
Location-aware Associated Data Placement for
Geo-distributed Data-intensive Applications

Boyang Yu and Jianping Pan
University of Victoria, Victoria, BC, Canada

Abstract—Data-intensive applications need to address the
problem of how to properly place the set of data items to
distributed storage nodes. Traditional techniques use the hashing
method to achieve the load balance among nodes such as those in
Hadoop and Cassandra, but they do not work efficiently for the
requests reading multiple data items in one transaction, especially
when the source locations of requests are also distributed. Recent
works proposed the managed data placement schemes for online
social networks, but have a limited scope of applications due to
their focuses. We propose an associated data placement (ADP)
scheme, which improves the co-location of associated data and
the localized data serving while ensuring the balance between
nodes. In ADP, we employ the hypergraph partitioning technique
to efficiently partition the set of data items and place them to
the distributed nodes, and we also take replicas and incremental
adjustment into considerations. Through extensive experiments
with both synthesized and trace-based datasets, we evaluate the
performance of ADP and demonstrate its effectiveness.

I. INTRODUCTION

Recent Internet developments encourage the emerging of
data-intensive applications [1], which leads to a large amount
of data stored in the geographically distributed datacenters
across regions and a high frequency of data access from the
clients or users [2]. Each data request from the users can be
fulfilled only at the datacenter holding the requested data or
its replicas, so the storage location of the data items really
matters to the user-experienced performance. Meanwhile, the
optimized data placement can help the service providers by
lowering their cost with the improved system efficiency and
ensuring the high system availability. Thus we face a general
problem of how to efficiently place the data items and replicas
to the distributed datacenters, with the requests for them
varying across different regions.

Storing the requested data closer to the users is the moti-
vation of most existing work on data placement, which helps
to reduce the latency experienced by the users and lower the
relaying traffic among datacenters. In the network applications
that can utilize geographically distributed datacenters, Content
Distribution Network (CDN) [3] is broadly applied to help the
access of videos, pictures and texts. Different from traditional
CDNs where each content is replicated to every datacenter,
people need to constrain the number of replicas allowed for
each data item under the increasing scale of data items and
data traffic. That leads to the problem of how to choose the
proper datacenters to store the replicas with a limited number.

The issue of multi-get hole [4] has not been paid enough
attention to until recently, but it can also affect the decision
in placing data items to distributed locations. The issue is

triggered when multiple items are requested in one transaction.
People discovered that using fewer nodes to fulfill such a
request is better in terms of the system efficiency, because the
request dispatched to each node will introduce a certain over-
head to the node regardless of the amount of data requested.
To overcome the issue, a favorable paradigm is to place the
strongly associated data items, those who are often requested
together in the same transaction, at the same location. It
has profound applications to Online Transaction Processing
systems, where a transaction is fulfilled only after accessing
multiple data tables, to Online Social Network (OSN) services,
where the polling of news feeds involves not only the data of a
user itself but also that of its friends, and even to regular web
services, since visiting a webpage actually needs to download
multiple files, such as the hypertexts, images and scripts.

The balance of the workload or stored items among dis-
tributed datacenters is another factor important to the data
placement. The maximum serving capacity in a modern data-
center seems to be unlimited to an individual service provider,
especially when designed as a public cloud. However, a poor
balance between datacenters would result in the excessive
dependence on some critical locations, which increases the
worst-case recovery time after a site failure, and therefore
should be avoided as much as possible. Here we only consider
the balance among the number of data items (or replicas)
placed in different datacenters, but it can partially reflect the
balance of workload because of the law of large numbers,
assuming the randomness of request rates.

It is challenging to solve a data placement problem that
combines these different aspects. We will address the cor-
responding issues progressively from three scenarios. First,
for the scenario without replicas, we address the placement
problem by the hypergraph partitioning formulation, through
which the optimized solution can be obtained. Second, we
consider the scenario with replicas where a certain number of
replicas are allowed for each item. The existence of multiple
replicas in different locations introduces the decision problem
of routing a request, because any one of the corresponding
replicas can be used to fulfill the request. A round-robin
scheme that iteratively makes the routing decision and replica
placement decision is proposed. Third, we consider that the
workload may change after a certain time, which makes the
earlier solution sub-optimal. Then the problem of replica
migration is formulated, i.e., how to change the locations of
no more than K replicas based on the existing placement
to achieve a better performance. To solve the problem, we

discuss how to generate the candidates for replica migration
and determine the optimal number of selected candidates.

The state-of-the-art implementation in most distributed stor-
age systems today, such as HDFS [5] and Cassandra [6],
is mainly hash-based which can be intuitively understood as
random placement. Among the related work that discussed
the managed data placement, some existing work either just
focused on the distance between data and user, such as [7] and
[8], or only addressed the co-location of associated data items,
such as [9]–[11]. Some others discussed the issues under the
scenario of OSN [12]–[14], where the discussed association
of stored entities is only based on pairs of users (each pair
consists of a user and one of its friends), which overlooks
the relationship between concrete data items as well as the
association that involves more than two entities. [15] is the
work most related to ours in the problem definition, but it
relaxed the group association to pairwise in an early stage of
the solution. To the best of our knowledge, our data placement
scheme makes the advancement of jointly improving the co-
location of associated data and localized data serving without
a relaxation of the original objective. Besides, the developed
methods to support replicas and to address replica migration
are also novel and make the scheme more comprehensive.

The rest of this paper is structured as follows. Section
II summarizes some related work. Section III presents our
modeling framework for the data placement problem. In Sec-
tion V, the location-aware associated data placement scheme
is proposed. In Section VI, the scheme is evaluated through
extensive experiments. Section VII concludes the paper.

II. RELATED WORK

Due to the availability of geo-distributed datacenters, there
exist multiple choices in selecting the location to store data or
the destination to fulfill user requests. In [15], Agarwal et al.
presented the automatic data placement across geo-distributed
datacenters, which iteratively moves a data item closer to both
clients and the other data items that it communicates with.
In [16], the replica placement in distributed locations was
discussed with the QoS considerations. In [7], Rochman et al.
discussed how to place the contents or resources to distributed
regions in order to serve more requests locally for a lower cost.
In [8], Xu et al. solved the workload management problem, in
order to maximize the total utility of serving requests minus
the cost, which is achieved through the reasonable request
mapping and response routing.

Besides fulfilling the request at a location near to the user,
there are other factors that affect the system performance,
such as the multi-get hole effect, firstly cited in [4]. The
effect can be intuitively explained as follows: for a request
to obtain multiple items which are stored distributedly, we
favor to use fewer nodes to fulfill the request for a higher
system efficiency. It incurs the problem of how to co-locate
the strongly correlated data items through the managed data
placement. [9] proposed to create more replicas of data items
to increase the chance of serving more requested items in one
node. [10] mentioned that frequent request patterns can be

discovered through trace analysis, and each group of items
frequently accessed can be treated as a whole in the distributed
storage. [17] discussed how to co-locate the related file blocks
in the Hadoop file system. [11] improved the hypergraph
partitioning by compression to more efficiently partition the
data items into sets. Such work did not consider the necessity
of fulfilling the request locally and was not aware of the
difference among locations, which result in that many requests
might need to be served at a remote node inefficiently.

Recent research has studied the data and replica placement
in OSN, which favors to place data items from close friends
together. In [12], Pujol et al. showed the necessity to co-
locate the data of a user and its friends and proposed the
dynamic placement scheme. In [13], it was stated that different
data items from the same user may be requested with a
heterogeneous rate or pattern, and the method to determine
the proper number of replicas for each data item was given. In
[14], Jiao et al. summarized the relationships of entities in the
OSN system and proposed the multi-objective data placement
scheme. The friendship-based one-to-one data relationship
discussed in these works can be considered as a special case
of the multi-data association in our modeling.

III. MODELING FRAMEWORK

A. Data Items and Nodes

1

2 3

4

5

(a) (b)

4 5

1 4

1 2 3

Datacenters Request patterns

Data item Request pattern Request rate Rpy

Fig. 1. Problem inputs: (a) request pattern set P ; (b) request rate set R

A set X of m data items is used to represent the data stored
in the system. Depending on the actual type of data storage,
the data items can be files, tables or segments in practice.
Users of the service may request at most d different items
from the set X in each transaction. We denote the space of
request patterns by P = {X,∅}d. The requests in a practical
system actually fall in a subset of the space, denoted by

P ⊂ P = {X,∅}d . (1)

As illustrated in Fig. 1a, the example system contains 5
different data items and 3 request patterns, which are (1, 2, 3),
(1, 4) and (4, 5). The paradigm of accessing multiple data
items in one transaction has many applications. For example,
the news feed updating in OSN involves the data of multiple
users. In data analysis systems, the output is made through
combining or processing multiple data files, each captured
from a different data source, possibly remotely distributed.

We consider the scenario that the data items are stored in
geographically distributed datacenters, represented by a set
Y of n nodes. Compared with the centralized storage, the
distributed storage can improve the access latency of most
users and achieve a higher level of fault tolerance. We term
a datacenter as a node or a location interchangeably in the
following. Initially, we consider each data item x ∈ X is
stored at a unique location y ∈ Y . Thus the data-to-location
mapping function is defined as

D : x→ y , (2)

which specifies the storage location y of each item x. Funda-
mentally, our work focuses on designing the placement scheme
that provides a reasonable solution of D. Besides, we use Dy

to represent the set of data items stored in node y.
In the state-of-the-art implementation of such a function,

the hash-based methods are adopted most broadly, such as
in HDFS and Cassandra, since at the time of their design,
the main concern was to achieve the load balance between
nodes. Although some other policies take effect in their data
placement, such as to avoid placing the replicas of a data item
in the same datacenter in order to improve the fault tolerance,
the schemes can still be understood as random placement.
Obviously the hash-based schemes did not pay enough atten-
tion to the system performance affected by the data locations
and ignored the potential performance improvement through
the managed data placement. To attack this deficiency, we
start with modeling the metrics of placing data at different
locations and the effect of introducing data replicas, and then
propose the efficient data placement scheme that fully exploits
the benefits of the managed data placement.

B. Data Placement Problem

1) Workload: We assume the request from a client is
directed to the datacenter closest to the location of the client.
The client can be located outside or inside the datacenters for
data storage. When a human user is using the service, they are
always from outside locations. Another case is the running jobs
or processes inside the datacenter who also can request data
items. Without loss of generality, we consider the datacenter
that a request is initially accessed to as the source location
of the request. So the datacenter or node in our modeling has
two roles simultaneously: the source location of requests and
the destination location holding the stored data.

The workload or request rate of each pattern p ∈ P from the
requesting node y ∈ Y can be measured, denoted by Rpy . We
use the predicted request rates as the input of our scheme to
make the data placement decision. There exist mature methods
in predicting the rates from a series of rate measurements in
the previous time slots, such as EWMA [18], so the details
of dealing with prediction are not included in this paper.
Although the predicated rates are not the same as the measured
ones, we use the same notations in the following for simplicity.
First we denote the workload or request rate set as

R = {Rpy|p ∈ P, y ∈ Y } . (3)

In the example of Fig. 1b, the request rate set R is illustrated
as a bipartite graph, where datacenters and request patterns
are the two sets of vertices, and the edges between these two
sets are weighted by the rate Rpy . Besides, for each data item
x, we calculate its total request rate at each node y by

Rxy =
∑
p∈P

Rpy1(x ∈ p) , (4)

where 1(x ∈ p) indicates whether the data item x is a member
of the pattern p, returning 1 if true or 0 otherwise. For each
pattern p, we calculate its total request rate by

Rp =
∑
y∈Y

Rpy . (5)

2) Metrics: Data placement can affect the system perfor-
mance in both the system efficiency and user-experienced la-
tency. We investigate the relationships between the placement
and system performance and summarize them as two metrics.

Co-location of Associated Data: The system efficiency is
characterized by the necessary system time to fulfill the given
workload. According to the observation of [4], in distributed
systems, the average system time of a request is not only
related to amount of information accessed, but also related to
the number of distributed nodes involved due to the processing
overhead at each node. Denote the span of a request p by Sp,
representing the number of items requested by it, and denote
the number of items in request p that are fulfilled at node
y by Spy , since a single node may not be able to provide all
the items in p. They have the relationship of

∑
y∈Y Spy = Sp.

Note that Spy is a variable determined by the mapping function
D and Sp is a constant. We model the necessary system time
to partially or fully fulfill a request p at node y as

Spy + λ · 1(Spy) , (6)

where the 0-1 function 1(Spy) indicates whether Spy ≥ 1.
The idea behind it is that the system time consists of the part
proportional to Spy and the constant overhead of handling
the request, denoted by λ. The latter is introduced by the
routine operations in handling a request, such as the TCP
connection establishment. With the request rates of different
patterns, the total system time of fulfilling all the requests is∑

p∈P Rp

∑
y∈Y [Spy + λ · 1(Spy)], which is equal to∑

y∈Y

∑
p∈P

Rp[Spy + λ · 1(Spy)] . (7)

Minimizing (7) helps to lower the cost of the service provider,
i.e., the amount of resource allocation or the monetary expense
on clouds. It can be achieved by the co-location of strongly
associated data. For example, in the extreme case, when
placing all the items in a pattern p to the same location, the
system time on p is at the lower bound Rp(Sp + λ).

Because
∑

y∈Y

∑
p∈P Rp · Spy in (7) is a constant for any

given workload, we can summarize the metric as

CA =
∑
y∈Y

∑
p∈P

Rp · λ · 1(Spy) . (8)

Localized Data Serving: The location difference between
the requesting node and the node holding the requested data
affects the system performance through incurring the relay-
ing traffic and enlarging the user-experienced latency. To be
specific, when the data serving node is not the same as the
requesting node, the relaying traffic is introduced, so we use
the total relaying traffic as the second metric, denoted by

CL =
∑
x∈X

∑
y∈Y

Rxy · [1− 1(x ∈ Dy)] , (9)

where 1(x ∈ Dy) indicates whether x is stored at node y.
Here we use the relaying traffic as the metric of localized
data serving, but it is still possible to use the logical distance
between each user and its requested data as the metric instead,
which is not included in the paper due to the page limit.

Note that [14] summarized the relationships in the data
placement for OSN as two categories: (a) between data and
data; (b) between data and node. Our work is different at (a), as
we consider each request may involve a group of multiple data.
We cannot adapt to their scheme through simply decomposing
the multi-data relationship to the pairwise relationships of all
the pairs in the group. Due to the generalized hypegraph
formulation shown later, our scheme can be extended to
incorporate most of the metrics considered in that paper.

3) Optimization Problem: Our objective is to improve the
performance of a placement D, represented by

C(D) = CA + αCL , (10)

where α is used to tradeoff the two metrics above. To minimize
C(D) helps to improve the system efficiency and the user-
experienced latency. Besides, the balance among nodes is also
necessary. To ensure the worst-case recovery time upon site
failure, the number of data items stored in different datacenters
should be balanced. Therefore, we set the balance constraint
that the number of items stored in each datacenter y, should
be in a range [(1− ε)ha, (1 + ε)ha], where ha is the average
number of items in all nodes and ε is the balance parameter.
The formulated problem can be generalized as: given I =
{P,R}, find the optimal placement solution of D : x→ y that
minimizes the value of C(D), subject to the balance constraint.

C. Data Replicas

The data placement problem is more challenging if the
replicas of data items are allowed. We would not differentiate
the data item itself and its replicas, so both of them are treated
as replicas below. The allowed number of replicas for each
item is given from a separate process not discussed here, due
to the scope of this paper. Below we assume the number of
replicas for each data item is k, but the scheme still applies
when the number is heterogenous for different items. Because
the locations of replicas need to be determined, the data-to-
location mapping function is updated to

D : x→ {y1, y2, ..., yk} . (11)

Meanwhile, we have to face the routing decision problem,
since the request for an item x can be fulfilled at any location

Data−node edge

1

2 3

4

5

A

B

Data item

Node

Hyperedge Set

Vertex Set

Request pattern edge

Fig. 2. Hypergraph formulation

holding a replica of x. We adopt the deterministic routing and
represent the routing as a mapping function

M : (x, p, y)→ yd , (12)

which can give the routing destination yd ∈ Y for each item
x in a pattern p requested from node y. Note that the solution
for the scenario with replicas should include both D and M.
Besides, we realize that the routing decision should be made
based on a given placement of replicas, however after the
decision is made, the previously generated placement might
be sub-optimal. This makes the problem more complicated
and we will present our solution gradually in the following.

IV. ASSOCIATED DATA PLACEMENT

A. Placement without Replicas

We start with showing that without data replicas, the opti-
mization problem can be formulated as an n-way hypergraph
partitioning problem. Note that in the existing work that also
used hypergraph to model to the relationship among multiple
items, e.g., [11], the exact data location was not addressed
because of their unawareness of the difference between loca-
tions. A hypergraph G(V,E) is a further generalization of a
graph, i.e., the hypergraph allows each of its hyperedges to
involve multiples vertices while the edge of an ordinary graph
can only involve two vertices at most. In our scheme, we set
up the vertex set V with all the data items and all the nodes
in the considered system, such as

V = {X,Y } . (13)

The hyperedge set E contains all the request patterns and the
pairs between each node and each data item. For each request
pattern hyperedge, it involves multiple data items and that is
the main reason of introducing hypergraph. Formally,

E =
{
{ep|p ∈ P}, {exy|x ∈ X, y ∈ Y }

}
. (14)

Each hyperedge e ∈ E is assigned a weight. Due to the
objective (10), the weights are set according to

we =

{
λRp, for the request pattern hyperedge ep
αRxy, for the data-node hyperedge exy

. (15)

An example of formulating the problem into a weighted
hypergraph is illustrated in Fig. 2. In the hypergraph, there
are two types of vertices: storage node (square) and data item
(circle), and two types of edges, the request pattern hyperedge

(dashed circle) and the data-node hyperedge (solid line). We
may term hyperedge as edge for short below.

An n-way partitioning of the hypergraph is to partition its
vertices into n output sets, such that each vertex only belongs
to one of the n sets. The cut weight of the partitioning is
counted as the sum of the cut weights of its hyperedges. A
hyperedge e is cut if its vertices fall to more than one sets;
the cut weight of edge e is counted as (t− 1)we if its vertices
fall to t sets. Meanwhile we can pre-assign some vertices to
the n output sets before applying the hypergraph partitioning
algorithm, i.e., they are fixed-location vertices. In our scheme,
each of the n nodes is pre-assigned to a different set before the
partitioning. By that, after the partitioning, we obtain where
to place a data directly from the n output sets, because each
node and the data items stored in it would fall to the same set.
Next we show the equivalence between the cut weight of an
n-way hypergraph partitioning and the objective value C(D)
of the data placement based on the partitioning result.

Theorem 1: For any input I, we can formulate it into a hy-
pergraph through the method above. Partition the hypergraph
into n sets of vertices, from which, we can obtain the data
placement D. Denoting the cut weight of the partitioning by
H , it satisfies that H = C(D)−B, where B is a constant.

Proof: First, we discuss the cut weight of a request
pattern edge ep, denoted by Hp. According to the definition
of the cut of hyperedges, Hp = [

∑
y∈Y 1(Spy) − 1]wep =

[
∑

y∈Y 1(Spy) − 1]λRp. With (8), We can obtain CA −∑
p∈P Hp =

∑
p∈P λRp = B, which is a constant. Second,

we discuss the cut weight of a data-node edge exy , denoted
by Hxy . For any data item x, it was connected to all the
nodes in the formulated hypergraph. After the partitioning,
it can be connected to only one node, because otherwise
some sets in the partitioning result would be connected by
x, considering that we have assigned each node to a different
set. Assuming the item x is finally connected with node fx,
the sum of the cut weights of data-node edges related to x is∑

y∈Y Hxy =
∑

y∈Y/fx
αRxy . After placing the data items

according to the partitioning, with (9), we obtain the metric
CL =

∑
x∈X

∑
y∈Y/fx

Rxy . Therefore, H =
∑

p∈P Hp +∑
x∈X

∑
y∈Y Hxy = CA −B + αCL = C(D)−B.

From the thereom, to minimize the cut weight of the hy-
pergraph partitioning is the same as to minimize the objective
function (10). The minimum n-way hypergraph partitioning
has been shown to be NP-Hard, but different heuristics have
been developed to solve the problem approximately, because
of the wide applications of the hypergraph partitioning, such as
in VLSI, data mining and bioinformatics. The PaToH tool [19]
is what we use to partition the formulated hypergraph.

The general steps of the algorithm in PaToH [19] are as
follows: 1) coarsen the initial hypergraph into smaller and
smaller scales gradually; 2) solve the partitioning problem on
the smallest scale graph; 3) gradually uncoarsen the partitions
into the larger scale graph with refinements. The coarsening
process may eliminate the chance of placing some vertices
in the same set, but with a reasonable coarsening and later
refinement, its performance can be still quite well.

B. Placement with Replicas

To overcome the issues introduced by the replicas, we
design the round-robin scheme as shown in Fig. 3. In phase (1),
we address the initial placement of data replicas by a simple
greedy method. In phase (2), the local routing decision is
made for each request pattern from each node, considering the
existence of replicas. Then the request pattern p attached with
each request rate Rpy is refined towards specific replicas. In
phase (3), based on the refined request rates towards replicas,
we can make the replica placement decision. Phase (2) and (3)
are applied repeatedly until the improvement is smaller than a
threshold. The general steps of the whole scheme are shown
in Alg. 1. Details of each phase are given as follows.

Initial workload

(1) Initial Placement

(2) Routing Decision

(3) Replica Placement Decision

Workload to replicasReplica locations

Fig. 3. Logic flow of the scheme with replicas

1) Initial Placement: First we present a greedy method of
generating the initial replica placement, which is illustrated as
phase (1) in Fig. 3. For each data x ∈ X , we obtain the set
Wx = {Rxy|y ∈ Y }, representing the request rates to data x
from different locations, and sort it to the descending order.
Based on the allowed number of replicas for data x, which is k
in our model, we choose k nodes that are with the highest rate
in Wx to store the replicas of item x. This initial placement
at least ensures that the resultant total relaying traffic of the
system is minimized, which is better than a random initial
placement. Although the metric of data co-location is not
considered in this phase, the final performance of the scheme
is not affected, since that metric takes effect in the later steps.

2) Routing Decision: A main problem introduced by al-
lowing replicas is to make the optimal routing decision based
on the current status of the replica placement, which is shown
as phase (2) in Fig. 3. We formulate the optimization problem
for the routing of pattern p at node j as follows.

min λ
∑
y∈Y

Ay + α
∑
x∈p

∑
y∈Y/j

Xxy

s.t.
∑
y∈Y

Xxy · 1(x ∈ Dy) = 1,∀x ∈ p

Xxy ≤ Ay, Xxy ∈ {0, 1}, Ay ∈ {0, 1},∀x ∈ p

(16)

The optimal solution of (16) ensures the minimized value
of (10) under any given replica placement. The binary variable
Xxy is used to represent whether an item x ∈ p will be routed
to the node y. And the binary variable Ay indicates whether
the node y is utilized (or active) in the routing of p. The
constraints ensure that each item x ∈ p is actually routed
to one node holding the replica of x and being active. The
objective is to minimize the cost incurred by the fulfillment

of request p from node j. Its first part is about the number
of nodes involved. The second part is the relaying traffic in
fulfilling p. Indeed they would contribute to the objective (10).

We can generalize a feasible solution to (16) as two cases:
the local node j is or is not included in the chosen active
data serving nodes. For the former, we prefer to choose any
item x ∈ p to be served locally if possible, because otherwise,
moving the serving to the other locations would introduce the
extra relaying traffic. The latter is still necessary, because if
we assume that all the items are not served at the local node
j, it saves the cost of λAj compared with the former, which
may be able to compensate for the extra relaying traffic.

No matter either case is chosen, the amount of relaying
traffic would be determined, and then the objective becomes
λ
∑

y∈Y Ay , which makes the problem to the classical set-
cover problem. The set-cover problem is proved to be NP-hard,
however we can use any Integer Linear Programming solver or
heuristics to obtain the approximate solution. In our method,
we obtain the solution of two cases first and then choose the
one with a lower objective value for (16). For the former case,
we choose data items to be served locally as much as possible
and then apply the set-cover heuristic to the remaining items.
For the latter, we directly apply the set-cover heuristic to all
the data items. The heuristic is to iteratively choose the node
that covers the highest number of data items not covered yet
by the nodes chosen in the earlier iterations.

3) Placement Decision: The placement decision is obtained
through extending the solution for the case without replicas.
We denote the set of replicas by Z and denote a replica by z.

After phase (2), because the routing decisionM is obtained,
we can determine the request rate to each replica. We refine
the workload set from R = {Rpy} to R′ = {Rp′y}, which is
shown as FuncR in Alg. 1. The difference between p and p′ is
that p′ is based on the replica space. Formally, p′ ∈ {Z,∅}d.
Specifically, p can only indicate whether a data item x is in
the pattern p, but p′ indicates which specific replica of each
item x ∈ p is actually involved in fulfilling the request.

Then in phase (3), with the obtained workload on the
replica space, we make the replica placement decision through
extending the hypergraph formulation. The vertices in the
hypergraph become the union of the replica set and node set.
In the edge set, the data-node edges are substituted by the
replica-node edges. The weights of edges are set according to

we =

{
λRp′ , for the request pattern edge ep′

αRzy, for the replica-node edge ezy
. (17)

Based on the above formulation, we can still apply the hyper-
graph partitioning algorithm as in the scheme without replica.
The time complexity of the n-way hypergraph partitioning
algorithm is O

(
(|V |+ |E|) log n

)
, so the time complexity of

our scheme is no more than O
(
(|P |+ km)n log n

)
.

After applying the hypergraph partitioning, we obtain the
replica placement result, which in fact is the input of making
routing decision in the next round. After rounds of iterations
of the routing decision and placement decision, the obtained

Algorithm 1 Associated Data Placement with Replicas
1: D ← Phase1(I) . Initial replica placement
2: C ← 0
3: repeat
4: M← Phase2(D) . Routing decision
5: R′ ← FuncR(M, I) . Obtain workload to replicas
6: I ′ ← {R′, P} . Inputs on the replica space
7: D ← Phase3(I ′) . Hypergraph partitioning
8: Clast ← C
9: C ← C(M,D)

10: until C − Clast < γ
11: return M,D

performance tends to keep stable, and we would stop the
iteration after the improvement is less than a threshold γ.
Finally, the placement and routing decision in the last round
are informed to the nodes in the system. With the deterministic
routing decision M, we can obtain a hash mapping function
for each node, whose input is a request pattern and output
is the routing destination of each item in the pattern. Such a
function ensures the dispatch of any requests can be made in
a very short time which is important for a practical system.

C. Replica Migration

When the workload changes, it is not necessary to adjust the
system through completely overriding the existing data place-
ment. Therefore we formulate the replica migration problem
and propose the incremental adjustment method. In a practical
system, we are given a budget of changing the locations of
data replicas. So in the formulated replica migration problem,
we try to minimize the objective (10) through changing the
locations of no more than K replicas, based on the exiting
placement solution D, under the changed workload.

Consider that there are N replicas in total, we can set
N − K of them as fixed-location vertices in the hypergraph
formulation, just as we pre-assigned each node to a set
previously, and then continue the iterative process above to
determine the locations of the remaining K replicas, who are
chosen as candidates of replica migration. Then the problem
is how to choose the K candidates. Our idea is to select
those replicas whose location change can potentially provide
a higher gain to the system performance. The strategy in the
choosing the K candidates is given as follows. For each replica
z of data item x that previously located at node j, we define
the gain of its migration as

gz = max
j′∈Y/j

{
gAz,j→j′ + α · gLz,j→j′} , (18)

which is the maximum benefit after moving it to any other
location j′. In (18), gAz,j→j′ and gLz,j→j′ correspond to the
two metrics in the modeling. For the former, we calculate the
benefit of moving replica z from j to j′, from the perspective
of co-locating associated data. Note that the location change
of z would affect related request patterns. Representing the
benefit in terms of the number of nodes used to fulfill a request

since the moving by the function ∆j→j′

py , we define

gAz,j→j′ = −λ
∑
p∈P

1(x ∈ p)
∑
y∈Y

Rpy∆j→j′

py . (19)

For the latter, we define it as the maximum relaying traffic
decrease at the new location j′ deducting the traffic increase
at the old location j, such as

gLz,j→j′ = (1− 1(x ∈ Dj′))Rxj′ −Rzj . (20)

After sorting the migration gain gz of all the replicas in the
system, the replica with a higher gain is preferred to be moved
away from the original location. Meanwhile, we realize that
more than K candidates can be chosen at the beginning, but it
may result in more than K replicas with location changed after
the hypergraph partitioning. So a binary search is applied to
find the optimal candidate number that yields a solution with
at most K replicas being migrated finally.

Algorithm 2 Replica Migration
1: Zc ← ∅;G← ∅;Nt ← N ; Nb ← K
2: for z ∈ Z do . Obtain migration gain of replicas
3: G← {G, gz}
4: end for
5: while Nt 6= Nb do . Binary search in [K,N]
6: Nc ← (Nt +Nb)/2
7: Zc ← Choose Nc replicas as candidates based on G
8: M′,D′ ← Apply Alg. 1 with {Z − Zc} being fixed
9: Nm ← Location changes between D′ and original D

10: If Nm > K, Nt ← Nc; otherwise, Nb ← Nc

11: end while
12: return the best M′,D′ ensuring Nm ≤ K

The pseudo-code of replica migration is shown in Alg. 2.
We obtain the set G containing the migration gain of all
replicas through line 2–4. The iteration of binary search is
executed in line 5–11. In each iteration, Nc is the number
of selected candidates before hypergraph partitioning and the
replicas with a higher gain in the sorted G are selected as
candidates, denoted by Zc. The replicas not included in Zc

are marked as fixed in applying the hypergraph partitioning.
Nm is the number of replicas actually migrated, obtained by
comparing the new placement and the old one. The binary
search ensures that Nm in the solution can get close to K.

V. PERFORMANCE EVALUATION

A. Experiment Settings

We have implemented the proposed scheme and conducted
several studies. In the experiments, we consider there are n =
10 datacenters (or nodes), which are geo-distributed. The total
number of data items is m = 10, 000. The number of request
patterns in the system is |P | = 40, 000. In the simulation,
for each request pattern, the data items involved are generated
first, by randomly selecting at most d = 40 items from the set
of m items. Previous studies, e.g., [20], have shown that in a
broad range of network services, the request rates to different

contents follow the Zipf distribution [21]. So the request rate
for each pattern is generated following the Zipf distribution
with index H = 0.8. After that, a node is uniformly generated,
set as the source location of that request pattern. The default
values of other parameters are λ = 5.0, α = 1.0 and ε = 0.1,
considering the general small-size data item storing scenario.

Besides the proposed scheme ADP, the other schemes imple-
mented and being compared with include: Hash, Closest,
Multiget and their variants to fit the case in which replicas
are allowed. Hash places the data items to the nodes based
on the hashing results, representing the state-of-the-art imple-
mentation. Closest places a data item to the node that has
the largest request rate to that particular item. Multiget
optimizes to place the associated data in the same location
extremely, but does not consider the localized data serving.

The metrics we used in the evaluation include:
Co-location: We calculate the average number of data serv-

ing nodes involved to fulfill each request, which is weighted
by the request rate, and then show the result of dividing it by
n = 10. It is directly related to the metric CA in the modeling.

Localization: We also show the percentage of the data items
that is not served locally among all the requests. It is directly
related the metric CL in the modeling.

Objective: Our optimization objective is given in (10), which
is the weighted sum of CA and CL. The objective value
shown in the figures is normalized with regard to the obtained
objective value of Hash under the same settings by default.

Balance: We also evaluate the balance of each scheme.
Denoting the number of replicas in nodes by h1, ..., hn, it is
calculated by maxn

i=1 |hi − ha|/ha, where ha =
∑n

i=1 hi/n.

B. Experiment Results

1) Scenario without Replicas: In the first experiment, we
study the performance of ADP and compared schemes in a no-
replica scenario. Fig. 4 compares the metrics obtained based
on their placement results. We can observe that ADP performs
the best on the objective and the gap between Hash and other
three schemes is apparent. In terms of co-location, Multiget
achieves the best performance, because it focuses on the
associated relationship among data items in the placement.
Closest achieves the best performance on localization, since
in its design, each data item is always placed to the node
with the largest request rate to it. However, Multiget and
Closest only consider one of the two aspects. Compar-
atively, by optimizing both aspects in a unified way, ADP
achieves the lowest objective value even if its performance
is not the best on either individual metric. Here the shown
improvement through ADP is not significant because of the
conflict between the two metrics and the limited optimization
space without replicas. We also compare the balance result of
different schemes. Although it is shown that the balance of
ADP degrades when compared with Hash, the balance is still
in the acceptable range. According to the results of ADP, the
maximum and minimum number of items in each of the 10
nodes is 1, 083 and 937 respectively, while the average number
of items in each node is 1, 000.

Objective Co−location Localization Balance
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a

lu
e

 o
f

e
v
a

lu
a

ti
o

n
 m

e
tr

ic
s

Hash

Closest

Multiget

ADP

Fig. 4. Performance without replica
Objective Co−location Localization Balance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a

lu
e

 o
f

e
v
a

lu
a

ti
o

n
 m

e
tr

ic
s

Hash

Closest

Multiget

ADP

Fig. 5. Performance with 3 replicas
Objective Co−location Localization Balance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a

lu
e

 o
f

e
v
a

lu
a

ti
o

n
 m

e
tr

ic
s

Hash

Closest

Multiget

ADP

Fig. 6. Performance with 5 replicas

0 0.5 1 1.5 2 2.5 3

x 10
4

0

3000

6000

9000

12000

Number of movable replicas

N
u

m
b

e
r

o
f

m
ig

ra
te

d
 r

e
p

lic
a

s

0.3

0.4

0.5

0.6

0.7

N
o

rm
a

liz
e

d
 o

b
je

c
ti
v
e

Number of migrated replicas

Objective

Fig. 7. Replica migration validation

1 2 3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration round

N
o
rm

a
liz

e
d
 o

b
je

c
ti
v
e

k=2

k=3

k=4

Fig. 8. Iterative process in ADP

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Number of replicas

N
o
rm

a
liz

e
d
 o

b
je

c
ti
v
e

Hash

Closest

Multiget

ADP

Fig. 9. Effect of replica number

2) Scenario with Replicas: We further evaluate the perfor-
mance of different schemes under the scenario with replicas.
When the replica number is 3, the objective value of ADP
outperforms the others by more than 20%, as shown in Fig. 5.
It achieves the near-optimal performance on the localized data
serving and gives the best performance on the co-location
of associated data, by exploiting the existence of replicas.
When the replica number is increased to 5, the performance of
ADP is even better, as shown in Fig. 6, such as the objective
improvement is more than 90% when compared with other
schemes. As for the balance, the node difference on the
number of stored replicas is still not large in all the schemes.
In fact, when compared with Closest, which more relies
on the uniform workload from different locations to achieve
the balance, in ADP, we can initiatively control the result
of balance through adjusting the balance parameter of the
hypergraph partitioning algorithm, which will be shown later.

3) Replica Migration: We simulate the workload change by
randomly shuffling the request rates of all request patterns. The
replica migration method is validated as follows: arbitrarily set
the number of movable replicas before applying the placement
algorithm, denoted by Nc; then after applying the algorithm,
obtain the number of replicas changing location, denoted by
Nm, and the objective value. We set the replica number to
3, resulting in 30, 000 replicas in total. Then we change Nc

from 0 to 30, 000 in the experiment, where 0 indicates the
performance without any migration and 30, 000 indicates the
performance of a complete overriding of the exiting placement.
As shown in Fig. 7, the increase of Nc enlarges the scope of
movable replicas, which yields the decrease of the objective
value. When Nc = 5, 000, more than 50% of the replicas are

actually migrated and the objective value shows the largest
decrease, which validate the effectiveness of our candidate
selection. The monotonically increase of Nm with the increase
of Nc validates that the binary search is applicable here.

4) Others: To further investigate the performance of ADP
and validate its effectiveness in design, we take extra experi-
ments. Fig. 8 plots the change of the objective value in rounds
of iterations in Alg. 1. We expect that the solution is improved
through repeatedly making the routing and replica placement
decision. As shown in the figure, after about 3–4 rounds, the
objective value tends to keep stable. Besides, the method is
effective to different numbers of replicas.

To show the effect of changing the number of replicas, we
plot Fig. 9. The shown values are all normalized towards the
objective value of Hash without replica, to show the trend of
performance change under the same scheme. When the number
of replicas is increased, the system performance is expected
to be improved, such as more requests can be satisfied locally
or through fewer nodes. In the figure, ADP shows a better
performance in all the cases tested. In practice, the number of
replicas cannot be too large as it increases the storage cost of
the system and the difficulty of consistency maintenance.

The parameter α in (10) can tradeoff the importance of
the data co-location and localized data serving. We change
its value, and show the corresponding objective value in
Fig. 10. When α is larger, the improvement of ADP over
Closest becomes less. It is because that the weight of the
localized data serving metric is increased in the objective
function and the latter can give the optimal performance on
that metric. Meanwhile, the performance of Multiget gets
worse because of not paying attention to that metric.

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Metric tradeoff parameter

N
o
rm

a
liz

e
d
 o

b
je

c
ti
v
e

Hash

Closest

Multiget

ADP

Fig. 10. Effect of metric tradeoff parameter α

0.025 0.05 0.075 0.1 0.125 0.15
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Balance parameter

B
a

la
n

c
e

 o
f

p
la

c
e

m
e

n
t

re
s
u

lt

0.42

0.43

0.44

0.45

0.46

N
o

rm
a

liz
e

d
 o

b
je

c
ti
v
e

Balance

Objective

Fig. 11. Effect of balance parameter ε

Objective Co−location Localization Balance
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a

lu
e

 o
f

e
v
a

lu
a

ti
o

n
 m

e
tr

ic
s

Hash

Closest

Multiget

ADP

Fig. 12. Performance with OSN trace

The hypergraph partitioning algorithm can take the balance
parameter ε as input, which allows us to flexibly control the
balance in ADP. We plot Fig. 11 to compare the results with
different ε as the input of the algorithm. The increase of ε
makes the nodes less balanced but results in a lower objective
value. Besides, it is shown that the resultant balance metric is
always lower than the input ε. So in ADP, given the acceptable
level of balance, we can tune the parameter ε to improve the
system performance while satisfying the balance constraint.

We further make an experiment with an OSN dataset [22].
We extract the friend relationships from the dataset and simu-
late the scenario that a user polls the updates of all its friends
when using the news feed updating function. We consider each
user as a data item, which results in 45,092 data items and
63,102 request patterns in the experiment. The request rates
are randomly generated following the Zipf distribution and
the source location of each request pattern is also random. On
weighted average, each request pattern contains 11.22 items.
The number of replicas is set to k = 2. The comparison
results are shown in Fig. 12, which also validate the better
performance of our proposed scheme. Here the running of
ADP lasts about 292.8 seconds on the Xeon E5645 CPU, and
we will further improve the running efficiency in the future.

VI. CONCLUSIONS

We studied the balanced data placement problem for ge-
ographically distributed datacenters, with joint considerations
of the localized data serving and the co-location of associated
data. By formulating the scenario without replicas using a hy-
pergraph, we presented the framework to obtain the optimized
solution. We further addressed the placement problem under
the replica scenario, by introducing the iterative process of
routing and replica placement. Besides, the method that mi-
grates replicas based on the existing placement was proposed
to deal with the workload change. Finally, we evaluated the
proposed scheme through extensive experiments.

ACKNOWLEDGMENT

This work is supported in part by NSERC, CFI and BCKDF.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

[3] M. Rabinovich and O. Spatscheck, Web Caching and Replication.
Addison-Wesley, 2002.

[4] “Memcached Multiget Hole,” http://highscalability.com/blog/2009/10/
26/facebooks-memcached-multiget-hole-more-machines-more-capacit.
html.

[5] “HDFS Architecture Guide,” http://hadoop.apache.org/docs/r1.2.1/hdfs
design.html.

[6] “About Replication in Cassandra,” http://www.datastax.com/docs/1.0/
cluster architecture/replication.

[7] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and assign-
ment in distributed network topologies,” in Proc. of IEEE INFOCOM,
2013.

[8] H. Xu and B. Li, “Joint request mapping and response routing for geo-
distributed cloud services,” in Proc. of IEEE INFOCOM, 2013.

[9] S. Raindel and Y. Birk, “Replicate and bundle (RnB)–a mechanism for
relieving bottlenecks in data centers,” in Proc. of IEEE IPDPS, 2013.

[10] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at Facebook,” in Proc. of USENIX NSDI, 2013, pp. 385–398.

[11] A. Quamar, K. A. Kumar, and A. Deshpande, “Sword: scalable
workload-aware data placement for transactional workloads,” in Proc.
of EDBT, 2013, pp. 430–441.

[12] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine (s) that could: scaling online social
networks,” in Proc. of ACM SIGCOMM, 2010.

[13] G. Liu, H. Shen, and H. Chandler, “Selective data replication for online
social networks with distributed datacenters,” in Proc. of IEEE ICNP,
2013.

[14] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in Proc. of IEEE INFOCOM, 2014.

[15] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in Proc. of USENIX NSDI, 2010.

[16] X. Tang and J. Xu, “On replica placement for QoS-aware content
distribution,” in Proc. of IEEE INFOCOM, 2004.

[17] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task scheduling
in mapreduce with data locality: Throughput and heavy-traffic optimal-
ity,” in Proc. of IEEE INFOCOM, 2013.

[18] J. S. Hunter, “The exponentially weighted moving average.” Journal of
Quality Technology, vol. 18, no. 4, pp. 203–210, 1986.

[19] U. V. Catalyurek and C. Aykanat, “PaToH: Partitioning tool for hyper-
graphs,” http://bmi.osu.edu/umit/PaToH/manual.pdf .

[20] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characteriza-
tion: a view from the edge,” in Proc. of ACM IMC, 2007, pp. 15–28.

[21] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[22] J. Kunegis, “Konect - the koblenz network collection,” in Proc. of
Int. Web Observatory Workshop, 2013. http://konect.uni-koblenz.de/
networks/facebook-wosn-links.

