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Abstract at a time on an edge (and sometimes nearby edges cannot
Packet-scheduling is a particular challenge in wireless ng@ve traffic simultaneously), and the scheduling problem is
works due to interference from nearby transmissions. @ decide which of the packets queued at a node should be
distance-2 interference modskrves as a useful abstracsentfirst. The exact algorithms used for these problems have
tion here, and we study packet routing and scheduling @hsignificant impact on network performance. In this paper,
der this model. The main focus of our work is the devef® study the scheduling problem in the context of wireless
opment of fully-distributed (decentralized) protocols. Wad-hoc networks. Arad-hoc networkconsists of a group
present polylogarithmic/constant factor approximation alg8f transceivergalso known astationg sharing a common
rithms for various families of disk graphs (which capture thiireless channel and communicating with each other using
geometric nature of wireless-signal propagation), as well & channel. Our two foci here are dealing witterference
near-optimal approximation algorithms for general grapt§)d the development dfistributed algorithms that have
The packet-scheduling work by Leighton, Maggs and RR&OVably good approximation guarantees. Concretely, we
(Combinatorica 1994) and a basic distributed coloring prg@re given a grapli’ = (V, £), with packets that need to be
cedure, originally due to Lubyl( Computer and System SciSént from some sources to some destinations. We will also
ences1993), underlie many of our algorithms. Experime@Ssume that paths are given; for the scheduling algorithms
tal work of Finocchi, Panconesi, and Silvestri (SODA 200#)at we use, the algorithm of [29] can be modified to obtain
showed that a natural modification of Luby’s algorithm lea@§0d paths. If we find paths using a variant of the algorithm
to improved performance, and a rigorous explanation of t[29] and then run our scheduling algorithms, we only
was left as an open question; we prove that the modifiége an additional constant factor in the approximation ratio.
algorithm is provably better in the worst-case. Finally, u¥Ve also discuss, via empirical analysis, the influence of the
ing simulations, we study the impact of the routing strate§Quting strategy on the overall performance of the protocols.
and the choice of parameters on the performance of our dis- 1"e key issue in our case isterference Almost

tributed algorithm for unit disk graphs. all the theoretical, algorithmic work on packet routing and
scheduling so far (e.g., [14, 16]) has primarily considered
1 Introduction the following constraint: at most one packet can be sent on

. . an edge at a time. While useful in wired networks, this
Packet routing and scheduling are two key problems tha o - .
L . ; ssumption is not sufficient for wireless networks, where
arise in the control and design of packet-switched networks. - : S
. ransmission by one transceiver precludes transmission by all
To send a packet from a nodeto nodev in a network, one nearby transceivers. An example of this is shown in Figure 1:
needs to choose a path franmo v; once the paths for all the Y ' b 9 '

packets have been determined, we are left with the issuéfg?e ”""”S'”f?'ss'or?s ofu, b) and(c, d) occurslmultaneously,
n%deb receives signals from botl and ¢ simultaneously,

scheduling the packets along the paths. If multiple packe ich interfere with each other and get garbled; nodes

reach some node simultaneously, they must be queue ar?fgc are not aware of this problem at(unlike, e.g., in

dropped. At most a given number of packets can be S%?hernet, where a collision is immediately detected by all

nodes). This is called theidden node problerm wireless
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transmission happens formsdistance-2 matchingthese It is not, in general, clear whether the path selection
definitions are given in section 2); edges b) and (d,e) problem and the packet scheduling problems can be decou-
in Figure 1 satisfy this property. This model is callegled. In real networks, Barrett et al. [8] showed that there is
the distance-2 interference modgl, 9]. Earlier wireless significant interaction between protocols across the layers of
network models (e.g. [23, 25, 24, 13]) only placed vertdke protocol stack. Consequently, itis not clear whether solv-
constraints: nodes that transmit simultaneously must fonng the corresponding problem in each layer optimally would
an independent set; this is clearly inadequate, from the aboesult in optimal performance overall. The seminal paper
description. of Leighton, Maggs and Rao [14] showed that for the stan-
The above requirement might seem too restrictive sonaard wireline (i.e., “one packet per edge at a time” model),
times: for instance, in Figure b, could transmit taz and such a decomposition is indeed possible. Given a choice of
¢ could transmit tad simultaneously; this is called thex- paths for the packets, I&t, the congestion be defined as
posed node problernm radio networks. While this is true,the maximum number of packets using any edge, ant?)et
reliable transmission requires transmission both ways (to #we dilation, denote the maximum length of any path. Itis
knowledge receipt of packets, for instance), and then the ceasy to see thahax{C, D} is a lower bound on the length
straint described above seems reasonable. The 802.11 gi@ny schedule that uses the given paths. Leighton et al.
tocol addresses these issues by the MACA (Multiple Accesfsow, quite remarkably, that the packets can be scheduled in
with Collision Avoidance) algorithms (see [22] for details)O(C + D) time. Therefore, to solve the combined routing
a sender first transmits Request to Send (RTSgnal and plus scheduling problem in the wireline model, it is sufficient
the receiver then sendsGlear to Send (CTSjignal. Once to obtain paths with lowe” + D value, and then schedule the
the transmission starts, the receiver sends acks to the pagbatkets using [14]. Srinivasan and Teo [29] later designed
he receives correctly. an algorithm that chose paths with + D value within a
constant factor of the optimal, which combined with [14]
gave a constant factor algorithm for the combined routing

'Y plus scheduling problem. We remark that the problem of
routing and scheduling using “standard” (i.e., distance-1 as
opposed to our distance-2) matchings has been studied by
' [1]. Our main contributions are as follows.
(a) Packet-Scheduling Algorithms. We give the

first provably-efficient distributed algorithms for packet-
scheduling in networks with the distance-2 interference con-
straint. While the original motivation for the model is ra-

. . - i0 networks, we also study this problem on different non-
The discussion so far only addresses the restrictions that : .
. . eometric graph classes. As in [14], we show that the EPSI
the MAC layer places in radio networks. The MAC lay . )
. g roblem can be decomposed into seperate path selection
only ensures delivery of packets from a node to its immeg-

. : : and packet scheduling problems. Letdenote the num-
_dlate nelghbor. TheRou_tlng Layerof the protocpl stack b{er of nodes in the given network. For packet scheduling
is responsible for choosing the routes along which packets

must travel (see [22] for details), and the MAC layer mov%ns ar.bltrary graphSQW|th maximum _degreh we p.resent a
ackets one step at a time along these paths. This give EénbutedQ(Alog n)—apprquatlon algc_)nthm,_we a!sq
P ) show that it is hard to approximate the minimum time within

the combined rou_tlng plus packet scheduling problem: IVENL ctor of A=< for any constant > 0, even in the cen-
a set of packets in a network, choose paths for the packet

(routing layer function) and then schedule the packets (M @ﬁzed’ pol_ynormal t|m¢ setting. As is v_veII known,_d|s_k
4 . . . raphs, defined in Section 2, model radio communication
layer function). By incorporating the above interference con- . L S
. . - well, and we obtain the following improved approximation
straint, we have the following generalization of the prob-

lem studied in [14], which we call E-TO-END PACKET algorithms for packet scheduling in them. For general disk

SCHEDULING WITH INTERFERENCE(EPSI): given a wire- graphs, we provide a distribute{d(logQ n)—approximation

: : algorithm and a centralized (logn)—approximation al-
less network and a set of packets with a path given for eaclgmhm_ For unitdisk graphs, we give a distributed

develop a protocol to schedule the movement of the pac oz n)—approximation algorithm and a centralized1 -

from their sources to their destinations, while ensuring tha R . s .
. roximation algorithm. The above distributed algorithms
at each step packets transmitted successfully were on eaZLngs

. i ; . L in the synchronous model; for unit-disk graphs, we also
forming a distance-2 matching. Our goal is to minimize theD . o 3 A

. . . -~ . obtain a distributedD(log” n) approximation in an asyn-
maximum time taken by any packet to reach its deStInatI%n’ronous model. Our results for unit disk graphs can also be
or themakespanThus, the EPSI problem differs from [14] ' grap

in the additional constraints placed by the MAC layer. extended to a more general class of graphs knowm,as-

Figure 1: Distance-2 Interference
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civilized graphst As discussed in [13, 7](r, s)-civilized an application to distributed network protocols. We observe
graphs are a more realistic model for ad-hoc networks dughat the protocol of [17] which runs i®(log? n) time, can
their ability to model occlusions, directional antennaes abd modified to run irO(log n) time. In addition to being of
varying power ranges. independent interest, this is likely to be useful in a practical
A key driver of our algorithms is theandom delays implementation of our algorithms.
technique [14]; we combine this with additional new idegs) Empirical Analysis. We perform a detailed analysis
to develop our algorithms. In particular, the standard lowaf some of our algorithms, and the routing algorithm based
bound of “congestion plus dilation” is shown to be no longen [3] on random geometric graphs, with a large humber
good in our model, and we use a more refined lower boumd. packets injected at random sources. Several popular
For general disk graphs, we introduce a new packing resuditing protocols, such as DRS and AODV [22] are based on
which, along with the graph-theoretic notion wfductive shortest-path routing. Another popular approach is Valiant's
coloring, helps us claim our approximation bounds. Many glaradigm [28]. We observe that the algorithm based on
our algorithms also employ a basic (list-)coloring algorithf3] yields significantly smaller congestion, compared to
due to [18]; we prove the improved performance of a variaghe other two approaches. We also study the impact of
of this algorithm, as discussed below. various parameters on the performance of our distributed
As in [14] and other work on packet routing, our resulegorithms. The two parameters of interest are the number of
on packet scheduling imply that the path selection problemlors (equivalently, the frame length) used in the distributed
can be decoupled from the packet scheduling problem,cadoring algorithm and the maximum initial random delay
long as one can find paths with lo@ + D value, for the which each packet could be subjected to. Increasing either
modified notion of congestion. For unit disk graphs, waf the two would lead to better performance (in terms of
show that the algorithm by Srinivasan and Teo [29] can packet losses) at the cost of increased makespan. Our studies
used to obtain such paths, within @f1) factor. This allows indicate that for a wide range of values, increasing the frame
us to solve the combined routing and packet schedulileggth has a much bigger impact on performance rather than
problem with only additional constant factor penalty. Fonaximum initial random delay.
arbitrary disk graphs and arbitrary graphs, unfortunatdRelated Work. For the earlier model of one packet per edge
[29] only gives anO(A?)—approximation. But in this caseat a time, one of the most significant results is the work
we can use the standard randomized rounding procedofrg¢l4], where they show the existence of a constant fac-
due to Raghavan and Thompson [27] and getdlogn)— tor approximation, using the Local Lemma. Their result
approximation to the path selection problem. Therefore, fassumes that the packets already come with pre-specified
the combined routing and packet scheduling problem, tipiaths. This work was a followed up by a series of pa-
leads to an addition&@(log n) penalty. pers (see, e.g., [15, 28, 19]. Rabani and Tardos [26] give
(b) Distributed Coloring and Network Decomposition. a distributed algorithm for this problem, that takes time
Variants of the above-mentioned algorithm due to [18] ha@¥C' + D(log" n)?(°2" ™ 4 1og® n), which was improved
been useful in many distributed coloring algorithms (sesy Ostrovsky and Rabani [20] 8(C + D +log' ™ n). The
e.g., [12]) and also in our algorithms for packet schedulistance-2 interference model MAC layer packet-scheduling
ing. Due to its simplicity and generality, an extensive expeiit ad-hoc networks has been considered in [7, 23, 25]. The
mental evaluation of this and related coloring algorithms hpoblem can be cast as either vertex or edge coloring de-
been undertaken in [11]. A natural “non-lazy” variant of thpending on the particular setting [9]. The problem of finding
original algorithm of [18] was empirically found to be muclan end-to-end schedule of packets under radio interference
better. To quote [11], “In particular, when compared wittnodel has not been studied prior to this paper.
Luby’s algorithm it consistently turned out to be 2-3 times The rest of the paper is organized as follows. Section 2
faster. The available asymptotic analyses do not explain tefines the basic notation. Sections 3, 4 and 5 describe the
behavior ... and we leave it as an interesting open questiguécket scheduling results for disk graphs, unit-disk graphs
We present such a rigorous explanationin Lemma 7.1, shamd arbitrary graphs, respectively. The path selection is out-
ing that the non-lazy variant is provably better by a constdinted in Section 6. Section 7 describes the faster distributed
factor, in the worst case. In passing, we also improve tbeloring algorithm and Section 8 discusses network decom-
running time of a powerful distributed primitive known aposition. Our empirical results are described in Section 9.
network decompositiof, 5, 6, 17, 21]; see, e.g., [10] forMany proofs and details are omitted here due to lack of
space.
" *For ¢

each fixed pair of real values > 0 ands > 0, a graphG can
be drawn inR? in an (r, s)-civilized manneif its vertices can be mapped2 Preliminaries
to points inR? so that the length of each edge is at mosthe distance Formally an instance of the packet scheduling problem

between any two points is at leastand no two edges intersect (except at i .
their endpoints). Is specified a#PSI(G(V, E), {p1,...,pk}). G(V,E) is
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the underlying interference graph (described below), whitlansmission; so we assume that the pdths .., P, only
would be undirected for the most part, except in disk graphse bidirected edges. The unidirected edges only con-
p1,- ..,k are the packets to be transmitted, with pagket tribute to the interference: therefore, if edge= (u,v)
starting ats; and destined fot;, along the pathP,. The is being used at time, no other edge’ = (u/,v") with
path P; is encoded in packet;. We will assume that anymin{d(v/, e),d(v’, e),d(u,€’),d(v,e’)} < 1 can be used si-
packet takes one unit of time to cross a link and at any timmultaneously. Our algorithm involves choosing random de-
at most one packet can cross a link. In addition, if packets #ags at the first step, as in [14] and then scheduling packets at
being sent simultaneously on edges (u,v),e’ = (v/,v’), each time step by solving a coloring problem. A sequential
thend(e,e’) > 2 (d(-) is defined below). If a packet-coloring algorithm yields ai®(logn) approximation to the
transmission violates either of these requirements (i.e.mbkespan, while a distributed coloring yields(él(iog2 n)
some other transmission is made simultaneously on an edgproximation.

that is within distance less than two), then the transmission We need some more notation for disk graphs. For
fails and has to be retried later. Each node/edge hasdgec = (u,v), definer(e) = r(u) + r(v). Define
buffer in which a packet can wait till it successfully moved’s (v) = {e’ |d(v,¢’) < 1, r(¢/) > r(v)} andNx>(e) =

to the next node in its path. The objective is to construft’ |d(e,e’) < 1, r(e’) > r(e)}. DefineC(e) to be the

a schedule S, that decides which packet should be sentmber of packets whose path uses some edg¥-df),

out at a node at any time. A scheduleviid iff it sends andC = max. C(e). D is still defined to be the dilation.

all packets along their paths subject to the above re-trial

requirement (in the case of failures). L& (p;) denote the LEMMA 3.1. For any vertexwv, the size of the largest
(random) time at which packet; is delivered in scheduledistance-2 matching in the subgraph inducedMy(v) is

S. TheMakesparof S, denoted byC(S) = max; Cs(p;) O(1). ThereforeOPT = Q(C + D).

is the time taken byS to route all the packets, and our

objective is to construct a schedule with low (expected) Figure 2 contains a description of our synchronous
makespan. For the most part, we will assume a synchrondlistributed algorithm for solving th& ST problem on disk
distributed communication model; this is reasonable in o@ifaphs. The algorithm is calledlgorithm DiSKEPS. The
context of a primarily local-area network, since nodes cégscription of the algorithm is complicated because of its
keep synchronized, e.g., by using GPS receivers. Aetdistributed nature. The underlying sequential algorithm,
denote the maximum degree@n Given subsetdl, B C V based on [14], is simple: first we construct an invalid
in graphG(V, E), the distancel(A, B) is defined to be scheduleS” which does not respect the matching constraints
the minimum length of the (directed or undirected) shorte first giving a random delay at the origin of each packet,
path over all pairs of vertices € A,b € B. For edges and then letting it “zip through”, one step at a time. We
e = ()¢ = (W,v) € E(Q), da(e, ) is defined then show that at each step, for each pagketO(logn)
asdg({u,v}, {u/,v'}). For vertexw € V, we will also Packets are transmitted simultaneously on edges not within
sometimes uség (w, €) to denotelg ({w}, {u,v}). We will distance-2 of it. We now construct a valid schedfldy
drop the subscript whenever it is clear. A subsétc E considering all packets at each time st€p and moving

is said to be alistance-2 matching d(e,e’) > 2 for any them to their next hop, by a distance-2 coloring algorithm,
distinct paire, e’ € M. DiskCoL, described below. The algorithm below is a
Disk Graphs. A disk graph is specified by a set of poinfs distributed algorithm, based on [18]. Lemma 3.2 proves that
with a disk D(v) centered at each € V, with radiusr(v). this algorithm runs foiO(log ) rounds and use®(logn)

The directed grapl@(V, E) induced by these disks is thecolors for coloring the sefr of edges in the algorithm
following: the set of nodes i and a (directed) edge:, v) DISKEPS. The lemma also proves that the additidogl

is present ifv € D(u). The special case where all radii aréactor is not needed for the sequential greedy algorithm. The
equal is called a unit disk graph, and in this case, if edglgorithm’s performance can be shown in the following three
(u,v) € E, then(v,u) € E; as a result we can view unitSteps.

disk graphs as undirected. See section 3 for more details. o ) )
LEMMA 3.2. 1. AtanyTl (whichis a multiple oflog” n),

3 Disk graphs for any edgee, defineCr(e) = Nx>(e) N Ep. Then,

A popular model for radio networks is disk graphs. The Cr(e) = O(logn), for eache, T, with high probability.

disk around a point naturally corresponds to the effective | et 7 pe any multiple ofclog®n. The algorithm
transmission range of the radio. As described in Section pskcoL colors the edges i (defined in algorithm

2, we will think of disk graphs as being directed. Be- p|skEPS in ¢'logn steps, using:”log?n colors,
cause of our communication model, which requires two ith high probability. The sefr can be colored

way transmission, only bidirected edges can be used for sequentially using(log ) colors.
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Algorithm DISKEPS

1. Each packep; chooses a delag; uniformly at random fron{1,...,c¢Xo} (¢ > 0is a specific constant antly = C + D).
and waits forY; = Z;clog? n steps as;.

2. From timeY; + 1 onwards, the packet moves along p&th At each node on P;, the packet spendslog? n steps.
3. p; reaches thgth nodev on P; by timeY; + j - clog?® n. If it reaches befor&; + j - clog? n, it waits in the queue till then.,
4. LetT be a multiple ofclog? n. All packets are moved to their next hop, from the current location at filn@uring the time
interval [T, ..., T + clog® n] by the following steps.
(a) LetEr be the edges on which packets need to be moved aff5t&un Subroutines BkCoL below inc’ log n steps
to choose a colat; € {1,...,c" log® n} for each packep;(this can be done, by Lemma 3.2)
(b) AtstepT + ¢’ logn + «;, packetp; is moved to the next node on its path. Once it reacheahe packet is removed.

SubroutinesDiskCoL
1. Repeat the following steps in rounds- 1, 2, . .. till all edges are colored.

2. Roundi: Each uncolored edge chooses to do nothing with probaHifisy With the remaining probability, it performs th
following steps.

[©)

(a) Each uncolored edgechooses a color uniformly at random frofti — 1)dlogn + 1,...,idlogn}.
(b) Each edge checks whether some edgein N> (e) has chosen the same coloreas
(c) Ifthere is no such edg€, ¢ is colored with the color it chose; otherwigeremains uncolored in this round.

Figure 2:Distributed algorithm for solving £ P.ST problem on disk graphs.

3. Algorithm DISKEPS schedules the packets in tim& Unit-disk graphs

O(log® n) times the optimal schedule, with high probyyhen all disks have the same radius, we obtain significant

ability. The sequential version of the algorithm has g provementsin the approximation guarantee. By a repeated

approximation guarantee @(log n). geometric decomposition, we can actually get(1) ap-
proximation. This sort of decomposition only requires a
sparsity condition, rather than geometry, and can be applied

Proof Sketch: (1) Let each packet; be at the end point of ©© Pounded genus graphs also. We then givedng n) dis-
edgee; at stepl’. During the time interval’, T + ¢ log® n), tributed algorithm by refining the analysis of the algorithm
packetp,, Vi only moves along:;, in an interference free[?ISKEPS in Section 3. Finally, we give a cg’lstrlbuted a}lgo—
manner. Now, just consider the time stepdog?n, j — nthm in the asynchronous model with(log” n) approxi-
0,1,.... with respect to these, packets wait for a randofi@tion guarantee.

delay, and then move to their destination, one step at a time.

As in [14], the expected value @r(¢) < 1, for any such 4.1 A sequential O(1)—approximation algorithm The
T — jeclog?n and for any edge:. The statement nownotation used here is defined §n2. Assume the common

follows by a Chernoff bound. radius to bel. Let B be a bounding box in the plane for
(2) Order the edges it in nonincreasing order of theirth® points in". If we assume thatr is connectedp must
r(e) value. SinceCr(e) = O(logn), list coloring uses have S|des_ of lengtth(n). Let By, be a partition ofB into
O(log n) colors for this order. For the distributed algorithriMaller grid cells, each cell having dimensidns: k. Let
DiskCoL, in each round, each uncolored edge gets a cofér P€ Obtained by translating the grig}. by &/2 along the
that does not conflict with any edges with highéy value, * @ndy axes. A cell inB;, will refer to one of thek x &

with constant probability. As a result, each edge gets a cor€d Pieces init, and a point i, is any lattice point with
in O(logn) steps, with high probability. Sincé(logn) integer coordinates. We denote lattice points witBip by

colors are used in each round, this gives a totad@bg? 1) lower-case Iettt_ers and tIkJ_e< k c_ells within By, by upper-case
colors in all. letters. For a disl§ of radiusl in the plane, leC'(S) be the
(3) The previous statements imply that each pagketoves NUMber of paths’; that visit some vertex € V, located
one edge forward o, after theY;clog? n steps, with high Within 5. DefineC’ = maxs{C(S)}. As before,D is the
probability for the distributed version. For the sequentiindth of the longest path. Itis easy to see thak{C, D}
coloring, this movement happens evelflog n) stepsH is still a lower bound on the optimal size.
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The main intuition for the partitioning algorithm is thdength at mosO(log2 n) times the optimal, with high prob-
following. After the first step (giving random delays and paability.
titioning), bothC' and D becomeD (log n) within each time The basic idea is to combine contention resolution meth-
frame: C become®)(log n) because of the random delayxpds along with the random delays plus coloring techniques
while D become®)(log n) because of the partitioning. Thishat have been used so far. Note that if there@rpack-
means that the smaller scheduling subproblem in any fraaie in the vicinity of some packet that are contending for
is localized to aO(logn) x O(logn) region of the plane. a transmission slot at a time, all of these can be scheduled
Thus, in addition to the temporal decomposition, we are afiileO(C log n) steps with high probability. The random de-
to do aspatial decompositiotoo. If we carry this processlays step allows us to reduce the effective congestion at every
once more, we end up with scheduling problems on regicigp, and after that one can perform coloring via the con-
of sizeO(log log n) x O(loglogn), and at this point, we cantention resolution. Note that we need to simulate some sort
solve by brute force imoly(n) time. The algorithm is de- Of synchronization, to ensure that the right set of packets is
scribed in Figure 3 and is callédgorithm UNITDISKEPS. contending at any time, and this can easily be achieved by

Subroutine RRTITION (k) in Figure 3 forms a partition Suitable waiting for polylogarithmic steps at regular inter-
of the problem into smaller subproblems, each on a grid \6ils. We also need to keep track of the path encoded in the
dimension log k x 2log k. packet headers. The algorithm is described in Figure 4 and is

referred to ad\lgorithm ASYNCHRONOUSJNITDISKEPS.
LEMMA 4.1. There exists a choice of random delays for

all the packets in step 1 of subroutiaRrRTITION(k) which LEMMA 4.4. Each packep; moves on itéth edge of itgith
satisfies the following property: for any time frarieof segmentduringtimg — 1)W + (¢ —1)W’logn,...,(j —
length log k, and for any lattice point in the input to 1)W + ¢W'logn — 1 with high probability. Each packet;
the subroutine, the number of paths visiting some verteoves on itgth segment during timg/ — L)W, ..., jW —1
u € V located inS(p) is O(log k), where S(p) is a unit with high probability.

disk centered ap.
* COROLLARY 4.2. All packets are delivered within time

LEMMA 4.2. A schedule of lengttO(loglogn) can be O(OPT log® n) with high probability, whereOPT is the
constructed for the scheduling problem on a grid of sizength of the optimal schedule.
O(loglogn) x O(loglogn).

COROLLARY 4.1. A schedule for the distance-2 interfer—5 Arbitrary graphs

optimal can be found in polynomial time. degreeA of the given graph will play a key role now. We
start by claiming the hardness of approximating EPSI:

4.2 Distributed algorithms We start with the syn- LEMMA 5.1. Let € be an arbitrary positive constant. It

chronous model. Algorithm BKEPS detailed in Figure 2is not nossible to approximate the optimum makespan of
for disk graphs can be modified to yield a better bound of P PP . pumum Pe
L ) ._ every instance off PST problem in polynomial time within
O(logn) for the case of unit -isk graphs. Since all disks 1e
: . . . a factor ofA*~¢, unlessP = NP.

have the same radius, the notation and ordering of Section

is not needed. We will use the lower bourdsD defined in We next present a distributed approximation algorithm
the previous subsection. ) using the the random delays approach from [14]. First, we
The first three steps of the algorithmdKEPS are un- need to define a better lower bound on the optimal makespan,
changed, expect for the deI%ys and time frames being Mijhce edge congestion is too weak: consider a complete
tiples of logn, instead oflog”n. In step 4 of the algo- graph,, with one packet to be sent on every edge; the edge
rithm, instead of running algorithm iIBkCoL, we actually congestion and dilation are eatbut the optimal makespan
run Luby's algorithm [18]. This take®(logn) steps, and js, = n(n—1)/2. DefineC as the maximum, over all edges
usesO.(A) colors, whergA is the max degree of the sub-, _ (u,v), of the number of paths that pass throughr v
graph induced by, which we isO(log n). (or through both). Defind as usual to be the dilation, and
let Xy = max{C, D}. LetOPT denote the number of steps
dp the optimum schedule. Itis easily seen tdtT" > X,.
Our algorithm GENERALEPS has two steps: (1). Construct
an invalid schedulé’ in the following manner: (a) For each
Asynchronous modelThe algorithm described earlier needgacket, choose a random delay frém ..., cXo} (¢ > 0is
centralized, synchronous control, which is difficult in praa specific constant). (b) Allow each packet to zip through
tice. We now describe a completely distributed, asyalong its path, after waiting for the random delay at the
chronous, randomized algorithm that gives a schedulesolurce. (2). Now that step (1) is done, Conu&ftinto a

LEMMA 4.3. There is a distributedO(logn) approxima-
tion algorithm for the packet-scheduling problem on unit di
graphs.
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Algorithm UNITDISKEPS
1. Run subroutine ARTITION(n) to create smaller problems @riog n x 2logn sized grids.

2. For each of the subproblems on2dogn x 2logn sized grid, run subroutine ARTITION(2logn) to create smalle
subproblems o (log logn) x O(loglog n) sized grids.

3. Solve the scheduling problem withintlog log n) x O(log log n) sized grid by exhaustive search (details in Lemma 4.2).
4. Combine the schedules for all the subproblems together to form the whole schedule.

SubroutinesPARTITION (k)

INPUT A scheduling instance onfax k region.

OuTPUT Partition this instance into smaller scheduling problems, defined on grid cells df kigé x 2log k, and compute arj
invalid schedule for each subproblem.

1. Construct an invalid schedulg (II) in the following manner:

(a) Foreach packet, choose a random delay ffom. ., c¢(C + D)}, wherec > 0 is a specific constant, such that Lemma
4.1is satisfied (the property in Lemma 4.1 can be checked in polynomial time; so this step involves choosing the random
delays, checking the property and repeating if necessary).

(b) Allow each packet to zip through along its path, after waiting for the random delay at the source.
2. PartitionB into grids Bz 1og x andB5 1o k.-
3. Consider successive time frames of lenigihk.

o

4. For each time fram@& of sizelog k, assign each packet to a unique cellZ in By 1og &, B 104« SUch that the path traverse
by p; duringT lies completely withinZ; break ties arbitrarily.

5. For each time fram@", for each cellZ in Baiog k, B21og 1, the problem restricted t& involves scheduling the packe
assigned to it during@”, along the segments of the paths wittin

7]

Figure 3:Algorithm for solving £ PST problem on unit disk graphs.

valid scheduleS as follows. LetE; be the set of edges orfiltering” as in [29], the rounding is done using [27], which
which packets are being transmitted at titrie S’. Greedily yields anO(log n) approximation.

distance-2 edge color edgesi; let E;(1),..., E;(k) be For unit disk graphs, [29] actually yields abi(1)—
the color classesk(is the number of colors used): eakl(i) approximation, by formulating the LP differently, usibgx

is a distance-2 matching. This can be done distributivepngestion Partition the plane into boxes of si2g2 x
Schedule the packets usidg in k steps: at thath step 1/2. It is easy to see that the discussion in Section 4

schedule packetsin st (i),i =1,..., k. can be modified to work with this notion. Now, instead
The algorithm can be made distributed in the same wafy choosing paths from a source vertex to a destination
as algorithm DskPS in§ 3. vertex, we will think of compressing each box into a single

vertex, and will try to choose a path from the box containing
LEMMA 5.2. Algorithm GENERALEPSproduces a sched-the source to the path containing the destination. Once
ule of lengthO((C' + D) - A - log n) with high probability.  thjs is done, we can get a path in the original graph by

choosing any arbitrary node for each box present in the path.
6 Path Selection Therefore, the formulation of [29] needs to be modified in
We first describe th€(log n)—approximation fo{C + D) the following manner: consider the graph by compressing
using Raghavan-Thompson randomized rounding [27]. \Wexes containing points into singe nodes. Each box is
formulate the path selection problem an integer progragjacent to neighboring boxes. The edge congestion is
and then relax it, as in section 2.1 of [29]. There are twahianged to vertex congestion, and instead of a constraint per
main differences from the program in [29]. The first is tha&dge in [29], we have the following constraint per nonempty
C refers to our modified definition of congestion (for diskox B: ZB/EN(B Eszl a:’j’g, < C, whereN (B) is the set
graphs or for arbitrary graphs). Next, for each edge of boxes within distancé of B, including B (there are at
E(Q), the corresponding constraint in the case of arbitramyost25 of these). Also, the dilation constraint is rewritten
graphs becomeEf/ENQ(f) E,le x’; < C, whereN,(f) similarly. After the path filtering, the rounding in [29] can
denotes the set of edgg¢s(including f) within distance2 of be still used because for each pdththe number of rows
f; for disk graphsV,(f) is replaced byVs (f). After “path containing an entry forP is still O(C). This gives the
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Algorithm ASYNCHRONOUSJNITDISKEPS

1. Each packep; chooses a delay uniformly at random frdry ..., a1 X0}, wherea; > 0 is a constant and is as defined
before.

2. For each packet;, defineP/ to be a path obtained by prependiig virtual edges td?;, the original path (this is implemented
by following self loop edges at the origin pf).

3. Partition eachP; into segments of lengtlog n each.

4. LetW = aglog®n. During time(j — 1)W,...,jW — 1, each packep; attempts to proceed on ifgh segment in the
following manner:

(@) LetW’ = aylog?n.

(b) During time(j — L)W + (¢ — 1)W'logn,...,(j — L)W + £W'logn — 1, each packet will attempt to move on the

¢th edge of the current segment:
i. ¢ denotes the current timeie {(j — L)W + (£ — 1)W'logn,...,(j — L)W +{W'logn — 1}
ii. If packetp; has already sent itdh edge of thejth segment, keep waiting till timg — 1)W + (W' logn — 1}.
iii. If p; has not already succeeded in sendin¢itsedge of thejth segment, it chooses to send with probability
1

ag logn®

iv. If p; sent attime, and detected a collision, retry as in the above step.
(c) After packetp; succeeds in moving on tiféh edge of current segmeyitit just waits till time (5 — 1) W +£W' log n—1.

5. If packetp; has already finished moving on thith segment of its pat/, it just waits at current node till timgly’ — 1.

Figure 4:Asynchronous distributed algorithm for solving EP.ST problem on unit disk graphs.

following result. chosen tentative colat, and this colotc is removed from
L(z) for all neighborsz of v such thate € L(z). The

LEMMA 6.1. The path-selection problem with the objectivensuccessful vertices proceed to the next round.

being to minimiz€C + D), can be approximated to within Note that once a vertex gets a permanent color, it is never

O(log n) on arbitrary graphs, and to withiD(1) on unit- considered again. It can be easily verified thatu)| >

disk graphs. d, + 1, whered, is the degree of; in the current round.
This also implies that step (b) is well defined; i.e.uifis
7 Distributed Vertex Coloring yet-uncolored|L(u)| > 1. It is also easy to verify that

Our packet scheduling algorithms can be viewed as impfeand when the algorithm terminates, has a valid vertex
menting a distributed coloring algorithm within each fram&0loring.  The empirical results of [11] showed that the
This motivates the question of efficient distributed alg&igorithm improves by a constant factor when = 1/2" is
rithms for various coloring problems. Luby’s algorithm [18fhanged toé = 1". We provide a worst-case explanation:
is often used in distributed coloring algorithms. One of
the parameters in [18] is trleep probabilityat each step, LEMMA 7.1. There are constants and ¢’ such that0 <
which needs to be at leasf2 in Luby’s analysis. The al- ¢ < ¢, for which the f_ollowmg hold for alh Ia_rge enou_gh.
gorithm works as follows on a given gragh Each vertex (&) For any graph withn nodes, the coloring algorithm
u € V(G) is associated with a lisk(u) of colors; initially, With w = 1, terminates withinclogn rounds with high
|L(u)| > A+ 1, whereA is the maximum degree i. Ver- proba_blllty; qnd (b) on the complete gragh,,, the coloring
tices get colored using a distributed list-coloring algorith@{gorithm withw = 1/2 requires at least’logn rounds
in a synchronous round-by-round fashion (in a given rourtfith high probability.
any vertex communicates only with its neighbors). A generic
round proceeds as follows. 8 Faster Distributed Graph Decompositions
(a) Each yet-uncolored vertex wakes up with probabiliy A\-decompositiorof a graphG = (V, E) is a partition of
w or goes to sleep with probability— w. the vertex set into\ subsets (callethlockg. Thediameter
(b) Each vertex: which is awake, choosestantative of a decomposition is the leadtsuch that any two vertices
color uniformly at random from its current lidt(u). belonging to the same connected component of a block are
(c) Each vertex: that has some neighbor that chose tta distance< d. In the distance computation, if we allow
same tentative color as, is calledunsuccessfulall other the paths between two vertices in a block to pass through
(yet-uncolored) vertices are called successful. other vertices which are in the same block, then the diameter
(d) Each successful vertaxis permanently given itsis said to beweak otherwise, the diameter is said to be
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the strong In [17], Linial and Saks show that for anyat most within a constant factor from the previously defined
graphG, there exists a-decomposition ofy such that the congestion. We now describe the results of our experiments.
weak diameter of each block is at maitwhere\, d = Source Routing, which is specifically tailored for reduc-
O(logn). In addition, they provide a distributed algorithning congestion, performs far better than either of the two
which constructs such a decomposition and terminatesstrategies. Interestingly, Valiant's paradigm which is a prov-
O(Ad) time with high probability. We “simulate” all their ably good routing algorithm for hypercube networks, incurs
rounds using a single round and obtain the following resulabout twice the congestion as shortest paths. We believe,
this due the fact sources and destinations are chosen random
LEMMA 8.1. Our distributed algorithm decomposes anfrom all nodes in our experiments. Hence, the advantage
graph G in O(logn) time into O(log n) blocks with weak of choosing a random intermediate node (which may reduce

diameterO(log n). congestion for fixed source-destination pairs), is not applica-
ble any longer. Notice how the dilation varies for each strat-
9 Empirical Analysis egy. After a certain number of packets, the dilation stabilizes

We study two aspects of the packet scheduling problem cha constant value for all threg rquting algorithms. Ngturally,
pirically. The first set of experiments deal with the effect GHOrtest path has the least dilation of the three. Valiant's al-
the routing strategy on the congestion. The routing stra_gé)-”thm has about t_\Nlce the dllatlon_of shortest paths. This
gies we experimented with are: (i) Shortest-path routing, (i 2/0Ng expected lines, since the since packets go through
Valiant's paradigm [28], and (iii) Modified Source Routingt "andom intermediate node. Source Routing has the maxi-
(SR). The last strategy is an adaptation of the Source RJIM dilation of the three. While trying to route around the
ing algorithm proposed in [3]. Routes are chosen sequé§aVily congestedregions in the network, Source Routing in-
tially for each packet using a weighted shortest path aldd!"s _addmonal costs in terms of the dilation. I_-|owever, th_|s
rithm. After each path is chosen, the weights for the eddge®St IS amply compensated for by the much bigger gains in-
along this path (and for some of edges which are two hdp¥Ted by Source Routing with respect to congestion.

away from the path) are increased by a multiplicative factgfnSitivity to Parameters.Recall thatnrd andmc are the
(1.25 in our experiments). This ensures that no edges/regidfi@ximum initial random delay and the maximum number
in the network get overloaded by packets. of colors used during distributed coloring respectively. Fig-

The second set of experiments deal with the sensitivi§eS S (€) and (d) show the effect ofrd andmc on the
of our algorithms to various parameters: (i) the maximuffital number of packets lost. For a fixed valueref, packet
initial random delay for any packeti-d), (ii) the maximum loss decreases Ilnearly with increasing valuesnefl. On
number of colors available for the distributed edge colorifge Other hand, for a fixed value ofrd, packet loss seems
algorithm (nc), and (i) the maximum number of rounds irfo d_ecrease exponentially with increasing valuesnof .In
the distributed coloring algorithmuf). During a particular Particular, for the range of values plotted here, doubling the
stage of the distributed algorithm, if a packet needs to B@Iue.ofmc yields asubstanuql reduction |n.pacll<et [oss t_han
transmitted on some edge, and if this edge cannot be colof@4Pling the value ofnrd. This has useful implications in
after nt rounds of the coloring algorithm, then the pack&ractlce. Inpreasmg either of the two parameters increases
gets dropped. We study the sensitivity of packet loss Hig latency incurred by packets. However, in ordertg (educe
mrd andme. The routing is done by SR, witht = 15. packet Io.ss, for a large range of valuesiof andmrd, it is
The number of packets injected into the network was vari@gtter to increaseic thanmrd.
from 156 to 10000. All our experiments were performed gkcknowledgments. We thank Hari Balakrishnan, Subhash
random connected unit disk graphs obtained by a randgimot and Alessandro Panconesi for helpful discussions.
placement ofl 0000 nodes in &0 x 50 square. The source
and destination for each packet was chosen randomly frei@ferences
all nodes. The plots are obtained by averaging over ten runs.
Impact of Routing. Figures 5 (a) and (b) show the congesf1] N. Alon, F. Chung and R. Graham. Routing permutations on
tion and dilation in the network with respect to the number of  graphs via MatchingsSIAM Journal of Discrete Maththemat-
packets in the network for the three routing algorithms. Re- ics, 7, pp. 513-530, 1994.
call that dilation is the maximum length of a path traverset®l M. Adler and C. Sheideler. Efficient Communication Strate-
by any packet. We measure congestion as follows: partition 9i€s for Ad-hoc NetworksProc. ACM Symposium on Parallel
the plane into square grids of unit length; let the congesti ng%?rmvsv a“g A;Ch'tecyfeﬁpf\- 2§Q-|268, dlﬁgg'h s
for a specific grid be the total number of packets which pai% Réuting eansé échsglrl:?:geizr; Péck?e? Sztwo'raoacr.]gl'EE?rce
through any node within the grid; the maximum congestion gy ,50sium on Foundations of Computer Sciep81.
over all grids is the congestion value we plot. We use thig] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Low-
modified definition for ease of implementation. It is easy to diameter graph decomposition is MC'. Random Structures
show that, for unit disk graphs, the modified congestion is & Algorithms, 5:441-452, 1994,
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