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Abstract— Partially Observable Markov Decision Processes
(POMDPs) provide a rich mathematical model to handle real-
world sequential decision processes but require a known model
to be solved by most approaches. However, mainstream POMDP
research focuses on the discrete case and this complicates
its application to most realistic problems that are naturally
modeled using continuous state spaces. In this paper, we
consider the problem of optimal control in continuous and
partially observable environments when the parameters of the
model are unknown. We advocate the use of Gaussian Process
Dynamical Models (GPDMs) so that we can learn the model
through experience with the environment. Our results on the
blimp problem show that the approach can learn good models
of the sensors and actuators in order to maximize long-term
rewards.

I. INTRODUCTION

In the past few decades, Reinforcement Learning (RL)
has emerged as an elegant and popular technique to handle
decision problems when the model is unknown. Reinforce-
ment learning is a general technique that allows an agent
to learn the best way to behave, i.e. to maximize expected
return, from repeated interactions with the environment.
One of the most fundamental open questions in RL is that
of exploration-exploitation: namely, how should the agent
choose actions during the learning phase, in order to both
maximize its knowledge of the model as needed to better
achieve the objective later (to explore), and maximize current
achievement of the objective based on what is already known
about the domain (to exploit). Under some (reasonably
general) conditions on the exploratory behavior, it has been
shown that RL eventually learns the optimal action-selection
behavior. However, these conditions do not specify how
to optimally trade-off between exploration and exploitation
such as to maximize utilities throughout the life of the agent,
including during the learning phase, as well as beyond.

Model-based Bayesian RL (BRL) is a recent extension
of RL that has gained significant interest from the AI
community as it can jointly optimize performance during
learning and beyond, within the standard Bayesian inference
paradigm. In this framework, prior information about the
problem (including uncertainty) is represented in parametric
form, and Bayesian inference is used to incorporate any
new information about the model. Thus, the exploration-
exploitation problem can be handled as an explicit sequential
decision problem, where the agent seeks to maximize future
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expected return with respect to its current uncertainty on
the model. An important limitation of this approach is
that making decision is significantly more complex since it
involves reasoning about all possible models and courses of
action. In addition, most work to date on this framework has
been limited to cases where full knowledge of the agent’s
state is available at every time step [1], [2], [3], [4].

Mainstream frameworks for model-based BRL for
POMDPs [5], [6] are only applicable in domains described
by finite sets of states, actions and observations, where the
Dirichlet distribution is used as a posterior over discrete
distributions. This is an important limitation in practice as
many practical problems are naturally described by continu-
ous states, actions and observations spaces. For instance, in
robot navigation problems, the state is usually described by
continuous variables such as the robot’s position, orientation,
velocity and angular velocity; the choice of action controls
the forward and angular acceleration, which are both con-
tinuous; and the observations provide a noisy estimate of
the robot’s state based on its sensors, which would also be
continuous.

One recent framework for model-based BRL in contin-
uous POMDP is the Bayes-Adaptive Continuous POMDP
[7], which extends the previously proposed Bayes-Adaptive
POMDP model for discrete domains to continuous domains.
However, this framework assumes that the parametric form
of the transition and observation functions are known and
that only the mean vector and covariance matrix of the
noise random variables are unknown. Hence, this framework
has limited applicability when the transition and observation
functions are completely unknown.

This paper aims to investigate a model-based BRL frame-
work that can handle domains that are both partially ob-
servable and continuous without assuming any parametric
form for the transition, observation and reward function.
To achieve that, we use Gaussian Process priors to learn
these functions, and then propose a planning algorithm which
selects the actions that maximize long-term expected rewards
under the current model.

II. RELATED WORK

In the case of continuous POMDPs, the literature is
relatively sparse. In general, the common approach is to
assume a discretization of the state space and therefore, be
an incomplete model of the underlying system.

A first approach to continuous-state POMDPs is undoubt-
edly Thrun’s approach [8], where a belief is viewed as a
set of weighted samples, which can be considered as a
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particular case (a degenerative case) of Gaussian mixture
representation. The author presents a Monte Carlo algorithm
for learning to act in POMDPs with real-valued state and
action spaces, paying thus tribute to the fact that a large
number of real-world problems are continuous in nature. A
reinforcement learning algorithm value iteration is used to
learn the value function over belief states. Then, a sample
version of nearest neighbors is used to generalize across
states.

A second approach to continuous-state POMDPs has been
proposed by Porta et al. [9]. In this paper, the authors
show that the optimal finite-horizon value function over
the infinite POMDP belief space is piecewise linear and
convex. This value function is defined by a finite set of
α-functions, expressed as linear combinations of Gaussians,
assuming that the sensors, actions and rewards models are
also Gaussian-based. Then, they show it for a fairly general
class of POMDP models in which all functions of interest are
modeled by Gaussian mixtures. All belief updates and value
iteration backups can be carried out analytically and exactly.
Experimental results, using the previously proposed random-
ized point-based value iteration algorithm PERSEUS [10],
have been demonstrated with a simple robot planning task in
a continuous domain. The same authors have extended their
work to deal with continuous action and observation sets
by designing effective sampling approaches [11]. The basic
idea is that general continuous POMDPs can be casted in
the continuous-state POMDP paradigm via sampling strate-
gies. This work, contrary to the approach presented in this
paper, assumes the POMDP model is known which is very
restrictive for the type of real applications we consider.

To sum up, and as previously stated, the common approach
to continuous POMDPs assumes a discretization of the state
space which can be a poor model for the underlying system.
This remains true if we cast the general continuous POMDP
in the continuous-state POMDP paradigm as Porta and
colleagues did [11]. Our approach avoids this, by proposing
a “real” continuous POMDPs where (i) the state space;
(ii) the action space and (iii) the observation space; are all
continuous and potentially multidimensional.

Another approaches related to our work turn around the
modeling of time series data using dynamical systems [12].
In the case of nonlinear time series analysis, Wang and
colleagues introduced Gaussian Process Dynamical Models
(GPDMs) so that they can learn models of human pose
and motion from high-dimensional motion capture data.
Their GPDM is a latent variable model comprising a low
dimensional latent space with associated dynamics, as well as
a map from the latent space to an observation space. The au-
thors marginalized out the model parameters in closed form
by using Gaussian process priors for both the dynamical and
observation mappings. It results in a nonparametric model
for dynamical systems. Thus, their approach is sustained by
a continuous hidden Markov model and does not include
actions and rewards.

III. CONTINUOUS POMDP

We consider a continuous POMDP to be defined by the
tuple (S,A,Z, T,O,R, b1, γ):

• S ⊂ Rm : The state space, which is continuous and
potentially multidimensional.

• A ⊂ Rn : The action space, which is continuous and
potentially multidimensional. It is assumed here that A
is a closed subset of Rn, so that the optimal control, as
defined below, exists.

• Z ⊂ Rp : The observation space, which is continuous
and potentially multidimensional.

• T : S × A × S → [0,∞] : The transition func-
tion which specifies the conditional probability density
T (s,a, s′) = p(s′|s,a) of moving to state s′, given the
current state s and the action a performed by the agent.

• O : S × A × Z → [0,∞] : The observation func-
tion which specifies the conditional probability density
O(s′,a, z′) = p(z|s′,a) of observing observation z′

when moving to state s′ after doing action a.
• R : S × A × R → [0,∞] : The reward func-

tion which specifies the conditional probability density
R(s′,a, r′) = p(r′|s′,a) of getting reward r′, given that
the agent performed action a and reached state s′.

• b1 ∈ ∆S : The initial state distribution.
• γ : The discount factor.

The posterior distribution over the current state s of
the agent, denoted b and refered to as the belief, can be
maintained via Bayes’ rule as follows:

baz(s′) ∝ O(s′,a, z′)
∫

S

T (s,a, s′)b(s)ds (1)

The agent’s behavior is determined by its policy π which
specifies the probability of performing action a in belief
state b. The optimal policy π∗ is the one that maximizes the
expected sum of discounted rewards over the infinite horizon
and is obtained by solving Bellman’s equation:

V ∗(b) = max
a∈A

[
g(b,a) + γ

∫
Z

f(z|b,a)V ∗(baz)dz
]

(2)

where V ∗ is the value function of the optimal policy and is
the fixed point of Bellman’s equation. Also,

g(b,a) =
∫

S

b(s)
∫

S

T (s,a, s′)
∫

R
rR(s′,a, r)drds′ds

is the expected reward when performing a in belief state b
and

f(z|b,a) =
∫

S

O(s′,a, z)
∫

S

T (s,a, s′)b(s)dsds′

is the conditional probability density of observing z after
doing action a in belief b. The next belief state obtained
by performing a Bayes’ rule update of b with action a and
observation z is denoted by baz.
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IV. GP-POMDP

In this paper, we consider the problem of optimal control
in such continuous POMDP where T , O and R are unknown
a priori. To consider making optimal decisions, the model
is learned from sequence of action-observation through
Gaussian Processes (GPs) modeling [13], [14]. GPs are a
class of probabilistic models which focuses on points where
a function is instantiated, through a Gaussian distribution
over the function space. Usually a Gaussian distribution is
parameterized by a mean vector and a covariance matrix, and
in the case of GPs, these two parameters are functions of the
space on which the process operates.

For our problem of optimal control, we propose to use
a Gaussian Process Dynamical Model (GPDM) [12] to
learn the transition, observation and reward functions and
then propose a planning algorithm which selects action that
maximizes long-term expected rewards under the current
model.

In order to use GPs to learn the transition, observation
and reward model, we first assume that the dynamics can be
expressed in the following form:

st = T ′(st−1,at−1) + εT
zt = O′(st,at−1) + εO
rt = R′(st,at−1) + εR

(3)

where εT , εO and εR are zero-mean Gaussian white noise.
The functions T ′, O′ and R′ are respectively unknown
deterministic function that returns the next state, observation
and reward. We seek to learn this model and maintain a
maximum likelihood estimate of the state trajectory by using
GPDM with optimization methods.

Let us denote S = [s1, s2, . . . , sN+1]> the state sequence
matrix, A = [a1,a2, . . . ,aN ]> the action sequence matrix,
Z = [z2, z3, . . . , zN+1]> the observation sequence matrix
and r = [r2, r3, . . . , rN+1]> the reward sequence vector.

A. Gaussian Process Dynamical Model

A GPDM consists of a mapping from a latent space,
which is assumed to follow first-order Markov dynamics,
to an observation space. This probabilistic mapping, for
the purpose of POMDPs, is defined as S × A → Z × R
and represents the observation-reward function where the
actions are fully observable and the states are latent variables.
The dynamic mapping in latent space is S × A → S and
corresponds to the transition function. Both mappings are
defined as linear combinations of nonlinear basis functions:

st =
∑

i biφi(st−1,at−1) + ns

yt =
∑

j cjψj(st,at−1) + ny
(4)

Here, B = [b1,b2, . . . ] and C = [c1, c2, . . . ] are weights
for basis function φi and ψj , ns and ny are zero-mean time
invariant white Gaussian noise. The joint observation-space
is denoted as Y = Z × R and therefore yt is the obser-
vation vector zt augmented with the reward rt. According
to Bayesian methodology, the unknown parameters of the
model should be marginalized out. This can be done in closed

form [15], [16] by specifying an isotropic Gaussian prior on
the columns of C to yield a multivariate Gaussian likelihood

p(Y | S,A, ᾱ) =

|W|N√
(2π)N(p+1) |KY |(p+1)

exp
(
−1

2
tr(K−1

Y YW2Y>)
)

(5)

where Y = [y2,y3, . . . ,yN+1]> is a sequence of joint
observations-rewards, KY is a kernel matrix computed with
hyperparameters ᾱ = {α1, α2, . . . ,W}. The matrix W is
diagonal and contains p+1 scaling factor to account for dif-
ferent variances in observed data dimensions. Using a unique
kernel function for both states and actions, the element of the
kernel matrix are (KY )i,j = kY ([si,ai−1], [sj ,aj−1]). Note
that for the observation case, the action is the one done at
the previous time step. The kernel used for this mapping is,
with xi = [si,ai−1], the common radial basis function:

kY (x,x′) = α1 exp
(
−α2

2
‖x− x′‖2

)
+ α−1

3 δxx′ (6)

where hyperparameter α1 represents the output variance,
α2 is the inverse width of the RBF which represents the
smoothness of the function and α−1

3 is the variance of the
additive noise ny .

For the dynamic mapping in the latent space, similar
methods are applied but needs to account for the Markov
property. By specifying an isotropic Gaussian prior on the
columns of B, the marginalization can be done in closed
form. The resulting probability density over latent trajectories
is:

p(S | A, β̄) =
p(s1)√

(2π)N(m+n) |KX |m+n
exp

(
−1

2
tr(K−1

X SoutS>out)
)

(7)

Here, p(s1) is the initial state distribution b1 and assumed
isotropic Gaussian, Sout = [s2, . . . , sN+1]> is the matrix
of latent coordinate that represent the unobserved states.
The N × N kernel matrix KX is constructed from X =
[x1, . . . ,xN ]> where xi = [si,ai] with 1 ≤ i ≤ t − 1. The
kernel function for the dynamic mapping is:

kX(x,x′) =

β1 exp
(
−β2

2
‖x− x′‖2

)
+ β3x>x′ + β−1

4 δxx′
(8)

where the additional hyperparameter β3 represents the output
scale of the linear term. Since all hyperparameters are un-
known and following [17], uninformative priors are applied
so that p(ᾱ) ∝

∏
i α
−1
i and p(β̄) ∝

∏
i β
−1. This results in

a probabilistic interpretation of action-observation sequence:

p(Z, r,S, ᾱ, β̄|A) =
p(Y|S,A, ᾱ)p(S|A, β̄)p(ᾱ)p(β̄)

(9)

To learn the GPDM, it has been proposed to min-
imize the joint negative log-posterior of the unknowns
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− ln p(S, ᾱ, β̄,W|Z, r,A) which is given by:

L =
m+ n

2
ln |KX |+

1
2

tr(K−1
X SoutS>out) +

1
2
s>1 s1

−N ln |W|+ p+ 1
2

ln |KY |+
1
2

tr(K−1
Y YW2Y>)

+
∑

i

lnαi +
∑

i

lnβi + C

(10)

For more details on GPDM learning methods, see [12].
The resulting MAP estimates of {S, ᾱ, β̄,W} is then used
to estimate the transition and observations-reward function:

st+1 = kX([st,at])>K−1
X Sout

yt+1 = kY ([st+1,at])>K−1
Y Y

(11)

Here kX and kY denote the vectors of covariance between
test point and their respective training set w.r.t. to hyperpa-
rameters ᾱ and β̄ respectively. Since S is part of a MAP
estimation, the states are assumed to be the most probable
under the current model and therefore the last element is con-
sidered as the current state. This model estimate combined
with the latent trajectory S correspond to our complete belief
conditioned on observations, actions and rewards.

B. Online Planning

By using the MAP estimate to update the belief of the
agent conditioned on observations in the environment, we
are able to address the question of how should the agent
act given its current belief. To achieve this, we adopt an
online planning algorithm which predicts future trajectories
of actions, observations and rewards to estimate the expected
return for each sampled immediate action. Each prediction
is made with the corresponding Gaussian Process’ mean.
Therefore, we approximate the value function with a finite
horizon for each predicted states. Afterward, the agent simply
performs the sampled immediate action which has highest
estimate. In fact, algorithm 1 has for only purpose the
evaluation of the learned GP-POMDP’s model:

Algorithm 1 PLANNING(b, M , E, d)

1: if d = 0 then Return 0, null
2: r∗ ← −∞
3: for i = 1 to M do
4: Sample a ∈ A uniformly
5: Predict z|b,a and r|b,a
6: b′ ← LEARNGPDM(b,a, z, r)
7: r′,a′ ← PLANNING(b′, E,E, d− 1)
8: r ← r + γr′

9: if r > r∗ then (r∗,a∗)← (r,a)
10: end for
11: Return r∗,a∗

At time t, the agent would call the function
PLANNING(bt,M,E,D), where bt is its current belief,
M is the number of actions to sample at the first level
(selection) of the tree, E is the number of actions to sample

for the next levels (evaluation) of the tree and d is the
depth of the tree, i.e. the planning horizon. Then, the agent
would execute the action at = a∗ in the environment
and then compute its new belief bt+1 using the function
LEARNGPDM(bt,at, zt+1, rt+1) after observing zt+1 and
rt+1. As described earlier, learning the GPDM is done by
optimizing equation (10) which returns the maximum a
posteriori state sequence and hyperparameters. Then, the
planning algorithm would be called again with the new
belief bt+1 to choose the next action to perform, and so on.

V. EXPERIMENTS

In this paper, we investigate the problem of learning to
control the height of an autonomous blimp online, without
knowing its pre-defined physical models. We have opted
for blimps because, in comparison to other flying vehicles,
they have the advantage of operating at relatively low speed,
and they keep their altitude without necessarily moving.
Furthermore, they are not sensitive to control errors as
in the case of helicopters for instance [18]. In fact, the
problem of controlling a blimp has been studied intensively
in the past, particularly in the control community. Zhang and
colleagues [19] have introduced a PID controller combined
to a vision system to guide a blimp. For their part, Wyteh and
Barron [20] have used a reactive controller; whereas Rao et
al. [21] a controller using fuzzy logic. Some other researchers
have used the non-linear dynamics to control several flight
phases [22], [23].

All these approaches assume prior knowledge about the
dynamics or pre-defined models. Our approach does not
assume such prior knowledge1 and aims to learn the control
policy directly, without passing through a priori information
about the payload, the temperature, or the air pressure. In
this context, the approach that is most closely to the one
described here has recently been presented by Rottmann et
al. [18]. They applied model-free Monte Carlo reinforcement
learning and used Gaussian processes for dealing with the
continuous state-action space. More precisely, they assumed
a completely observable continuous state-action space and
used filtered state estimates to approximate the Q-function
with a Gaussian process. Conversely, our model-based ap-
proach aims to learn the model by using a Gaussian process
prior and approximate the value function with the learned
posterior. In fact, the blimp application is an illustrative
example that sustains the applicability of the Bayesian Rein-
forcement Learning in Continuous POMDPs with Gaussian
Processes; an idea that certainly can be used in any complex
realistic application.

The goal of our experiments is to validate the use of
GPDMs for online model identification and state estimation
combined with a planning algorithm for online decision-
making. The agent aims to maintain a target height equals
to 0 using as less energy as possible. Each episode starts
at zero height and zero velocity and is run for 100 time
steps. The time discretization is 1 second according to the

1The prior is a zero mean Gaussian process.
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Fig. 1. Averaged received reward Fig. 2. Averaged distance from the target height

simulator dynamics. Observations are the height(m) and the
velocity(m/s) with an additive zero-mean Gaussian noise
with 1cm standard deviation. Rewards are corrupted with
the same Gaussian noise. The blimp dynamics are simulated
using a deterministic transition function where the resulting
state, comprising height and velocity, is then degraded by
a zero-mean isotropic Gaussian noise with 0.5cm standard
deviation. The continuous action set is defined as A =
[−1, 1] where the bounds represent maximum downward and
upward actions.

To learn and plan from observations and rewards, we
trained a GPDM at each time step providing the planning
algorithm a model and associated believed trajectory. In
order to ensure a good tradeoff between exploration and
exploitation, we randomly sampled actions according to a
time-decreasing probability. The planning parameters were
set to M = 25 samples for action selection level, E = 10
samples for state evaluation levels, d = 3 as tree depth and
the discount factor γ = 0.9.

The reward function was crucial for our experiment since
the agent has only few steps to learn and the search depth
for the planning phase is limited. Consequently, the chosen
reward function is set as the sum of two Gaussians. The
first Gaussian having standard deviation of 1 meter gives
half point for being roughly around the goal. The second
one with 5cm standard deviation gives another half point if
the blimp is only a few centimeters apart its goal. A cost
for actions is also incurred to force the blimp to reach its
goal with minimal energy usage. All observed rewards are
corrupted by a Gaussian noise with 0.1 variance.

Figure V shows the averaged reward received by the
agent. We notice that the curve stabilize around a return
of 0.8. This value corresponds to the received reward when
a blimp is 5cm appart the target height while not doing
any significant action. In Figure V, we observe that the
blimp averaged distance from height 0 seems to stabilize
around 10cm. Figure V shows the prediction error on the
observations-reward sequence using equation (11) with the

last state estimate. We defined the error as the sum of
absolute errors on predicting noisy observations and rewards.
Figure V shows that most trajectories have large variance at
the beginning and then the variance decrease as the agent
gets more observations. Each box represent the 25th and 75th
percentiles, the central mark is the median and the whiskers
extend to non-outlier range. A comparison with the random
policy, which is not reported, showed that this policy rapidly
diverge to over 3 meters from the goal.

VI. DISCUSSION

Making decision in stochastic and partially observable en-
vironments with unknown model is a very important problem
because a parametric model is often difficult to specify. To
address this problem, we proposed a continuous formulation
of the POMDP where the model’s functions are assumed
to be Gaussian processes. This assumption allowed us to
use the work on Gaussian Process Dynamical Model [12]
by adding the actions and rewards parts to fulfil POMDP’s
requirement. Although the agent had no prior information,
our experimental results on the blimp problem show that the
learned model is able to provide useful predictions for our
online planning algorithm. Considering the chosen noises’
variance, most agents achieved reasonable performance by
receiving good averaged rewards over time.

However, comparing our approach to previous ones on
the basis of control performance is hard, since the model is
learned and only very few data are used to do so. To compare
the approaches under control performances criterions, two
points should be considered before. First, learning from
larger data sets using sparsification techniques would surely
improve prediction performance. Second, once the model is
learned, adding filtering methods instead of the maximum a
posteriori estimate will also help in the decision process.

Indeed, the maximum a posteriori estimation of the state
trajectory limits the learning efficiency. While using Gaus-
sian distribution on state trajectory could provide better
results, it also entails learning with uncertain data sets which
map Gaussian inputs to Gaussian outputs. Such learning
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Fig. 3. Averaged prediction error Fig. 4. Box plot of the heights distributions

procedure is one of the interesting research avenue. More-
over, as we proposed a reinforcement learning algorithm
which use bayesian learning for the model, its uncertainty
should be used in the planning phase to get an exploration-
exploitation trade-off. Further improvements include learning
from different trajectories as well as finding better and
separate kernel functions for state and actions, especially
when the transition function is stochastic while actions are
noise-free, as in our example. At last, it is possible to use
the learning procedure for model evaluation by changing the
Gaussian processes’ prior mean by the functions to evaluate.

To conclude, results on the blimp control task are promis-
ing. Further investigations on bayesian reinforcement learn-
ing in continuous POMDPs with Gaussian processes are
currently in progress. A harder control problem is currently
considered using a Gaussian approximation instead of a
simple point estimates for the state trajectory estimation.
The posterior distribution over the models’ functions is thus
computed from infered sequences of belief states.
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