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Abstract 

The paper proposes a new measure for the cohesion 
of classes in Object-Oriented software systems. It is 
based on the analysis of latent topics embedded in 
comments and identifiers in source code. The measure, 
named as Maximal Weighted Entropy, utilizes the 
Latent Dirichlet Allocation technique and information 
entropy measures to quantitatively evaluate the 
cohesion of classes in software. This paper presents the 
principles and the technology that stand behind the 
proposed measure. Two case studies on a large open 
source software system are presented. They compare 
the new measure with an extensive set of existing 
metrics and use them to construct models that predict 
software faults. The case studies indicate that the novel 
measure captures different aspects of class cohesion 
compared to the existing cohesion measures and 
improves fault prediction for most metrics, which are 
combined with Maximal Weighted Entropy. 

1. Introduction 

Software cohesion can be defined as a measure of 
the degree to which elements of a module belong 
together [6].  The principle of high cohesion for classes 
is one of the goals of the OO analysis as it facilitates 
program comprehension, testing, reusability, 
maintainability, etc. Software cohesion metrics have 
been shown to support different software maintenance 
tasks, such as assessment of design quality [4, 10], 
productivity, design, and reuse efforts [12], prediction 
of software quality [17, 23, 34, 39], modularization of 
software [32], and identification of reusable  
components [18]. 

Cohesion is usually measured on structural 
information extracted entirely from the source code 
(e.g., attribute references in methods and method calls) 
that captures the degree to which the elements of a class 
belong together from a structural point of view. These 
measures provide information about the way a class is 
built and how its instances work together to address the 
goals behind their design. Thus, they provide no details 
as to whether the class is cohesive from a conceptual 
point of view (for example, whether a class implements 

one or more domain concepts) nor do they give an 
indication about the readability or comprehensibility of 
the source code [34].  Although other types of metrics 
were proposed by researchers to capture different 
aspects of cohesion, only a few such metrics address 
the conceptual and textual aspects of cohesion [19, 34]. 

We propose a new measure for class cohesion, 
namely Maximal Weighted Entropy (MWE), which 
captures the conceptual aspects of class cohesion based 
on the analysis of latent topics encoded in source code, 
expressed in identifiers and comments.  We use the 
Latent Dirichlet Allocation (LDA) technique, which has 
been recently applied for extracting, representing and 
analyzing latent topics from the source code [3, 30, 35].  
Our measure of cohesion can be interpreted as 
measuring mixtures of latent topics implemented in 
software classes within the context of the entire system.  
The proposed metric is different from existing 
conceptual cohesion metrics, such as C3 [34], as it 
measures not only how strongly the methods of a class 
relate to each other conceptually, but also analyzes the 
coverage and degree of latent topic distributions in 
methods of underlying source code. 

The paper makes the following contributions: 
 We propose a novel application of Latent Dirichlet 

Allocation technique for discovering latent topics 
in source code for class cohesion measurement; we 
also propose a novel measurement mechanism 
using information entropy based on distributions of 
latent topics in class methods. 

 We thoroughly evaluate the newly proposed metric 
against a host of existing structural metrics; we 
also use and compare MWE against other metrics 
and their combinations for predicting faults in 
classes on a large open-source system. 

 We publicly release the metrics data from the case 
studies and ensure their reproducibility.  

2. Related work 

Based on the underlying information used to 
measure class cohesion, we can broadly classify the 
measures into structural [6, 9, 13, 25, 26, 44], semantic 
or conceptual [14, 19, 33, 34], information entropy-
based [1], slice-based metrics [37], and metrics for 



 

  

specific types of applications such as knowledge-based 
[27] and aspect-oriented [43] systems. The structural 
cohesion metrics, which are summarized in the unified 
framework for cohesion measurement [9],  is the most 
investigated category of cohesion metrics and includes 
lack of cohesion in methods LCOM1 and LCOM2 [13], 
LCOM3 and LCOM4 [26], Co (connectivity) [26], 
LCOM5 [25], Coh [9], TCC (tight class cohesion) and 
LCC (loose class cohesion) [6], ICH (information-flow-
based cohesion) [29], etc.  Most structural metrics 
define and measure relationships among the methods of 
a class based on class variable referencing and data 
sharing between methods as contributing to the degree 
to which the methods of a class belong together. The 
differences among the structural metrics can also be 
viewed based on the definition of the relationships 
among methods, system representation, and counting 
mechanisms employed.  Recently, other structural 
cohesion metrics have been proposed, improving 
existing metrics by considering the effects of dependent 
instance variables [11, 44].     

The developers often reason about a class as a set of 
responsibilities that approximate the concept from the 
problem domain implemented by the class as opposed 
to a set of method-attribute interactions. These domain 
concepts are partially encoded in comments and 
identifiers in source code.  Among existing cohesion 
metrics, the Logical Relatedness of Methods (LORM) 
[19], the Lack of Conceptual Cohesion in Methods 
(LCSM) [33] and Conceptual Cohesion of Classes (C3) 
[34] are the only ones that use this type of information 
to measure the conceptual similarity of methods in a 
class. The idea behind this category of metrics is that a 
cohesive class is considered to be a crisp 
implementation of a problem or solution domain 
concept. Therefore, if the methods of a class are 
conceptually related to each other, the class is cohesive.  
For instance, C3 captures the conceptual aspects of 
class cohesion, as it measures how strongly the 
methods of a class relate to each other conceptually, 
whereas the conceptual relation between methods is 
based on the principle of textual coherence [21].  The 
conceptual and structural metrics have been recently 
combined to improve the class cohesion [14]. 

The metric, which is proposed in this paper, is 
different from existing structural and conceptual 
metrics.  First of all, the new metric, namely MWE, 
uses advanced information retrieval method, LDA, to 
extract semantically meaningful topics or concepts 
implemented in classes. Once topics are gleaned from 
source code, class cohesion is computed via analysis of 
topic distributions using information entropy measures.  
The following section presents details behind adapting 
LDA and information theory approaches for measuring 
cohesion of classes in OO systems.  

3. Capturing Cohesion using Information 
Theory and Information Retrieval  

Object-oriented analysis and design methods 
decompose the problem domain addressed by a 
software system development into classes as an attempt 
to control complexity. High cohesion for classes and 
low coupling among classes are design principles 
aimed at reducing the system complexity. The most 
desirable type of cohesion for a class is model cohesion 
[16] such that the class implements a single 
semantically meaningful concept. This is the type of 
cohesion that we are measuring in our approach. We 
use Latent Dirichlet Allocation [7] to discover latent 
topics (i.e., semantically meaningful concepts) and then 
use weighted information entropy to measure the 
degree to which methods of a class concentrate on each 
topic. The maximum weighted entropy (i.e., MWE) is a 
measure of class cohesion as it reflects the degree to 
which the methods concentrate on a main topic 
implemented in a class. 

3.1. Overview of LDA 

LDA is a statistical model, specifically a topic 
model, originally used in the area of natural language 
processing for representing text documents. The basic 
idea behind LDA is that text documents are represented 
as random mixtures over latent topics, where each topic 
is characterized by a distribution over words [7]. 

Given a corpus of documents, LDA attempts to: (a) 
identify a set of topics; (b) associate a set of words with 
a topic, and (c) define a specific mixture of these topics 
for each document in the corpus. 

LDA has been previously applied in the context of 
software engineering for mining software repositories 
[3, 30, 35] and bug location [31].     

3.1.1. LDA model 

The terms for describing LDA model are as 
following: 
 A word is the basic unit of discrete data, defined to 

be an item from a vocabulary V={w1, w2,..., wv }. 
 A document is a sequence of n words denoted by d 

= (w1, w2,..., wn), where wn is the nth word in the 
sequence. 

 A corpus is a collection of m documents denoted 
by D = (d1, d2, . . . ,dm). 

Given m documents containing k topics expressed 
over v unique words, the distribution of ith topic ti over 
v words can be represented by φi and the distribution of 
ith document di over k topics can be represented by θi. 
The general method to find φ={φ1,φ2,…,φk} and θ={ θ1, 
θ2,…,θm} is to use the expectation-maximization 
method [15].  However, this approach is susceptible to 



 

  

problems involving local maxima and is slow to 
converge [7], encouraging the development of models 
that make assumptions about the source of θ. 

Blei et al. [7] proposed a new model, namely Latent 
Dirichlet Allocation. The LDA based model assumes a 
prior Dirichlet distribution on θ, thus allowing the 
estimation of φ without requiring the estimation of θ. 

LDA assumes the following generative process for 
each document d(w) in a corpus D: 

1. Choose N ~ Poisson distribution(ξ) 
2. Choose θ ~ Dirichlet distribution(α)  
3. For each of the n words wi: 

(a)   Choose a topic ti ~ Multinomial( ). 
(b) Choose a word wi from p(wi|zn,β), a 
multinomial probability conditioned on topic ti.  

Viewing documents as mixtures of probabilistic 
topics makes it possible to formulate the problem of 
discovering a set of topics that are described in a 
collection of documents.  There are different ways to 
find the LDA parameters such as variational Bayes [7], 
expectation propagation [28], and Gibbs sampling [22].  
In our research, we employed GibbsLDA++1, which is 
a C/C++ Implementation of Gibbs Sampling, to 
perform LDA analysis on open source software.  For 
further details on LDA, the interested reader is referred 
to the work of Blei et al. [7]. 

3.1.2. Applying LDA to source code 
To apply LDA on source code, we consider a 

software system as a collection of documents (i.e., 
methods) and each document is associated with a set of 
concepts (i.e., topics). The mapping between LDA 
model and source code entities is shown in Table 1.   

Table 1. Mapping LDA to Source Code 

LDA 
Model 

Source Code Entities 

word 

Identifiers and comments extracted from source 
code, which comprise the vocabulary set.  
Further, this set is refined to exclude 
programming language keywords, stop words 
and punctuation.  Finally, all compound 
identifiers are split based on the observed 
naming conventions. V={w1, w2,..., wv }. 

document 

A method is treated as a document, which can 
be expressed as n identifiers and comments 
from vocabulary, which appear in 
implementation of a method mi=(w1,w2,...,wn) 

set of 
documents 

A class corresponds to a collection of 
documents representing methods of a class 
Ci = (m1, m2, ..., ml) 

corpus 
The software system consists of a set of classes 
S = (C1, C2, ..., Cz) which forms a corpus. 

                                                           
1 http://gibbslda.sourceforge.net/ (accessed and verified on 02/18/09) 
 

This mapping was used before [35], however, we 
refine it to account for fine grain source code elements, 
such as methods and classes. 

Once we generate a corpus for a software system, 
we can apply LDA to extract a set of topics and their 
distributions among different documents (i.e., methods) 
in the corpus (i.e., software system). The details on 
specific settings of applying LDA to source code are 
summarized in section 4.2.2. 

3.2. Information entropy 

Our cohesion metric employs information entropy to 
calculate the degree of distribution for each topic based 
on the resulting document-topic distributions obtained 
with LDA. 

In information theory, entropy (also referred to as 
self-information) is a measure of the uncertainty 
associated with a random variable [40]. Information 
entropy has been previously used to measure software 
complexity [24], cohesion and coupling [1].  However, 
information entropy has never been used in conjunction 
with Information Retrieval to measure software 
cohesion before.  

For a random variable x with n outcomes  
{xi: i=1,…, n} the Shannon information entropy, a 
measure of uncertainty is defined as: 

1

( ) ( ) log ( ) (1)
n

i i
i

H X p x p x


       

where p(xi) is the probability value of outcome xi. 
The idea of using entropy to measure class cohesion 

is as the following.  We take topic ti as a random 
variable with l outcomes {mj: j=1,…, l}.  In this case, 
p(mj) is the probability that topic ti is assigned to 
method mj (see Table 1), which is computed using 
LDA. If topic ti intersects all the methods evenly, the 
class should have a high cohesion, because topic ti 
appears to be a common underlying theme among all 
the methods in a class. At the same time the value for 
the entropy is also high in this case. This is because for 
a topic to “cross all the methods evenly” means that this 
topic can be assigned to any method with the same 
probability and implies higher uncertainty (i.e., higher 
entropy from information theory perspective). If this 
topic occurs with higher probability only in one of the 
methods, we can determine where this topic should 
belong to, which implies lower uncertainty and thus 
lower entropy. Noticeably, classes with higher cohesion 
must have higher entropy and vice versa.  Thus, 
entropy provides us with a reliable mechanism to 
measure cohesion of classes. The aforementioned 
definitions focus on the software cohesion induced by 
only one topic ti. Nonetheless, a class may relate to a 
mixture of topics with varying probabilities, so we must 
take into account all the topics and relationships among 



 

  

them to properly capture software cohesion. We 
provide the details behind the proposed metric in the 
following section. 

3.3. Measuring cohesion using LDA and 
information entropy 

Let us consider the following example of a class, 
which consists of two methods implementing three 
different topics (see Figure 1).   

 

Figure 1. Probability distributions of three topics in 
two methods (documents) in a class 

We can observe that the second topic (vertical filling 
line pattern in Figure 1), which is relevant to the first 
document with probability pt=0.7 and to the second 
document with probability pt=0.5, is the dominating 
topic in the class (as compared to the other two topics). 
We can summarize the following characteristics, which 
are pertinent to the second topic: 
 Occupancy (or weight): it resides in all the 

methods (i.e., documents) in the class; 
 Distribution (or entropy): it is nearly evenly 

distributed across the methods in the class. 
Intuitively, a highly cohesive class should have one 

main topic (i.e., refer to a single crisp problem domain 
concept [16]).  We quantify these two characteristics 
for every class in the software system under analysis to 
measure class cohesion.  We define our new metric 
MWE for class cohesion as the following: 

 

1 | |
( ) max( ( ) ( )) (2)z i i

i t
MWE C O t D t

 
   

where, O(ti) is a measure of occupancy of topic ti in 
methods in a class Cz; D(ti) is a measure of degree of 
distribution of topic ti in methods in a class Cz; |t| is the 
number of topics, extracted from all the classes in a 
software system. 

The class cohesion is measured by taking into 
account values of occupancy (weight) and distribution 
(entropy) for the dominating topic, which is addressed 
in the class. If the maximum value for such a topic is 
low, this means that the class does not have a 
distinctive topic or a theme, which can be attributed to 
reduced class cohesion. 

The occupancy of topic ti in methods of a class Cz is 
computed as: 

1( ) (3)
i

n
d
t

d
i

p
O t

n



 

where n is the number of methods in a class and 
i

d
tp is 

the probability of topic ti in a method d.  The occupancy 
captures the average probability of topic ti across all 
methods in a class.  In our example, occupancy values 
for all three topics implemented in a class are 
O(t1)=(0.1+0.2)/2=0.15, O(t2)=0.6, O(t3)=0.25. 

In this paper we employ information entropy to 
measure the degree of topic distributions in methods of 
a class.  Information entropy implies rather high 
uncertainty and cohesion for topics that are distributed 
uniformly.  In order to compute entropy for a topic ti we 
need to transform document-topic probability 
distributions pti to topic-document distributions qti as the 
following: 

1

(4)
j

tj i

i

i

d

d

t n
d
t

d

p
q

p





  

In our example, 
2

1
tq =0.7/(0.7+0.5)=0.583 

and
2

2
tq =0.5/(0.7+0.5)=0.417. 

Once topic-document distributions qti are obtained, 
distribution D(ti) is computed using information 
entropy equation (1).  It should be noted that D(ti) is 
normalized to account for the number of methods in a 
class:  

1

log( )
( ) (5)

log

i i

n
d d
t t

d
i

q q
D t

n


 



 

In our example, distribution values for all three 
topics implemented in a class are D(t1)=0.92, 
D(t2)=0.98, D(t3)=0.97. 

At last our proposed cohesion metric is computed as: 

1 | |

1 1

1

( ) max( ( ) ( ))

log( )
max (6)

log

i i i

z i i
i t

n n
d d d
t t t

d d

i t

MWE C O t D t

p q q

n n

 

 

 

  

   
  
 
 
 

   

In our example, MWE = max {0.150.92, 0.60.98, 
0.250.97}=0.588 

If O(ti) and D(tii) were not normalized, the metric 
would be susceptible to the cases, where occupancy and 
distribution values depend of the number of methods in 
a class.  However, our metric definition (see equation 6) 
is capable of differentiating among various degrees of 
class cohesion induced by diverse configurations of 
occupancy and distribution values.   

The new metric not only takes into account the 
occupancy (or weight) of the topic, but also takes into 
account its degree of distribution (or entropy). The idea 



 

  

behind equation (6) is to find the main topic, which is 
characterized by the capacities: larger average 
occupancy and more even distribution for classes with 
higher cohesion (and vice versa). Maximal Weighted 
Entropy (i.e., MWE) adequately quantifies these two 
characteristics and thus, measures cohesion of classes.  
The procedure for computing MWE is summarized in 
the following steps: 
 
1. Run LDA to generate document-topic distribution 

matrix Doc-Top(M, N) for the corpus, which has M 
documents (methods) and N topics 

2. For each class Ci (assume it has m methods) 
3. Extract a sub matrix Doc-Top(m, N) from Doc-

Top(M, N) which corresponds to m documents in 
class Ci 

4. Calculate topic-document distribution based on    
Doc-Top(m, N) using  equation (4)     

5.       For each topic tj 
6.              calculate occupancy O(tj) using eq (3)                 

based  on  sub-matrix  Doc-Top(m, N); 
7.              calculate distribution  D(tj) using              

equation(5) based on Doc-Top(m, N);   
8.              save O(tj)* D(tji) to WE(j) 
9.      End For 
10.      Find max MWE for class Ci  in WE using eq (6) 
11. End For 

3.4. Example of measuring class cohesion  

To better understand the MWE metric, let us 
consider the class CircleArea from source code of 
Mozilla 1.6. The class contains three methods: IsInside, 
Draw and GetRect.  This class has a higher MWE value 
of 0.64. The occupancy and distribution metrics for 
each topic in this class are plotted in Figure 2.  

The occupancy (i.e., weight) curve indicates that the 
topic# 41 has the highest value, which means that most 
parts of this class concentrate on this topic. 

From the distribution (i.e., entropy) curve we can 
see that topic# 41 evenly crosses all the methods 
because its distribution value is relatively high. The 
weighted entropy, which is the product of these two 
curves, is shown in Figure 3. 

 

Figure 2. Topic occupancy and distribution values 
for the class CircleArea from Mozilla 

 

Figure 3. Weighted Normalized Entropy for the 
topics in CircleArea class from Mozilla 

The weighted entropy (a product of occupancy and 
distribution values) corresponding to the topic# 41 is 
much higher than for the other topics. This result 
indicates that only topic #41 has high occupancy and 
high distribution values at the same time, which are the 
main characteristics of a highly cohesive class.  While 
examining words comprising topic# 41 (see Table 2), 
we observe that this topic closely relates to the drawing 
concept.  

Table 2. Top 16 words and their probabilities that 
comprise the topic #41 Drawing in Mozilla 

Word p(w) Word p(w) 
Context 0.0360 Color 0.0122 

Rendering 0.0189 float 0.0112 
NS 0.0167 Device 0.009 
x 0.0161 Draw 0.009 

nscoord 0.0158 Pixel 0.008 
y 0.0154 Get 0.007 

To 0.0141 rect 0.006 
ns 0.0117 Units 0.006 

 
While examining the three methods of CircleArea 

(see Table 3), we also discover that all these methods 
are closely related to the concept captured by topic #41 
– drawing function. 

These methods have no other responsibilities, but 
drawing function; hence this class has a high cohesion.  
Other structural cohesion metrics (e.g., LCOM1=10, 
LCOM3=5, LCOM4=5.) also indicate that CircleArea is 
a highly cohesive class.   

Table 3. Partial document-topic distribution matrix 
for class CircleArea from Mozilla 

  Topics 

  Drawing 
range 

Drawing 
Drawing 
context 

View 

Inside 0.003 0.420 0.062 0.012 
Draw 0.002 0.671 0.002 0.002 

D
oc

s 

GetRect 0.002 0.462 0.002 0.202 
 

 



 

  

4. Empirical Assessment of Class Cohesion 

In this section, we present the results of two case 
studies aimed at comparing and combining MWE with a 
set of existing cohesion measures. Sections 4.1 and 4.2 
describe the objectives and the design of the case 
studies. In Sections 4.3 and 4.4 we present quantitative 
results separately for each case study.  The data for our 
case studies is publicly released for research purposes2. 

4.1. Objectives and methodology 

In order to evaluate our measure, we conducted two 
case studies. The goal of the first case study is to 
determine whether the MWE measure captures 
additional dimensions of cohesion measurement when 
compared to existing cohesion measures. Our 
hypothesis is that, given the novel mechanism 
employed by MWE (e.g., identifying the core latent 
topic, which is evenly addressed by most methods in a 
class), it should capture different aspects of class 
cohesion as compared to the host of existing measures.  

In the second case study, MWE is compared with 
existing metrics to assess whether they provide better 
results in predicting faults in classes. Our conjecture is 
that combining MWE with other cohesion metrics 
should be a more complete indicator of cohesion given 
that they capture different aspects of it. In summary, the 
case studies address the following research questions: 
 RQ1 Does MWE capture aspects of class cohesion 

that are not captured by other structural and/or 
conceptual cohesion metrics? 

 RQ2 Do the combinations of cohesion metrics with 
MWE provide better results in predicting faults in 
classes than the combinations of the other metrics? 

4.2. Design of the case studies 

We designed the studies according to the guidelines 
presented by Yin [42]. 

4.2.1. Software system and metrics 
We conduct case studies on Mozilla3  version 1.6, 

which is an open source Web browser ported on almost 
all known software and hardware platforms.  

We selected the following structural cohesion 
metrics: LCOM1, LCOM2, LCOMn

4, LCOM3, LCOM4, 
LCOM5, Coh, ICH, and TCC. Moreover, we considered 
previously published metrics for conceptual cohesion of 
classes, such as C3 [34] and LCSM [33] to compare 
with MWE.  In addition, we computed the LOC metric 
                                                           
2 http://www.cs.wm.edu/~denys/data/icsm09-mwe (posted 03/19/09) 
3 http://www.mozilla.org/ (accessed and verified on 02/18/09) 
4 LCOMn is a version of LCOM2 metric, except its value is not set to 
zero when the subtraction (the number of pairs of methods without 
shared attributes minus the number of pairs of methods with shared 
attributes) is negative. 

as it was extensively used in the models for predicting 
faults in software [23, 36]. 

Our choice of metrics is guided by the fact that these 
metrics were extensively studied and compared to each 
other and to other metrics in previously published 
studies [4, 9, 10, 33, 34]. We choose these metrics 
because of availability of the results in the literature in 
order to facilitate comparison and evaluation with our 
results. For the definitions, explanations, and further 
references on these measures, refer to Section 2. 

4.2.2. Settings of the case studies 
The settings of the case studies are similar to our 

previous work [34].  All of the structural metrics are 
computed using Columbus [20] and the conceptual 
cohesion metrics for C3 were obtained from the 
previously published study [34].  Overall, we obtained 
structural, conceptual and MWE metrics for 2,068 
classes in Mozilla. The corpus for Mozilla was 
constructed using the same settings as in the previous 
work [34].  The extracted corpus resulted in 35,571 
documents (i.e., methods) and 110,691 unique terms 
(i.e., words).  However, while indexing the corpus with 
LDA, the following parameter settings have been 
applied (see Table 4).  

Table 4. Parameter setting for GibbsLDA++ 

Params Value Params Value 
Alpha 0.25 #docs 35,571 
Beta 0.10 #words 110,691 

#topics 100 #iterations 1,000 
 
The reader is referred to the manual of GibbsLDA5 

for detailed information on how to set these parameters. 

4.3. RQ1 - principal component analysis of 
metric data 

In order to understand the underlying orthogonal 
dimensions captured by the cohesion measures, we 
performed the Principal Component Analysis (PCA) on 
all the metrics computed for Mozilla. PCA is a 
technique that has been used in a number of previous 
case studies to identify important underlying 
dimensions captured by a set of metrics.  We performed 
PCA with the same settings as in prior studies [33, 34, 
38], with a goal to identify groups of variables (that is, 
metrics), which likely measure the same underlying 
dimension (that is, the mechanism that defines cohesion) 
of the object to be measured (that is, the cohesion of a 
class). In order to identify these variables and interpret 
the principal components (PCs), we consider the rotated 
components, which is a technique where PCs are 
subjected to an orthogonal rotation. Thus, the resulting 

                                                           
5 http://gibbslda.sourceforge.net/ (accessed and verified on 02/18/09) 



 

  

rotated components show clearer patterns of loading for 
the variables.  The PCA was performed on the data set 
consisting of metric values for 2068 classes from 
Mozilla.  The PCA results are summarized in Table 5.  
We interpret the loadings determined for every PC as 
follows:  

PC1 (42.83%): LCOM1, LCOM2, LCOMn, LCOM3, 
LCOM4. These metrics count the number of pairs of 
methods that share instance variables. Another 
commonality among LCOM1-LCOM4 is that these 
measures are not normalized and they do not have 
upper bounds. 

PC2 (19.43%): TCC and LCC. These are among the 
measures that are computed as the ratio of method pairs 
with shared instance variables, also considering indirect 
sharing of instance variables by method invocations. 
Noticeably, the measures are also normalized. 

PC3 (12.05%): MWE. This is our conceptual 
cohesion metric that measures the cohesion of a class in 
the context of the complete software system based on 
the maximum weighted entropy. Note that it captures 
even more data variance than another conceptual 
cohesion metric, C3 (see PC4). 

PC4 (7.18%): C3. This is a conceptual cohesion 
metric that measures the cohesion of a class in the 
context of the complete software system based on the 
usage of the terms shared between pairs of methods in a 
class, assuming that there is an underlying or latent 
structure in word usage for the software system for 
which a document set (that is, corpus) is constructed. 

PC5 (4.96%): LCSM. This is another conceptual 
cohesion metric that inversely measures cohesion. A 
higher value for LCSM indicates lower cohesion. 

PC6 (3.61%): ICH. This is information flow-based 
cohesion measure based on the information strength 
(i.e., method invocations weighted by the number of 
parameters invoked) among the methods of a class. 

The PCA results indicate that MWE defines a 
dimension of its own − MWE is the only major factor in 
PC3. These results statistically support our hypothesis 
that the MWE cohesion measure captures different 
aspects of what is considered to be a cohesion 
measurement of the class (RQ1), as defined by all the 
metrics computed in the case study.  The PCA results 
also demonstrate that the dimension defined by MWE 
captures more variance than the dimension defined by 
another conceptual metric C3.  The low correlation 
value between MWE and C3 also reinforces this 
conclusion. 

4.4. RQ2 – predicting faults in Mozilla classes 

The first case study confirmed that MWE captures 
different aspects as compared to other cohesion metrics. 
Given our interpretation of cohesion, we conjecture that 
combining MWE with other cohesion measures should 
result in a more complete cohesion indicator. One use 
of cohesion metrics in software engineering is to 
predict faults in classes [17, 23, 34, 39]. The focus of 
the second research question is to analyze the extent to 
which each of the cohesion measures used in the case 
study can be used to predict faults and to compare 
combinations of MWE and other metrics for identifying 
fault-prone classes. 

The second case study aimed at answering RQ2 is 
performed in a similar fashion as in previous work [23, 
34]. We used Bugzilla6 to collect bugs between two 
versions of Mozilla (that is, 1.6 and 1.7), and correlated 
each bug with specific classes. Details on how we 
mined the bugs can be found in previous work [23].  
This data set has been used in prior studies [34], which 
allows direct comparison of the results. 

4.4.1. Analyses 

We employed regression analysis methods to 
discover the possible relationships between values of 
collected metrics and the fault proneness of those 
classes. These methods have been widely used to study 
the relationships between the metrics and fault or 
change proneness of classes [2, 5, 8, 10, 23, 34, 41].  In 
order to analyze our data, we employed univariate and 
multivariate logistic regression analysis methods for 
predicting if a class is faulty or not.  

                                                           
6 http://bugzilla.mozilla.org/ (accessed and verified on 02/18/09) 

Table 5. Results of PCA analysis 

 PC1 PC2 PC3 PC4 PC5 PC6 

Prop 42.83 19.43 12.05 7.17 4.99 3.61 

Cumul 42.83 62.26 74.31 81.48 86.5 90.1 

C3 -0.15 -0.17 0.26 0.88 -0.02 0.28 

LCSM -0.50 -0.26 0.01 -0.17 0.78 0.08 

LOC 0.65 0.61 0.07 -0.21 -0.06 0.10 

LCOM1 0.91 0.28 -0.03 0.09 0.04 -0.10 

LCOM2 0.96 0.07 0.01 0.07 0.10 -0.09 

LCOMn 0.96 0.06 0.01 0.06 0.11 -0.10 

LCOM3 0.94 -0.11 0.09 0.07 0.07 -0.11 

LCOM4 0.81 -0.34 0.01 0.17 0.09 -0.30 

LCOM5 0.66 0.17 -0.23 0.22 0.27 0.21 

ICH 0.58 0.56 0.16 -0.22 -0.01 0.42 

TCC -0.38 0.83 -0.27 0.16 0.07 -0.12 

LCC -0.26 0.87 -0.28 0.13 0.07 -0.07 

Coh -0.65 0.45 -0.31 0.22 0.08 -0.21 

MWE -0.26 0.32 0.84 0.04 0.08 -0.13 



 

  

Since logistic regression is a commonly used 
statistical method, we are not providing any details. For 
more information on regression analyses and their 
applications on using metrics to detect fault prone 
classes, the reader is referred to the literature [5, 10, 23, 
41].  We applied logistic regression analyses using the 
same settings as in our earlier work [34]. 

In the second case study, the univariate regression 
analysis is used to analyze the effect of each metric 
separately, whereas multivariate regression is used to 
analyze the effect of the combination of metrics on the 
final results to see whether combinations of MWE with 
other cohesion metrics can improve detecting fault-
prone classes as compared to other combinations.  For 
the logistic multivariate analysis, we build models for 
predicting faults in classes based on all possible 
combinations of pairs of cohesion metrics used in this 
case study (that is, 91 different pairs of metrics for 14 
unique cohesion metrics).   The parameters (constant C0 
and coefficients C1 and C2) for the instantiated models 
are provided in Table 6 and Table 7.  

4.4.2. Results 
First, we performed univariate logistic regression 

(see the results in Table 6). The R2 coefficient is 
defined as the proportion of the total variation in the 
dependant variable (i.e., the fault proneness of a class) 
that is explained by the regression model. The bigger 
the value of R2, the larger the portion of the total 
variance in the dependent variable that is explained by 
the regression model and the better the dependent 
variable is explained by the explanatory variables. 

In order to evaluate logistic regression models based 
on the studied metrics and their combinations, we 
utilize the following quantitative characteristics: 
precision, correctness, and completeness. We use these 
measures to be consistent with previously published 

results [23, 34].  Precision is used to evaluate how well 
the model classifies classes as faulty or non-faulty.  
Correctness is used to capture the percentage of the 
faulty predicted classes that are really faulty. 
Completeness is the other characteristic used to 
evaluate the percentage of the total number of faults 
that can be captured by the model.  For definitions and 
examples for computing precision, correctness and 
completeness refer to our previous work [34].  

The results of the univariate logistic regression (see 
Table 6) allow us to draw the conclusions that, if we 
use each of the 14 metrics as separate indicators of fault 
proneness, MWE has the 11th largest precision, 10th 
largest correctness, 6th largest completeness and 10th 
largest R2 value. These results are not surprising as 
MWE captures only certain aspects of cohesion, 
whereas faults may be caused by other issues affecting 
cohesion which are not captured by MWE alone.  

Our assumption is that MWE complements existing 
metrics, so, in order to investigate whether combining 
MWE with other cohesion measures can improve the 
detection of fault-prone classes, we applied multivariate 
logistic regression analysis (see Table 7). We built 91 
models based on all combinations of the pairs of 
cohesion metrics.  Table 7 presents the top ten models 
based on the largest R2 values. Based on the results, the 
model MWE combined with LOC appears to be in the 
first position. 

The model, which is based on the combination of 
MWE and LOC has the highest precision (i.e., 67.31%) 
and R2 values (i.e., 0.166) among all the 91 possible 
pairs of metrics.  While the Table 7 present only the top 
10 pairs of metrics according to the R2 values, the 
combinations of MWE with LCOM1, LCOM2 and 
LCOM3 are ranked in positions 19, 20 and 21 according 
to the R2 values. 

Table 6. Results of the Univariate Logistic Regression (sorted by R2) 

Metric Prec 
Prec 
Rank 

Corr 
Corr 
Rank 

Compl 
Compl 
Rank 

R2 C0 C1 

LOC 64.26 1 71.74 5 65.96 5 0.131 -0.740 0.002 
LCOM1 61.99 5 74.55 3 60.46 8 0.109 -0.423 0.001 
LCOM3 62.72 2 70.30 6 64.01 7 0.107 -0.724 0.061 
LCOM2 62.19 3 76.19 2 58.59 9 0.106 -0.393 0.001 
LCOM4 59.86 9 65.99 7 54.72 12 0.079 -0.621 0.073 

C3 62.14 4 61.44 8 71.73 4 0.075 2.230 -4.155 
ICH 60.88 8 73.25 4 52.99 13 0.069 -0.324 0.008 

LCOMn 61.56 7 78.99 1 55.08 11 0.06 -0.267 0.001 
Coh 61.79 6 60.17 9 78.18 2 0.034 0.350 -1.982 

MWE 57.21 11 55.47 10 65.67 6 0.03 0.603 -3.033 
LCSM 56.29 12 53.11 12 91.69 1 0.024 0.082 -0.191 
TCC 51.98 13 50.44 13 56.51 10 0.01 0.126 -0.797 

LCOM5 57.30 10 55.28 11 75.21 3 0.007 -0.402 0.488 
LCC 50.68 14 48.72 14 32.74 14 0.002 0.029 -0.291 



 

  

Table 8 provides the comparison of the univariate 
and the multivariate models, in which one variable is 
MWE. If the multivariate model has lower values for 
precision, correctness or completeness as compared to 
the univariate model, we mark that case in boldface 
(see Table 8). 

Table 8. Comparison between univariate and 
multivariate models with MWE as a variable 

Metric Prec.  
Prec 

MWE 
Corr. 

Corr  
MWE 

Compl 
Compl 
MWE 

C3 62.13 63.05 61.44 61.87 71.72 73.94 

LCSM 56.28 59.62 53.10 57.43 91.69 72.80 

LOC 64.26 67.31 71.73 73.02 65.96 73.97 

LCOM2 62.18 63.58 76.19 71.35 58.59 65.01 

LCOMn 61.55 61.70 78.99 63.53 55.08 68.69 

LCOM1 61.99 64.65 74.54 72.24 60.45 67.81 

LCOM3 62.71 63.49 70.29 67.97 64.00 68.53 

LCOM4 59.86 61.12 65.98 63.52 54.72 62.86 

LCOM5 57.30 57.64 55.27 55.88 75.21 67.03 

ICH 60.88 62.57 73.25 63.83 52.99 72.01 

TCC 51.98 57.15 50.43 55.39 56.51 67.16 

LCC 50.67 56.91 48.71 55.17 32.73 66.05 

Coh 61.79 61.60 60.17 59.71 78.17 74.62 

 
While comparing precision values for univariate and 

multivariate models, we can see that only Coh has 
reduced values. As for the correctness values, we 
observe that almost half of the multivariate models 
have improved correctness. Most of the completeness 
values have been improved as well.  Since all of the R2 

values have been improved, we do not list them in 
Table 8.   

Overall, the results of both case studies indicate that 
MWE is a useful indicator of an external property of 
classes in OO systems, that is, the fault proneness of 
classes. Based on the results of the regression analyses, 
we can conclude that MWE is a valuable complement in 
a number of combinations with other cohesion metrics, 
especially with LOC. More importantly, the results 
support our assumption that the combination of MWE 
with other cohesion metrics allows us to build superior 
models for detecting fault prone classes based on 
cohesion metrics. 

4.5. Threats to validity 

Several issues affect the results of the case studies and 
limit our interpretations and generalizations of the 
results. The first case study showed that our metric 
captures new dimensions in cohesion measurement; 
however, we obtained these results by analyzing classes 
from only one open source application written mainly 
in C++, even though Mozilla represents a real-life 
application.  In order to generalize the results, a large-
scale study is required which should take into account 
software systems from different domains written in 
different programming languages and of varying class 
sizes. One issue that may affect internal validity of the 
second case study is that cohesion is not the only factor 
affecting the fault proneness of classes. To build 
complete models for fault prediction, other factors 
would have to be considered (e.g., other metrics, such 
as coupling). However, this is out of the scope of this 
paper as the purpose of analyzing fault proneness of 
classes was to see if the combination of MWE with 
other metrics conveys any improvements.   

5. Conclusions 

Classes in object-oriented systems, written in 
different programming languages, contain identifiers 
and comments which reflect concepts from the domain 
of the software system. This information can be used to 
measure the cohesion of software. Latent Dirichlet 
Allocation is used to extract latent topics used for 
cohesion measurement and then information entropy is 
used to measure the degree of the distribution of the 
topics. This paper defines the MWE cohesion metric, 
which captures new, yet complementary dimensions of 
cohesion as compared to a host of existing metrics. 
Principal component analysis of measurement results 
on an open source software system statistically supports 
this fact. The combination of LOC with MWE appears 
to be the best model (in terms of R2 and precision) for 
the prediction of faults in classes among the other 91 

Table 7. Results of the multivariate logistic regression for the top ten pairs (out of 91) of cohesion metrics with 
the largest R2 values (sorted by R2 Values) 

Model Prec 
Prec 
Rank 

Corr 
Corr 
Rank 

Compl 
Compl 
Rank 

R2 C0 C1 C2 

MWE+LOC 67.31 1 73.02 30 73.97 18 0.166 0.063 -3.884 0.002 
LOC+LCOM4 66.68 2 74.19 20 72.70 22 0.165 -1.049 0.002 0.048 

C3+LOC 66.68 3 69.79 50 74.98 12 0.164 1.054 -3.106 0.002 
C3+LCOM3 66.19 5 68.32 55 75.77 10 0.161 1.397 -3.831 0.061 

LOC+LCOM3 66.39 4 74.40 16 71.63 25 0.157 -0.968 0.001 0.035 
C3+LCOM1 65.38 10 68.19 56 73.79 20 0.154 1.552 -3.520 0.001 
C3+ LCOM2 64.65 16 67.09 59 72.44 23 0.152 1.585 -3.532 0.001 

LOC+ LCOM2 66.15 6 75.00 10 70.46 28 0.148 -0.753 0.001 0.001 
LOC+LCOM1 66.10 7 74.55 14 70.59 27 0.145 -0.747 0.001 0.001 



 

  

possible combinations of metrics. Moreover, MWE 
improves fault prediction for most existing metrics if 
combined with MWE. 
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