
Technical Report WM-CS-2009-10

College of
William & Mary

Department of Computer Science

WM-CS-2009-10

Modeling Class Cohesion as Mixtures of Latent Topics

Yixun Liu Denys Poshyvanyk Rudolf Ferenc Tibor Gyimóthy
Nikos Chrisochoides

July 21, 2009

Submitted to IEEE ICSM09

§
Corresponding author

Modeling Class Cohesion as Mixtures of Latent Topics

Yixun Liu*, Denys Poshyvanyk*§, Rudolf Ferenc†, Tibor Gyimóthy†, Nikos Chrisochoides*

*Computer Science Department
 The College of William and Mary

Williamsburg, VA 23185
{enjoywm, denys, nikos}@cs.wm.edu

†Department of Software Engineering
University of Szeged

Szeged, Hungary
{ferenc, gyimi}@inf.u-szeged.hu

Abstract

The paper proposes a new measure for the cohesion
of classes in Object-Oriented software systems. It is
based on the analysis of latent topics embedded in
comments and identifiers in source code. The measure,
named as Maximal Weighted Entropy, utilizes the
Latent Dirichlet Allocation technique and information
entropy measures to quantitatively evaluate the
cohesion of classes in software. This paper presents the
principles and the technology that stand behind the
proposed measure. Two case studies on a large open
source software system are presented. They compare
the new measure with an extensive set of existing
metrics and use them to construct models that predict
software faults. The case studies indicate that the novel
measure captures different aspects of class cohesion
compared to the existing cohesion measures and
improves fault prediction for most metrics, which are
combined with Maximal Weighted Entropy.

1. Introduction

Software cohesion can be defined as a measure of
the degree to which elements of a module belong
together [6]. The principle of high cohesion for classes
is one of the goals of the OO analysis as it facilitates
program comprehension, testing, reusability,
maintainability, etc. Software cohesion metrics have
been shown to support different software maintenance
tasks, such as assessment of design quality [4, 10],
productivity, design, and reuse efforts [12], prediction
of software quality [17, 23, 34, 39], modularization of
software [32], and identification of reusable
components [18].

Cohesion is usually measured on structural
information extracted entirely from the source code
(e.g., attribute references in methods and method calls)
that captures the degree to which the elements of a class
belong together from a structural point of view. These
measures provide information about the way a class is
built and how its instances work together to address the
goals behind their design. Thus, they provide no details
as to whether the class is cohesive from a conceptual
point of view (for example, whether a class implements

one or more domain concepts) nor do they give an
indication about the readability or comprehensibility of
the source code [34]. Although other types of metrics
were proposed by researchers to capture different
aspects of cohesion, only a few such metrics address
the conceptual and textual aspects of cohesion [19, 34].

We propose a new measure for class cohesion,
namely Maximal Weighted Entropy (MWE), which
captures the conceptual aspects of class cohesion based
on the analysis of latent topics encoded in source code,
expressed in identifiers and comments. We use the
Latent Dirichlet Allocation (LDA) technique, which has
been recently applied for extracting, representing and
analyzing latent topics from the source code [3, 30, 35].
Our measure of cohesion can be interpreted as
measuring mixtures of latent topics implemented in
software classes within the context of the entire system.
The proposed metric is different from existing
conceptual cohesion metrics, such as C3 [34], as it
measures not only how strongly the methods of a class
relate to each other conceptually, but also analyzes the
coverage and degree of latent topic distributions in
methods of underlying source code.

The paper makes the following contributions:
 We propose a novel application of Latent Dirichlet

Allocation technique for discovering latent topics
in source code for class cohesion measurement; we
also propose a novel measurement mechanism
using information entropy based on distributions of
latent topics in class methods.

 We thoroughly evaluate the newly proposed metric
against a host of existing structural metrics; we
also use and compare MWE against other metrics
and their combinations for predicting faults in
classes on a large open-source system.

 We publicly release the metrics data from the case
studies and ensure their reproducibility.

2. Related work

Based on the underlying information used to
measure class cohesion, we can broadly classify the
measures into structural [6, 9, 13, 25, 26, 44], semantic
or conceptual [14, 19, 33, 34], information entropy-
based [1], slice-based metrics [37], and metrics for

specific types of applications such as knowledge-based
[27] and aspect-oriented [43] systems. The structural
cohesion metrics, which are summarized in the unified
framework for cohesion measurement [9], is the most
investigated category of cohesion metrics and includes
lack of cohesion in methods LCOM1 and LCOM2 [13],
LCOM3 and LCOM4 [26], Co (connectivity) [26],
LCOM5 [25], Coh [9], TCC (tight class cohesion) and
LCC (loose class cohesion) [6], ICH (information-flow-
based cohesion) [29], etc. Most structural metrics
define and measure relationships among the methods of
a class based on class variable referencing and data
sharing between methods as contributing to the degree
to which the methods of a class belong together. The
differences among the structural metrics can also be
viewed based on the definition of the relationships
among methods, system representation, and counting
mechanisms employed. Recently, other structural
cohesion metrics have been proposed, improving
existing metrics by considering the effects of dependent
instance variables [11, 44].

The developers often reason about a class as a set of
responsibilities that approximate the concept from the
problem domain implemented by the class as opposed
to a set of method-attribute interactions. These domain
concepts are partially encoded in comments and
identifiers in source code. Among existing cohesion
metrics, the Logical Relatedness of Methods (LORM)
[19], the Lack of Conceptual Cohesion in Methods
(LCSM) [33] and Conceptual Cohesion of Classes (C3)
[34] are the only ones that use this type of information
to measure the conceptual similarity of methods in a
class. The idea behind this category of metrics is that a
cohesive class is considered to be a crisp
implementation of a problem or solution domain
concept. Therefore, if the methods of a class are
conceptually related to each other, the class is cohesive.
For instance, C3 captures the conceptual aspects of
class cohesion, as it measures how strongly the
methods of a class relate to each other conceptually,
whereas the conceptual relation between methods is
based on the principle of textual coherence [21]. The
conceptual and structural metrics have been recently
combined to improve the class cohesion [14].

The metric, which is proposed in this paper, is
different from existing structural and conceptual
metrics. First of all, the new metric, namely MWE,
uses advanced information retrieval method, LDA, to
extract semantically meaningful topics or concepts
implemented in classes. Once topics are gleaned from
source code, class cohesion is computed via analysis of
topic distributions using information entropy measures.
The following section presents details behind adapting
LDA and information theory approaches for measuring
cohesion of classes in OO systems.

3. Capturing Cohesion using Information
Theory and Information Retrieval

Object-oriented analysis and design methods
decompose the problem domain addressed by a
software system development into classes as an attempt
to control complexity. High cohesion for classes and
low coupling among classes are design principles
aimed at reducing the system complexity. The most
desirable type of cohesion for a class is model cohesion
[16] such that the class implements a single
semantically meaningful concept. This is the type of
cohesion that we are measuring in our approach. We
use Latent Dirichlet Allocation [7] to discover latent
topics (i.e., semantically meaningful concepts) and then
use weighted information entropy to measure the
degree to which methods of a class concentrate on each
topic. The maximum weighted entropy (i.e., MWE) is a
measure of class cohesion as it reflects the degree to
which the methods concentrate on a main topic
implemented in a class.

3.1. Overview of LDA

LDA is a statistical model, specifically a topic
model, originally used in the area of natural language
processing for representing text documents. The basic
idea behind LDA is that text documents are represented
as random mixtures over latent topics, where each topic
is characterized by a distribution over words [7].

Given a corpus of documents, LDA attempts to: (a)
identify a set of topics; (b) associate a set of words with
a topic, and (c) define a specific mixture of these topics
for each document in the corpus.

LDA has been previously applied in the context of
software engineering for mining software repositories
[3, 30, 35] and bug location [31].

3.1.1. LDA model

The terms for describing LDA model are as
following:
 A word is the basic unit of discrete data, defined to

be an item from a vocabulary V={w1, w2,..., wv }.
 A document is a sequence of n words denoted by d

= (w1, w2,..., wn), where wn is the nth word in the
sequence.

 A corpus is a collection of m documents denoted
by D = (d1, d2, . . . ,dm).

Given m documents containing k topics expressed
over v unique words, the distribution of ith topic ti over
v words can be represented by φi and the distribution of
ith document di over k topics can be represented by θi.
The general method to find φ={φ1,φ2,…,φk} and θ={ θ1,
θ2,…,θm} is to use the expectation-maximization
method [15]. However, this approach is susceptible to

problems involving local maxima and is slow to
converge [7], encouraging the development of models
that make assumptions about the source of θ.

Blei et al. [7] proposed a new model, namely Latent
Dirichlet Allocation. The LDA based model assumes a
prior Dirichlet distribution on θ, thus allowing the
estimation of φ without requiring the estimation of θ.

LDA assumes the following generative process for
each document d(w) in a corpus D:

1. Choose N ~ Poisson distribution(ξ)
2. Choose θ ~ Dirichlet distribution(α)
3. For each of the n words wi:

(a) Choose a topic ti ~ Multinomial().
(b) Choose a word wi from p(wi|zn,β), a
multinomial probability conditioned on topic ti.

Viewing documents as mixtures of probabilistic
topics makes it possible to formulate the problem of
discovering a set of topics that are described in a
collection of documents. There are different ways to
find the LDA parameters such as variational Bayes [7],
expectation propagation [28], and Gibbs sampling [22].
In our research, we employed GibbsLDA++1, which is
a C/C++ Implementation of Gibbs Sampling, to
perform LDA analysis on open source software. For
further details on LDA, the interested reader is referred
to the work of Blei et al. [7].

3.1.2. Applying LDA to source code
To apply LDA on source code, we consider a

software system as a collection of documents (i.e.,
methods) and each document is associated with a set of
concepts (i.e., topics). The mapping between LDA
model and source code entities is shown in Table 1.

Table 1. Mapping LDA to Source Code

LDA
Model

Source Code Entities

word

Identifiers and comments extracted from source
code, which comprise the vocabulary set.
Further, this set is refined to exclude
programming language keywords, stop words
and punctuation. Finally, all compound
identifiers are split based on the observed
naming conventions. V={w1, w2,..., wv }.

document

A method is treated as a document, which can
be expressed as n identifiers and comments
from vocabulary, which appear in
implementation of a method mi=(w1,w2,...,wn)

set of
documents

A class corresponds to a collection of
documents representing methods of a class
Ci = (m1, m2, ..., ml)

corpus
The software system consists of a set of classes
S = (C1, C2, ..., Cz) which forms a corpus.

1 http://gibbslda.sourceforge.net/ (accessed and verified on 02/18/09)

This mapping was used before [35], however, we
refine it to account for fine grain source code elements,
such as methods and classes.

Once we generate a corpus for a software system,
we can apply LDA to extract a set of topics and their
distributions among different documents (i.e., methods)
in the corpus (i.e., software system). The details on
specific settings of applying LDA to source code are
summarized in section 4.2.2.

3.2. Information entropy

Our cohesion metric employs information entropy to
calculate the degree of distribution for each topic based
on the resulting document-topic distributions obtained
with LDA.

In information theory, entropy (also referred to as
self-information) is a measure of the uncertainty
associated with a random variable [40]. Information
entropy has been previously used to measure software
complexity [24], cohesion and coupling [1]. However,
information entropy has never been used in conjunction
with Information Retrieval to measure software
cohesion before.

For a random variable x with n outcomes
{xi: i=1,…, n} the Shannon information entropy, a
measure of uncertainty is defined as:

1

() () log () (1)
n

i i
i

H X p x p x

where p(xi) is the probability value of outcome xi.
The idea of using entropy to measure class cohesion

is as the following. We take topic ti as a random
variable with l outcomes {mj: j=1,…, l}. In this case,
p(mj) is the probability that topic ti is assigned to
method mj (see Table 1), which is computed using
LDA. If topic ti intersects all the methods evenly, the
class should have a high cohesion, because topic ti
appears to be a common underlying theme among all
the methods in a class. At the same time the value for
the entropy is also high in this case. This is because for
a topic to “cross all the methods evenly” means that this
topic can be assigned to any method with the same
probability and implies higher uncertainty (i.e., higher
entropy from information theory perspective). If this
topic occurs with higher probability only in one of the
methods, we can determine where this topic should
belong to, which implies lower uncertainty and thus
lower entropy. Noticeably, classes with higher cohesion
must have higher entropy and vice versa. Thus,
entropy provides us with a reliable mechanism to
measure cohesion of classes. The aforementioned
definitions focus on the software cohesion induced by
only one topic ti. Nonetheless, a class may relate to a
mixture of topics with varying probabilities, so we must
take into account all the topics and relationships among

them to properly capture software cohesion. We
provide the details behind the proposed metric in the
following section.

3.3. Measuring cohesion using LDA and
information entropy

Let us consider the following example of a class,
which consists of two methods implementing three
different topics (see Figure 1).

Figure 1. Probability distributions of three topics in
two methods (documents) in a class

We can observe that the second topic (vertical filling
line pattern in Figure 1), which is relevant to the first
document with probability pt=0.7 and to the second
document with probability pt=0.5, is the dominating
topic in the class (as compared to the other two topics).
We can summarize the following characteristics, which
are pertinent to the second topic:
 Occupancy (or weight): it resides in all the

methods (i.e., documents) in the class;
 Distribution (or entropy): it is nearly evenly

distributed across the methods in the class.
Intuitively, a highly cohesive class should have one

main topic (i.e., refer to a single crisp problem domain
concept [16]). We quantify these two characteristics
for every class in the software system under analysis to
measure class cohesion. We define our new metric
MWE for class cohesion as the following:

1 | |
() max(() ()) (2)z i i

i t
MWE C O t D t

where, O(ti) is a measure of occupancy of topic ti in
methods in a class Cz; D(ti) is a measure of degree of
distribution of topic ti in methods in a class Cz; |t| is the
number of topics, extracted from all the classes in a
software system.

The class cohesion is measured by taking into
account values of occupancy (weight) and distribution
(entropy) for the dominating topic, which is addressed
in the class. If the maximum value for such a topic is
low, this means that the class does not have a
distinctive topic or a theme, which can be attributed to
reduced class cohesion.

The occupancy of topic ti in methods of a class Cz is
computed as:

1() (3)
i

n
d
t

d
i

p
O t

n

where n is the number of methods in a class and
i

d
tp is

the probability of topic ti in a method d. The occupancy
captures the average probability of topic ti across all
methods in a class. In our example, occupancy values
for all three topics implemented in a class are
O(t1)=(0.1+0.2)/2=0.15, O(t2)=0.6, O(t3)=0.25.

In this paper we employ information entropy to
measure the degree of topic distributions in methods of
a class. Information entropy implies rather high
uncertainty and cohesion for topics that are distributed
uniformly. In order to compute entropy for a topic ti we
need to transform document-topic probability
distributions pti to topic-document distributions qti as the
following:

1

(4)
j

tj i

i

i

d

d

t n
d
t

d

p
q

p

In our example,
2

1
tq =0.7/(0.7+0.5)=0.583

and
2

2
tq =0.5/(0.7+0.5)=0.417.

Once topic-document distributions qti are obtained,
distribution D(ti) is computed using information
entropy equation (1). It should be noted that D(ti) is
normalized to account for the number of methods in a
class:

1

log()
() (5)

log

i i

n
d d
t t

d
i

q q
D t

n

In our example, distribution values for all three
topics implemented in a class are D(t1)=0.92,
D(t2)=0.98, D(t3)=0.97.

At last our proposed cohesion metric is computed as:

1 | |

1 1

1

() max(() ())

log()
max (6)

log

i i i

z i i
i t

n n
d d d
t t t

d d

i t

MWE C O t D t

p q q

n n

In our example, MWE = max {0.150.92, 0.60.98,
0.250.97}=0.588

If O(ti) and D(tii) were not normalized, the metric
would be susceptible to the cases, where occupancy and
distribution values depend of the number of methods in
a class. However, our metric definition (see equation 6)
is capable of differentiating among various degrees of
class cohesion induced by diverse configurations of
occupancy and distribution values.

The new metric not only takes into account the
occupancy (or weight) of the topic, but also takes into
account its degree of distribution (or entropy). The idea

behind equation (6) is to find the main topic, which is
characterized by the capacities: larger average
occupancy and more even distribution for classes with
higher cohesion (and vice versa). Maximal Weighted
Entropy (i.e., MWE) adequately quantifies these two
characteristics and thus, measures cohesion of classes.
The procedure for computing MWE is summarized in
the following steps:

1. Run LDA to generate document-topic distribution

matrix Doc-Top(M, N) for the corpus, which has M
documents (methods) and N topics

2. For each class Ci (assume it has m methods)
3. Extract a sub matrix Doc-Top(m, N) from Doc-

Top(M, N) which corresponds to m documents in
class Ci

4. Calculate topic-document distribution based on
Doc-Top(m, N) using equation (4)

5. For each topic tj
6. calculate occupancy O(tj) using eq (3)

based on sub-matrix Doc-Top(m, N);
7. calculate distribution D(tj) using

equation(5) based on Doc-Top(m, N);
8. save O(tj)* D(tji) to WE(j)
9. End For
10. Find max MWE for class Ci in WE using eq (6)
11. End For

3.4. Example of measuring class cohesion

To better understand the MWE metric, let us
consider the class CircleArea from source code of
Mozilla 1.6. The class contains three methods: IsInside,
Draw and GetRect. This class has a higher MWE value
of 0.64. The occupancy and distribution metrics for
each topic in this class are plotted in Figure 2.

The occupancy (i.e., weight) curve indicates that the
topic# 41 has the highest value, which means that most
parts of this class concentrate on this topic.

From the distribution (i.e., entropy) curve we can
see that topic# 41 evenly crosses all the methods
because its distribution value is relatively high. The
weighted entropy, which is the product of these two
curves, is shown in Figure 3.

Figure 2. Topic occupancy and distribution values
for the class CircleArea from Mozilla

Figure 3. Weighted Normalized Entropy for the
topics in CircleArea class from Mozilla

The weighted entropy (a product of occupancy and
distribution values) corresponding to the topic# 41 is
much higher than for the other topics. This result
indicates that only topic #41 has high occupancy and
high distribution values at the same time, which are the
main characteristics of a highly cohesive class. While
examining words comprising topic# 41 (see Table 2),
we observe that this topic closely relates to the drawing
concept.

Table 2. Top 16 words and their probabilities that
comprise the topic #41 Drawing in Mozilla

Word p(w) Word p(w)
Context 0.0360 Color 0.0122

Rendering 0.0189 float 0.0112
NS 0.0167 Device 0.009
x 0.0161 Draw 0.009

nscoord 0.0158 Pixel 0.008
y 0.0154 Get 0.007

To 0.0141 rect 0.006
ns 0.0117 Units 0.006

While examining the three methods of CircleArea

(see Table 3), we also discover that all these methods
are closely related to the concept captured by topic #41
– drawing function.

These methods have no other responsibilities, but
drawing function; hence this class has a high cohesion.
Other structural cohesion metrics (e.g., LCOM1=10,
LCOM3=5, LCOM4=5.) also indicate that CircleArea is
a highly cohesive class.

Table 3. Partial document-topic distribution matrix
for class CircleArea from Mozilla

 Topics

 Drawing
range

Drawing
Drawing
context

View

Inside 0.003 0.420 0.062 0.012
Draw 0.002 0.671 0.002 0.002

D
oc

s

GetRect 0.002 0.462 0.002 0.202

4. Empirical Assessment of Class Cohesion

In this section, we present the results of two case
studies aimed at comparing and combining MWE with a
set of existing cohesion measures. Sections 4.1 and 4.2
describe the objectives and the design of the case
studies. In Sections 4.3 and 4.4 we present quantitative
results separately for each case study. The data for our
case studies is publicly released for research purposes2.

4.1. Objectives and methodology

In order to evaluate our measure, we conducted two
case studies. The goal of the first case study is to
determine whether the MWE measure captures
additional dimensions of cohesion measurement when
compared to existing cohesion measures. Our
hypothesis is that, given the novel mechanism
employed by MWE (e.g., identifying the core latent
topic, which is evenly addressed by most methods in a
class), it should capture different aspects of class
cohesion as compared to the host of existing measures.

In the second case study, MWE is compared with
existing metrics to assess whether they provide better
results in predicting faults in classes. Our conjecture is
that combining MWE with other cohesion metrics
should be a more complete indicator of cohesion given
that they capture different aspects of it. In summary, the
case studies address the following research questions:
 RQ1 Does MWE capture aspects of class cohesion

that are not captured by other structural and/or
conceptual cohesion metrics?

 RQ2 Do the combinations of cohesion metrics with
MWE provide better results in predicting faults in
classes than the combinations of the other metrics?

4.2. Design of the case studies

We designed the studies according to the guidelines
presented by Yin [42].

4.2.1. Software system and metrics
We conduct case studies on Mozilla3 version 1.6,

which is an open source Web browser ported on almost
all known software and hardware platforms.

We selected the following structural cohesion
metrics: LCOM1, LCOM2, LCOMn

4, LCOM3, LCOM4,
LCOM5, Coh, ICH, and TCC. Moreover, we considered
previously published metrics for conceptual cohesion of
classes, such as C3 [34] and LCSM [33] to compare
with MWE. In addition, we computed the LOC metric

2 http://www.cs.wm.edu/~denys/data/icsm09-mwe (posted 03/19/09)
3 http://www.mozilla.org/ (accessed and verified on 02/18/09)
4 LCOMn is a version of LCOM2 metric, except its value is not set to
zero when the subtraction (the number of pairs of methods without
shared attributes minus the number of pairs of methods with shared
attributes) is negative.

as it was extensively used in the models for predicting
faults in software [23, 36].

Our choice of metrics is guided by the fact that these
metrics were extensively studied and compared to each
other and to other metrics in previously published
studies [4, 9, 10, 33, 34]. We choose these metrics
because of availability of the results in the literature in
order to facilitate comparison and evaluation with our
results. For the definitions, explanations, and further
references on these measures, refer to Section 2.

4.2.2. Settings of the case studies
The settings of the case studies are similar to our

previous work [34]. All of the structural metrics are
computed using Columbus [20] and the conceptual
cohesion metrics for C3 were obtained from the
previously published study [34]. Overall, we obtained
structural, conceptual and MWE metrics for 2,068
classes in Mozilla. The corpus for Mozilla was
constructed using the same settings as in the previous
work [34]. The extracted corpus resulted in 35,571
documents (i.e., methods) and 110,691 unique terms
(i.e., words). However, while indexing the corpus with
LDA, the following parameter settings have been
applied (see Table 4).

Table 4. Parameter setting for GibbsLDA++

Params Value Params Value
Alpha 0.25 #docs 35,571
Beta 0.10 #words 110,691

#topics 100 #iterations 1,000

The reader is referred to the manual of GibbsLDA5

for detailed information on how to set these parameters.

4.3. RQ1 - principal component analysis of
metric data

In order to understand the underlying orthogonal
dimensions captured by the cohesion measures, we
performed the Principal Component Analysis (PCA) on
all the metrics computed for Mozilla. PCA is a
technique that has been used in a number of previous
case studies to identify important underlying
dimensions captured by a set of metrics. We performed
PCA with the same settings as in prior studies [33, 34,
38], with a goal to identify groups of variables (that is,
metrics), which likely measure the same underlying
dimension (that is, the mechanism that defines cohesion)
of the object to be measured (that is, the cohesion of a
class). In order to identify these variables and interpret
the principal components (PCs), we consider the rotated
components, which is a technique where PCs are
subjected to an orthogonal rotation. Thus, the resulting

5 http://gibbslda.sourceforge.net/ (accessed and verified on 02/18/09)

rotated components show clearer patterns of loading for
the variables. The PCA was performed on the data set
consisting of metric values for 2068 classes from
Mozilla. The PCA results are summarized in Table 5.
We interpret the loadings determined for every PC as
follows:

PC1 (42.83%): LCOM1, LCOM2, LCOMn, LCOM3,
LCOM4. These metrics count the number of pairs of
methods that share instance variables. Another
commonality among LCOM1-LCOM4 is that these
measures are not normalized and they do not have
upper bounds.

PC2 (19.43%): TCC and LCC. These are among the
measures that are computed as the ratio of method pairs
with shared instance variables, also considering indirect
sharing of instance variables by method invocations.
Noticeably, the measures are also normalized.

PC3 (12.05%): MWE. This is our conceptual
cohesion metric that measures the cohesion of a class in
the context of the complete software system based on
the maximum weighted entropy. Note that it captures
even more data variance than another conceptual
cohesion metric, C3 (see PC4).

PC4 (7.18%): C3. This is a conceptual cohesion
metric that measures the cohesion of a class in the
context of the complete software system based on the
usage of the terms shared between pairs of methods in a
class, assuming that there is an underlying or latent
structure in word usage for the software system for
which a document set (that is, corpus) is constructed.

PC5 (4.96%): LCSM. This is another conceptual
cohesion metric that inversely measures cohesion. A
higher value for LCSM indicates lower cohesion.

PC6 (3.61%): ICH. This is information flow-based
cohesion measure based on the information strength
(i.e., method invocations weighted by the number of
parameters invoked) among the methods of a class.

The PCA results indicate that MWE defines a
dimension of its own − MWE is the only major factor in
PC3. These results statistically support our hypothesis
that the MWE cohesion measure captures different
aspects of what is considered to be a cohesion
measurement of the class (RQ1), as defined by all the
metrics computed in the case study. The PCA results
also demonstrate that the dimension defined by MWE
captures more variance than the dimension defined by
another conceptual metric C3. The low correlation
value between MWE and C3 also reinforces this
conclusion.

4.4. RQ2 – predicting faults in Mozilla classes

The first case study confirmed that MWE captures
different aspects as compared to other cohesion metrics.
Given our interpretation of cohesion, we conjecture that
combining MWE with other cohesion measures should
result in a more complete cohesion indicator. One use
of cohesion metrics in software engineering is to
predict faults in classes [17, 23, 34, 39]. The focus of
the second research question is to analyze the extent to
which each of the cohesion measures used in the case
study can be used to predict faults and to compare
combinations of MWE and other metrics for identifying
fault-prone classes.

The second case study aimed at answering RQ2 is
performed in a similar fashion as in previous work [23,
34]. We used Bugzilla6 to collect bugs between two
versions of Mozilla (that is, 1.6 and 1.7), and correlated
each bug with specific classes. Details on how we
mined the bugs can be found in previous work [23].
This data set has been used in prior studies [34], which
allows direct comparison of the results.

4.4.1. Analyses

We employed regression analysis methods to
discover the possible relationships between values of
collected metrics and the fault proneness of those
classes. These methods have been widely used to study
the relationships between the metrics and fault or
change proneness of classes [2, 5, 8, 10, 23, 34, 41]. In
order to analyze our data, we employed univariate and
multivariate logistic regression analysis methods for
predicting if a class is faulty or not.

6 http://bugzilla.mozilla.org/ (accessed and verified on 02/18/09)

Table 5. Results of PCA analysis

 PC1 PC2 PC3 PC4 PC5 PC6

Prop 42.83 19.43 12.05 7.17 4.99 3.61

Cumul 42.83 62.26 74.31 81.48 86.5 90.1

C3 -0.15 -0.17 0.26 0.88 -0.02 0.28

LCSM -0.50 -0.26 0.01 -0.17 0.78 0.08

LOC 0.65 0.61 0.07 -0.21 -0.06 0.10

LCOM1 0.91 0.28 -0.03 0.09 0.04 -0.10

LCOM2 0.96 0.07 0.01 0.07 0.10 -0.09

LCOMn 0.96 0.06 0.01 0.06 0.11 -0.10

LCOM3 0.94 -0.11 0.09 0.07 0.07 -0.11

LCOM4 0.81 -0.34 0.01 0.17 0.09 -0.30

LCOM5 0.66 0.17 -0.23 0.22 0.27 0.21

ICH 0.58 0.56 0.16 -0.22 -0.01 0.42

TCC -0.38 0.83 -0.27 0.16 0.07 -0.12

LCC -0.26 0.87 -0.28 0.13 0.07 -0.07

Coh -0.65 0.45 -0.31 0.22 0.08 -0.21

MWE -0.26 0.32 0.84 0.04 0.08 -0.13

Since logistic regression is a commonly used
statistical method, we are not providing any details. For
more information on regression analyses and their
applications on using metrics to detect fault prone
classes, the reader is referred to the literature [5, 10, 23,
41]. We applied logistic regression analyses using the
same settings as in our earlier work [34].

In the second case study, the univariate regression
analysis is used to analyze the effect of each metric
separately, whereas multivariate regression is used to
analyze the effect of the combination of metrics on the
final results to see whether combinations of MWE with
other cohesion metrics can improve detecting fault-
prone classes as compared to other combinations. For
the logistic multivariate analysis, we build models for
predicting faults in classes based on all possible
combinations of pairs of cohesion metrics used in this
case study (that is, 91 different pairs of metrics for 14
unique cohesion metrics). The parameters (constant C0
and coefficients C1 and C2) for the instantiated models
are provided in Table 6 and Table 7.

4.4.2. Results
First, we performed univariate logistic regression

(see the results in Table 6). The R2 coefficient is
defined as the proportion of the total variation in the
dependant variable (i.e., the fault proneness of a class)
that is explained by the regression model. The bigger
the value of R2, the larger the portion of the total
variance in the dependent variable that is explained by
the regression model and the better the dependent
variable is explained by the explanatory variables.

In order to evaluate logistic regression models based
on the studied metrics and their combinations, we
utilize the following quantitative characteristics:
precision, correctness, and completeness. We use these
measures to be consistent with previously published

results [23, 34]. Precision is used to evaluate how well
the model classifies classes as faulty or non-faulty.
Correctness is used to capture the percentage of the
faulty predicted classes that are really faulty.
Completeness is the other characteristic used to
evaluate the percentage of the total number of faults
that can be captured by the model. For definitions and
examples for computing precision, correctness and
completeness refer to our previous work [34].

The results of the univariate logistic regression (see
Table 6) allow us to draw the conclusions that, if we
use each of the 14 metrics as separate indicators of fault
proneness, MWE has the 11th largest precision, 10th
largest correctness, 6th largest completeness and 10th
largest R2 value. These results are not surprising as
MWE captures only certain aspects of cohesion,
whereas faults may be caused by other issues affecting
cohesion which are not captured by MWE alone.

Our assumption is that MWE complements existing
metrics, so, in order to investigate whether combining
MWE with other cohesion measures can improve the
detection of fault-prone classes, we applied multivariate
logistic regression analysis (see Table 7). We built 91
models based on all combinations of the pairs of
cohesion metrics. Table 7 presents the top ten models
based on the largest R2 values. Based on the results, the
model MWE combined with LOC appears to be in the
first position.

The model, which is based on the combination of
MWE and LOC has the highest precision (i.e., 67.31%)
and R2 values (i.e., 0.166) among all the 91 possible
pairs of metrics. While the Table 7 present only the top
10 pairs of metrics according to the R2 values, the
combinations of MWE with LCOM1, LCOM2 and
LCOM3 are ranked in positions 19, 20 and 21 according
to the R2 values.

Table 6. Results of the Univariate Logistic Regression (sorted by R2)

Metric Prec
Prec
Rank

Corr
Corr
Rank

Compl
Compl
Rank

R2 C0 C1

LOC 64.26 1 71.74 5 65.96 5 0.131 -0.740 0.002
LCOM1 61.99 5 74.55 3 60.46 8 0.109 -0.423 0.001
LCOM3 62.72 2 70.30 6 64.01 7 0.107 -0.724 0.061
LCOM2 62.19 3 76.19 2 58.59 9 0.106 -0.393 0.001
LCOM4 59.86 9 65.99 7 54.72 12 0.079 -0.621 0.073

C3 62.14 4 61.44 8 71.73 4 0.075 2.230 -4.155
ICH 60.88 8 73.25 4 52.99 13 0.069 -0.324 0.008

LCOMn 61.56 7 78.99 1 55.08 11 0.06 -0.267 0.001
Coh 61.79 6 60.17 9 78.18 2 0.034 0.350 -1.982

MWE 57.21 11 55.47 10 65.67 6 0.03 0.603 -3.033
LCSM 56.29 12 53.11 12 91.69 1 0.024 0.082 -0.191
TCC 51.98 13 50.44 13 56.51 10 0.01 0.126 -0.797

LCOM5 57.30 10 55.28 11 75.21 3 0.007 -0.402 0.488
LCC 50.68 14 48.72 14 32.74 14 0.002 0.029 -0.291

Table 8 provides the comparison of the univariate
and the multivariate models, in which one variable is
MWE. If the multivariate model has lower values for
precision, correctness or completeness as compared to
the univariate model, we mark that case in boldface
(see Table 8).

Table 8. Comparison between univariate and
multivariate models with MWE as a variable

Metric Prec.
Prec

MWE
Corr.

Corr
MWE

Compl
Compl
MWE

C3 62.13 63.05 61.44 61.87 71.72 73.94

LCSM 56.28 59.62 53.10 57.43 91.69 72.80

LOC 64.26 67.31 71.73 73.02 65.96 73.97

LCOM2 62.18 63.58 76.19 71.35 58.59 65.01

LCOMn 61.55 61.70 78.99 63.53 55.08 68.69

LCOM1 61.99 64.65 74.54 72.24 60.45 67.81

LCOM3 62.71 63.49 70.29 67.97 64.00 68.53

LCOM4 59.86 61.12 65.98 63.52 54.72 62.86

LCOM5 57.30 57.64 55.27 55.88 75.21 67.03

ICH 60.88 62.57 73.25 63.83 52.99 72.01

TCC 51.98 57.15 50.43 55.39 56.51 67.16

LCC 50.67 56.91 48.71 55.17 32.73 66.05

Coh 61.79 61.60 60.17 59.71 78.17 74.62

While comparing precision values for univariate and

multivariate models, we can see that only Coh has
reduced values. As for the correctness values, we
observe that almost half of the multivariate models
have improved correctness. Most of the completeness
values have been improved as well. Since all of the R2

values have been improved, we do not list them in
Table 8.

Overall, the results of both case studies indicate that
MWE is a useful indicator of an external property of
classes in OO systems, that is, the fault proneness of
classes. Based on the results of the regression analyses,
we can conclude that MWE is a valuable complement in
a number of combinations with other cohesion metrics,
especially with LOC. More importantly, the results
support our assumption that the combination of MWE
with other cohesion metrics allows us to build superior
models for detecting fault prone classes based on
cohesion metrics.

4.5. Threats to validity

Several issues affect the results of the case studies and
limit our interpretations and generalizations of the
results. The first case study showed that our metric
captures new dimensions in cohesion measurement;
however, we obtained these results by analyzing classes
from only one open source application written mainly
in C++, even though Mozilla represents a real-life
application. In order to generalize the results, a large-
scale study is required which should take into account
software systems from different domains written in
different programming languages and of varying class
sizes. One issue that may affect internal validity of the
second case study is that cohesion is not the only factor
affecting the fault proneness of classes. To build
complete models for fault prediction, other factors
would have to be considered (e.g., other metrics, such
as coupling). However, this is out of the scope of this
paper as the purpose of analyzing fault proneness of
classes was to see if the combination of MWE with
other metrics conveys any improvements.

5. Conclusions

Classes in object-oriented systems, written in
different programming languages, contain identifiers
and comments which reflect concepts from the domain
of the software system. This information can be used to
measure the cohesion of software. Latent Dirichlet
Allocation is used to extract latent topics used for
cohesion measurement and then information entropy is
used to measure the degree of the distribution of the
topics. This paper defines the MWE cohesion metric,
which captures new, yet complementary dimensions of
cohesion as compared to a host of existing metrics.
Principal component analysis of measurement results
on an open source software system statistically supports
this fact. The combination of LOC with MWE appears
to be the best model (in terms of R2 and precision) for
the prediction of faults in classes among the other 91

Table 7. Results of the multivariate logistic regression for the top ten pairs (out of 91) of cohesion metrics with
the largest R2 values (sorted by R2 Values)

Model Prec
Prec
Rank

Corr
Corr
Rank

Compl
Compl
Rank

R2 C0 C1 C2

MWE+LOC 67.31 1 73.02 30 73.97 18 0.166 0.063 -3.884 0.002
LOC+LCOM4 66.68 2 74.19 20 72.70 22 0.165 -1.049 0.002 0.048

C3+LOC 66.68 3 69.79 50 74.98 12 0.164 1.054 -3.106 0.002
C3+LCOM3 66.19 5 68.32 55 75.77 10 0.161 1.397 -3.831 0.061

LOC+LCOM3 66.39 4 74.40 16 71.63 25 0.157 -0.968 0.001 0.035
C3+LCOM1 65.38 10 68.19 56 73.79 20 0.154 1.552 -3.520 0.001
C3+ LCOM2 64.65 16 67.09 59 72.44 23 0.152 1.585 -3.532 0.001

LOC+ LCOM2 66.15 6 75.00 10 70.46 28 0.148 -0.753 0.001 0.001
LOC+LCOM1 66.10 7 74.55 14 70.59 27 0.145 -0.747 0.001 0.001

possible combinations of metrics. Moreover, MWE
improves fault prediction for most existing metrics if
combined with MWE.

6. Acknowledgements

We acknowledge Andrian Marcus for contributions to
previous versions of the research on conceptual cohesion
of classes (C3). We would like to thank Zheng “Eddy”
Zhang for her help with LDA tool, Tibor Bakota for
verifying the statistical results and comments. This
research was supported in part by the United States Air Force
Office of Scientific Research under grant number FA9550-
07-1-0030, Hungarian national grants RET-07/2005,
OTKA K-73688, TECH_08-A2/2-2008-0089
(SZOMIN08) and by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

7. References
[1] Allen, E. B., Khoshgoftaar, T. M., and Chen, Y., "Measuring
coupling and cohesion of software modules: an information-theory
approach", in Proc. of METRICS'01, April 4-6 2001, pp. 124-134.
[2] Arisholm, E., Briand, L. C., and Foyen, A., "Dynamic coupling
measurement for OO software", IEEE TSE, Aug'04, pp. 491-506.
[3] Baldi, P., Linstead, E., Lopes, C., and Bajracharya, S., "A Theory
of Aspects as Latent Topics", in Proc. of OOPSLA'08, pp. 543-562.
[4] Bansiya, J. and Davis, C. G., "A hierarchical model for object-
oriented design quality assessment", IEEE TSE, Jan'02, pp. 4-17.
[5] Basili, V. R., Briand, L. C., and Melo, W. L., "A Validation of
Object-Oriented Design Metrics as Quality Indicators", IEEE TSE,
vol. 22, no. 10, October 1996, pp. 751-761.
[6] Bieman, J. and Kang, B.-K., "Cohesion and reuse in an object-
oriented system", in Proc. of SSR'95, April 1995, pp. 259-262.
[7] Blei, D. M., Ng, A. Y., and Jordan, M. I., "Latent Dirichlet
Allocation", Journal of Machine Learning Research, vol. 3, 2003, pp.
993-1022.
[8] Briand, L., Melo, W., and Wust, J., "Assessing the Applicability
of Fault-Proneness Models Across Object-Oriented Software
Projects", IEEE TSE, vol. 28, no. 7, 2002, pp. 706-720.
[9] Briand, L. C., Daly, J. W., and Wüst, J., "A Unified Framework
for Cohesion Measurement in OO Systems", ESE'98, 3/1, pp. 65-117.
[10] Briand, L. C., Wüst, J., Daly, J. W., and Porter, V. D.,
"Exploring the relationship between design measures and software
quality in object-oriented systems", JSS, 51/3, May'00, pp. 245-273.
[11] Chae, H. S., Kwon, Y. R., and Bae, D. H., "Improving Cohesion
Metrics for Classes by Considering Dependent Instance Variables",
IEEE TSE, vol. 30, no. 11, November 2004, pp. 826-832.
[12] Chidamber, S., Darcy, D., and Kemerer, C., "Managerial Use of
Metrics for Object-Oriented Software: An Exploratory Analysis",
IEEE TSE, vol. 24, no. 8, August 1998, pp. 629-639.
[13] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite for OO
Design", IEEE TSE, vol. 20, no. 6, 1994, pp. 476-493.
[14] De Lucia, A., Oliveto, R., and Vorraro, L., "Using structural and
semantic metrics to improve class cohesion", in Proc. of ICSM'08,
Beijing, China, September 2008, pp/ 27-36..
[15] Dempster, A., Laird, N., and Rubin, D., "Likelihood from
incomplete data via the EM algorithm", Journal of the Royal
Statistical Society, vol. 39, no. 1, 1977, pp. 1-38.
[16] Eder, J., Kappel, G., and Schreft, M., "Coupling and Cohesion in
Object-Oriented Systems", Univ. of Klagenfurt, Tech. Report 1994.
[17] El-Emam, K. and Melo, K., "The Prediction of Faulty Classes
Using OO Design Metrics", NRC/ERB-1064, NRC 43609, Nov'99.
[18] Etzkorn, L. H. and Davis, C. G., "Automatically Identifying
Reusable OO Legacy Code", IEEE Computer, Oct'97, pp. 66-72.

[19] Etzkorn, L. H., Gholston, S., and Hughes, W. E., "A Semantic
Entropy Metric", JSME, vol. 14, no. 5, July/Aug. 2002, pp. 293-310.
[20] Ferenc, R., Beszédes, Á., Tarkiainen, M., and Gyimóthy, T.,
"Columbus - Reverse Engineering Tool and Schema for C++", in
Proc. of ICSM'02, Montréal, Canada, October 3-6 2002, pp. 172-181.
[21] Foltz, P. W., Kintsch, W., and Landauer, T. K., "The
Measurement of Textual Coherence with Latent Semantic Analysis",
Discourse Processes, vol. 25, no. 2, 1998, pp. 285-307.
[22] Griffiths, T. and Steyvers, M., "Finding scientific topics", Proc.
of the National Academy of Sciences 2004.
[23] Gyimóthy, T., Ferenc, R., and Siket, I., "Empirical validation of
object-oriented metrics on open source software for fault prediction",
IEEE TSE, vol. 31, no. 10, October 2005, pp. 897-910.
[24] Harrison, W., "An Entropy-Based Measure of Software
Complexity", IEEE TSE, vol. 18, no. 11, Nov'92, pp. 1025 - 1029.
[25] Henderson-Sellers, B., Software Metrics, Prentice Hall, 1996.
[26] Hitz, M. and Montazeri, B., "Measuring Coupling and Cohesion
in Object-Oriented Systems", in Proc. of International Symposium on
Applied Corporate Computing, Monterrey, Mexico, October 1995.
[27] Kramer, S. and Kaindl, H., "Coupling and cohesion metrics for
knowledge-based systems using frames and rules", ACM TOSEM,
vol. 13, no. 3, July 2004, pp. 332-358.
[28] Lafferty, J. and Minka, T., "Expectation-propagation for the
generative aspect model", in Proc. of UAI'02.
[29] Lee, Y. S., Liang, B. S., Wu, S. F., and Wang, F. J., "Measuring
the Coupling and Cohesion of an Object-Oriented Program Based on
Information Flow", in Proc. of ICSQ'95, Maribor, Slovenia, 1995.
[30] Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., and Baldi, P.,
"Mining concepts from code with probabilistic topic models", in
Proc. of ASE'07, Atlanta, Georgia, 2007, pp. 461-464.
[31] Lukins, S., Kraft, N., and Etzkorn, L., "Source Code Retrieval
for Bug Location Using Latent Dirichlet Allocation", in Proc. of
WCRE'08, Antwerp, Belgium, 2008, pp. 155-164.
[32] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information", in Proc.
of ICSE'01, Toronto, Ontario, Canada, May 12-19 2001, pp. 103-112.
[33] Marcus, A. and Poshyvanyk, D., "The Conceptual Cohesion of
Classes", in Proc. of ICSM'05, Hungary, Sept. 2005, pp. 133-142.
[34] Marcus, A., Poshyvanyk, D., and Ferenc, R., "Using the
Conceptual Cohesion of Classes for Fault Prediction in Object
Oriented Systems", IEEE TSE, vol. 34, no. 2, 2008, pp. 287-300.
[35] Maskeri, G., Sarkar, S., and Heafield, K., "Mining Business
Topics in Source Code using Latent Dirichlet Allocation", in Proc. of
ISEC'08, Hyderabad, India, 2008, pp. 113-120.
[36] Menzies, T., Greenwald, J., and Frank, A., "Data Mining Static
Code Attributes to Learn Defect Predictors", TSE'07, 30/1, pp. 2-13.
[37] Meyers, T. M. and Binkley, D., "An Empirical Study of Slice-
based Cohesion and Coupling Metrics", ACM TOSEM, 17/1, 2007.
[38] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling
Metrics for Object-Oriented Systems", in Proc. of ICSM'06,
Philadelphia, PA, September 2006, pp. 469-478.
[39] Quah, T.-S. and Thwin, M. M. T., "Application of neural
networks for software quality prediction using object-oriented
metrics", in Proc. of ICSM'2003, September 2003, pp. 116-125.
[40] Shannon, C. E., "A mathematical theory of communication",
Bell System Technical Journal, vol. 27, July 1948, pp. 379–423
[41] Subramanyam, R. and Krishnan, M. S., "Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity: Implications for
Software Defects", IEEE TSE, 29/4, April 2003, pp. 297-310.
[42] Yin, R. K., Applications of Case Study Research, 2 ed ed., CA,
USA, Sage Publications, Inc, 2003.
[43] Zhao, J. and Xu, B., "Measuring Aspect Cohesion", in Proc. of
FASE'04, 2004, pp. 54-68.
[44] Zhou, Y., Xu, B., Zhao, J., and Yang, H., "ICBMC: an improved
cohesion measure for classes", in Proc. of ICSM'02, Montréal,
Canada, October 2002, pp. 44-53.

