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At present, ‘mixed-type’ multivariate schemes are relatively rare except the Dragon scheme and its
variants (Little Dragon Two scheme and Poly-Dragon scheme). However, they are insecure. In this
paper, we first define a particular polynomial called Three-color Polynomial (this polynomial has
three-class variables, and the form of the associated symmetric matrix of its quadratic part is similar
to the ‘three-color model’ in colorimetry. So we call it three-color polynomial), and its correspond-
ing Three-color Map. Based on the three-color map, we then present a mixed multivariate signature
scheme named RGB (it means Red–Green–Blue, because the central map of this scheme is a three-
color map, and the ‘three-color’ stands for RGB in colorimetry), which is a variant of the Unbalanced
Oil–Vinegar (UOV) signature scheme. Compared with UOV, each polynomial of the central map of
RGB has more cross-terms among all the variables {Y , Z, T}. The variable Y has much to do with mes-
sage values. To a certain degree, the variable Y stands for the message values. This means that the mes-
sage values can be more fully mixed with other variable values in the central map, and the adversary is
very difficult to forge the signature. Thus, in theory RGB is more secure than UOV. Through detailed
analysis, we find that RGB can resist current known algebraic attacks under proper parameters, such
as exhaustive search attack, separation attack, MinRank attack and direct attack (other algebraic
attacks are inapplicable for RGB). Besides, our experiments show that under choosing the security
level of 280, the signing time of Magma implementation of RGB is 0.046 s on an ordinary Linux-PC
with 2.50 GHz, and the signing time of its C implementation is∼0.003 s on an 800 MHz machine. The
comparisons show that the signing speed of RGB is faster than that of Sflashv2, Quartz, UOV, Rain-
bow and RSA-1024, and is slightly slower than that of ECDSA-163 and NTRUSign-251. Overall, this

new scheme can attain very good performance in terms of security and efficiency.
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1. INTRODUCTION

Multivariate Public Key Cryptosystem, or MPKC for short, is a
special public key cryptography where its public key is a set of
multivariate non-linear polynomials over a finite field. MPKC
could resist potentially future quantum computer attacks [1].
Currently, it is divided into two classes [2]: bipolar system and
mixed system. Its security firmly relies on the intractability of
solving a non-linear system of multivariate polynomial equa-
tions over a finite field. Usually, polynomials of this system are
quadratic, thus this intractable issue is also called MQ prob-
lem (means multivariate quadratic problem), which has been
proved to be NP-hard. Dramatically, the provable securities of

almost all MPKC schemes are too hard to reduce to the underly-
ing MQ problem. There exist some multivariate schemes with
a formal treatment for security, such as [3–7]. However, except
the stream cipher [3] and the identification scheme [6], their
formalizations just reduce to other assumed hard problems,
instead of the underlying MQ problem. Hence, at present peo-
ple mainly employ algebraic methods to analyze the security
of MPKC.

Matsumoto and Imai [8] proposed a milestone scheme
named MI (or C∗). However, it was broken by the Patarin’s
linearization equation attack in 1995. Patarin soon designed a
new scheme called Hidden Field Equation (HFE) cryptosystem
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[9] in 1996. It is a pity that the HFE can be attacked by the
Kipnis–Shamir method [10]. Furthermore, in 1997 Patarin
employed the idea of the linearization equation attack to design
a signature algorithm named Oil–Vinegar scheme (OV), which
was presented at the Dagstuhl Workshop on Cryptography by
transparencies. However, Kipnis and Shamir [11] introduced
the separation method to break the OV. Soon after, Kipnis
et al. [12] proposed a modified version of the OV, and called
it Unbalanced OV (UOV) signature scheme. So far, UOV has
been a secure scheme under proper parameters. In addition,
one uses the Plus method, the Minus method and the Perturbed
method to modify C∗ and the HFE. Therefore, there are many
variant schemes, such as Sflash [13], C∗−+ [14], PMI [15],
PMI+ [16], HFE− [9], HFE± [9], IPHFE [17], HFEv [12, 17],
Quartz [18] and so on. It is clear that secure MPKC schemes are
extremely rare. Recently, researchers have proposed some new
multivariate cryptosystems, such as Huang–Liu–Yang-2012
scheme [19], Yasuda–Takagi–Sakurai-2013 scheme [20], Gao–
Heindl-2013 scheme [21], ABC [22], IBUOV [7], matrix-based
Rainbow [23], Zhang–Tan-2014 scheme [24], NT-Rainbow
[25], Yasuda–Takagi–Sakurai-2014 scheme [26], cubic-ABC
[27] and ZHFE [28]. However, we need more time to verify
their securities.

Motivation. From the structural point of view, for the moment
MPKC schemes are mainly bipolar-type, while mixed-type
schemes are relatively rare except the Dragon scheme [29]
and its variants (including Little Dragon Two scheme [30]
and Poly-Dragon scheme [31]). Unfortunately, these mixed
schemes are insecure [32, 33]. Besides, there exists no efficient
multivariate signature scheme, whose security can reduce to
the MQ problem. (Note that we can apply the Fiat–Shamir
paradigm to transfer the identification scheme [6] into a sig-
nature scheme whose security can reduce to the MQ problem.
However, this resulting scheme is unpractical, because its
public-and-secret keys are too long and the signing speed is
rather slow [34]). Therefore, we still need to design some effi-
cient and secure signature schemes, especially the mixed ones,
to enrich the field of multivariate cryptography.

Contribution. In this paper, we firstly define a particular poly-
nomial. This polynomial has three-class variables, and the form
of the associated symmetric matrix of its quadratic part is sim-
ilar to the three-color model (or called Red–Green–Blue color
model) in colorimetry. So we call it Three-color Polynomial.

Next, we also define a significant Three-color Map, which is
associated with the three-color polynomial.

After that, based on the three-color map, we propose a
mixed multivariate signature scheme named RGB (it means
Red–Green–Blue, because the central map of this scheme is
a three-color map, and the ‘three-color’ stands for RGB in
colorimetry), it is a variant of the UOV scheme. The biggest
characteristic of our scheme is mixed-type. It is very suitable
for some devices with limited resources, such as low-cost smart
cards, active RFID tags, wireless network sensors and palm
devices. Compared with UOV, the central map of RGB has lots

of cross-terms (or called quadratic cross-product terms) on the
message values, so we can infer that RGB is more secure than
UOV.

Moreover, we use current known algebraic methods to ana-
lyze the security of the RGB signature scheme. Especially in
the separation attack, we define Green subspace and Magenta
subspace as important analytic tools. Through analysis, we find
that RGB is immune to the exhaustive search attack, separation
attack, MinRank attack and direct attack under proper parame-
ters. We assert that the security level of RGB is no less than 280

under some practical parameters.
Finally, we give the computational complexity of each

component of RGB, and make some experiments to illus-
trate the performance of RGB. The experimental results show
that under choosing the security level of 280, an unoptimized
Magma implementation of RGB only takes 0.046 s to generate
a signature on an ordinary Linux-PC with 2.50 GHz; an unop-
timized C implementation of RGB needs 3.10 ms (∼0.003 s) to
gain a signature on an 800 MHz machine. This signing speed
is faster than that of Sflashv2, Quartz, UOV, Rainbow and
RSA-1024, and slightly slower than that of ECDSA-163 and
NTRUSign-251. From these facts, we can be aware that RGB
is a high-performance scheme.

Organization. The rest of this paper is organized as follows.
In Section 2, we introduce MinRank problem, and look back at
the UOV signature scheme. In Section 3, we first describe a
devised map, then propose the RGB scheme based on it and at
last illustrate the correctness of RGB. In Section 4, we discuss
the difference between RGB and UOV. In Section 5, we ana-
lyze the security of RGB in detail, give the attack complexity
for RGB. In Section 6, we provide the computational com-
plexity and some practical parameters of RGB. In Section 7,
we compare RGB with other signature schemes (including
multivariate signature schemes and non-multivariate signature
schemes) in terms of security, efficiency and storage. Section 8
is the conclusion.

2. PRELIMINARY

2.1. MinRank problem

In multivariate cryptanalysis, MinRank problem [35, 36] is one
of the main methods to analyze an MPKC scheme. It is defined
as below.

Definition 2.1 (MinRank Problem [35, 36]). For posi-
tive integers N , n, m, r and r < n, given N × n matrices
M1, . . . , Mm over a finite field F, there is a non-trivial linear
combination of

M = λ1M1 + · · · + λmMm

such that Rank(M) ≤ r. For this problem, we call it MinRank
problem (MR problem). If N = n, then we say that this is a
square form of MR problem, and denote it by MRs.
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Note that, when r = n− 1, the MinRank problem is NP-
complete [35]. This result can be extended to r = n− 2,
n− 3, . . . , n− k, but k cannot be too close to n. Otherwise, the
problem may be solved easily [2].

2.2. The UOV signature scheme

UOV [12] is a modification of the OV signature scheme.
In the OV signature scheme, the number of Vinegar vari-
ables V = (x̂1, . . . , x̂v) is equal to that of Oil variables O =
(x1, . . . , xo). While in the UOV scheme, the former is greater
than the latter, that is to say v > o. The UOV signature scheme
is based on an Oil–Vinegar map P : Fn → Fo (F is a finite
field and n = o+ v) of the form P(x1, . . . , xo, x̂1, . . . , x̂v) =
(p1, . . . , po), where each pξ ∈ F[x1, . . . , xo, x̂1, . . . , x̂v]
(1 ≤ ξ ≤ o) is an OV polynomial given by

pξ =
o∑

i=1

v∑
j=1

Aξ ijxix̂j +
v∑

i=1

v∑
j=1

Bξ ijx̂ix̂j

+
o∑

i=1

Cξ ixi +
v∑

j=1

Dξ jx̂j + Eξ ,

Aξ ij, Bξ ij, Cξ i, Dξ j, Eξ ∈ F.

For the message Y ′ = (y′1, . . . , y′o) ∈ Fo, a signer first com-
putes the system of equations

P(x1, . . . , xo, x̂′1, . . . , x̂′v) = (y′1, . . . , y′o)

in unknowns x1, . . . , xo under choosing some random val-
ues x̂′1, . . . , x̂′v ∈ Fv. The expected solution is defined by
X ′ = (x′1, . . . , x′o). Note that if the system has no solution, we
should choose again new random values x̂′1, . . . , x̂′v until it has
one solution at least. At last, the signer calculates

(x′1, . . . , x′n) = S−1(x′1, . . . , x′o, x̂′1, . . . , x̂′v),

where S is an invertible affine transformation from Fn to Fn.
The values (x′1, . . . , x′n) is the expected signature.

Anyone can verify the signature (x′1, . . . , x′n) on the message
Y ′ by determining whether or not

P̄(x′1, . . . , x′n) = (y′1, . . . , y′o),

where P̄ = P ◦ S.

3. THE PROPOSED MIXED MULTIVARIATE
SYSTEM

We are going to define a particular map. Based on it, we present
a mixed multivariate signature scheme RGB.

3.1. The three-color map

Let F be a finite field of characteristic p and cardinality q; then
q = pk (here k is a positive integer). Let r, g, b, n be positive inte-
gers, and n = r + g + b. Let S1 be a randomly chosen invertible

affine transformation from Fr to Fr, S2 be a randomly chosen
invertible affine transformation from Fg+b to Fg+b and S3 be a
randomly chosen invertible linear map from Fg to Fg. Note that
S3 must be linear.

Besides, we define three-class variables: Red variables Y =
(y1, . . . , yr), Green variables Z = (z1, . . . , zg) and Blue vari-
ables T = (t1, . . . , tb). Based on these variables, we have the
following definitions.

Definition 3.1 (Three-color Polynomial). It is any polyno-
mial w ∈ F[y1, . . . , yr, z1, . . . , zg, t1, . . . , tb] with total degree 2,
and of the form

w =
r∑

i=1

r∑
i′=1

Aii′yiyi′ +
r∑

i=1

g∑
j=1

Bijyizj

+
r∑

i=1

b∑
k=1

Cikyitk +
g∑

j=1

b∑
k=1

Djkzjtk

+
b∑

k=1

b∑
k′=1

Ekk′ tktk′ +
r∑

i=1

Giyi

+
g∑

j=1

Hjzj +
b∑

k=1

Lktk +M ,

where Aii′ , Bij, Cik , Djk , Ekk′ , Gi, Hj, Lk , M ∈ F.

Definition 3.2 (Three-color Map). It is a map
W : Fn → Fg of the form

W(y1, . . . , yr, z1, . . . , zg, t1, . . . , tb) = (w1, . . . , wg),

where wi(1≤i≤g) are three-color polynomials.

Note that if we take Green variables as Oil variables, Red vari-
ables and Blue variables as Vinegar variables, then the three-
color polynomial can be seen as the OV polynomial.

Definition 3.3. Let W̄ : Fn → Fg be a polynomial map of
the form

W̄(x̄1, . . . , x̄n) = (w̄1, . . . , w̄g)

= S3 ◦W ◦ (S1 × S2)(x̄1, . . . , x̄n),

where w̄1, . . . , w̄g ∈ F[x̄1, . . . , x̄n].

Note that S1 × S2 denotes the concatenation of two transfor-
mations S1 and S2. That is,

(x1, . . . , xn) = (x1, . . . , xr)||(xr+1, . . . , xn)

= S1(x̄1, . . . , x̄r)||S2(x̄r+1, . . . , x̄n)

= (S1 × S2)(x̄1, . . . , x̄r, x̄r+1, . . . , x̄n),

where ‘||’ is the denotation of the concatenation of two strings.
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3.2. The RGB signature scheme

Here we describe the new mixed multivariate signature scheme
RGB, which is a triple of polynomial time algorithms RGB =
(Kg, Sign, Verify) over a finite field F.

Key generation: (pk, sk)← Kg(1λ).
To generate key materials, the algorithm Kg performs the fol-
lowing steps, inputting a security parameter λ.

(1) Randomly select two invertible affine transformations
S1, S2 and an invertible linear map S3.

(2) Randomly produce a three-color map W (here it is
also called the central map), or equivalently, its
components

w1, . . . , wg ∈ F[y1, . . . , yr, z1, . . . , zg, t1, . . . , tb].

(3) Compute the map W̄ . Namely, the g MQ polynomials
w̄1, . . . , w̄g ∈ F[x̄1, . . . , x̄n].

(4) Set the public key pk = W̄ and the secret key sk = (S1,
S2, S3, W).

(5) Return the public/secret pair (pk, sk).

Signature generation: X ′ ← Sign(sk, Y ′)
For a message Y ′ = (y′1, . . . , y′r) ∈ Fr to be signed, the algo-
rithm Sign needs to implement the following steps to gain the
expected signature X ′ = (x′1, . . . , x′g+b).

(1) Compute Ỹ = (ỹ1, . . . , ỹr) = S1(Y ′).
(2) Randomly choose some values T ′ = (t′1, . . . , t′b) ∈ Fb;

then substitute Ỹ and these random values into the map
W , and yield a linear system of equations⎧⎪⎪⎨

⎪⎪⎩
w1(ỹ1, . . . , ỹr, z1, . . . , zg, t′1, . . . , t′b) = 0,
...

...

wg(ỹ1, . . . , ỹr, z1, . . . , zg, t′1, . . . , t′b) = 0.

The program at last solves this system to get a solu-
tion, and denotes this solution by Z′ = (z′1, . . . , z′g). Note
that if this linear system has no solution, the program
must choose again other new random values t′1, . . . , t′b
until it has a solution.

(3) Join Z′ = (z′1, . . . , z′g) and T ′ = (t′1, . . . , t′b) together,

and get X̃ = (Z′, T ′) = (z′1, . . . , z′g, t′1, . . . , t′b), then
compute

X ′ = (x′1, . . . , x′g+b) = S−1
2 (X̃ ).

The values X ′ = (x′1, . . . , x′g+b) are the corresponding
signature on the message Y ′.

Signature verification: {0, 1} ← Verify(pk, Y ′, X ′)
In order to verify that X ′ = (x′1, . . . , x′g+b) ∈ Fg+b is the
signature of Y ′ = (y′1, . . . , y′r) ∈ Fr, the algorithm Verify needs

to check

W̄(Y ′, X ′) = W̄(y′1, . . . , y′r, x′1, . . . , x′g+b)
?= (0, . . . , 0).

If the equality holds, then X ′ is a valid signature on the mes-
sage Y ′ relating to pk = W̄ , and the algorithm returns 1; other-
wise returns 0.

3.3. Correctness

The correctness of RGB is firmly based on the following
observation:

W̄(Y ′, X ′) = 0

⇐⇒ S3 ◦W(S1(Y
′), S2(X

′)) = 0

⇐⇒ W(S1(Y
′), S2(X

′)) = 0

⇐⇒ W(Ỹ , S2 ◦ S−1
2 (X̃ )) = 0

⇐⇒ W(Ỹ , X̃ ) = 0

⇐⇒ W(Ỹ , Z′, T ′) = 0.

From this fact, we know that if W̄(Y ′, X ′) = 0 holds, then
X ′ is indeed the corresponding signature on the message Y ′.
Furthermore, we may stipulate that the system W(Ỹ , Z, T ′) = 0
in unknown Z must have a unique solution Z′. To a certain
degree, this condition can avoid the adversary to arbitrarily
forge signatures.

4. THE DIFFERENCE BETWEEN RGB AND UOV

The three-color polynomial is the same as the OV polynomial in
essence, but RGB is extremely different from UOV in terms of
the following reasons:

(1) From the point of view of function, in UOV each
equation

pi(x1, . . . , xo, x̂1, . . . , x̂v) = yi, 1 ≤ i ≤ o

can be written as

p̃i(yi, x1, . . . , xo, x̂1, . . . , x̂v)

= pi(x1, . . . , xo, x̂1, . . . , x̂v)− yi = 0.

Obviously, the equation p̃i(yi, x1, . . . , xo, x̂1, . . . , x̂v) =
0 is an implicit function, but in RGB each equation
wi(y1, . . . , yr, z1, . . . , zg, t1, . . . , tb) = 0 (1 ≤ i ≤ g) is
not an implicit function.

(2) We consider the associated symmetric matrix of
the quadratic part of each three-color polyno-
mial wi(y1, . . . , yr, z1, . . . , zg, t1, . . . , tb) and that
of p̃i(yi, x1, . . . , xo, x̂1, . . . , x̂v). We first denote
the quadratic part of the wi(·) by qwi(y1, . . . , yr,
z1, . . . , zg, t1, . . . , tb), and then have a symmetric n× n
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matrix Qwi
such that the quadratic part qwi is given by

XT QwiX, where X = (y1, . . . , yr, z1, . . . , zg, t1, . . . , tb)T

and

Qwi
=

⎛
⎝Ar×r Br×g Cr×b

BT
r×g 0g×g Dg×b

CT
r×b DT

g×b Eb×b

⎞
⎠ .

Here 0g×g is the zero matrix, and Ar×r, Br×g, Cr×b,
Dg×b, Eb×b are blocks of the matrix, whose entries are
over the field F.

Similarly, we denote the quadratic part of p̃i(·) by
qp̃i(yi, x1, . . . , xo, x̂1, . . . , x̂v), and have q̃pi = X′′T

Qp̃i
X′′, where X′′ = (yi, x1, . . . , xo, x̂1, . . . , x̂v)

T and

Qp̃i
=

⎛
⎜⎝

01×1 01×o 01×v

0T
1×o 0o×o Go×v

0T
1×v GT

o×v Hv×v

⎞
⎟⎠ .

Here 01×1, 01×o, 01×v, 0o×o are zero matrices, Go×v,
Hv×v are blocks of the matrix, whose entries are over
the field F.

Comparing Qwi with Qp̃i , we find that Qp̃i of UOV is
an especial instance of our Qwi

under choosing r = 1,
g = o and b = v. Moreover, there are lots of quadratic
cross-product terms between ‘y1, . . . , yr’ and Green (or
Blue) variables in RGB, but no quadratic cross-product
terms between ‘yi’ and Oil (or Vinegar) variables in
UOV. Variables ‘y1, . . . , yr’ and ‘yi’ are interrelated
with their message values, respectively. This means that
the message values of RGB can be more fully mixed
with other variable values of the central map compared
with UOV, and the data distribution of the signature
generation process of RGB will be more uniform. Thus,
the adversary is more difficult to forge signatures. We
infer that RGB is more secure than UOV in structure.

(3) In RGB, the randomly chosen transformation S1 is
applied to the message value Y ′ for randomization.
Namely, the transformation S1 can provide a strong
protection to hide the relation between message and
signature. In other words, the solution distribution of
wi(S1(Y ′), Z, T ′) = 0 in unknown Z is more uniform
than that of wi(Y ′, Z, T ′) = 0.

However, there is no need for UOV to compose
on the left by an invertible affine transformation,
because the polynomial coefficients of the OV map P
are chosen at random [2]. Even though UOV has an
affine transformation on the left, it also cannot play a
significant role in security, because there are no cross-
terms of the form yix1, . . . , yixo or yix̂1, . . . , yix̂v in the
polynomial p̃i (or pi). This is quite different from RGB.

(4) From the structural point of view, both are also very dif-
ferent. The UOV scheme belongs to the typical bipolar
system of MPKC. The idea of this construction lies in
using some invertible affine transformations to hide the

trapdoor function P, and then form the public key P̄.
Anyone cannot ‘invert’ the public key P̄ without the
private information.

However, the RGB signature scheme is a mixed-type
system of MPKC. Its key idea is that S1, S2 and S3 can
hide the non-linear system of equations W(Y , Z, T) =
0, and the central map W can fully ‘mix’ all the vari-
ables {Y , Z, T}. The fundament of RGB is that the solu-
tion space of W is related to that of W̄ . We can under-
stand this from Section 3.3.

5. SECURITY ANALYSIS

Currently, researchers mainly utilize algebraic methods to ana-
lyze the security of an MPKC scheme, instead of using formal
approaches, because it is rather hard to work by the latter. Here
we analyze the security of RGB by the exhaustive search attack
[9], the separation attack [11], the MinRank attack [36] and the
direct attacks (namely Buchberger’s algorithm [37], F4 [38],
F5 [39] and XL [40]). Other algebraic methods, such as the
Thomae–Wolf attack [41], the HighRank attack [41–43], the
linearization equation attack [44] and the differential attack
[45], are unsuitable for RGB. The reasons are also given in the
following.

5.1. Exhaustive search attack

The exhaustive search attack is a very common method. How-
ever, the system where the message consists of no less than 64
bits can avoid this attack. Therefore, when q = 28 and r ≥ 8 in
RGB, the adversary cannot break our scheme. It is negligible to
adopt this technique to attack RGB.

5.2. Separation attack

In [11], Kipnis and Shamir proposed two novel algebraic meth-
ods to attack the OV. These methods can separate Oil variables
and Vinegar variables, and then arbitrarily forge the signatures.
We call these methods ‘separation attacks’. In [12], Kipnis
et al. extended the separation methods to attack UOV. The key
idea of the separation attacks is to find some hidden invariant
subspaces for the given public polynomials. Unluckily, the
separation methods can also attack RGB, but not break it under
appropriate parameters. In the following, we will elaborate on
the separation attacks to RGB.

Without loss of generality, we can assume that the character-
istic of the finite field F is odd, and the S1 and S2 are two linear
maps. Now we give some definitions and notations.

Definition 5.1 (Green subspace). The space G in Fn is called
Green subspace if it is of the form

G = {(0, . . . , 0︸ ︷︷ ︸
r

, z1, . . . , zg, 0, . . . , 0︸ ︷︷ ︸
b

) | zi ∈ F}.
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6 W. Shen and S. Tang

Definition 5.2 (Magenta subspace). The space M in Fn is
called Magenta subspace if it is of the form

M = {(y1, . . . , yr, 0, . . . , 0︸ ︷︷ ︸
g

, t1, . . . , tb) | yi, tj ∈ F}.

Let X̄ be the n-dimensional column vector X̄ = (x̄1, . . . , x̄n)
T

and let X be the n-dimensional column vector X = (y1, . . . ,
yr, z1, . . . , zg, t1, . . . , tb)T .

We denote the quadratic part of w̄i(x̄1, . . . , x̄n) by q̄i(x̄1, . . . ,
x̄n). Thus, there is an n× n symmetric matrix Q̄

�

i such that q̄i is

given by X̄
T

Q̄
�

i X̄.
Similarly, the quadratic part of the three-color polynomial

wi(y1, . . . , yr, z1, . . . , zg, t1, . . . , tb) can be denoted by qi(y1, . . . ,
yr, z1, . . . , zg, t1, . . . , tb). Thus, there is an n× n symmetric
matrix Q�

i such that qi is given by XT Q�
i X, where Q�

i has the
form

Q�
i =

⎛
⎜⎝

Ar×r Br×g Cr×b

BT
r×g 0g×g Dg×b

CT
r×b DT

g×b Eb×b

⎞
⎟⎠ .

Here 0g×g is the zero matrix, and Ar×r, Br×g, Cr×b, Dg×b,
Eb×b are blocks of the matrix. Their entries are over the field F.

Obviously, we implement elementary row operations and ele-
mentary column operations to the matrix Q�

i , and then can trans-
form it into Q�

i
′ of the form

Q�
i
′ =

⎛
⎝0g×g BT

r×g Dg×b

Br×g Ar×r Cr×b

DT
g×b CT

r×b Eb×b

⎞
⎠ =

⎛
⎝0g×g ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞
⎠ .

For simplicity, we will employ this form to stand for the
matrix associated with the quadratic part of the three-color
polynomial wi. Namely, we think that Q�

i is equal to Q�
i
′ unless

otherwise specified.
Note that the matrix associated with the quadratic part of the

OV polynomial pi of UOV is of the form

Q�
pi
=

(
0o×o Go×v

GT
o×v Hv×v

)
,

where 0o×o is the zero matrix and Go×v and Hv×v are blocks of
the matrix. From both forms, we know that Q�

i is similar to Q�
pi

.
Because of this reason, we could extend the separation attacks
to RGB.

Next, we define a new map S12 = S1 × S2; then its associated
matrix S�

12 has the form

(
S�

1 0r×(n−r)

0(n−r)×r S�
2

)
,

where matrices S�
1 and S�

2 are related to the maps S1 and S2,
respectively.

Because

q̄i(x̄1, . . . , x̄n) = qi(y1, . . . , yr, z1, . . . , zg, t1, . . . , tb),

we have

X̄
T

Q
�

i X̄ = XT Q�
i X

= (S�
12X̄)T Q�

i (S
�
12X̄)

= X̄
T
(S�T

12 Q�
i S�

12)X̄.

Hence, Q�
i = (S�−1

12 )T Q̄
�

i S�−1
12 . We can view it from the fol-

lowing two perspectives.
(1) From the point of view of matrix, we can see that if finding

any invertible matrix S� (maybe S� = S�−1
12 ) such that

S�T Q
�

i S� =
⎛
⎝0g×g BT

r×g Dg×b

Br×g Ar×r Cr×b

DT
g×b CT

r×b Eb×b

⎞
⎠

=
⎛
⎝0g×g ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞
⎠ (1)

for all i = 1, . . . , g, then we can produce some valid signatures.
(2) From the point of view of map and space, we should

find any invertible linear map S : Fn → Fn associated with the
matrix S� such that

S ◦ S−1
12 (G) = G,

then we can compute a new map M : Fn → Fg given by

M = W̄ ◦ (S)−1.

Since S and S3 are linear mappings, we can think that the map M
has the form of

M = S′3 ◦W ′,

where S′3 is a linear map from Fg to Fg, and W ′ is a three-color
map from Fn to Fg. Their forms are the same as S3 and W ,
respectively (in the general case S′3 �= S3 and W ′ �= W ). Once
having S and M , we can use these identical secret keys to forge
signatures.

In terms of the above facts, we should take attention to the
Green subspace G and its subspace D = S−1

12 (G), and have the
following analyses.

(1) When r + b = g.
In this case, we can adopt two efficient methods of [11]
to find the subspace D. Once having the subspace D,
we can get the desired S�. Therefore, RGB can be over-
come in this case.

(2) When r + b > g and r + b ≈ g.
In this case, we cannot use the methods of [11] to gain
the subspace D. However, we can find an invariant sub-
space of the subspace D, and then use it to span the sub-
space D. In [12], the authors provided an algorithm to
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do with this problem, and asserted that the algorithm is
probabilistic. Therefore, the attack complexity of RGB
is q(r+b−g)−1 · g4 according to [12]. Luckily, this com-
plexity is rather great. When q = 28, r ≥ 12, r = g =
b, the security level of RGB is greater than 2100. That
is, the separation attack cannot work on our RGB sig-
nature scheme under these parameters.

(3) When r + b ≥ g2/2.
In this case, the system of polynomial equations of the
public key of RGB can be easily solved according to
[12]. Thus, the RGB scheme is insecure under these
parameters.

5.3. MinRank attack

In terms of the idea of the MinRank method [36], we need to
consider a non-trivial linear combination of matrices associ-
ated with components of the public key map W̄ , and denote
this combination by M. From Equation (1), we see that if any
attacker wants to forge signatures, he/she must find a combina-
tion matrix M whose rank is r + b. Otherwise, he/she cannot
break the RGB cryptosystem by using the MinRank method.
Therefore, the attack to RGB is equivalent to finding a matrix
with rank r + b among g matrices of size n× n. The complexity
to find such a matrix is qr+b · g3 according to [46].

Therefore, if we choose parameters q = 28 and r = g = b =
10, the security level of RGB will be greater than 2160. More-
over, if g is a small value, namely r + b is very close to n, then
the method cannot work on RGB because the MinRank problem
is NP-complete in this case.

5.4. Direct attacks

Since the public key of MPKC is a set of multivariate polyno-
mials, any method to solve a set of multivariate polynomial
equations can be used to attack an MPKC. Usually, we call
this kind of method ‘the direct attack’, which mainly consists
of some Gröbner bases methods (Buchberger’s algorithm, F4
and F5) and XL method. In [47], Ars et al. asserted that the
XL algorithm is a Gröbner basis algorithm in essence, and is a
redundant variant of the F4 algorithm. So here we do not con-
sider the XL method. It is generally believed that Gröbner bases
algorithms F4 and F5 are two good methods to solve a system
of polynomial equations over a finite field [48]. At present,
there are many studies on estimating their complexities, such as
[49–51]. In [50], Bettale et al. asserted that, for a semiregular
system, the computational complexity of F5 is bounded by

O

((
m

(
n+ dreg − 1

dreg

))ω)
, (2)

where n is the number of variables, m is the number of
equations, dreg is the degree of regularity of the system,
the exponent ω is a linear algebra constant and 2 ≤ ω ≤ 3. In
general, the ω = 2 is used by the cryptanalyst, while ω = 3

is used by the constructor [41]. For the degree of regularity
[50, 51], we know that it is the index of the first non-positive
coefficient in the Hilbert series Sm,n with

Sm,n =
∏m

i=1 (1− zdi)

(1− z)n ,

where di is the degree of the ith equation.
Therefore, when g ≥ 24, n ≥ 54, we can gain the degree of

regularity of RGB dreg ≥ 13, and then know that the complexity
of RGB is greater than 280.

5.5. Other algebraic attacks

Besides the above algebraic attacks, in MPKC there exist other
algebraic attacks, such as the Thomae–Wolf attack, HighRank
attack, linearization equation attack and differential attack.
However, according to their attack characteristics, we find that
they are inapplicable to attack RGB. The reasons are as follows.

The Thomae–Wolf attack is an efficient algebraic key recov-
ery attack to break Enhanced STS, Enhanced TTS and their
variants [41]. This attack mainly makes use of ‘good keys’ and
‘missing cross-terms’ to attack systems. We can understand
that the good keys are a generalization of equivalent keys, and
the Thomae–Wolf attack is a generalization of the Rainbow
Band Separation attack [41, 42]. Consequently, in [41] Thomae
and Wolf demonstrated that the attack is inapplicable for a
non-multilayer construction, such as UOV. In terms of this fact,
we can affirm that the Thomae–Wolf attack is also inapplicable
for RGB. Similarly, the HighRank attack also cannot work on
RGB because of its non-multilayer construction.

For the linearization equation attack, it can break C∗ [44].
However, the central map W of the RGB scheme is not a
bijection, so the attack cannot work on RGB.

For the differential attack, it is successfully applied to break
C∗, PMI and Sflash [45]. We know that the differential of the
public key of any MPKC is an affine map, and the dimension
of the kernel of the differential is invariant. According to these
facts, the attacker can gain some information about the secret
key to attack the corresponding cryptosystem. However, in
RGB the dimension of the expected kernel has nothing to do
with the central map W . Thus, the attacker cannot find some lin-
early independent vectors to build the kernel. So the differential
attack is unpractical to attack RGB.

5.6. Attack complexity on RGB

From the above security analysis, we see that the best known
attack to RGB is the direct attack, and its attack complexity is

O

((
g

(
n+ dreg − 1

dreg

))ω)
, (3)

where the degree of regularity dreg is associated with n and g.
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8 W. Shen and S. Tang

FIGURE 1. The relationship between the factor g and the security
level, when α = 3.

Therefore, if n = α · g and α > 0, then the attack complexity
of RGB is determined by g. So we say that g is a vital security
factor to RGB. In Fig. 1, we show the relationship between the
factor g and the security level when α = 3.

6. PERFORMANCE

6.1. Computational complexity of RGB

For a finite field Fpk , the computational complexity of addition
is O(k) and the computational complexity of multiplication is
O(k2). Therefore, we can use this theory to analyze the com-
putational complexity of each component of RGB, including
secret key generation, public key generation, signature gener-
ation and signature verification. The final results are shown in
Table 1, where each complexity is measured in the total number
of bit-operations.

6.2. Some practical parameters for RGB

According to the above security analysis in Section 5, we
suggest that a practical parameter set of RGB is {q = 28,
r = 20, g = 24, b = 10}. Under choosing these parameters,
n = 54, the affine transformation S1 is from F20 to F20, the
affine transformation S2 is from F34 to F34, the linear map S3
is from F24 to F24, the central map W is from F54 to F24, the
public map W̄ is from F54 to F24 and the degree of regularity
dreg = 13. Thus, we have the following:

(i) The size of the public key: It consists of 24 quadratic
polynomials in 54 variables. So the total size of the
public key is 36.09 KB.

(ii) The size of the secret key: It consists of 24 three-color
polynomials in 54 variables, an affine transformation
over F20, an affine transformation over F34 and a lin-
ear map over F24. So the total size of the secret key is
31.20 KB.

(iii) The length of the message: 20× 8 = 160 bits.

TABLE 1. The computational complexity of RGB.

Component Complexity

The secret key generation O(k2n2)

The public key generation O(k2n4)

The signature generation O(k2n3 + k2n2)

The signature verification O(k2n3)

TABLE 2. Some practical parameters for RGB.

Parameters q = 28, r = 20 q = 28, r = 28
g = 24, b = 10 g = 28, b = 28

PK 36.09 KB 99.94 KB
SK 31.20 KB 93.52 KB
Message 160 bits 224 bits
Signature 272 bits 448 bits
Security 280 2118

(iv) The length of the signature: 34× 8 = 272 bits.
(v) The attack complexity: 280.

Moreover, we also provide other parameters for RGB with
higher security. They are q = 28, r = g = b and r ≥ 28. Under
these parameters, its security level is no less than 2118. Con-
cretely, we consider the minimum security parameter set
{q = 28, r = 28, g = 28, b = 28}. In this case, n = 84, the
affine transformation S1 is from F28 to F28, the affine transfor-
mation S2 is from F56 to F56, the linear map S3 is from F28 to
F28, the mappings W and W̄ are from F84 to F28 and the degree
of regularity dreg = 14. Thus, we have the following:

(i) The size of the public key: It consists of 28 quadratic
polynomials in 84 variables. So the total size of the
public key is 99.94 KB.

(ii) The size of the secret key: It consists of 28 three-color
polynomials in 84 variables, an affine transformation
over F28, an affine transformation over F56 and a lin-
ear map over F28. So the total size of the secret key is
93.52 KB.

(iii) The length of the message: 28× 8 = 224 bits.
(iv) The length of the signature: 56× 8 = 448 bits.
(v) The attack complexity: 2118.

The above given practical parameters for RGB are summa-
rized in Table 2, where ‘PK’, ‘SK’, ‘Message’, ‘Signature’ and
‘Security’, respectively, denote the size of the public key, size of
the secret key, length of message, length of signature and secu-
rity level. In addition, we denote the instance of the RGB signa-
ture scheme under a parameter set (q, r, g, b) by RGB(q, r, g, b)

for convenience, e.g. the secure instances in Table 2 can
be denoted by RGB(28, 20, 24, 10) and RGB(28, 28, 28, 28),
respectively.
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TABLE 3. The comparison between RGB and other multivariate signature schemes.

Schemes Parameters Message (bits) Signature (bits) PK (KB) SK (KB) Sign (s) Verify (s) Security

Sflashv2 [13] GF(27), n = 37
θ = 11, r = 11 160 259 16.46 2.44 0.129 0.014 280

Quartz [18] GF(2), v = 4, r = 3
n = 103, D = 129 160 128 71.85 3.68 0.387 0.036 280

UOV [51] GF(28), n = 84
o = 28, v = 56 224 672 99.94 95.81 0.195 0.040 280

Rainbow [42] GF(28), (18, 12)

(30, 12) 192 336 22.17 17.33 0.054 0.019 280

RGB GF(28), r = 20
g = 24, b = 10 160 272 36.09 31.20 0.046 0.031 280

Notice that ‘Message’, ‘Signature’, ‘PK’, ‘SK’, ‘Sign’, ‘Verify’, ‘Security’, respectively, denote the length of message, length of signa-
ture, size of the public key, size of the secret key, signing time, verification time and security level. Here times come from Magma imple-
mentations of the schemes on an ordinary Linux-PC with 2.50 GHz.

7. COMPARISON WITH OTHER SIGNATURE
SCHEMES

To further understand the RGB scheme, we are going to com-
pare detailed RGB with other signature schemes (including
multivariate signature schemes and non-multivariate signature
schemes) from the length of the message, length of the signa-
ture, size of the public key, size of the secret key, signing time
and verification time. For fairness, the comparisons are based
on the same security level. Here let their security levels be 280.

7.1. Comparison with other multivariate signature
schemes

In terms of efficiency and storage, we compare RGB with
Sflashv2, Quartz, UOV and Rainbow, which are current known
secure multivariate signature schemes. The comparison results
are summarized in Table 3, where the signing time and the
verification time are average values, and come from Magma
implementations of the schemes on an ordinary Linux-PC
with 2.50 GHz. We explain the comparison step by step in the
following.

7.1.1. Comparison with Sflashv2

Sflashv2 is a variant scheme of C∗. Currently, it is still unbro-
ken [52]. Akkar et al. [13] gave its practical parameters
F = GF(27), n = 37, θ = 11 and r = 11. That is, its pub-
lic key includes 26 quadratic polynomials in 37 variables
over the finite field GF(27), and its secret key consists of
two invertible affine transformations from F37 to F37, one

Matsumoto–Imai map F(X ) = X (22)
11+1 and a randomly cho-

sen 80-bit long secret part �. Therefore, the size of the public
key is 7× 26× (38× 39)/2 = 134 862 bits ≈ 16.46 KB, the
size of the secret key is 2× 7× (372 + 37)+ 259× 1+ 80 =
20 023 bits ≈ 2.44 KB, the length of the message is 160 bits

and the length of the signature is 259 bits. So the total size of the
public-and-secret keys of RGB is ∼3.5 times that of Sflashv2.

In the experiment, the Magma implementation of Sflashv2

needs 0.129 s to generate a signature, and takes 0.014 s to ver-
ify a signature, while the signing time of RGB is 0.046 s and
the verification time is 0.031 s. Thus, the signing speed of RGB
is ∼1.8 times faster than that of Sflashv2, and its verification
speed is ∼0.6 times slower than that of Sflashv2.

7.1.2. Comparison with Quartz
Quartz is a specific HFEv− signature scheme that is a simple
combination of HFEv with the Minus method. Patarin et al. [18]
provided practical parameters that are F = GF(2), D = 129,
n = 103, v = 4 and r = 3. In this case, its public key contains
100 quadratic polynomials in 107 variables over the field GF(2).
Its secret key consists of an affine secret bijection S from F107

to F107, an affine secret bijection T from F103 to F103, an 80-bit
secret string � and a secret function FV (Z) : F103 → F103.
Therefore, Quartz has a short signature of 128 bits from a mes-
sage of 160 bits. The size of the public key of Quartz is about
100× (108× 109)/2 = 588 600 bits ≈ 71.85 KB, which is
about two times that of RGB. The size of the secret key of
Quartz is about (1072 + 107)+ (1032 + 103)+ 80+ (28+
32+ 16)× 103 = 30 176 bits ≈ 3.68 KB, which is∼0.9 times
less than ours. However, the total size of the public-and-secret
keys of RGB is less than that of Quartz.

The experiment clearly shows that the signing time of Magma
implementation of Quartz is 0.387 s, while our example is only
0.046 s. That is to say, our signing speed is ∼1.8 times faster
than that of Quartz. Besides, our verification speed is also faster
than that of Quartz. Moreover, the experiment shows that Quartz
requires a large amount of memory in the initialization process,
but RGB does not need to use much.

All in all, we conclude that RGB is a better scheme compared
with Quartz according to both efficiency and storage.
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TABLE 4. The comparison between RGB and other types of public key signature schemes.

Schemes Signature (bits) PK (B) SK (B) Sign (ms) Verify (ms) Security level

RSA-1024 [53] 1024 320 128 9.09 0.78 280

ECDSA-163 [53] 320 24 48 1.42 2.18 280

NTRUSign-251 [53] 1757 220 1004 0.50 0.30 280

RGB(28, 20, 24, 10) 272 36 960 31 946 3.10 2.27 280

Note that ‘Signature’, ‘PK’, ‘SK’, ‘Sign’, ‘Verify’, respectively, denote the length of signature, size of the public key, size of the secret key, signing
time and verification time. For objectivity, the times of RSA-1024, ECDSA-163 and NTRUSign-251 come from [53], running on an 800 MHz
machine. So we also run RGB on the same environment in C language in order to ensure fairness.

7.1.3. Comparison with UOV
UOV is a secure signature scheme. Thomae and Wolf [51]
gave its security parameters, which are F = GF(28),
n = 84, o = 28 and v = 56. In this case, the public key
is a map from F84 to F28, and has 28 polynomials in
84 variables over the field GF(28). Its size is thus about
8× 28× (85× 86)/2 = 818 720 bits ≈ 99.94 KB. The secret
key consists of 28 OV polynomials in 56 Vinegar variables
and 28 Oil variables, and an invertible affine transforma-
tion S from F84 to F84. Therefore, the size of the secret key
is 8× 28× (56× 55/2+ 56+ 56× 28+ 56+ 28+ 1)+
8× (842 + 84) = 784 896 bits ≈ 95.81 KB. Clearly, the size
of the public key of UOV is ∼1.8 times larger than ours, and
the size of its secret key is ∼2.1 times larger than ours.

The experiment clearly displays that the signing time of
Magma implementation of UOV is 0.195 s, and RGB needs
0.046 s to generate a signature. Thus, our signing speed is∼3.2
times faster than that of UOV. At the same time, the experi-
ment shows that our verification speed is also faster than that
of UOV.

Moreover, UOV generates a signature of 672 bits from a
message of 224 bits. Clearly, the length of its signature is three
times that of its message, while the length of the signature of
RGB is 1.7 times that of its message.

In a word, we think that RGB will be a good choice compared
with UOV in terms of efficiency and storage.

7.1.4. Comparison with Rainbow
Rainbow is a multilayer UOV signature scheme. Now
two-layer Rainbow is a secure scheme under parameters
{28, (18, 12), (30, 12)} [42]. In this case, the public key con-
tains 24 quadratic polynomials in 42 variables, and has
8× 24× (43× 44)/2 = 181 632 bits ≈ 22.17 KB. The secret
key consists of 12 OV polynomials in 18 Vinegar variables
and 12 Oil variables, 12 OV polynomials in 30 Vinegar vari-
ables and 12 Oil variables, and two invertible mappings
S : F42 → F42 and T : F24 → F24. The total size of the secret
key is thus ∼17.33 KB. Obviously, the size of the public key
of Rainbow is ∼0.3 times less than ours. The size of the secret
key of Rainbow is ∼0.4 times less than ours.

From the experiment, we can know that the Magma imple-
mentation of Rainbow takes 0.054 s to produce a valid signature,
while RGB needs to consume 0.046 s. Thus, the signing speed
of RGB is faster than that of Rainbow. However, the verification
time of Rainbow is 0.019 s, while ours is 0.031 s.

7.2. Comparison with other types of public key signature
schemes

At present, there are many non-multivariate public key signature
schemes, such as RSA [54], ECDSA [55, 56], NTRUSign [53]
and so on. As is known to all, they are well known ones, where
RSA is a significant number theoretic-based scheme, ECDSA is
a typical elliptic curve cryptosystem and NTRUSign is a famil-
iar lattice-based signature scheme.

To show the performance of RGB, we also compare it with
RSA-1024, ECDSA-163 and NTRUSign-251 on the same
security level of 280. The comparison results are shown in
Table 4, where the times of RSA-1024, ECDSA-163 and
NTRUSign-251 are from [53] in order to objectivity, and they
are executed on an 800 MHz machine. For fairness, we also run
RGB on the same environment in C language.

The experiment (cf. Table 4) shows that the signing times
of RSA-1024, ECDSA-163, NTRUSign-251 and RGB (28,
20, 24, 20) are 9.09, 1.42, 0.50 and 3.10 ms, respectively,
and their verification times are 0.78, 2.18, 0.30 and 2.27 ms,
respectively. Therefore, on the same security level the signing
speed of RGB is about two times faster than that of RSA-
1024, but a little slower than that of both ECDSA-163 and
NTRUSign-251, while its verification speed is almost the same
as that of ECDSA-163, and slower than that of RSA-1024 and
NTRUSign-251.

8. CONCLUSION

We first devise a particular three-color polynomial and a vital
three-color map. Based on the three-color map, we then pro-
pose a mixed multivariate digital signature scheme named
RGB. The most notable feature of this new signature scheme
is that it is mixed-type. Meanwhile, it can resist potentially
the future quantum computer attacks. In this new scheme,
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each corresponding polynomial of its central map has a lot
of cross-terms, so it is more secure than the UOV signature
scheme. We make use of the current known algebraic meth-
ods to analyze the security of RGB in detail. Especially, in
the separation attack we define Green subspace and Magenta
subspace as the analysis tools. Through detailed analysis, we
find that under choosing proper parameters, RGB can resist the
exhaustive search attack, the separation attack, MinRank attack
and direct attack. Other algebraic methods are inapplicable
to attack the RGB scheme. We claim that RGB can run up to
2118 under some practical parameters. Moreover, the experi-
ments show that the signing time of Magma implementation of
RGB is only 0.046 s; the signing time of C implementation of
RGB is 3.10 ms (∼0.003 s). Its signing speed is faster than that
of Sflashv2, Quartz, UOV, Rainbow and RSA-1024. In sum-
mary, we believe that RGB is an excellent mixed multivariate
signature scheme for practical applications.
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