coverage probability of a mmWave cellular network with
Rc = 150 m at Fc = 28 GHz (a) andFc = 73 GHz (b): Impact of
beamsteering errors. Highest received power cell association. pOUT(·)
in (4). Solid lines: mathematical framework. Markers: Monte Carlo
simulations.
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Fig. 10:Average rate of a mmWave cellular network atFc = 28 GHz
(a) andFc = 73 GHz (b): Impact of beamsteering errors. Highest
received power cell association.pOUT(·) in (4). The normalized
rateR/BW is shown. Solid lines: mathematical framework. Markers:
Monte Carlo simulations.
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Fig. 11:Coverage probability of a mmWave cellular network atFc =
28 GHz (a) andFc = 73 GHz (b). Cell association in (27).pOUT(·)
in (4). Solid lines: mathematical framework. Markers: Monte Carlo
simulations. Setup. Tier-1:Rc = 150 m, P = 30 dBm,G(max)

BS = 20

dB, G(min)
BS = −10 dB, ωBS = 30◦. Tier-2: Rc = 100 m, P = 10

dBm, G(max)
BS = 10 dB, G(min)

BS = 0 dB, ωBS = 40◦. Tier-3: Rc =

50 m, P = 5 dBm, G(max)
BS = 5 dB, G(min)

BS = 0 dB, ωBS = 50◦.

Also, G(max)
MT = 5 dB, G(min)

MT = 0 dB, ωMT = 50◦.
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Fig. 12: Average rate of a mmWave cellular network atFc = 28
GHz (a) andFc = 73 GHz (b). Cell association in (27).pOUT(·)
in (4). Solid lines: mathematical framework. Markers: Monte Carlo
simulations. The same setup as in Fig. 11 is considered with an
exception. The values ofRc shown in the figure are related to Tier-1.
The cell radii of Tier-2 and Tier-3 are kept fixed to 100 and 50 meters.
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