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Abstract

Packet-scheduling is a particular challenge in wireless net-
works due to interference from nearby transmissions. A
distance-2 interference modelserves as a useful abstrac-
tion here, and we study packet routing and scheduling un-
der this model. The main focus of our work is the devel-
opment of fully-distributed (decentralized) protocols. We
present polylogarithmic/constant factor approximation algo-
rithms for various families of disk graphs (which capture the
geometric nature of wireless-signal propagation), as well as
near-optimal approximation algorithms for general graphs.
The packet-scheduling work by Leighton, Maggs and Rao
(Combinatorica, 1994) and a basic distributed coloring pro-
cedure, originally due to Luby (J. Computer and System Sci-
ences, 1993), underlie many of our algorithms. Experimen-
tal work of Finocchi, Panconesi, and Silvestri (SODA 2002)
showed that a natural modification of Luby’s algorithm leads
to improved performance, and a rigorous explanation of this
was left as an open question; we prove that the modified
algorithm is provably better in the worst-case. Finally, us-
ing simulations, we study the impact of the routing strategy
and the choice of parameters on the performance of our dis-
tributed algorithm for unit disk graphs.

1 Introduction

Packet routing and scheduling are two key problems that
arise in the control and design of packet-switched networks.
To send a packet from a nodeu to nodev in a network, one
needs to choose a path fromu to v; once the paths for all the
packets have been determined, we are left with the issue of
scheduling the packets along the paths. If multiple packets
reach some node simultaneously, they must be queued or
dropped. At most a given number of packets can be sent
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at a time on an edge (and sometimes nearby edges cannot
have traffic simultaneously), and the scheduling problem is
to decide which of the packets queued at a node should be
sent first. The exact algorithms used for these problems have
a significant impact on network performance. In this paper,
we study the scheduling problem in the context of wireless
ad-hoc networks. Anad-hoc networkconsists of a group
of transceivers(also known asstations) sharing a common
wireless channel and communicating with each other using
this channel. Our two foci here are dealing withinterference,
and the development ofdistributed algorithms that have
provably good approximation guarantees. Concretely, we
are given a graphG = (V, E), with packets that need to be
sent from some sources to some destinations. We will also
assume that paths are given; for the scheduling algorithms
that we use, the algorithm of [29] can be modified to obtain
good paths. If we find paths using a variant of the algorithm
of [29] and then run our scheduling algorithms, we only
lose an additional constant factor in the approximation ratio.
We also discuss, via empirical analysis, the influence of the
routing strategy on the overall performance of the protocols.

The key issue in our case isinterference. Almost
all the theoretical, algorithmic work on packet routing and
scheduling so far (e.g., [14, 16]) has primarily considered
the following constraint: at most one packet can be sent on
an edge at a time. While useful in wired networks, this
assumption is not sufficient for wireless networks, where
transmission by one transceiver precludes transmission by all
nearby transceivers. An example of this is shown in Figure 1:
if the transmissions on(a, b) and(c, d) occur simultaneously,
nodeb receives signals from botha and c simultaneously,
which interfere with each other and get garbled; nodesa
and c are not aware of this problem atb (unlike, e.g., in
Ethernet, where a collision is immediately detected by all
nodes). This is called thehidden node problemin wireless
networks. On the other hand, the transmissions on(a, b) and
(d, e) in Figure1 can happen simultaneously. To model this
notion combinatorially, first we construct theinterference
graph for a set of transceivers by having a node for each
radio, and an edge(u, v) if v lies in the transmission range of
v (note that we are assuming equal transmission ranges here;
see Section 2 for the general versions that we work with).
We now require that the set of edges on which simultaneous
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transmission happens forms adistance-2 matching(these
definitions are given in section 2); edges(a, b) and (d, e)
in Figure 1 satisfy this property. This model is called
the distance-2 interference model[7, 9]. Earlier wireless
network models (e.g. [23, 25, 24, 13]) only placed vertex
constraints: nodes that transmit simultaneously must form
an independent set; this is clearly inadequate, from the above
description.

The above requirement might seem too restrictive some-
times: for instance, in Figure 1,b could transmit toa and
c could transmit tod simultaneously; this is called theex-
posed node problemin radio networks. While this is true,
reliable transmission requires transmission both ways (to ac-
knowledge receipt of packets, for instance), and then the con-
straint described above seems reasonable. The 802.11 pro-
tocol addresses these issues by the MACA (Multiple Access
with Collision Avoidance) algorithms (see [22] for details):
a sender first transmits aRequest to Send (RTS)signal and
the receiver then sends aClear to Send (CTS)signal. Once
the transmission starts, the receiver sends acks to the packets
he receives correctly.

a
b

c d
e

Figure 1: Distance-2 Interference

The discussion so far only addresses the restrictions that
the MAC layer places in radio networks. The MAC layer
only ensures delivery of packets from a node to its imme-
diate neighbor. TheRouting Layerof the protocol stack
is responsible for choosing the routes along which packets
must travel (see [22] for details), and the MAC layer moves
packets one step at a time along these paths. This give us
the combined routing plus packet scheduling problem: given
a set of packets in a network, choose paths for the packets
(routing layer function) and then schedule the packets (MAC
layer function). By incorporating the above interference con-
straint, we have the following generalization of the prob-
lem studied in [14], which we call END-TO-END PACKET

SCHEDULING WITH INTERFERENCE(EPSI): given a wire-
less network and a set of packets with a path given for each,
develop a protocol to schedule the movement of the packets
from their sources to their destinations, while ensuring that
at each step packets transmitted successfully were on edges
forming a distance-2 matching. Our goal is to minimize the
maximum time taken by any packet to reach its destination,
or themakespan. Thus, the EPSI problem differs from [14]
in the additional constraints placed by the MAC layer.

It is not, in general, clear whether the path selection
problem and the packet scheduling problems can be decou-
pled. In real networks, Barrett et al. [8] showed that there is
significant interaction between protocols across the layers of
the protocol stack. Consequently, it is not clear whether solv-
ing the corresponding problem in each layer optimally would
result in optimal performance overall. The seminal paper
of Leighton, Maggs and Rao [14] showed that for the stan-
dard wireline (i.e., “one packet per edge at a time” model),
such a decomposition is indeed possible. Given a choice of
paths for the packets, letC, the congestion, be defined as
the maximum number of packets using any edge, and letD,
the dilation, denote the maximum length of any path. It is
easy to see thatmax{C, D} is a lower bound on the length
of any schedule that uses the given paths. Leighton et al.
show, quite remarkably, that the packets can be scheduled in
O(C + D) time. Therefore, to solve the combined routing
plus scheduling problem in the wireline model, it is sufficient
to obtain paths with lowC + D value, and then schedule the
packets using [14]. Srinivasan and Teo [29] later designed
an algorithm that chose paths withC + D value within a
constant factor of the optimal, which combined with [14]
gave a constant factor algorithm for the combined routing
plus scheduling problem. We remark that the problem of
routing and scheduling using “standard” (i.e., distance-1 as
opposed to our distance-2) matchings has been studied by
[1]. Our main contributions are as follows.
(a) Packet-Scheduling Algorithms. We give the
first provably-efficient distributed algorithms for packet-
scheduling in networks with the distance-2 interference con-
straint. While the original motivation for the model is ra-
dio networks, we also study this problem on different non-
geometric graph classes. As in [14], we show that the EPSI
problem can be decomposed into seperate path selection
and packet scheduling problems. Letn denote the num-
ber of nodes in the given network. For packet scheduling
in arbitrary graphs with maximum degree∆, we present a
distributedO(∆ log2 n)–approximation algorithm; we also
show that it is hard to approximate the minimum time within
a factor of∆1−ε for any constantε > 0, even in the cen-
tralized, polynomial-time setting. As is well-known, disk
graphs, defined in Section 2, model radio communication
well, and we obtain the following improved approximation
algorithms for packet scheduling in them. For general disk
graphs, we provide a distributedO(log2 n)–approximation
algorithm and a centralizedO(log n)–approximation al-
gorithm. For unit-disk graphs, we give a distributed
O(log n)–approximation algorithm and a centralizedO(1)–
approximation algorithm. The above distributed algorithms
are in the synchronous model; for unit-disk graphs, we also
obtain a distributedO(log3 n) approximation in an asyn-
chronous model. Our results for unit disk graphs can also be
extended to a more general class of graphs known as(r, s)-
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civilized graphs.4 As discussed in [13, 7],(r, s)-civilized
graphs are a more realistic model for ad-hoc networks due to
their ability to model occlusions, directional antennaes and
varying power ranges.

A key driver of our algorithms is therandom delays
technique [14]; we combine this with additional new ideas
to develop our algorithms. In particular, the standard lower
bound of “congestion plus dilation” is shown to be no longer
good in our model, and we use a more refined lower bound.
For general disk graphs, we introduce a new packing result,
which, along with the graph-theoretic notion ofinductive
coloring, helps us claim our approximation bounds. Many of
our algorithms also employ a basic (list-)coloring algorithm
due to [18]; we prove the improved performance of a variant
of this algorithm, as discussed below.

As in [14] and other work on packet routing, our results
on packet scheduling imply that the path selection problem
can be decoupled from the packet scheduling problem, as
long as one can find paths with lowC + D value, for the
modified notion of congestion. For unit disk graphs, we
show that the algorithm by Srinivasan and Teo [29] can be
used to obtain such paths, within anO(1) factor. This allows
us to solve the combined routing and packet scheduling
problem with only additional constant factor penalty. For
arbitrary disk graphs and arbitrary graphs, unfortunately
[29] only gives anO(∆2)–approximation. But in this case,
we can use the standard randomized rounding procedure
due to Raghavan and Thompson [27] and get anO(log n)–
approximation to the path selection problem. Therefore, for
the combined routing and packet scheduling problem, this
leads to an additionalO(log n) penalty.
(b) Distributed Coloring and Network Decomposition.
Variants of the above-mentioned algorithm due to [18] have
been useful in many distributed coloring algorithms (see,
e.g., [12]) and also in our algorithms for packet schedul-
ing. Due to its simplicity and generality, an extensive experi-
mental evaluation of this and related coloring algorithms has
been undertaken in [11]. A natural “non-lazy” variant of the
original algorithm of [18] was empirically found to be much
better. To quote [11], “In particular, when compared with
Luby’s algorithm it consistently turned out to be 2-3 times
faster. The available asymptotic analyses do not explain this
behavior ... and we leave it as an interesting open question”.
We present such a rigorous explanation in Lemma 7.1, show-
ing that the non-lazy variant is provably better by a constant
factor, in the worst case. In passing, we also improve the
running time of a powerful distributed primitive known as
network decomposition[4, 5, 6, 17, 21]; see, e.g., [10] for

4For each fixed pair of real valuesr > 0 ands > 0, a graphG can
be drawn inR2 in an (r, s)-civilized mannerif its vertices can be mapped
to points inR2 so that the length of each edge is at mostr, the distance
between any two points is at leasts, and no two edges intersect (except at
their endpoints).

an application to distributed network protocols. We observe
that the protocol of [17] which runs inO(log2 n) time, can
be modified to run inO(log n) time. In addition to being of
independent interest, this is likely to be useful in a practical
implementation of our algorithms.
(c) Empirical Analysis. We perform a detailed analysis
of some of our algorithms, and the routing algorithm based
on [3] on random geometric graphs, with a large number
of packets injected at random sources. Several popular
routing protocols, such as DRS and AODV [22] are based on
shortest-path routing. Another popular approach is Valiant’s
paradigm [28]. We observe that the algorithm based on
[3] yields significantly smaller congestion, compared to
the other two approaches. We also study the impact of
various parameters on the performance of our distributed
algorithms. The two parameters of interest are the number of
colors (equivalently, the frame length) used in the distributed
coloring algorithm and the maximum initial random delay
which each packet could be subjected to. Increasing either
of the two would lead to better performance (in terms of
packet losses) at the cost of increased makespan. Our studies
indicate that for a wide range of values, increasing the frame
length has a much bigger impact on performance rather than
maximum initial random delay.
Related Work. For the earlier model of one packet per edge
at a time, one of the most significant results is the work
of [14], where they show the existence of a constant fac-
tor approximation, using the Local Lemma. Their result
assumes that the packets already come with pre-specified
paths. This work was a followed up by a series of pa-
pers (see, e.g., [15, 28, 19]. Rabani and Tardos [26] give
a distributed algorithm for this problem, that takes time
O(C + D(log∗ n)O(log∗ n) + log6 n), which was improved
by Ostrovsky and Rabani [20] toO(C +D +log1+ε n). The
distance-2 interference model MAC layer packet-scheduling
in ad-hoc networks has been considered in [7, 23, 25]. The
problem can be cast as either vertex or edge coloring de-
pending on the particular setting [9]. The problem of finding
an end-to-end schedule of packets under radio interference
model has not been studied prior to this paper.

The rest of the paper is organized as follows. Section 2
defines the basic notation. Sections 3, 4 and 5 describe the
packet scheduling results for disk graphs, unit-disk graphs
and arbitrary graphs, respectively. The path selection is out-
lined in Section 6. Section 7 describes the faster distributed
coloring algorithm and Section 8 discusses network decom-
position. Our empirical results are described in Section 9.
Many proofs and details are omitted here due to lack of
space.

2 Preliminaries

Formally, an instance of the packet scheduling problem
is specified asEPSI(G(V, E), {p1, . . . , pk}). G(V, E) is
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the underlying interference graph (described below), which
would be undirected for the most part, except in disk graphs.
p1, . . . , pk are the packets to be transmitted, with packetpi

starting atsi and destined forti, along the pathPi. The
pathPi is encoded in packetpi. We will assume that any
packet takes one unit of time to cross a link and at any time
at most one packet can cross a link. In addition, if packets are
being sent simultaneously on edgese = (u, v), e′ = (u′, v′),
then d(e, e′) ≥ 2 (d(·) is defined below). If a packet-
transmission violates either of these requirements (i.e., if
some other transmission is made simultaneously on an edge
that is within distance less than two), then the transmission
fails and has to be retried later. Each node/edge has a
buffer in which a packet can wait till it successfully moves
to the next node in its path. The objective is to construct
a schedule, S, that decides which packet should be sent
out at a node at any time. A schedule isvalid iff it sends
all packets along their paths subject to the above re-trial
requirement (in the case of failures). LetCS(pi) denote the
(random) time at which packetpi is delivered in schedule
S. TheMakespanof S, denoted byC(S) = maxi CS(pi)
is the time taken byS to route all the packets, and our
objective is to construct a schedule with low (expected)
makespan. For the most part, we will assume a synchronous,
distributed communication model; this is reasonable in our
context of a primarily local-area network, since nodes can
keep synchronized, e.g., by using GPS receivers. Let∆
denote the maximum degree inG. Given subsetsA, B ⊂ V
in graphG(V, E), the distancedG(A, B) is defined to be
the minimum length of the (directed or undirected) shortest
path over all pairs of verticesa ∈ A, b ∈ B. For edges
e = (u, v), e′ = (u′, v′) ∈ E(G), dG(e, e′) is defined
as dG({u, v}, {u′, v′}). For vertexw ∈ V , we will also
sometimes usedG(w, e) to denotedG({w}, {u, v}). We will
drop the subscript whenever it is clear. A subsetM ⊂ E
is said to be adistance-2 matchingif d(e, e′) ≥ 2 for any
distinct paire, e′ ∈ M .
Disk Graphs. A disk graph is specified by a set of pointsV ,
with a diskD(v) centered at eachv ∈ V , with radiusr(v).
The directed graphG(V, E) induced by these disks is the
following: the set of nodes isV and a (directed) edge(u, v)
is present ifv ∈ D(u). The special case where all radii are
equal is called a unit disk graph, and in this case, if edge
(u, v) ∈ E, then(v, u) ∈ E; as a result we can view unit
disk graphs as undirected. See section 3 for more details.

3 Disk graphs

A popular model for radio networks is disk graphs. The
disk around a point naturally corresponds to the effective
transmission range of the radio. As described in Section
2, we will think of disk graphs as being directed. Be-
cause of our communication model, which requires two
way transmission, only bidirected edges can be used for

transmission; so we assume that the pathsP1, . . . , Pk only
use bidirected edges. The unidirected edges only con-
tribute to the interference: therefore, if edgee = (u, v)
is being used at timet, no other edgee′ = (u′, v′) with
min{d(u′, e), d(v′, e), d(u, e′), d(v, e′)} ≤ 1 can be used si-
multaneously. Our algorithm involves choosing random de-
lays at the first step, as in [14] and then scheduling packets at
each time step by solving a coloring problem. A sequential
coloring algorithm yields anO(log n) approximation to the
makespan, while a distributed coloring yields anO(log2 n)
approximation.

We need some more notation for disk graphs. For
edgee = (u, v), define r(e) = r(u) + r(v). Define
N≥(v) = {e′ |d(v, e′) ≤ 1, r(e′) ≥ r(v)} andN≥(e) =
{e′ |d(e, e′) ≤ 1, r(e′) ≥ r(e)}. DefineC(e) to be the
number of packets whose path uses some edge ofN≥(e),
andC = maxe C(e). D is still defined to be the dilation.

LEMMA 3.1. For any vertexv, the size of the largest
distance-2 matching in the subgraph induced byN≥(v) is
O(1). Therefore,OPT = Ω(C + D).

Figure 2 contains a description of our synchronous
distributed algorithm for solving theEPSI problem on disk
graphs. The algorithm is calledAlgorithm DISKEPS. The
description of the algorithm is complicated because of its
distributed nature. The underlying sequential algorithm,
based on [14], is simple: first we construct an invalid
scheduleS′ which does not respect the matching constraints
by first giving a random delay at the origin of each packet,
and then letting it “zip through”, one step at a time. We
then show that at each step, for each packetpi, O(log n)
packets are transmitted simultaneously on edges not within
distance-2 of it. We now construct a valid scheduleS by
considering all packets at each time stepT , and moving
them to their next hop, by a distance-2 coloring algorithm,
DISKCOL, described below. The algorithm below is a
distributed algorithm, based on [18]. Lemma 3.2 proves that
this algorithm runs forO(log n) rounds and usesO(log n)
colors for coloring the setET of edges in the algorithm
DISKEPS. The lemma also proves that the additionallog n
factor is not needed for the sequential greedy algorithm. The
algorithm’s performance can be shown in the following three
steps.

LEMMA 3.2. 1. At anyT (which is a multiple ofc log2 n),
for any edgee, defineCT (e) = N≥(e) ∩ ET . Then,
CT (e) = O(log n), for eache, T , with high probability.

2. Let T be any multiple ofc log2 n. The algorithm
DISKCOL colors the edges inET (defined in algorithm
DISKEPS) in c′ log n steps, usingc′′ log2 n colors,
with high probability. The setET can be colored
sequentially usingO(log n) colors.
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Algorithm DISKEPS

1. Each packetpi chooses a delayZi uniformly at random from{1, . . . , cX0} (c > 0 is a specific constant andX0 = C + D).
and waits forYi = Zic log2 n steps atsi.

2. From timeYi + 1 onwards, the packet moves along pathPi. At each nodev onPi, the packet spendsc log2 n steps.

3. pi reaches thejth nodev onPi by timeYi + j · c log2 n. If it reaches beforeYi + j · c log2 n, it waits in the queue till then.

4. LetT be a multiple ofc log2 n. All packets are moved to their next hop, from the current location at timeT , during the time
interval [T, . . . , T + c log2 n] by the following steps.

(a) LetET be the edges on which packets need to be moved at stepT . Run Subroutines DISKCOL below inc′ log n steps
to choose a colorαi ∈ {1, . . . , c′′ log2 n} for each packetpi(this can be done, by Lemma 3.2)

(b) At stepT + c′ log n + αi, packetpi is moved to the next node on its path. Once it reachesti, the packet is removed.

SubroutinesDISKCOL

1. Repeat the following steps in roundsi = 1, 2, . . . till all edges are colored.

2. Round i: Each uncolored edge chooses to do nothing with probability1/2. With the remaining probability, it performs the
following steps.

(a) Each uncolored edgee chooses a color uniformly at random from{(i − 1)d log n + 1, . . . , id log n}.

(b) Each edgee checks whether some edgee′ in N≥(e) has chosen the same color ase.

(c) If there is no such edgee′, e is colored with the color it chose; otherwise,e remains uncolored in this round.

Figure 2:Distributed algorithm for solving EPSI problem on disk graphs.

3. Algorithm DISKEPS schedules the packets in time
O(log2 n) times the optimal schedule, with high prob-
ability. The sequential version of the algorithm has an
approximation guarantee ofO(log n).

Proof Sketch: (1) Let each packetpi be at the end point of
edgeei at stepT . During the time interval[T, T + c log2 n),
packetpi, ∀i only moves alongei, in an interference free
manner. Now, just consider the time stepsjc log2 n, j =
0, 1, . . .: with respect to these, packets wait for a random
delay, and then move to their destination, one step at a time.
As in [14], the expected value ofCT (e) ≤ 1, for any such
T = jc log2 n and for any edgee. The statement now
follows by a Chernoff bound.
(2) Order the edges inET in nonincreasing order of their
r(e) value. SinceCT (e) = O(log n), list coloring uses
O(log n) colors for this order. For the distributed algorithm
DISKCOL, in each round, each uncolored edge gets a color
that does not conflict with any edges with higherr() value,
with constant probability. As a result, each edge gets a color
in O(log n) steps, with high probability. SinceO(log n)
colors are used in each round, this gives a total ofO(log2 n)
colors in all.
(3) The previous statements imply that each packetpi moves
one edge forward onPi after theYic log2 n steps, with high
probability for the distributed version. For the sequential
coloring, this movement happens everyO(log n) steps.

4 Unit-disk graphs

When all disks have the same radius, we obtain significant
improvements in the approximation guarantee. By a repeated
geometric decomposition, we can actually get anO(1) ap-
proximation. This sort of decomposition only requires a
sparsity condition, rather than geometry, and can be applied
to bounded genus graphs also. We then give anO(log n) dis-
tributed algorithm by refining the analysis of the algorithm
DISKEPS in Section 3. Finally, we give a distributed algo-
rithm in the asynchronous model with aO(log3 n) approxi-
mation guarantee.

4.1 A sequential O(1)–approximation algorithm The
notation used here is defined in§ 2. Assume the common
radius to be1. Let B be a bounding box in the plane for
the points inV . If we assume thatG is connected,B must
have sides of lengthO(n). Let Bk be a partition ofB into
smaller grid cells, each cell having dimensionsk × k. Let
B′

k be obtained by translating the gridBk by k/2 along the
x andy axes. A cell inBk will refer to one of thek × k
sized pieces in it, and a point inBk is any lattice point with
integer coordinates. We denote lattice points withinBk by
lower-case letters and thek×k cells withinBk by upper-case
letters. For a diskS of radius1 in the plane, letC(S) be the
number of pathsPi that visit some vertexv ∈ V , located
within S. DefineC = maxS{C(S)}. As before,D is the
length of the longest path. It is easy to see thatmax{C, D}
is still a lower bound on the optimal size.
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The main intuition for the partitioning algorithm is the
following. After the first step (giving random delays and par-
titioning), bothC andD becomeO(log n) within each time
frame: C becomesO(log n) because of the random delays,
while D becomesO(log n) because of the partitioning. This
means that the smaller scheduling subproblem in any frame
is localized to aO(log n) × O(log n) region of the plane.
Thus, in addition to the temporal decomposition, we are able
to do aspatial decompositiontoo. If we carry this process
once more, we end up with scheduling problems on regions
of sizeO(log log n)×O(log log n), and at this point, we can
solve by brute force inpoly(n) time. The algorithm is de-
scribed in Figure 3 and is calledAlgorithm UNITDISKEPS.

Subroutine PARTITION(k) in Figure 3 forms a partition
of the problem into smaller subproblems, each on a grid of
dimensions2 log k × 2 log k.

LEMMA 4.1. There exists a choice of random delays for
all the packets in step 1 of subroutinePARTITION(k) which
satisfies the following property: for any time frameT of
length log k, and for any lattice pointp in the input to
the subroutine, the number of paths visiting some vertex
u ∈ V located inS(p) is O(log k), whereS(p) is a unit
disk centered atp.

LEMMA 4.2. A schedule of lengthO(log log n) can be
constructed for the scheduling problem on a grid of size
O(log log n) × O(log log n).

COROLLARY 4.1. A schedule for the distance-2 interfer-
ence problem on unit disk graphs of lengthO(1) times the
optimal can be found in polynomial time.

4.2 Distributed algorithms We start with the syn-
chronous model. Algorithm DISKEPS detailed in Figure 2
for disk graphs can be modified to yield a better bound of
O(log n) for the case of unit -isk graphs. Since all disks
have the same radius, the notation and ordering of Section 3
is not needed. We will use the lower boundsC, D defined in
the previous subsection.

The first three steps of the algorithm DISKEPS are un-
changed, expect for the delays and time frames being mul-
tiples of log n, instead oflog2 n. In step 4 of the algo-
rithm, instead of running algorithm DISKCOL, we actually
run Luby’s algorithm [18]. This takesO(log n) steps, and
usesO(∆) colors, where∆ is the max degree of the sub-
graph induced byET , which we isO(log n).

LEMMA 4.3. There is a distributed,O(log n) approxima-
tion algorithm for the packet-scheduling problem on unit disk
graphs.

Asynchronous modelThe algorithm described earlier needs
centralized, synchronous control, which is difficult in prac-
tice. We now describe a completely distributed, asyn-
chronous, randomized algorithm that gives a schedule of

length at mostO(log2 n) times the optimal, with high prob-
ability.

The basic idea is to combine contention resolution meth-
ods along with the random delays plus coloring techniques
that have been used so far. Note that if there areC pack-
ets in the vicinity of some packetp, that are contending for
a transmission slot at a time, all of these can be scheduled
in O(C log n) steps with high probability. The random de-
lays step allows us to reduce the effective congestion at every
step, and after that one can perform coloring via the con-
tention resolution. Note that we need to simulate some sort
of synchronization, to ensure that the right set of packets is
contending at any time, and this can easily be achieved by
suitable waiting for polylogarithmic steps at regular inter-
vals. We also need to keep track of the path encoded in the
packet headers. The algorithm is described in Figure 4 and is
referred to asAlgorithm ASYNCHRONOUSUNITDISKEPS.

LEMMA 4.4. Each packetpi moves on its̀th edge of itsjth
segment during time(j − 1)W + (` − 1)W ′ log n, . . . , (j −
1)W + `W ′ log n − 1 with high probability. Each packetpi

moves on itsjth segment during time(j − 1)W, . . . , jW − 1
with high probability.

COROLLARY 4.2. All packets are delivered within time
O(OPT log3 n) with high probability, whereOPT is the
length of the optimal schedule.

5 Arbitrary graphs

We now handle the case of general graphs; the maximum
degree∆ of the given graph will play a key role now. We
start by claiming the hardness of approximating EPSI:

LEMMA 5.1. Let ε be an arbitrary positive constant. It
is not possible to approximate the optimum makespan of
every instance ofEPSI problem in polynomial time within
a factor of∆1−ε, unlessP = NP .

We next present a distributed approximation algorithm
using the the random delays approach from [14]. First, we
need to define a better lower bound on the optimal makespan,
since edge congestion is too weak: consider a complete
graphKn with one packet to be sent on every edge; the edge
congestion and dilation are each1, but the optimal makespan
ism = n(n−1)/2. DefineC as the maximum, over all edges
e = (u, v), of the number of paths that pass throughu or v
(or through both). DefineD as usual to be the dilation, and
let X0 = max{C, D}. LetOPT denote the number of steps
in the optimum schedule. It is easily seen thatOPT ≥ X0.
Our algorithm GENERALEPS has two steps: (1). Construct
an invalid scheduleS′ in the following manner: (a) For each
packet, choose a random delay from{1, . . . , cX0} (c > 0 is
a specific constant). (b) Allow each packet to zip through
along its path, after waiting for the random delay at the
source. (2). Now that step (1) is done, ConvertS′ into a
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Algorithm UNITDISKEPS

1. Run subroutine PARTITION(n) to create smaller problems on2 log n × 2 log n sized grids.

2. For each of the subproblems on a2 log n × 2 log n sized grid, run subroutine PARTITION(2 log n) to create smaller
subproblems onO(log log n) × O(log log n) sized grids.

3. Solve the scheduling problem within aO(log log n) × O(log log n) sized grid by exhaustive search (details in Lemma 4.2).

4. Combine the schedules for all the subproblems together to form the whole schedule.

SubroutinesPARTITION(k)
INPUT A scheduling instance on ak × k region.
OUTPUT Partition this instance into smaller scheduling problems, defined on grid cells of size2 log k × 2 log k, and compute an
invalid schedule for each subproblem.

1. Construct an invalid scheduleS1(Π) in the following manner:

(a) For each packet, choose a random delay from{1, . . . , c(C + D)}, wherec > 0 is a specific constant, such that Lemma
4.1 is satisfied (the property in Lemma 4.1 can be checked in polynomial time; so this step involves choosing the random
delays, checking the property and repeating if necessary).

(b) Allow each packet to zip through along its path, after waiting for the random delay at the source.

2. PartitionB into gridsB2 log k andB′
2 log k.

3. Consider successive time frames of lengthlog k.

4. For each time frameT of sizelog k, assign each packetpi to a unique cellZ in B2 log k, B′
2 log k such that the path traversed

by pi duringT lies completely withinZ; break ties arbitrarily.

5. For each time frameT , for each cellZ in B2 log k, B′
2 log k, the problem restricted toZ involves scheduling the packets

assigned to it duringT , along the segments of the paths withinZ.

Figure 3:Algorithm for solving EPSI problem on unit disk graphs.

valid scheduleS as follows. LetE′
t be the set of edges on

which packets are being transmitted at timet in S′. Greedily
distance-2 edge color edges inE′

t; let E′
t(1), . . . , E′

t(k) be
the color classes (k is the number of colors used): eachE′

t(i)
is a distance-2 matching. This can be done distributively.
Schedule the packets usingE′

t in k steps: at theith step
schedule packets in setE′

t(i), i = 1, . . . , k.
The algorithm can be made distributed in the same way

as algorithm DISKPS in§ 3.

LEMMA 5.2. Algorithm GENERALEPSproduces a sched-
ule of lengthO((C + D) · ∆ · log n) with high probability.

6 Path Selection

We first describe theO(log n)–approximation for(C + D)
using Raghavan-Thompson randomized rounding [27]. We
formulate the path selection problem an integer program
and then relax it, as in section 2.1 of [29]. There are two
main differences from the program in [29]. The first is that
C refers to our modified definition of congestion (for disk
graphs or for arbitrary graphs). Next, for each edgef ∈
E(G), the corresponding constraint in the case of arbitrary
graphs becomes

∑
f ′∈N2(f)

∑K
k=1 xk

f ′ ≤ C, whereN2(f)
denotes the set of edgesf ′ (includingf ) within distance2 of
f ; for disk graphsN2(f) is replaced byN≥(f). After “path

filtering” as in [29], the rounding is done using [27], which
yields anO(log n) approximation.

For unit disk graphs, [29] actually yields anO(1)–
approximation, by formulating the LP differently, usingbox
congestion. Partition the plane into boxes of size1/2 ×
1/2. It is easy to see that the discussion in Section 4
can be modified to work with this notion. Now, instead
of choosing paths from a source vertex to a destination
vertex, we will think of compressing each box into a single
vertex, and will try to choose a path from the box containing
the source to the path containing the destination. Once
this is done, we can get a path in the original graph by
choosing any arbitrary node for each box present in the path.
Therefore, the formulation of [29] needs to be modified in
the following manner: consider the graph by compressing
boxes containing points into singe nodes. Each box is
adjacent to neighboring boxes. The edge congestion is
changed to vertex congestion, and instead of a constraint per
edge in [29], we have the following constraint per nonempty
box B:

∑
B′∈N(B)

∑K
k=1 xk

B′ ≤ C, whereN(B) is the set
of boxes within distance2 of B, includingB (there are at
most25 of these). Also, the dilation constraint is rewritten
similarly. After the path filtering, the rounding in [29] can
be still used because for each pathP , the number of rows
containing an entry forP is still O(C). This gives the
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Algorithm ASYNCHRONOUSUNITDISKEPS

1. Each packetpi chooses a delay uniformly at random from{1, . . . , α1X0}, whereα1 > 0 is a constant andX0 is as defined
before.

2. For each packetpi, defineP ′
i to be a path obtained by prependingXi virtual edges toPi, the original path (this is implemented

by following self loop edges at the origin ofpi).

3. Partition eachP ′
i into segments of lengthlog n each.

4. Let W = α2 log3 n. During time(j − 1)W, . . . , jW − 1, each packetpi attempts to proceed on itsjth segment in the
following manner:

(a) LetW ′ = α2 log2 n.

(b) During time(j − 1)W + (` − 1)W ′ log n, . . . , (j − 1)W + `W ′ log n − 1, each packet will attempt to move on the
`th edge of the current segment:

i. t denotes the current time;t ∈ {(j − 1)W + (` − 1)W ′ log n, . . . , (j − 1)W + `W ′ log n − 1}
ii. If packetpi has already sent its̀th edge of thejth segment, keep waiting till time(j − 1)W + `W ′ log n − 1}.
iii. If pi has not already succeeded in sending its`th edge of thejth segment, it chooses to send with probability

1
α2 log n

.

iv. If pi sent at timet, and detected a collision, retry as in the above step.

(c) After packetpi succeeds in moving on the`th edge of current segmentj, it just waits till time(j−1)W +`W ′ log n−1.

5. If packetpi has already finished moving on thejth segment of its pathP ′
i , it just waits at current node till timejW − 1.

Figure 4:Asynchronous distributed algorithm for solving EPSI problem on unit disk graphs.

following result.

LEMMA 6.1. The path-selection problem with the objective
being to minimize(C + D), can be approximated to within
O(log n) on arbitrary graphs, and to withinO(1) on unit-
disk graphs.

7 Distributed Vertex Coloring

Our packet scheduling algorithms can be viewed as imple-
menting a distributed coloring algorithm within each frame.
This motivates the question of efficient distributed algo-
rithms for various coloring problems. Luby’s algorithm [18]
is often used in distributed coloring algorithms. One of
the parameters in [18] is thesleep probabilityat each step,
which needs to be at least1/2 in Luby’s analysis. The al-
gorithm works as follows on a given graphG. Each vertex
u ∈ V (G) is associated with a listL(u) of colors; initially,
|L(u)| ≥ ∆+1, where∆ is the maximum degree inG. Ver-
tices get colored using a distributed list-coloring algorithm
in a synchronous round-by-round fashion (in a given round,
any vertex communicates only with its neighbors). A generic
round proceeds as follows.

(a) Each yet-uncolored vertex wakes up with probability
w or goes to sleep with probability1 − w.

(b) Each vertexu which is awake, chooses atentative
color uniformly at random from its current listL(u).

(c) Each vertexu that has some neighbor that chose the
same tentative color asu, is calledunsuccessful; all other
(yet-uncolored) vertices are called successful.

(d) Each successful vertexv is permanently given its

chosen tentative colorc, and this colorc is removed from
L(x) for all neighborsx of v such thatc ∈ L(x). The
unsuccessful vertices proceed to the next round.

Note that once a vertex gets a permanent color, it is never
considered again. It can be easily verified that|L(u)| ≥
du + 1, wheredu is the degree ofu in the current round.
This also implies that step (b) is well defined; i.e., ifu is
yet-uncolored,|L(u)| ≥ 1. It is also easy to verify that
if and when the algorithm terminates,G has a valid vertex
coloring. The empirical results of [11] showed that the
algorithm improves by a constant factor when “w = 1/2” is
changed to “w = 1”. We provide a worst-case explanation:

LEMMA 7.1. There are constantsc and c′ such that0 <
c < c′, for which the following hold for alln large enough.
(a) For any graph withn nodes, the coloring algorithm
with w = 1, terminates withinc log n rounds with high
probability; and (b) on the complete graphKn, the coloring
algorithm with w = 1/2 requires at leastc′ log n rounds
with high probability.

8 Faster Distributed Graph Decompositions

A λ-decompositionof a graphG = (V, E) is a partition of
the vertex set intoλ subsets (calledblocks). Thediameter
of a decomposition is the leastd such that any two vertices
belonging to the same connected component of a block are
at distance≤ d. In the distance computation, if we allow
the paths between two vertices in a block to pass through
other vertices which are in the same block, then the diameter
is said to beweak; otherwise, the diameter is said to be
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the strong. In [17], Linial and Saks show that for any
graphG, there exists aλ-decomposition ofG such that the
weak diameter of each block is at mostd, whereλ, d =
O(log n). In addition, they provide a distributed algorithm
which constructs such a decomposition and terminates in
O(λd) time with high probability. We “simulate” all their
rounds using a single round and obtain the following result.

LEMMA 8.1. Our distributed algorithm decomposes any
graph G in O(log n) time intoO(log n) blocks with weak
diameterO(log n).

9 Empirical Analysis

We study two aspects of the packet scheduling problem em-
pirically. The first set of experiments deal with the effect of
the routing strategy on the congestion. The routing strate-
gies we experimented with are: (i) Shortest-path routing, (ii)
Valiant’s paradigm [28], and (iii) Modified Source Routing
(SR). The last strategy is an adaptation of the Source Rout-
ing algorithm proposed in [3]. Routes are chosen sequen-
tially for each packet using a weighted shortest path algo-
rithm. After each path is chosen, the weights for the edges
along this path (and for some of edges which are two hops
away from the path) are increased by a multiplicative factor
(1.25 in our experiments). This ensures that no edges/regions
in the network get overloaded by packets.

The second set of experiments deal with the sensitivity
of our algorithms to various parameters: (i) the maximum
initial random delay for any packet (mrd), (ii) the maximum
number of colors available for the distributed edge coloring
algorithm (mc), and (iii) the maximum number of rounds in
the distributed coloring algorithm (nt). During a particular
stage of the distributed algorithm, if a packet needs to be
transmitted on some edge, and if this edge cannot be colored
after nt rounds of the coloring algorithm, then the packet
gets dropped. We study the sensitivity of packet loss to
mrd andmc. The routing is done by SR, withnt = 15.
The number of packets injected into the network was varied
from 156 to 10000. All our experiments were performed on
random connected unit disk graphs obtained by a random
placement of10000 nodes in a50 × 50 square. The source
and destination for each packet was chosen randomly from
all nodes. The plots are obtained by averaging over ten runs.
Impact of Routing. Figures 5 (a) and (b) show the conges-
tion and dilation in the network with respect to the number of
packets in the network for the three routing algorithms. Re-
call that dilation is the maximum length of a path traversed
by any packet. We measure congestion as follows: partition
the plane into square grids of unit length; let the congestion
for a specific grid be the total number of packets which pass
through any node within the grid; the maximum congestion
over all grids is the congestion value we plot. We use this
modified definition for ease of implementation. It is easy to
show that, for unit disk graphs, the modified congestion is

at most within a constant factor from the previously defined
congestion. We now describe the results of our experiments.

Source Routing, which is specifically tailored for reduc-
ing congestion, performs far better than either of the two
strategies. Interestingly, Valiant’s paradigm which is a prov-
ably good routing algorithm for hypercube networks, incurs
about twice the congestion as shortest paths. We believe,
this due the fact sources and destinations are chosen random
from all nodes in our experiments. Hence, the advantage
of choosing a random intermediate node (which may reduce
congestion for fixed source-destination pairs), is not applica-
ble any longer. Notice how the dilation varies for each strat-
egy. After a certain number of packets, the dilation stabilizes
at a constant value for all three routing algorithms. Naturally,
shortest path has the least dilation of the three. Valiant’s al-
gorithm has about twice the dilation of shortest paths. This
is along expected lines, since the since packets go through
a random intermediate node. Source Routing has the maxi-
mum dilation of the three. While trying to route around the
heavily congested regions in the network, Source Routing in-
curs additional costs in terms of the dilation. However, this
cost is amply compensated for by the much bigger gains in-
curred by Source Routing with respect to congestion.
Sensitivity to Parameters.Recall thatmrd andmc are the
maximum initial random delay and the maximum number
of colors used during distributed coloring respectively. Fig-
ures 5 (c) and (d) show the effect ofmrd and mc on the
total number of packets lost. For a fixed value ofmc, packet
loss decreases linearly with increasing values ofmrd. On
the other hand, for a fixed value ofmrd, packet loss seems
to decrease exponentially with increasing values ofmc. In
particular, for the range of values plotted here, doubling the
value ofmc yields a substantial reduction in packet loss than
doubling the value ofmrd. This has useful implications in
practice. Increasing either of the two parameters increases
the latency incurred by packets. However, in order to reduce
packet loss, for a large range of values ofmc andmrd, it is
better to increasemc thanmrd.
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