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Abstract

We propose a simple two-level hierar-
chical probability model for unsuper-
vised word segmentation. By treat-
ing words as strings composed of mor-
phemes/phonemes which are themselves
composed of character/phone strings, we
use EM to first identify the impor-
tant morphemes/phonemes in a corpus,
and then use a second level of EM to
identify words given a lower level mor-
pheme/phoneme segmentation. To fur-
ther improve performance of the basic
method we employ a mutual informa-
tion criterion to eliminate long word
agglomerations and reduce the size of
the inferred lexicon while moving EM
out of poor local maxima. Experiments
on the Brown corpus show that our
method accurately recovers hidden word
boundaries using less training data than
current MDL based approaches, even
though our method is only trained on
raw unsupervised data.

1 Introduction

Word segmentation is an important problem in
many natural language processing tasks; for exam-
ple, in speech recognition where there is no explicit
word boundary information given within a con-
tinuous speech utterance, or in interpreting writ-
ten languages such as Chinese, Japanese and Thai
where words are not delimited by white-space but
instead must be inferred from the basic character
sequence.

Many unsupervised methods have been pro-
posed for segmenting raw character sequences
with no boundary information into words (Brent
and Cartwright, 1996; Brent, 1999; Deligne and
Bimbot, 1995; Christiansen, 1997; Christiansen,
et al., 1998; de Marcken, 1995; Kit and Wilks,

1999; Hua, 2000). Brent (1999) gives a good sur-
vey of the area. Most current approaches are
based on using some form of EM to learn a prob-
abilistic speech or text model and then employing
Viterbi-decoding-like procedures to segment new
speech or text into words. One reason that EM is
widely adopted for unsupervised learning is that
it is guaranteed to converge to a good probabil-
ity model that locally maximizes the likelihood or
posterior probability of the training data (Demp-
ster et al., 1977). For the problem of word segmen-
tation, EM is typically applied by first extracting
a set of candidate multi-grams from a given train-
ing corpus (Deligne and Bimbot, 1995), initializ-
ing a probability distribution over this set, and
then using the standard iteration to adjust the
probabilities of the multi-grams to increase the
posterior probability of the training data.

There are at least three problems with this
standard approach. First, there is a significant
sparse data problem in training large multi-gram
models. For example, if one wished to model
all English words of length up to 15 characters,
264262 4 - - - +26'% multi-grams would have to be
considered (in a naive model that only considered
lower case characters). Although EM will assign
zero probability to any unseen multi-gram—and
therefore eliminates most of them—it still typi-
cally yields a very large lexicon. Due to the lim-
ited amount of training data it remains difficult to
estimate a probability distribution that is defined
by so many free parameters.

Second, because likelihood is usually defined by
a product of individual chunk probabilities (mak-
ing the standard assumption that segments are in-
dependent), the more chunks a segmentation has,
the smaller its likelihood will tend to be. For
example, given a character sequence sizeofthecity
and a uniform distribution over multi-grams, the
segmentation sizeof|thecity will have higher like-
lihood than segmentation size|of|the|city. There-
fore, the maximum likelihood training procedure
will prefer fewer chunks in its segmentation and



thus tend to put a large probability on long non-
word character sequences such as sizeof, longtime
and computerscience. If one can break such se-
quences into short legal words, such as size, of,
long, time, computer and science, then the lexi-
con will be much smaller and both training and
segmentation should be improved.

Third, EM is known to have problems with
getting trapped poor local maxima (Dempster et
al., 1977) and often achieves results that depend
strongly on the distribution from which it is ini-
tialized.

We propose two simple modifications of the
standard approach to mitigate all three of these
problems. Our first idea is based on the sim-
ple intuition that words themselves are built out
of an intermediate vocabulary of morphemes (or
phonemes in speech) which are in turn defined by
shorter structured character strings. For exam-
ple, in English, words like carelessly are composed
of one to three morphemes, care, less, ly, which
are themselves composed of one to five charac-
ters. To exploit this feature of natural text, we
apply EM hierarchically in two phases: first to
learn a morpheme lexicon, and second to learn
a word lexicon over the base morpheme vocabu-
lary. This hierarchical approach dramatically re-
duces the number of free parameters in our prob-
ability model by reducing the number of candi-
date multi-grams to 26 + 262 + - - - + 26° + |G| +
|G|>+|G|? (where |G| is the number of morphemes
retained in our model)—which substantially re-
duces the problem of sparse training data. Al-
though the idea of using morphemes/phonemes
to detect word boundaries is not new (Brent and
Cartwright, 1996; Brent, 1999; Christiansen, et
al., 1998), previous work all assumes that the set
of morphemes/phonemes is fixed beforehand and
therefore learns a word model over an established
morpheme/phoneme vocabulary. Our work is dif-
ferent in that we automatically learn the underly-
ing morpheme/phoneme vocabulary from a train-
ing set of unsegmented character/phone strings.

Our second idea is to prune the learned mor-
pheme and word lexicons. We do this by detect-
ing long multi-grams that can be decomposed into
shorter multi-grams without significantly reducing
data likelihood, and delete these weakly connected
long sequences from the lexicon. The rationale for
lexicon pruning is not merely to cope with sparse
data, but also to reduce excessive word agglomer-
ations (second problem) and help guide EM out
of poor local minima (third problem). As pointed
out by Brand (1999) effective parameter pruning
can help move EM into better subspaces and en-

able further progress.

2 Standard EM segmentation

Assume we have a sequence of characters C' =
c1¢y...cp that we wish to segment into chunks
S = s189...8p7, where the chunks s; are cho-
sen from a lexicon V = {s;,i = 1,...,|V|}. If
we already have a probability distribution 6 =
{0:10; = p(si),i =1,...,|V|} defined over the lexi-
con, then we can compute the most likely segmen-
tation of the sequence C' = cycs...cr into chunks
S = s189...s); as follows. First, for any given
segmentation S of C, we can calculate the joint
likelihood of S and C by

M
prob(S,C|0) =[] 6:

=1

Our task is to find the segmentation S* that
achieves the maximum likelihood:

S* = argmaz{prob(S|C;0)}
s
= argmaz{prob(S,C|0)} (1)
s

Viterbi decoding can be used to efficiently de-
code (1); learning these probabilities from a train-
ing corpus is the job of the EM algorithm. Follow-
ing Dempster et al. (1977), the update @ function
that we use here is

Q(k, k+1) = prob(S|C; 6°)log(prob(C, 56" 1))
S
(2)

By maximizing (2) under the constraint that
S, 05T = 1, we obtain the parameter re-
estimation formula
g+l _ s #(si, S) x prob(S, C|0%) 3)
’ Zsj ZS #(Sjv S) X p’l"Ob(S, C|9k)

Here the numerator is a sum over all possible
segmentations S of the number of occurrences
of a word s;, weighted by the probability of the
segmentation. Similarly, the denominator is a
weighted sum of the number of words in all pos-
sible segmentations. Thus, (3) is a weighted fre-
quency count.

3 Hierarchical EM Segmentation

The first modification of the basic procedure we
employ is to use a two level, hierarchical version
of EM for unsupervised text segmentation. In the
first level, we generate all morphemes with one
to five characters from the training corpus C, use



EM to learn a probability distribution over mor-
phemes (as described above), prune low probabil-
ity morphemes, and segment the original training
corpus C into a morpheme sequence G. In the sec-
ond level, we generate a large word lexicon from G
(multi-grams over morphemes), use EM to learn a
probability distribution over words, and segment
G into a word sequence W. The complete process
is illustrated in Figure 1. In both phases, once EM
converges, we employ additional lexicon pruning
(discussed in the next section) which pulls EM
out of local maxima and allows it to make further
progress. Overall, the first level determines

G" = argmaz{prob(G,C|b,)} (4)
c

and the second level determines

W* = argmaz{prob(W,G|0,)} (5)
W

where 0, and 0,, are the distributions over mor-
pheme lexicon and word lexicon respectively. The
EM algorithms in both levels are identical except
that in the first level the basic observation unit is
character and in the second level the basic unit is
morpheme.

Charcter sequence C: computerscience

First Level EM: Learn morpheme Lexicon

Morpheme sequence G: compu ter sci ence

Second Level EM: Learn word lexicon

Word segquence W: computer science

Figure 1: Hierarchical EM segmentation model

4 Lexicon pruning

Although a hierarchical training scheme mitigates
some of the sparse data problems encountered in
this problem, a naive application of EM still runs
into the two other problems we identified: exces-
sive agglomeration and poor local minima. To
cope with both of these, we employ a simple lexi-
con pruning scheme that eliminates long agglom-
erations of short primitives.

Recall that the mutual information between two
random variables X and Y is defined as

P(X,Y)
P(X) x P(Y) (©)

where a large value indicates strong dependence
and zero indicates independence. To implement
our pruning criteria we use a variant of this
formula to evaluate the cohesiveness of strings.
Specifically, given a long string s we consider split-
ting it into the two substrings s; and sy that max-
imize p(s1) x p(s2) over all two-chunk segmenta-
tions s = s182. Let the probabilities of the original
string and the two chunks be p(s), p(s1) and p(s2)
respectively. We define the pointwise mutual in-
formation (Manning and Schiitze, 1999) between
s1 and s; to be

MI = log

1 p(s)
PMI= 7 xlog ey xpey O
where T is length of s. To apply this measure to
pruning, we set two thresholds y; > 7,. If the mu-
tual information is higher than the high threshold
v1 we say that s; and so are strongly correlated
and do not split s. (That is, we do not remove
s from the lexicon.) If the mutual information
is lower than the lower threshold ~o we say that
s1 and so are nearly independent, so we remove
s from the lexicon and distribute its probability
to s; and sy. If the mutual information is be-
tween the two thresholds we say that s; and sg
are weakly correlated and therefore shift some of
the probability from s to s; and sy by keeping a
portion of s’s probability for itself (1/3 in exper-
iments) and distribute its rest probability to the
smaller chunks proportional to their probabilities.
The idea is to shift the weight of the probability
distribution toward shorter words. This lexicon
pruning scheme works efficiently in Chinese seg-
mentation (Peng and Schuurmans, 2001).

5 Experiments

We tested our procedure on segmenting the Brown
corpus into words. Specifically, we converted the
corpus to lowercase letters and removed all white-
space and punctuation. We then split the cor-
pus into a training sequence C; (4292K charac-
ters, 891524 words, 37930 unique words) and a
test sequence Co (317K characters; 64338 words;
9506 unique words, 2280 of which never occur in
the training sequence). For pruning we used the
thresholds v; = 3 and 2 = 0.5.

5.1 Performance measures

We measured performance on the test corpus by
recovering recall, precision and F-measures with



respect to detecting the word boundaries in a test
sequence (Kit and Wilks, 1999). A predicted word
boundary which corresponds to white space or
punctuation in the original test text is considered
correct. Let N7 denote the true number of word
boundaries in the original test text, let Ny de-
note the number of predicted boundaries, of which
N3 are correct. Then the precision, recall and F-
measure are defined by

N3

N>

. — N3
recall: r = A

precision: p =

2xprecisionXrecall
precision+recall

We also report the word identification perfor-
mance on the test text. A word is said to be
correctly recovered if and only if it has correct
boundaries predicted immediately before it, im-
mediately after it, and no predicted boundaries
in between (Brent and Cartwright, 1996; Brent,
1999; Christiansen, et al., 1998).

F-measure: F' =

5.2 Results of the first level model

We first train the morpheme model on the train-
ing sequence C7 with multi-grams of lengths 1-5
characters using EM. With this morpheme lexi-
con, we then segmented the training sequence C4
into a morpheme string G using the Viterbi al-
gorithm. With this initial morpheme lexicon in
hand, we then conducted several stages of our re-
cursive pruning procedure to remove large mor-
phemes from the lexicon. For each pruned lexicon,
EM was run again to re-estimate the probability
parameters, and each model was then used to re-
segment the training sequence.

Each of these models was tested on the separate
test sequence Cy by running Viterbi to segment it
into a morpheme string G5 using the learned mod-
els. Table 1 shows the results of using the various
learned probability models to predict word bound-
aries in the test sequence Cy (where # represents
the size of the lexicon). Here, each reduced and
trained model was used to segment the test se-
quence using Viterbi, and the morpheme bound-
aries were used to predict word boundaries in the
initial text. Clearly, this segmentation should not
work very well because proper morphemes only
comprise sub-components of words. Neverthe-
less, we should see a high recall score (every word
boundary corresponds to a morpheme boundary)
along with a mediocre precision score—which is
exactly what Table 1 shows.

5.3 Results of the second level model

Using the best morpheme model learned in the
first level (G Pruned 5), we then trained the sec-
ond level model over the Viterbi segmentation of

# p r F
G Start 13506 | 0.603 | 0.799 | 0.678
G Pruned 1 | 8274 | 0.595 | 0.867 | 0.695
G Pruned 2 | 7793 | 0.590 | 0.873 | 0.693
G Pruned 3 | 7625 | 0.589 | 0.876 | 0.694
G Pruned 4 | 6800 | 0.576 | 0.892 | 0.689
G Pruned 5 | 6758 | 0.570 | 0.908 | 0.690

Table 1: Test segmentation results with the first
level (morpheme) model showing boundary detec-
tion scores

the training sequence, G;. Using EM we learn a
lexicon of words composed of morpheme strings
and a probability distribution over these words.
Viterbi decoding of the training and test mor-
pheme strings, G; and Gs, yields the word seg-
mentations Wy and Ws. As above, we succes-
sively prune the word lexicon on the training se-
quence (G; and re-estimate the probability distri-
bution over words in the training sequence using
EM. For each successive word model, we segment
the training and test morpheme strings G; and Ga
into word strings W7 and W,. The results of ap-
plying Viterbi using the learned model to segment
the test sequence G5 into words Wy are shown in
Table 2.

# p r F
Start 812841 | 0.806 | 0.670 | 0.716
W Pruned 1 | 278608 | 0.754 | 0.720 | 0.721
W Pruned 2 | 224619 | 0.743 | 0.731 | 0.721
W Pruned 3 | 198723 | 0.746 | 0.792 | 0.754
W Pruned 4 | 181316 | 0.733 | 0.806 | 0.753
W Pruned 5 | 174806 | 0.725 | 0.806 | 0.749

Table 2: Test segmentation results with the sec-
ond level (word) model showing boundary detec-
tion scores

In addition to these boundary detection results
we also measured the word detection performance
of the best model (W pruned 3) on the test se-
quence, obtaining 49.1% word precision, 60.1%
word recall and 53.8% F-measure.

5.4 Results of a flat model

To verify the effectiveness of our hierarchical ap-
proach, we re-ran the experiments using a basic
flat model that is similar to the first level of our
hierarchical model. Here, we generated all words
up to 15 characters from the training sequence Cf,
ran EM to learn a probability model over words,
and tested the model by segmenting the test se-
quence C3. The results for the original trained
model as well as successively pruned versions are
shown in Table 3.

Using this flat one level model, we obtained a



# P r F
Start 8578589 | 0.727 | 0.556 0.607
F Pruned 1 | 1316725 | 0.846 | 0.513 | 0.620
F Pruned 2 | 1232529 | 0.713 0.515 0.583

Table 3: Test segmentation results with the flat
model showing boundary detection scores

best word detection performance (F Pruned 1) of:
32.4% word precision, 48.1% word recall and
38.1% F-measure, which is substantially below
that obtained by the hierarchical model.

5.5 Interpreting the results

The weakest results we obtained with the hier-
archical model are those with no lexicon prun-
ing: 80.6% precision, 67% recall and 71.6% F-
measure. The best results were achieved after ap-
plying pruning to both the morpheme and word
models. The combination G-Pruned-5 and W-
Pruned-3 yielded 74.6% precision, 79.2% recall
and F-measure 75.4%.

Compared to the flat model, the hierarchical
model gains 13.4% improvement on boundary de-
tection F-measure and 15.7% on word detection
F-measure. The best known results on segment-
ing the Brown corpus that we are aware of are
due to Kit and Wilks (1999) who use a description
length gain method. They trained their model on
the whole corpus (6.13M) and reported results on
the training set, obtaining a boundary precision of
79.33% and a boundary recall of 63.01% (they did
not report boundary F-measure, but we can calcu-
late it to be 70.23% in this case). By comparison,
we train our model on a much smaller subset of
the corpus (4292K) and test on unseen data. Even
the weakest (unpruned) results of the hierarchical
model are better than those reported in (Kit and
Wilks, 1999). After the lexicon is optimized, we
obtain 16.19% higher recall and 4.73% lower pre-
cision; resulting in an improvement of 5.2% in
boundary F-measure.

De Marcken (1995) also uses an minimum de-
scription length (MDL) framework and a hierar-
chical model to learn a word lexicon from raw
speech. However, this work does not explicitly
yield word boundaries, but instead recursively de-
composes an input string down to the level of
individual characters. As pointed out by Brent
(1999), this study gives credit for detecting a
word if any node in the hierarchical decomposition
spans the word. Under this measure (de Marcken,
1995) reports a word recall rate of 90.5% on the
Brown corpus. However, his method creates nu-
merous chunks and therefore only achieves a word
precision rate of 17%.

Christianson et al. (1998) use a simple recur-
rent neural network approach and report a word
precision rate of 42.7% and word recall rate of
44.9% on spontaneous child-directed British En-
glish.

Brent and Cartwright (1996) use an MDL ap-
proach and report a word precision rate of 41.3%
and a word recall rate of 47.3% on the CHILDES
collection. More recently, Brent (1999) achieves
improved results (about 70% word precision and
70% word recall) by employing additional lan-
guage modeling and smoothing techniques.

The best word recognition performance we ob-
tain is 49.1% word precision and 60.1% word re-
call, hence 53.8% word F-measure on the Brown
corpus. This is better than (Christiansen, et al.,
1998; Brent and Cartwright, 1996) but worse than
(Brent, 1999). However, it is difficult to draw a di-
rect comparison between these results because of
the different test corpora used. Nevertheless, our
results seem to support the utility of exploiting a
simple hierarchical model for word recognition.

6 Related Work

Our work is related to many other research efforts.
Word detection and lexical acquisition:

The work of (Kit and Wilks, 1999; Hua, 2000;
Brent and Cartwright, 1996; Brent, 1999) are all
based on the MDL principle, but differ in how
the description length is encoded. Kit and Wilks
(1999) uses a description length gain measure,
but does not use hierarchical structure nor EM
to learn a lexicon. (Brent and Cartwright, 1996;
Brent, 1999) use Huffman codes to describe words
and use a generative model in which the size of lex-
icon is predefined and then use this lexicon to gen-
erate observations. Our model uses a simple lex-
icon pruning scheme to automatically determine
the size of the lexicon.

(Brent and Cartwright, 1996; Brent, 1999;
Christiansen, et al., 1998) test their algorithms on
phonemically transcribed corpora (the CHILDES
collection and spontaneous child-directed British
English) but in practice the phonemes are not ex-
plicitly identified in the utterances, and therefore
the basic unit in speech is the phone. Here it is
also necessary to detect phonemes automatically
from a phone sequence. In essence, this corre-
sponds to the second level of our model: learning
words given phonemes.

Hierarchical models for sparse data: Many
authors have proposed hierarchical structures to
reduce the effects of sparse training data. Frietag
and McCallum (1999) use hierarchical models to
regularize hidden Markov model emission proba-



bility estimates. Slonim and Tishby (2000) use a
similar two-step method to cluster documents. In
this work, Slonim and Tishby cluster words in a
document first, and then cluster documents based
on the word clusters obtained from the first step.
The main technique for exploiting a hierarchy in
these cases is to share common information be-
tween related clusters of data. As long as there
is common information, a hierarchical structure
should prove beneficial. In our case, the common
information is the morphemes that are shared be-
tween words.

7 Conclusions and future work

We presented a two-level hierarchical EM ap-
proach to word segmentation and word discov-
ery by exploiting the internal structure of English
words. The hierarchical structure we impose is
natural and effectively deals with the sparse train-
ing data problem. Our model can learn phonemes
and words completely automatically. We also use
a lexicon pruning method based on mutual infor-
mation which makes the lexicon more compact
and helps guide EM out of local training max-
ima. We tested our model on the Brown corpus
and obtained a noticeable improvement over MDL
based methods on the same data.

Overall, these results show the potential advan-
tage of hierarchical models for speech segmenta-
tion and text-to-speech synthesis, as well as com-
pound and phrase detection in natural language
processing.

There remain many open questions. As shown
in many other areas of research, MDL or Bayesian
estimators often yield better models than a
straightforward maximum likelihood approach. It
is therefore worthwhile to consider imposing a hi-
erarchical model on description length gain (Kit
and Wilks, 1999) or exploit a prior in EM train-
ing. Also, our use of EM sets the probability of
all non-occurring words in the training sequence to
zero. As shown in (Brent, 1999), it would be bene-
ficial to employ language modeling and smoothing
techniques.

8 Acknowledgments

We would like to thank the Waterloo Statistical
NLP group and the anonymous referees for their

helpful comments. Research supported by Bell
University Labs, MITACS and NSERC.

References

Brand, M. 1999. Structure learning in conditional
probability models via an entropic prior and pa-

rameter extinction. In Neural Computation 11,
1155-1182.

Brent, M. 1999. An efficient, probabilistically
sound algorithm for segmentation and word dis-
covery. Machine Learning 34, 71-106.

Brent, M. and Cartwright, T. 1996. Distribu-
tional regularity and phonotactics are useful for
segmentation. Cognition 61, 93-125.

Christiansen M. and Allen, J. 1997. Coping
with Variation in Speech Segmentation. In Pro-
ceedings of GALA 1997: Language Acquisition:
Knowledge Representation and Processing, 327-
332.

Christiansen, M., Allen, J. and Seidenberg, M.
1998. Learning to Segment Speech Using Mul-
tiple Cues: A Connectionist Model. Language
and Cognitive Processes 13, 221-268.

Deligne, S. and Bimbot, F. 1995. Language Mod-
eling by Variable Length Sequences: Theoreti-
cal Formulation and Evaluation of Multigrams.
In Proceedings ICASSP.

de Marcken, C. 1995. The Unsupervised Ac-
quisition of a Lexicon from Continuous Speech.
Technical Report AI Memo No. 1558, M.I.T.,
Cambridge, Massachusetts.

Dempster, A., Laird, N. and Rubin, D. 1977.
Maximum-likelihood from incomplete data via
the EM algorithm. J. Royal Statist. Soc. Ser.
B 39.

Frietag, D. and McCallum, A. 1999. Informa-
tion Extraction with HMMs and Shrinkage. In
AAAI'99 Workshop on Machine Learning for
Information Extraction.

Hua, Y. 2000. Unsupervised word induction us-
ing MDL criterion. In Proceedings ISCSL2000,
Beijing.

Kit, C. and Wilks, Y. 1999. Unsupervised Learn-
ing of Word Boundary with Description Length
Gain. In Proceedings CoNLL99 ACL Work-
shop. Bergen.

Manning, C. and Schiitze, H. 1999. Founda-
tions of Statistical Natural Language Process-
ing. MIT Press, Cambridge, Massachusetts.

Peng, F. and Schuurmans, D. 2001. Self-
supervised Chinese Word Segmentation. In
Proceedings of the 4th Internation Symposium
on Intelligent Data Analysis(IDA2001).

Slonim, N. and Tishby, N. Document Clustering
using Word Clusters via the Information Bot-
tleneck Method. In Proceedings SIGIR-2000.



