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Molecular dynamics computer simulations have been employed to demonstrate that the addition of

a suitable uniaxial discotic nematic to a biaxial nematic (Nb) of elongated mesogens can give rise to

a low temperature Nb liquid crystal (where the rod-like particles would form a biaxial smectic). The two

species are made to be fully miscible over the entire isotropic and nematic temperature range by

a suitable parameterisation of shapes and pair interactions. The disc-like mesogen, even though not

forming a biaxial nematic by itself gives a stable low-temperature discotic nematic which strongly

disfavours the formation of columnar and smectic phases in the two-component system.
1 Introduction

The development of biaxial nematics (Nb) promises to open up

a new generation of displays and other electro-optic devices,

through the control of the orientation of two, rather than one,

directors i.e., the preferred directions of alignment of the liquid

crystalline material.1

Although the first Nbs discovered, and the only ones for a long

time, have been lyotropics,2,3 polymerics,4 or, more recently,

polydisperse mixtures of board-like goethite particles,5,6 hardly

suitable for normal displays, in the last few years relatively low

molar mass thermotropics have been reported for various classes

of molecules ranging from bent-core7,8 or V-shaped,9 to flexible

silicon tetrapodes.10

Besides these successes, none of the currently available ther-

motropic Nb materials still appear to be easily utilisable in

practical electro-optic devices either because of their very high

temperature nematic range (e.g. over 373 K for the bent-core

mesogens in ref. 7,8), or because of their high viscosity11 and slow

response. Therefore, Nb mesogens are still actively pursued, even

if tuning the properties of materials, and liquid crystals in

particular, is an art that synthetic chemists have perfected (see

e.g. for reviews ref. 1,12,13). The difficulty here lies in obtaining

a Nb, rather than one of the competing phases, such as a uniaxial

nematic, biaxial smectic or crystalline solid, when attempting

molecular modifications around the known mesogenic molecular

structures. The risk seems to be particularly high for the

important task of lowering the biaxial nematic transition

temperature while avoiding the formation of smectics as, for

instance, favouring face-to-face packing will help in making the

organisation biaxial, but not necessarily nematic.14 As an alter-

native to obtaining a suitable one-component mesogenic mate-

rial, another chemical way of tuning properties is that of
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employing mixtures, and indeed many of the commercial prod-

ucts actually offered by industry in liquid crystal displays are

uniaxial formulations of various (up to 5–7) components.

Binary mixtures of uniaxial elongated (rod-like) and squashed

(disc-like) mesogens have been recognised by Alben more than

thirty years ago15 as a possible pathway towards a thermotropic

Nb. The rationale is particularly simple and appealing: whenever

packing density increases the uniaxial rods and discs will align in

the nematic phase along twomutually orthogonal directions and,

as long as the two species are miscible, a macroscopically Nb

phase should result.15,16

Unfortunately, Alben’s sketch assumes as a necessary

prerequisite the full miscibility of the molecular species over the

entire phase diagram (or at least over the range of temperatures

used in the target applications). This assumption severely limits

the possibilities offered by mixing. Indeed, full mixing is expected

for mesophases of the same nature and this is often a technique

used to assign a phase to one of the known types.17,18 However,

the formation of a homogeneous phase can not be taken for

granted when using molecules of different shapes resulting from

very different chemical structures, like elongated and squashed

thermotropic mesogens. As it comes out, the general result of

most experiments,19–21 as well as theories,22–29 and computer

simulations30 is that rod-like and disc-like mesogens (either with

typical molecular shapes or approximating the infinitely long or

thin limit) will eventually demix at low-temperatures and/or

high-density.

Several strategies have been attempted to avoid demixing,

connecting rod-like and disc-like mesogens by weak bonds31 or

flexible linkers.32 Experiments relying on enhanced lateral inter-

actions33,34 or shape amphiphiles,35,36 have not been successful so

far,13 unless in the presence of an external electric field.37 The

situation has recently started changing for the better. In partic-

ular, Kouwer and Mehl,38 and Apreutesei and Mehl39 have

experimentally demonstrated the full miscibility of certain rod-

like and disc-like mesogens, and even though these mixtures are
Soft Matter, 2012, 8, 2017–2025 | 2017
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not Nb themselves, this result demonstrates that the entropic-

driven demixing process can be surmounted. Bates, Vanakaras

and Photinos40 have shown by Monte Carlo (MC) computer

simulations how by properly choosing the shapes of hard biaxial

brick-like particles this entropic hindrance can be overcome at

least when the long axes are completely ordered. Furthermore,

avoiding the strong limitation of complete order Jackson and

coworkers41 have shown, also byMC simulations, that Nb phases

can be obtained by mixing elongated spherocylinders and dis-

cotic cut-spheres with suitably tailored anisotropic heteroge-

neous attractions between the otherwise hard particles. On the

experimental side the findings of Vroege and co-workers,5,6 even

though involving colloidal mixtures of polydisperse biaxial clay

platelets (and not single molecule systems), have demonstrated

how the shape polydispersity of colloidal particles favours Nb

phases by inhibiting the formation of highly ordered and densely

packed smectic or solid organisations. The theoretical model of

Rat�on and Cuesta42 gives an interpretation of this behaviour and

predicts stable biaxial nematics from polydispersed mixtures of

elongated and squashed uniaxial hard parallelepipeds. More

recently Belli and coworkers43 have proposed a similar model

specifically aimed at interpreting the results of ref. 5,6 finding

a rich variety of phase diagrams in terms of concentration and

polydispersity of particles volume and aspect ratio.

In this paper, we wish to show that even using just a mono-

disperse binary mixture we can, by tuning both shape and

molecular interactions, effectively counteract demixing and

realise a low temperature Nb phase. In particular, we believe this

can be done by mixing elongated and squashed biaxial mesogenic

particles interacting via an anisotropic attractive–repulsive

anisotropic potential which does not involve specific weakly

bonding rod–disc interactions but which confers a dual calam-

itic–discotic mesogenic nature to both molecular species. To

demonstrate it we have employed molecular dynamics (MD)

simulations of elongated and squashed attractive–repulsive

biaxial ellipsoids. We have chosen to employMD here, instead of

the MC technique we have used before,44,45 since for these fluid

systems we have seen that MD allows an equally effective

exploration of the phase space while offering the possibility of

efficiently implementing a parallel code on graphic processing

units (GPU) architectures, important in perspective for treating

very large systems of particles, with fewer complications than

MC.46,47

The plan of the manuscript is as follows: in Section 2 we show

the pair potential and the parameterisation used for the meso-

genic particles; in Section 3 we report the technical details of the

computer simulations; in Section 4 we discuss the MD results;

eventually some final remarks conclude the paper. In the

Appendix we describe the algorithm devised for the computation

of global order parameters for a two-component mixture of

biaxial ellipsoids.
2 Molecular model

The anisotropic pair interaction between the mesogenic species

of this work has been computed by the biaxial extension of the

Gay–Berne (GB) potential48–50 between two rigid ellipsoidal

particles of species a and b (see also ref. 51 for another formu-

lation). The GB energy is parameterised in terms of the ellipsoids’
2018 | Soft Matter, 2012, 8, 2017–2025
axes lengths s(i)x , s
(i)
y , s

(i)
z , and of the interaction strengths 3(i)x , 3

(i)
y

and 3(i)z , with i ¼ a, or b. The coefficients 3(i)a with a ¼ x, y, and z,

are proportional to the well depths for the side-by-side, face-to-

face, and end-to-end interactions.50 Two exponents m, n and the

minimum contact distance sc allow to tune the shape of the

energy wells.44,49,50 The potential between a pair 1, 2 of biaxial

molecules of species a and b can be written as

U(r,Q) ¼ 4303(r,Q)[u12(r,Q) � u6(r,Q)], (1)

where u(r, Q) h sc/(r � s(r, Q) + sc). The distance and energy

units are s0 and 30. The symbol Q stands here for the two

quaternions52,53 [q(1)i, and [q(2)i defining the orientations of the

two particles in the laboratory frame, while r ¼ r2 � r1 is the

intermolecular vector, with length r. The anisotropic contact

term is

s(r,Q) ¼ r[2rTA�1r]�1/2. (2)

The symmetric overlap matrix Ah A(Q) is defined in terms of

the diagonal ‘‘shape’’ matrices S(i) as

A ¼ Mð1ÞTSðaÞ2Mð1Þ þMð2ÞTSðbÞ2Mð2Þ (3)

where the elements are S(i)
a,b ¼ da,bs

(i)
a . The cartesian rotation

matrices for the two molecules M(n) h M(mn ) l), with n ¼ 1,

and 2 perform the active rotation from laboratory to molecular

frame, and are defined52,53 in terms of the quaternions [q(i)i. The
anisotropic interaction term is

3(r,Q) ¼ eab3
v
A(Q)3mB(r,Q), (4)

where the coupling parameter eab allows to modulate the range

of energy surfaces for the interaction of like (a ¼ b) or unlike (a

s b) ellipsoids. The dimensionless strength coefficient 3A is

3AðQÞ ¼
�
2sð1Þ

e sð2Þ
e

det½A�
�1=2

; (5)

where s
ðiÞ
e ¼ ½sðiÞx s

ðiÞ
y þ sðiÞz sðiÞz �½sðiÞx s

ðiÞ
y �1=2:

The dimensionless interaction parameter 3B is

3B(r,Q) ¼ 2r�2rTB�1r (6)

The interaction matrix B h B(Q) is defined in terms of the

auxiliary diagonal ‘‘interaction’’ matrices E(i) as

B ¼ Mð1ÞTEðaÞMð1Þ þMð2ÞTEðbÞMð2Þ (7)

where the elements are E(i)
a,b ¼ da,b(30/3

(i)
a )

1/m. Explicit expressions

for the gradient and torques of the biaxial GB potential are given

in ref. 53,54.

The specific parameterisation for the two species of biaxial GB

particles with dual behaviour used in this work has been chosen

relying on a number of previous results: (a) particles with similar

cross section but incommensurate lengths;40 (b) weakened

homogeneous rod–rod and disc–disc interactions (akin in a sense

to weakly attractive rod–disc interactions31,41); and (c) opposite

shape and interaction biaxialities.44 All of these properties

contribute to achieve several modelling goals: (a) limit the

formation of positionally ordered low-temperature organisa-

tions; (b) enhance lateral side-by-side attractions with respect to
This journal is ª The Royal Society of Chemistry 2012
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Table 1 Parameters of the biaxial GB potential for the model mesogens
used in this work. Ellipsoids axes s(i)a are in s0 units, well depths 3

(i)
a are in

30 units, while masses mi are in m0 units. The exponents m ¼ 1, n ¼ 3, and
the parameter sc ¼ 0.714 s0. The dimensionless scaling parameters used
for the homogeneous rod–rod and disc–disc interactions were erod–rod ¼
edisc–disc¼ 1, while for the heterogeneous rod–disc ones we used erod–disc¼
1.8

Type i mi s(i)x s(i)y s(i)z 3(i)x 3(i)y 3(i)z

Rod 3 1.4 0.714 3 1 0.9 0.2
Disc 2 1.4 2 0.714 1.29 1.6 0.2
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face-to-face (see Fig. 1, and Table 1) to obtain duality; and (c)

prevent the demixing between rods and discs (usually taking

place at the isotropic–nematic phase transition or at low

temperatures). In practice, point (a) has been achieved by means

of modelling the shape, as suggested by Vanakaras, Bates and

Photinos,40 so that both prolate and oblate ellipsoids share two

axes lengths while the third ones have incommensurate lengths.

Regarding points (b) and (c), the 3(i)a coefficients for both species

(see Table 1), and the parameter erod–disc ¼ 1.8, were chosen to

give homogeneous rod–rod and disc–disc and heterogeneous

rod–disc interactions of comparable strength (see Fig. 1).

Regarding the interaction anisotropy, all lateral side-by-side

attractions were enhanced with respect to those face-to-face

(especially for disc–disc pairs). Concurrently, the potential

surface for rod–rod interactions has az 40% weaker side-by-side

attraction compared to the one previously studied,44 to also

match the energies between squashed ellipsoids. This tuning of

a common attractive–repulsive model is different from the

approach of Cuetos, Galindo and Jackson41 relying on specific

rod–disc attractions of a different nature from the purely

repulsive homogeneous interactions between hard particles.

With this three-part recipe both elongated and squashed

particles possess a dual nature consisting in steric contribution
Fig. 1 Representative Gay–Berne energy profiles for the homogeneous

(plate A) rod–rod (solid, red) and disc–disc (dashed, blue), and

heterogeneous (plate B) rod–disc (dotted, green) pair interactions in the

side-by-side, face-to-face, and end-to-end configurations using the

parameterisation described in the text and Table 1.

This journal is ª The Royal Society of Chemistry 2012
arising from the shape anisotropy which competes with an

opposing enthalpic one due to the attractive part of the potential.
3 Systems studied and simulation details

We have performed three series of isobaric-isothermal molecular

dynamics simulations on a set of bulk samples formed by N ¼
4096 biaxial GB particles: two for each one-component system of

elongated and squashed mesogens, and one for their equimolar

mixture (see Table 1). The cutoff radius for the GB interactions

was rc ¼ 4 s0, and a neighbour list of radius rl ¼ 5 s0 was also

employed for all simulations. The dimensionless time step was

chosen as Dt* ¼ Dt/(3-10 s
2
0m0)

1/2 ¼ 0.002, where m0 is the unit for

mass. The standard velocity–Verlet integrator55,56 has been used

for the translational equations of motions, while the rotational

trajectories have been determined using the approach of ref.

53,57,58. The sample was maintained at constant temperature

T* ¼ T/(kB
�130), and pressure P* ¼ P/(s0

�330) ¼ 8 by means of

the weak coupling thermostat and barostat due to Berendsen,59

with dimensionless time constants sT ¼ 10, and sP ¼ 100. Every

series of MD simulations consisted of a temperature scan per-

formed as a gradual cooling-down sequence of a well equili-

brated isotropic sample. Successive runs were started from the

final equilibrated configuration of the previous temperature. In

all cases, equilibration runs were not shorter than a 200k time

step, after which the thermodynamic observables have been

sampled every 20 time step from production runs 250k time step

long. A blocking algorithm60 has been used to compute averages

and error estimates. We have found isotropic (I), uniaxial

nematic (N), biaxial nematic (Nb), and biaxial smectic (Sb)

phases, but not columnar ones.45

The average uniaxial and biaxial order parameters relevant to

the experiment can be defined as ensemble averages with respect

to the single particle distribution functions of symmeterised

Wigner matrices, i.e. scalar products involving the particle

molecular axes and the director frame axes n, m, and l ¼
m � n61,62

hR2
00i ¼

�
3

2
ðz$nÞ2 � 1

2

�
; (8)

hR2
22i ¼

�
1

4
½ðx$lÞ2 � ðx$mÞ2 � ðy$lÞ2 þ ðy$mÞ2�

�
: (9)

The order parameters are computed from the eigenvalues of

single-species ordering matrices,61,44 and for the one-component

systems the standard algorithm61 is generally sufficient. These

definitions can be extended to uniform multi-species mixtures,
Soft Matter, 2012, 8, 2017–2025 | 2019

http://dx.doi.org/10.1039/c1sm06838e


Pu
bl

is
he

d 
on

 0
3 

Ja
nu

ar
y 

20
12

. D
ow

nl
oa

de
d 

by
 P

en
ns

yl
va

ni
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

09
/0

4/
20

16
 0

2:
47

:4
8.

 
View Article Online
and in the Appendix we describe the simplified protocol for the

present case of biaxial ellipsoids.
4 Results and discussion

The location of the spontaneous ordering transitions in the two

single-component systems and in the mixture were determined

from the average values of potential energy, orientational order

parameters, and radial pair correlation functions obtained from

the MD temperature scans which we now discuss in turn (the

thermodynamic and ordering properties for the three families of

samples are given in Tables 2, 3, and 4). No detailed free energy

studies have been performed since we are interested in qualitative

and semi-quantitative explorations to determine the outcome of

the chosen parameterisation.

In Fig. 2-A we plot the average values for the dimensionless

potential energy per particle hU*i ¼ hUi/30. We see that there are

no strong discontinuities of the energy across the phase transi-

tions (shown in Fig. 2-B as different symbols for every simulated

state point). In particular, the spontaneous I–N ordering tran-

sitions for the single-component elongated and squashed

systems take place with very small jumps in the average energy.

This is also true for number density hr*i ¼ hri/s0�3 ¼ h1/ViN/

s0
�3 (given in Table 2, 3, and 4). A similar behaviour was also

observed in correspondence of the N–Nb transition for the

prolate particles. Only across the Nb–Sb (single-component

elongated) and the I–N (equimolar mixture) we have found

a significant discontinuity in energy and density. The hU*i
values for the single-component disc and equimolar mixture

systems are fairly close along the entire temperature range, while

for the rod-like samples this was found only for the low-

temperature biaxial smectic phase. Fig. 2-B summarises the

sequences of phases and transition temperatures observed for

the three thermotropic systems.

The order parameter profiles in Fig. 3 are the most telling

observables for the identification of the present temperature-

driven phase transitions. Upon cooling the isotropic sample of

the rod-like particles a sequence of N, Nb, and Sb phases are

encountered (Table 2), with appreciable discontinuities in hR2
00i

only across the I–N transition. We notice that the single-
Table 2 Average orientational order parameters hR2
00i, and hR2

22i, dimensio
MD simulations of the system N ¼ 4096 biaxial rod-like GB ellipsoids giving
phases as indicated. Estimated rms errors on the block averages are also give

T* hR2
00i hR2

22i

1.6 0.973 � 0.000 0.474 � 0.000
1.7 0.967 � 0.000 0.469 � 0.000
1.8 0.964 � 0.001 0.468 � 0.002
1.9 0.959 � 0.001 0.466 � 0.001
2.0 0.903 � 0.000 0.362 � 0.001
2.1 0.834 � 0.001 0.300 � 0.003
2.2 0.789 � 0.001 0.241 � 0.002
2.3 0.748 � 0.002 0.114 � 0.041
2.4 0.701 � 0.002 0.033 � 0.007
2.5 0.638 � 0.004 0.030 � 0.003
2.6 0.558 � 0.006 0.021 � 0.001
2.7 0.413 � 0.011 0.019 � 0.002
2.8 0.088 � 0.015 0.009 � 0.001
2.9 0.064 � 0.003 0.008 � 0.000
3.0 0.054 � 0.002 0.006 � 0.000

2020 | Soft Matter, 2012, 8, 2017–2025
component system of rod-like particles has a phase diagram

similar to the one for ellipsoids with the same shape but stronger

lateral interactions:44 all ordering transitions are shifted to lower

temperatures, while the stability ranges for the N, and Nb

become wider.

The single–component discotic system has an I–N transition at

slightly lower temperature with respect to the fluid of elongated

particles, and the biaxial order parameter hR2
22i remains zero

over the entire temperature range explored by our MD simula-

tions (Table 3). The discotic nematic phase is very stable and

extends even to the lower bound of the explored temperature

range, where the calamitic system is smectic. This behaviour is

unusual as few mesogens forming a nematic discotic but not

a columnar one are experimentally known,63–66 and even with

computer simulations a certain parameterisation of the aniso-

tropic potential is necessary to observe this.45,67

The visual inspection of the equilibrated MD configurations

shows that the equimolar binary mixture remains in a uniform

state at all temperatures and undergoes an I–N transition at

a temperature which is intermediate between those observed for

the single-component fluids (Table 4). Also the uniaxial nematic

phase has an order parameter hR2
00i slightly smaller than those

for the rod and disc systems. At temperatures lower than T* ¼
1.9 the average hR2

22i order parameter becomes non zero and the

equimolar nematic mixture becomes biaxial. We have not

observed smectic phases in the explored temperature range.

The structural changes taking place in the nematic phase upon

mixing have been assessed by computing the radial pair corre-

lation function which is defined as

g0(r) ¼ hd(r – r12)i12/(4p2r), (10)

where the angular brackets h.i12 stand for an ensemble average.

Here, we concentrate on the results at T* ¼ 1.8 where the three

systems have similar hR2
00i but quite different hR2

22i order

parameters. We see from the plot of Fig. 4 that the disc–disc pairs

have qualitatively similar radial pair correlation functions both

in the single-component and the equimolar mixture systems

(even though one is a uniaxial while the other is a biaxial

nematic). The same is not true for the elongated rod–rod pairs
nless potential energy per particle hU*i, and number density hr*i for the
isotropic (I), nematic (N), biaxial nematic (Nb), and biaxial smectic (Sb)
n

hU*i hr*i Phase

–12.763 � 0.004 0.3689 � 0.0001 Sb
�12.278 � 0.003 0.3646 � 0.0000 Sb
�11.899 � 0.062 0.3613 � 0.0005 Sb
�11.453 � 0.072 0.3570 � 0.0005 Sb
�7.927 � 0.005 0.3335 � 0.0000 Sb
�6.185 � 0.024 0.3222 � 0.0001 Nb

�5.334 � 0.002 0.3144 � 0.0000 Nb

�4.616 � 0.057 0.3069 � 0.0005 Nb

�4.079 � 0.015 0.3008 � 0.0001 N
�3.627 � 0.008 0.2952 � 0.0001 N
�3.190 � 0.013 0.2897 � 0.0001 N
�2.678 � 0.022 0.2835 � 0.0002 N
�2.105 � 0.011 0.2767 � 0.0001 I
�1.927 � 0.001 0.2733 � 0.0000 I
�1.786 � 0.002 0.2704 � 0.0000 I

This journal is ª The Royal Society of Chemistry 2012
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Table 3 Average orientational order parameters hR2
00i, and hR2

22i, dimensionless potential energy per particle hU*i, and number density hr*i for the
MD simulations of the system of N ¼ 4096 biaxial disc-like GB ellipsoids giving isotropic (I), and uniaxial nematic (N) phases as indicated. Estimated
rms errors on the block averages are also given

T* hR2
00i hR2

22i hU*i hr*i Phase

1.6 0.932 � 0.000 0.021 � 0.002 �13.009 � 0.001 0.5216 � 0.0000 N
1.7 0.923 � 0.000 0.019 � 0.002 �12.391 � 0.008 0.5134 � 0.0001 N
1.8 0.911 � 0.000 0.013 � 0.001 �11.772 � 0.002 0.5051 � 0.0000 N
1.9 0.898 � 0.001 0.013 � 0.001 �11.168 � 0.002 0.4969 � 0.0000 N
2.0 0.882 � 0.001 0.011 � 0.000 �10.569 � 0.008 0.4887 � 0.0001 N
2.1 0.863 � 0.001 0.011 � 0.000 �9.966 � 0.008 0.4805 � 0.0001 N
2.2 0.839 � 0.000 0.010 � 0.000 �9.336 � 0.002 0.4720 � 0.0000 N
2.3 0.807 � 0.000 0.009 � 0.000 �8.675 � 0.004 0.4632 � 0.0001 N
2.4 0.765 � 0.001 0.009 � 0.000 �7.967 � 0.006 0.4540 � 0.0001 N
2.5 0.695 � 0.003 0.008 � 0.000 �7.117 � 0.009 0.4434 � 0.0001 N
2.6 0.564 � 0.007 0.007 � 0.000 �5.992 � 0.032 0.4303 � 0.0003 N
2.7 0.049 � 0.005 0.004 � 0.000 �4.185 � 0.002 0.4107 � 0.0000 I
2.8 0.039 � 0.002 0.004 � 0.000 �3.949 � 0.005 0.4053 � 0.0000 I
2.9 0.034 � 0.001 0.004 � 0.000 �3.754 � 0.004 0.4003 � 0.0000 I
3.0 0.031 � 0.001 0.004 � 0.000 �3.591 � 0.002 0.3957 � 0.0000 I
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which have a typical highly ordered smectic–like radial pair

correlation function in the single–component system, but one

quite similar to the disc–like particles in the equimolar mixture.

This result shows that even from the structural point of view the

duality arising from the interaction biaxiality of the rod-like

particles takes over the shape biaxiality in this mixed system.

To summarise, the typical features of the low temperature

organisations of the three families of samples can be caught from

the snapshots of Fig. 5. At T* ¼ 1.8 the single-component rod-

like sample gives rise to an orthogonal biaxial smectic phase,

similarly to what has been observed for the ellipsoids with same

shape but stronger interactions of ref. 44 (even though at higher

temperatures). The single-component disc-like samples remain

instead in a uniaxial discotic nematic organisation even at very

low temperatures and high hR2
00i order parameter (Fig. 5-B), and

do not form any columnar phase.45 The equimolar mixture does

not phase-separate and forms a Nb at the lowest temperatures

(Fig. 5-C).

There is an interesting change of mesogenic behaviour in the

rod-like ellipsoids in the mixture. While in the single-
Table 4 Average orientational order parameters hR2
00i, and hR2

22i, dimensio
MD simulations of the equimolar mixture of N ¼ 2048 prolate and N ¼ 2048
nematic (Nb) phases as indicated. Estimated rms errors on the block average

T* hR2
00i hR2

22i

1.6 0.918 � 0.000 0.340 � 0.001
1.7 0.907 � 0.001 0.295 � 0.002
1.8 0.894 � 0.001 0.239 � 0.004
1.9 0.877 � 0.001 0.066 � 0.014
2.0 0.861 � 0.001 0.030 � 0.008
2.1 0.842 � 0.001 0.019 � 0.006
2.2 0.818 � 0.003 0.019 � 0.002
2.3 0.791 � 0.001 0.017 � 0.001
2.4 0.759 � 0.001 0.013 � 0.001
2.5 0.712 � 0.002 0.013 � 0.002
2.6 0.654 � 0.005 0.013 � 0.001
2.7 0.564 � 0.007 0.011 � 0.001
2.8 0.345 � 0.028 0.010 � 0.001
2.9 0.070 � 0.017 0.006 � 0.001
3.0 0.031 � 0.005 0.003 � 0.000

This journal is ª The Royal Society of Chemistry 2012
component states the rods align preferentially with respect to

their long axis (Fig. 5-A), in the rod–disc mixture it is the short

axis which has the strongest tendency to align and provides the

highest degree of orientational ordering (Fig. 5-C). In this

respect, the elongated ellipsoids (because of their dual nature

arising from the biaxiality of attractions) behave as squashed

ones in the equimolar mixture. This is not what happens in

the single-component system where it is the shape biaxiality

which mostly determines the kind of molecular alignment,

and the attractive potential only disfavours layered

organisations.

As suggested by Chandrasekhar68,69 one pathway towards

biaxial nematics (either one- or multi-components) involves

‘‘. preparing a mesogen that combines the features of the rod

and the disc’’. However, specific design hints for building up

dual behaviour were, and still are, not obvious to come by:

while the direct coarse-grained modelling of a well defined

chemical compound poses at most some technical difficulties,

the backwards process of reverse-engineering the topology

and structure of a molecule compatible with an idealised
nless potential energy per particle hU*i, and number density hr*i for the
oblate biaxial GB ellipsoids giving isotropic (I), nematic (N), and biaxial
s are also given

hU*i hr*i Phase

�12.820 � 0.003 0.4214 � 0.0000 Nb

�11.938 � 0.005 0.4133 � 0.0000 Nb

�11.110 � 0.014 0.4053 � 0.0001 Nb

�10.203 � 0.011 0.3964 � 0.0001 N
�9.603 � 0.005 0.3898 � 0.0000 N
�9.056 � 0.008 0.3834 � 0.0001 N
�8.527 � 0.009 0.3772 � 0.0001 N
�8.006 � 0.008 0.3710 � 0.0001 N
– 7.468 � 0.006 0.3647 � 0.0001 N
�6.907 � 0.008 0.3580 � 0.0001 N
�6.324 � 0.017 0.3512 � 0.0001 N
�5.667 � 0.015 0.3436 � 0.0001 N
�4.736 � 0.053 0.3337 � 0.0004 I
�4.098 � 0.010 0.3261 � 0.0001 I
�3.876 � 0.006 0.3221 � 0.0000 I
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Fig. 2 Average dimensionless potential energy per particle hU*i ¼ hUi/
30 (plate A), and sequence of phases (plate B) as a function of dimen-

sionless temperature from a cooling-down sequence of MD simulations

of the three N ¼ 4096 systems described in the text. The phases observed

are identified as biaxial smectic Sb (filled triangles), biaxial nematic Nb

(filled squares), uniaxial nematic N (filled circles), and isotropic (I)

(crosses). Error bars in plate A (see also Table 2, 3, and 4) are typically

smaller than the symbol size and are not appreciable in this

representation.

Fig. 3 The average overall hR2
00i (plate A), and hR2

22i (plate B) orien-

tational order parameters, as a function of dimensionless temperature

from a cooling-down sequence of MD simulations of the N ¼ 4096

systems. See Fig. 2 for additional details.

Fig. 4 Radial correlation functions for the rod–rod and disc–disc pairs

in the two single-component and the equimolar mixture samples at

dimensionless temperature T* ¼ 1.8.
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coarse-grained description is not only far from trivial but

ill-defined as well. Our computer simulations show how

duality can be practically attained in several ways: matching

molecular dimensions; duality in interaction via competing

contributions giving side-by-side interactions stronger than

face-to-face; and heterogeneous attractions comparable to

homogeneous ones.

The suggestion about weakening face-to-face interactions may

be the most difficult to come by. It could be realised with elec-

trostatic repulsions between charges of the same sign70 to coun-

terbalance the attractive polarisation interactions which are

usually stronger when two broad shaped molecules stack face-to-

face. The enhanced heterogeneous attractions and the negative

interaction biaxialities might be achieved with specific weak

interactions, like hydrogen bonding between complementary

lateral groups.33,34

There is a last mechanism which may be useful for the exper-

imental realisation of Nb systems: duality in shape may be sus-

tained by a certain degree of conformational flexibility71–73 and/

or shape polydispersity20,42,43 (which are not accounted for in our

simple rigid model). For instance, the mesogenic behaviour of the

very flexible silicon tetrapodes of Mehl and co-workers10 may

arise from a rod–disc shape interconversion process,71–73

providing a distribution of effective shapes resembling that of

a polydispersed sample.
2022 | Soft Matter, 2012, 8, 2017–2025
5 Conclusions

We have shown by MD computer simulations of attractive–

repulsive biaxial ellipsoids that the transition temperature of Nb

organisations can be lowered by mixing a biaxial nematic with

a discotic one. The N–Nb transition temperature is z20% lower
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Snapshots of three systems of biaxial GB ellipsoids at dimen-

sionless temperatureT*¼ 1.8: (plate A) lateral view, along them director,

of the single-component Sb system formed by the rod-like particles; (plate

B) top view, along the n director, of the single-component N system

formed by the disc-like particles; and (plate C) top view, along the n

director, of the equimolar Nb mixture of rod-like and disc-like particles.
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than that of the pure calamitic mesogen. The suppression of

layered and/or stacked structures, and the miscibility over a wide

temperature range encompassing isotropic and nematic phases is

obtained by designing rod- and disc-like particles with a dual

calamitic–discotic nature.

In view of suggesting practical guidelines to synthetic chemists

we believe the most challenging design effort might be the

synthesis of a disc-like mesogen with very broad and low-

temperature discotic nematic range. However, the specific

mesogenic dual nature of these elongated and squashed meso-

gens may be obtained with peripheral groups giving both weak

anisotropic interactions between the sides (especially but not

exclusively for the heterogeneous rod–disc pairs), and at the same

time disfavouring the face-to-face stacking by means of

electrostatic repulsions between opposite charges on the disc

plane.

The possibility of obtaining biaxial nematic mixtures at room

temperature and with a wide stability range might be useful in

view of technological applications of these materials towards

fast-switching molecular devices. To this end, tuning the meso-

genic behaviour of already known compounds by chemical

modification to match the properties required to stabilise a low-

temperature biaxial nematic mixture may be relatively easier

than devising new classes of weakly-associating complementary

molecules.
Fig. 6 Flowchart of the simplified algorithm used to compute global

order parameters for a uniform multi–component sample of biaxial

particles.
Appendix

The computation of sample-wide (global) orientational order

parameters in a multi-component sample can be performed by

extending the standard single-specie protocol based on ordering

matrices44,61 and considering all possible outcomes based on the

symmetry of the various species, and the mutual orientations of

the single-constituent molecules ordering frames. However,

taking into account all these cases is quite involved, so we

describe here a simplified algorithm suited for mixtures of biaxial

ellipsoids, postponing a more detailed discussion to a paper

specially devoted to it. This procedure relies on the assumption of

the sample being a uniform monodomain (which for all our

samples was checked by visual inspection). However, it can

readily extended to the computation of local order parameters in

a large and possibly non-uniform system (e.g. due to phase

separation, or the formation of local clusters, or a non-uniform

director field) once a decomposition into a set of regions is
This journal is ª The Royal Society of Chemistry 2012
available for the local mapping of single-species number

densities.

The algorithm proposed for evaluating global order parame-

ters in a MD, or Monte Carlo, configuration of biaxial ellipsoids

(see the Fig. 6) consists of a two-step procedure. To begin with,

the single-species x, y, and z ordering matrices

Ou;a ¼ ð1=NaÞ
P

iui;a5ui;a are calculated for each molecular axis

(i.e. every u¼ x, y, and z axes ui,a for the i¼ 1,.,Na particles of

species a). The total number of such ordering matrices Ou,a is

3Ns, where Ns is the number of species. Then these matrices are

simultaneously diagonalised and the existence of a common

eigenvector frame is probed. Next, if this test was successful the

second step involves the computation of three global ordering

matrices, followed by their simultaneous diagonalisation, and

eventually the estimation of global order parameters. This latter

approach is equivalent to that of determining the principal axes

of a suitable anisotropic macroscopic observable (e.g. the

refractive index) for the whole sample. If the overall director field

is truly biaxial all these 3Ns ordering matrices do commute and

share the same eigenvectors. However, either because the species

have different local director frames, or simply because the

symmetries of the orientational distributions of molecular axes

are not exactly D2h (e.g. due to fluctuations, or the formation of

local cybotactic clusters74) the ordering matrices Ou,a may not

exactly commute (notice that this can also occur in a single-

species system). In the former case global order parameters as

such are meaningless, while the latter case still allows to define

them provided the ordering matrices nearly commute, i.e. if an

orthogonal transformation to nearly diagonal form75,76 for all

Ou,a exists. In particular, this is accomplished as a weighted

simultaneous diagonalisation where the ordering matrices for

each species concur to the global eigenvectors proportionally to

the corresponding mole fraction. A convergence criterion based

on the root mean square off-diagonal elements of the nearly

diagonal matrices provides a suitable threshold (here we used

a value of 0.05) for testing this. The orthogonal transformation

to nearly diagonal form identifies three candidate global eigen-

vectors. However, before using them as director frame axes these

eigenvectors have to be properly labelled, since for each
Soft Matter, 2012, 8, 2017–2025 | 2023
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permutation of the mutually orthogonal n, m, and l axes

a different set of single-species order parameters can be

computed (a rotation of the director frame allows the trans-

formation from one set to the other). This is also true for the

permutations of the molecular axes labels since the directions of

preferential alignment can change upon transition from one

phase to another (e.g. as we have seen here for the elongated

biaxial ellipsoids). In this context, proper stands for the permu-

tation which provides the most physically meaningful hR2
mni set

for each specie.61 For instance, the (wrong) assignment of

swapped m, and n axes results in deceivingly high hR2
22i and

rather small hR2
00i. In practice, a convenient criterion is that of

selecting the permutations giving the highest values of hR2
00i, and

the smallest positive values of hR2
22i. The first part of this

prescription is consistent with the standard algorithm for the

computation of order parameters,62 while the second part

prevents a biased overestimation of phase biaxiality. Several

strategies may be adopted at this stage. The simplest one when

studying mixtures of biaxial particles consists in checking if

a common permutation exists, i.e. all zmolecular axes are aligned

along the same eigenvector (and, for biaxial organisations, also

for the x and y axes), then it is possible to compute three global

ordering matrices where, again, the contribution for each species

is weighted according to the corresponding mole fraction.

Finally, these three matrices can simultaneously be brought to

nearly diagonal form, and a set of global order parameters can be

defined (and computed from the eigenvalues as usual). If

a common label permutation does not exist, i.e the x, y, and z

molecular axes for each species are on average aligned with

respect to different permutations of the eigenvectors (e.g. as

expected for a biaxial mixture of uniaxial rods and discs, as is the

case in ref. 41), it is possible to estimate a set of global order

parameters choosing as principal director n the eigenvector

corresponding to the highest single–species hR2
00i, and then select

the transversal directors m, and l to achieve the lowest biaxiality

state (notice that for simplicity this has not been represented in

the Fig. 6).
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