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Abstract 

Due to the complex nature of hybrid electric vehicles, control 
strategies based on engineering intuition frequently fail to achieve 
satisfactory overall system efficiency. This paper presents a 
procedure for improving the energy management strategy for a 
parallel hybrid electric truck on the basis of dynamic optimization 
over a given drive cycle. Dynamic Programming techniques are 
utilized to determine the optimal control actions for a hybrid 
powertrain in order to minimize fuel consumption. By carefully 
analyzing the resulting optimal policy, new rules can be 
ascertained to improve the basic control strategy. The resulting 
new control strategy is shown to achieve better fuel economy 
through simulations on a detailed vehicle model. 

1. Introduction 

With the growing demand from the world community to reduce 
the emission of carbon dioxide, and after a decade of intense 
research, hybrid electric vehicles (HEV) suddenly appear more 
viable and necessary than ever before. These vehicles either 
reduce or eliminate the reliance on fossil fuels. Owing to their dual 
on-board power sources and regenerative braking, HEVs offer 
unprecedented possibilities to pursue higher fuel economy, 
particularly if a parallel HEV configuration is employed. To 
realize fuel economy benefits, the power management function of 
these advanced vehicles must be carefully designed. By power 
management, we mean the development of a higher-level control 
algorithm that determines the total amount of energy to be 
generated, and its split between the two power sources. 

Most of the control strategies developed for parallel HEVs can be 
classified into three categories. The first type employs intelligent 
control techniques such as rules/fuzzy logic/NN for estimation and 
control algorithm development ([1],[2]). The second approach is 
based on static optimization methods. Generally speaking, electric 
energy is translated into an equivalent amount of fuel to calculate 
the energy cost ([3],[4]). The optimization scheme then figures out 
proper energy and/or power split between the two energy sources 
under steady-state operation. Because of its relatively simple 
point-wise optimization nature, it is possible to extend such 
optimization schemes to solve the simultaneous fuel economy and 
emission optimization problem [5]. The basic idea of the third type 
of HEV control algorithm takes into account the dynamic nature of 
the system when performing the optimization ([6],[7]). 
Furthermore, the optimization is with respect to a time horizon, 
rather than for a fixed point in time. In general, a power split 
algorithm resulting from dynamic optimization will be more 
accurate under transient conditions. 

In this paper, we apply dynamic programming to solve the 
minimum fuel optimal control problem for a hybrid electric truck. 
A dynamic optimal solution to the energy management problem 

over a driving cycle is developed. The resulting feedback laws 
from the dynamic programming algorithms are not implementable 
due to their preview nature and heavy computational requirement. 
They are, on the other hand, a good design tool and a benchmark 
against which a basic control strategy can be compared and 
improved. We then study the behavior of the dynamic pro- 
gramming solution carefully, and extract simple, implementable 
rules. These rules are then used to augment a simple, intuition- 
based control algorithm. It was found that the performance of the 
intuition (rule) based algorithm can be enhanced significantly 
through this design procedure. 

The paper is organized as follows: In Section 2, the configuration 
of the hybrid electric truck is briefly described, followed by the 
description of the preliminary rule-based control strategy. Next, 
dynamic programming is introduced and the optimization result 
for minimum fuel consumption is given in Section 3. Section 4 
discusses how to design a better rule-based strategy using the 
results of the dynamic programming algorithm. Conclusions are 
presented in Section 5. 

2. Hybrid-Electric Vehicle System (HE-VESIM) 

2.1 System Configuration 

The baseline vehicle studied here is the International 4700 series 
truck, a 4X2 Class VI diesel truck produced by Navistar. The 
original diesel engine was downsized from the V8 (7.3L) to a V6 
(5.5L) and a 49 KW electric motor has been selected as the second 
power source. The vehicle system in this study is configured as a 
parallel hybrid with the electric motor positioned after the 
transmission. A schematic of the vehicle and the propulsion 
system is given in Figure 1. The engine is connected to the 
torque converter (TC), whose output shaft is then coupled to the 
transmission (Trns). The transmission and the electric motor can 
be linked to the propeller shaft (PS), differential (D) and two 
driveshafts (DS), coupling the differential with the driven wheels. 
Basic vehicle specifications are given in the Appendix. 
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Figure 1: Schematic diagram of the hybrid electric truck 
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Our Hybrid Vehicle-Engine SIMulation (HE-VESIM) model is 
based on the high-fidelity conventional vehicle simulator VESIM 
previously developed at the University of Michigan [8]. VESIM 
has been validated against measurements for a Class VI truck, and 
proven to be a very versatile tool for mobility, fuel economy and 
drivability studies. To construct a hybrid-vehicle simulator, some 
of the main modules required modifications, e.g. reduction of the 
engine size/power, and the integration of electric component 
models into the system. The model is implemented in the 
MATLAB/SIMULINK software environment, as presented in 
Figure 2. Since the detailed vehicle/chassis models have been 
presented in ([8],[9]), they are not reviewed here. 
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Figure 2: Hybrid-electric vehicle simulation in SIMULINK 

2.2 Rule Based  Control  Strategy 

The final HEV controller that will be implemented will be 
rule-based. The energy management strategy will only use 
current and past vehicle states and driver commands to calculate a 
proper (hopefully, close to optimal) control signal. The rule-based 
energy management strategy used as a starting point here was 
developed on the basis of engineering intuition and simple 
analysis of component efficiency tables/charts [9,10]. The design 
process starts from interpreting the driver pedal signal as a power 
request, P,.eq. According to the power request, the operation of 

this controller is divided into three control modes: Braking Control, 
Power Split Control or Recharging Control. If the power request is 
negative, Braking Control will be applied to decelerate the vehicle. 
If the power request is positive, either Power Split Control or 
Recharging Control will be applied according to a 
charge-sustaining policy. The charge-sustaining strategy assures 
that the battery state of charge (SOC) stays within preset lower 
and upper bounds. A 55-60% SOC range is chosen for efficient 
battery operation as well as to prevent battery depletion or damage 
in an extreme situation. In a normal propulsive driving condition, 
the Power Split Control determines the power flow in the hybrid 
powertrain. Whenever the SOC drops below the lower limit 
(55%), the controller will switch to the Recharging Control mode 
until the SOC reaches the upper limit (60%), and then Power Split 
Control will resume. The basic logic of each control mode is 
briefly described in the following. 

Power  Split  Control: Based on the engine efficiency map 
shown in Figure 3, a pre-selected "engine on" power line, P, . . . .  

and "motor assist" power line, P,, . . . .  are chosen to avoid engine 

operation in inefficient areas. If the total power request is less 
than the "engine on" power level, the electric motor will supply 
the requested power. Beyond Pe . . . .  the engine replaces the 

motor to provide the total power request. Once the power request 

exceeds what the engine can efficiently generate, P,, ..... the motor 

is activated to supply the additional power ( Preq - P, ... .  )" 
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Figure 3: Power Split Control strategy 

Recharging  Control: The  engine is the prime mover in this 
mode. In addition to powering the vehicle, the engine has to 
provide additional power for charging the battery. A pre-selected 
recharge power level, Pch, is added to the driver's power request, 

and the motor power command is forced to become negative in 
order to recharge the battery (P,,, =-Pch ). One exception is that 

when the total power request is less than the "engine on" power 
level, De . . . .  the motor alone will still propel the vehicle to prevent 

the engine from operating in this inefficient region. The other 
exception is that when total power request is greater than the 
maximum engine power, the motor power will become positive to 
assist the engine. 

Braking  Control: The  regenerative braking is activated to 
absorb the braking power. However, when the braking power 
request exceeds the regenerative braking capacity P,,_mm, the 

hydraulic brakes will be activated to assist in vehicle deceleration 

( Pb = Preq - Pm n~n ). 

The hybrid electric truck with this preliminary rule-based 
controller was tested through simulation over the EPA Urban 
Dynamometer Driving Schedule for Heavy-Duty Vehicles 
(UDDSHDV) in order to evaluate the fuel economy. Table 1 
compares the resulting fuel economy with that of the conventional 
diesel engine truck. 

Table 1: Fuel economy comparison: conventional, and rule-based 
(RB) 

RB Conventional 
MPG 12.56 10.63 

3. Dynamic Optimization Problem 

Contrary to the rule-based algorithm, the dynamic optimization 
approach usually relies on a model to compute the best control 
strategy. The model can be either analytical or numerical; in other 
words, it can work with numerical black boxes like HE-VESIM. 
For a given driving cycle, the optimal operating strategy to deliver 
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the best fuel economy can be obtained by solving a dynamic 
optimization problem. A numerical dynamic programming 
approach will be applied to solve this finite horizon optimization 
problem. 

3.1 Problem Formulation 

In the discrete-time format, a model of the hybrid electric vehicle 
can be expressed as: 

x(k + 1)= f (x(k) ,u(k))  (1) 

where u(k) is the vector of control variables such as fuel 

injection rate to the engine (kg/cycle), desired output torque from 
the motor (Nm), and gear shill command to the transmission, and 
x(k) is the vector of state variables of the system. The sampling 

time has been selected to be one second. 

The goal of the optimization scheme is to find the optimal control 
input, u(k) ,  which minimizes the total fuel consumption over a 

driving cycle. This defines the cost function to be minimized as 
follows: 

N-1 

J = fuel = ~" L(x(k),u(k)) (2) 
k=0 

where N is the time length of the driving cycle, and L is the 
instantaneous fuel consumption rate. 

During the optimization procedure, it is necessary to impose 
certain inequality constraints on the states and control to ensure 
they remain within their corresponding bounds: 

toe __ram < COe < COe--rain 

SOCmm <_ SOC <_ SOCm= (3) 

T~ mi. (co~,SOC) <- T~ <_ T~ ~.x(CO~,SOC) 
_ 

where co e is the engine angular speed and T m is the motor torque. 

In addition, equality constraints are imposed so that the vehicle 
always meets the speed and load demands of the specific driving 
cycle. 

Since the above problem formulation does not impose a charge 
sustaining policy, the optimization algorithm tends to deplete the 
battery in order to attain minimal fuel consumption. Hence, a final 
state constraint on SOC should be imposed to account for 
maintaining the energy of the battery and to achieve a fair 
comparison of fuel economy. A soft terminal constraint on SOC 
(quadratic penalty function) is added to the cost function as 
follows: 

N-1 

J = ~ L(x(k),u(k)) + G(x(N)) (4) 
k=0 

where G ( x ( N ) ) = a ( S O C ( N ) - S O C I )  z represents the penalty 

associated with the error in the terminal SOC; SOC I is the 

desired SOC at the final time; and c~ is a weighting factor. 

3.2 Model Simplification 

The detailed HE-VESIM model is not suitable for the purpose of 
dynamic optimization because its complexity leads to low 
computation efficiency. Dynamic Programming is well-known to 
require computations that grow exponentially with the number of 

states. A simplified vehicle model is thus developed for 
optimization purposes. The engine, torque converter, differential, 
and electric motor are reduced to static models with look-up tables 
for I/O mapping and efficiencies. Since the gear shilling duration 
is about one second, the automatic transmission was approximated 
to be a gearbox with gear number as the state. For this reason, the 
control to the transmission is constrained to take on the values 
o f - l ,  0, and 1 for downshill, no shill and upshift, respectively. 
The other state left is the battery SOC that is dynamically updated 
by the battery current. The simplified model was found to 
approximate well the complex model except under rapid 
transients. 

3.3 Dynamic Programming (DP) Solution 

A powerful algorithm to solve the above optimization problem is 
to use Dynamic Programming (DP). Based on Bellman's principle 
of optimality, the DP algorithm is presented as follows [ 11 ]: 

Step N -  1 : 

J*N-,(x(N - 1)) = min [ L ( x ( N -  1),u(N - 1)) + G(x(N))] (5) 
u(N-1) 

Step k , f o r  0 < k < N - 1  

J*k(x(k)) = minEL(x(k),u(k))+ J*k+l(x(k + 1)) 
u(k) (6) 

The recursive equation is solved backwards from step N -  1 to 0 
in order to find the optimal control policy. Each of the 
minimizations is performed subject to the constraints imposed by 
(3) and the driving cycle. 

The standard method to solve a Dynamic Programming problem 
numerically is to use quantization and interpolation ([11],[12]). 
The state and control values are first quantized into finite grids. At 
each step of the DP algorithm, the function Jk(x(k)) is evaluated 

only at the grid points. If the next state, x(k + 1), does not fall 

exactly on to a quantized value, then function interpolation is used 

to determine the values of J*k+l(x(k + l)) in (6) as well as 

G(x(N)) in (5). 

Despite the use of a simplified model, the long horizon of the 
UDDSHDV driving cycle makes the direct application of the 
above algorithm computationally infeasible for today's technology. 
Several approaches have been adopted to accelerate the 
computational speed [12]. From the velocity profile of the driving 
cycle, the vehicle model can be replaced by a finite set of 
operating points parameterized by wheel torque and speed. 
Pre-computed look-up tables are constructed for recording next 
states and instantaneous cost as a function of quantized states, 
control inputs, and operating points. Once these tables are built, 
they can be used to update (6) in a very efficient manner [ 12]. 

The dynamic programming procedure produces an optimal, 
time-varying, state-feedback control policy that is stored in a table 

for each of the quantized states and time stages, i.e., u* (x(k),k) ; 
this function is then used as a state feedback controller in the 
simulations. It should be noted that dynamic programming creates 
a family of optimal paths for all possible initial conditions. In our 
case, once the initial SOC is given, the optimal policy will find an 
optimal way to bring the final SOC back to the terminal value 
( SOC¢ ) while achieving the minimal fuel consumption. 
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3.4 Simulation Results 

Since the control policy determined by the dynamic programming 
algorithm is generated on the basis of the simplified model, the 
control policy should be verified on the original complex model. 
Therefore, the optimal control policy found by DP was applied to 
the original HE-VESIM model. The same driving cycle 
(UDDSHDV) is used to evaluate the fuel economy. The terminal 
SOC constraint was selected as 0.57 and the initial SOC in the 
simulation is chosen to be 0.57 as well for the purpose of 
calculating fuel economy. Dynamic trajectories of the vehicle 
under the optimal control policy for the UDDSHDV cycle are 
shown in Figure 4. The difference between the desired vehicle 
speed (UDDSHDV) and the actual vehicle speed is within 2 mph. 
The SOC trajectory starts at 0.57 and ends around 0.57 with a 
small quantization error. Consequently, we have confidence that 
the optimal solutions based on the simplified model are reliable. 
The fuel economy of the DP-optimized hybrid truck is 13.63 
(MPG). Significant improvement has been achieved by the DP 
algorithm as compared with values shown in Table 1. 
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Figure 4: Simulation result of UDDSHDV cycle. The engine 
and motor power are given in kW 

4. Improved Rule-Based Control Strategy 

Although the dynamic programming approach provides an optimal 
solution for minimizing fuel consumption, the resulting control 
policy is not implementable in real driving conditions because the 
optimal policy requires knowledge of the future speed and load 
profile of the vehicle. Nonetheless, analyzing optimal policies 
determined through dynamic programming can provide insight 
into how the fuel economy improvement is achieved. An improved 
rule-based control algorithm is proposed in this section based on 
the investigation of the dynamic programming results. 

4.1 Gear Shift Control 

Determining the gear shift strategy is crucial to the fuel economy 
of hybrid electric vehicles [13]. In the dynamic programming 
scheme, gear shift is one of the control inputs to the system. It is 
interesting to find out how the DP solution chooses the gear 
position to improve fuel economy. From the optimization results, 
the gear operation points are expressed on the engine power 
demand vs. wheel speed plot (Figure 5). It can be seen that four 
gear positions are separated into four regions and the boundary 
between two adjacent regions seem to represent better gear 
shifting thresholds. After adding a hysteresis function to the 

shifting thresholds, a new gear shift map determining when an 
upshift or downshift event occurs was developed. It should be 
mentioned that the optimal gear shift map for minimum fuel 
consumption can also be constructed through static optimization 
([10],[14]). Given an engine power and wheel speed, the best gear 
position for minimum fuel consumption can be chosen based on 
the steady-state engine fuel consumption map. It is found that the 
steady-state gear map nearly coincides with Figure 5. This is not 
surprising since the electric motor is positioned after the 
transmission, which means that the engine efficiency will 
dominate the gear shifting policy. Finally, we apply the new gear 
shift logic (Figure 5) to the original rule-based control strategy. 
Fuel economy is improved to 13.02 MPG as shown in Table 4. 
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Figure 5: Gear operating points of DP optimization 

4.2 Power Split Control 

In this section, we explore how Power Split Control of the 
preliminary rule-based strategy can be improved on the basis of 
dynamic programming. In Power Split Control, there are four 
possible operating modes of splitting the power demand between 
the engine and motor: motor only mode, engine only mode, hybrid 
mode (both the engine and motor), and recharge mode (the engine 
offers additional power to charge the battery). Rules for switching 
between the different modes will be established by examining the 
optimization results obtained from Section 3. The operating points 
displaying different operating modes are presented in the 
transmission input speed and power demand plane (see Figure 6). 
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Figure 6: Operating points of DP optimization over 
UDDSHDV cycle 
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Some observations can be made as follows: 

• Use the motor alone when power demand is less than 15 
kW. 

• In region A, DP chooses to operate in the hybrid mode. 
• The recharge mode rarely happens. 

The low number of recharging events may imply that under the 
current vehicle configuration it is not efficient to use engine power 
to charge the battery, even if increasing the engine's power would 
move its operation to a more efficient region. As a result, we will 
assume there is no recharging during Power Split Control, and 
recharge will only occur under Recharging Control when SOC is 
too low. The power distribution between the two prime movers in 
the hybrid mode is determined next. We wish to extract from the 
DP solution an optimal motor power model in the hybrid mode, 
and then determine the engine power demand by subtracting the 
motor power from the driver power demand. Clearly, optimal 
motor power may depend on many variables such as wheel speed, 
engine speed, power demand, SOC, gear ratio, etc. For this reason, 
a regression-based program was first used to assess which of these 
variables were the dominant factors in determining motor power. 
It turned out that power demand, engine speed, and transmission 
input speed were the critical factors. Motor power, as determined 
by the DP algorithm, was then fit to these three factors with a 
Neural Network (NN), using two hidden layers with 3 and 1 
neurons, respectively. The basic logic of this improved Power 
Split Control is summarized in Table 2. After implementing the 
new Power Split Control rules, the fuel economy was further 
improved to 13.17 MPG as shown in Table 4. 

Table 2: Basic logic rules of new Power Split Control 

I f  Preq ~- 15  kW, Pm - -  Preq Pe " -  0 

Else If Region A, Pm = Nnet~(P~eq, CO~an~, C%g) P~ = P~q - P~ 

If Region B, Pm = 0 P~ = P~eq, 

If P+>e+ . . . . .  Pe=Pe . . . .  Pm=Preq-Pe 

4.3 Recharging Control 

In the modified rule-based control algorithm, the thermostat- 
like charge sustaining strategy is retained, owing to robustness and 
safety concerns. The recharging mode will turn on if the battery 
SOC falls below the lower limit as described in the preliminary 
rule-based control. However, requiring the engine to provide a 
constant recharging power level is not necessarily the most 
efficient way to recharge the battery. For this reason, "when to 
recharge" and "at what rate to recharge" should be investigated to 
improve the recharging control policy. Since the engine is rarely 
used to recharge the battery from the previous optimization result, 
the dynamic programming procedure was modified in an attempt 
to observe an optimal recharging policy. First, we turned off the 
regenerative braking function in the dynamic programming routine. 
In other words, all the braking power was supplied by the 
hydraulic braking and hence there was no "free" energy secured 
from the regenerative braking to recharge the battery. Furthermore, 
after computing the optimal control policy via DP, the initial SOC 
was specified to be 0.52 for the purpose of simulating the situation 
that SOC was too low and the battery needed to be recharged. 
The simulation result is shown in Figure 7. Note that the above 
represents the optimal policy for minimum fuel consumption 
under the condition that the battery SOC has to be recharged back 

to 0.57 from 0.52. Note also that negative motor power now 
represents the recharging power supplied by the engine since there 
is no regenerative braking. 
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Figure 7: Simulation results of UDDSHDV cyclewithout 
regenerative braking 

Several rules were extracted from the optimization result as 
follows (possible reasons are in parentheses): 

• Recharging happens only when wheel speed is greater 
than 10 rad/s (better motor efficiency). 

• Battery recharging power is normally smaller than 15kW 
(better battery charging efficiency). 

• The electric motor is the only power source to drive the 
vehicle when power demand is less than 8 kW (avoid low 
engine efficiency). 

Further rules can be constructed as shown in Figure 8. A threshold 
line is drawn to divide the plot into two regions. In region C, 
there are few recharging events and most of the recharging events 
happen in region D. We extracted all the recharging data in region 
D in an attempt to determine a function for optimal recharging 
power, using the method of Section 4.2. A regression program was 
first used to find which factors should be used to build the model 
and then a Neural Network was used to fit the function. The basic 
logic of this improved Recharging Control is summarized in Table 
3. As shown in Table 4, fuel economy has been improved to 13.24 
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Figure 8" Operating points of DP optimization over 
UDDSHDV cycle without regenerative braking 
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MPG under this new Recharging Control policy. The gradual 
improvements in fuel economy can be seen in Table 4 as the new 
strategies were added one after another to the preliminary 
rule-based algorithm. 

Table 3: Basic logic rules of new Recharging Control 

I f  Preq -< 8 kW, Pm = Preq Pe = 0 

Else If Region C or towhee I < 10, Pe = Preq Pm= 0 

If Region D, Pm=-Pch P~ = P,~q + Pch, 

Pch = -Nnet2 (Preq, (Otrans' (Oeng) 

If 5 > 5  . . . . .  P e = e e  . . . .  Pm--Preq-Pe 

Table 4: Fuel economy comparison over UDDSHDV cycle 
Fuel Economy (MPG) 

Conventional 10.63 
Preliminary Rule-Based 12.56 

New Shift Control 13.02 
New Power Split Control 13.17 
New Recharging Control 13.24 
Dynamic Programming 13.63 

5. Conclusions 

Design of the energy management strategy for a hybrid electric 
vehicle with the aid of dynamic programming has the advantage of 
optimizing the overall system efficiency. Dynamic Programming 
provides engineers with fast quantitative analysis and further 
understanding of the complex hybrid system. In this paper, the 
problem of predicting the best fuel economy of a hybrid truck over 
a driving cycle was investigated. A Dynamic Programming (DP) 
algorithm based on a simplified vehicle model was developed to 
determine the optimal policy for hybrid operation. It was found 
that improvements in fuel economy were derived mainly from 
optimizing the gear-shifting policy and discharging/charging 
schedule, and relieving the engine load through more efficient 
motor/battery operation. By carefully analyzing the optimization 
results, an improved rule-based control strategy was developed for 
real driving application. 
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Appendix 

Table 5" Basic vehicle specification 

I 
DI Diesel Engine IV6, 5.475L, 157HP/2400rpm 
DC Motor t49kW 
Lead-acid Battery [Capacity: 18Ah, Number: 25 
Automatic Transmission [4 speed, GR: 2.59/1.68/1.06/0.75 
Vehicle ]Total mass: 7258 kg 
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