
Branching Processes of High-Level Petri Nets

Victor Khomenko and Maciej Koutny

Department of Computing Science, University of Newcastle
Newcastle upon Tyne NE1 7RU, U.K.

{Victor.Khomenko, Maciej.Koutny}@ncl.ac.uk

Abstract. In this paper, we define branching processes and unfoldings of high-level
Petri nets and propose an algorithm which builds finite and complete prefixes of such
unfoldings. The advantage of our method is that it avoids a potentially expensive trans-
lation of a high-level Petri net into a low-level one. The approach is conservative in the
sense that all the verification tools employing the traditional unfoldings can be reused
with prefixes derived directly from high-level nets. Our experiments demonstrate that
this method is often superior to the usual one, involving the explicit construction of the
intermediate low-level net.

Keywords: verification, model checking, high-level Petri nets, unfolding, canonical pre-
fix.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of local states have
descriptions which are both short and manageable, and the complexity of their behaviour comes
from highly complicated interactions with the external environment rather than from compli-
cated data structures and manipulations thereon. One way of coping with this complexity
problem is to use formal methods and, especially, computer aided verification tools implement-
ing model checking (see, e.g., [5]) — a technique in which the verification of a system is carried
out using a finite representation of its state space.

The main drawback of model checking is that it suffers from the state space explosion
problem. That is, even a relatively small system specification can (and often does) yield a very
large state space. To help in coping with this, a number of techniques have been proposed,
which can roughly be classified as aiming at an implicit compact representation of the full
state space of a reactive concurrent system, or at an explicit generation of its reduced (though
sufficient for a given verification task) representation.

McMillan’s (finite prefixes of) Petri Net unfoldings (see, e.g., [24, 25]) rely on the partial or-
der view of concurrent computation, and represent system’s actions and local states implicitly,
using an acyclic net. In view of the development of fast model checking algorithms employ-
ing unfoldings ([12, 14, 18]), the problem of efficiently building them is becoming increasingly
important. Recently, [8, 9, 13, 15, 19, 27] addressed this issue — considerably improving the
original McMillan’s technique — but we feel that generating net unfoldings deserves further
investigation. In particular, it is highly desirable to generalize this technique to more expressive
formalisms, such as high-level (or ‘coloured’) Petri nets. This formalism allows one to model
in quite a natural way many constructs of high-level specification languages used to describe
concurrent systems [2, 10, 11]. Though it is possible to translate a high-level net into a low-level
one and then unfold the latter, it is often the case that the intermediate low-level net is much
larger than the resulting prefix.

In this paper, we propose an approach which allows one to build the prefix directly from
a high-level net, thus avoiding potentially expensive translation into a low-level net. Our ex-
periments demonstrate that this method is often superior to the traditional one, involving the
explicit construction of an intermediate low-level net. We show that it is possible to generate
exactly the same prefix which would have been generated by the traditional approach, and so

2 V. Khomenko, M. Koutny

all the verification tools employing unfoldings can be reused with prefixes generated by the
method proposed in this paper.

While writing up this paper, we found out that a related work was reported in [22]. There-
fore, we highlight here the main differences between our approach and that of [22]. We establish
an important relation between the branching processes of a high-level net and those of its low-
level counterpart. This allows us to import results proven for branching processes of low-level
nets rather than re-prove them. Among such results are the canonicity of the prefix for different
cutting contexts, the usability of the total adequate order proposed in [9], and the parallel un-
folding algorithm proposed in [15] (neither of these were proved in [22]). Moreover, we adopt a
different way of introducing branching processes of high-level nets, which results in a neat and
relatively easy-to-comprehend presentation. In particular, we do not use algorithm-dependent
proofs, and we tried to make the definitions for high-level nets as similar to the corresponding
definitions for low-level nets as possible. Finally, we do not restrict ourselves to finite sets of
colours, and fix a subtle mistake of [22] in the definition of cut-off events and the related prefix
(see Remark 1).

2 Notation

Throughout the paper, we use the following mathematical notation for multisets.

A multiset over a set X is a function µ : X → N
df

= {0, 1, 2, . . .}. Note that any subset of X

may be viewed (through its characteristic function) as a multiset over X. We denote x ∈ µ if
µ(x) ≥ 1, and for two multisets over X, µ and µ′, we write µ ≤ µ′ if µ(x) ≤ µ′(x) for all x ∈ X.

We will use ∅ to denote the empty multiset defined by ∅(x)
df

= 0, for all x ∈ X. Moreover, a
finite multiset may be represented by explicitly listing its elements between the {| . . . |} brackets.
For example {|y, y, z|} denotes the multiset µ such that µ(y) = 2, µ(z) = 1 and µ(x) = 0, for
x ∈ X \ {y, z}.

The sum of two multisets µ and µ′ over X is given by (µ+µ′)(x)
df

= µ(x)+µ′(x), the difference

by (µ−µ′)(x)
df

= max{0, µ(x)−µ′(x)}, and the intersection by (µ∩µ′)(x)
df

= min{µ(x), µ′(x)},
for all x ∈ X. A multiset µ is finite if there are finitely many x ∈ X such that µ(x) ≥ 1. In

such a case, the cardinality of µ is defined as |µ|
df

=
∑

x∈X µ(x).
The notation {|P (x) | x ∈ µ|}, where µ is a multiset and P (x) is an object constructed from

x ∈ X, will be used to denote the multiset µ′ such that

µ′(y)
df

=
∑

x∈X∧P (x)=y

µ(x) · y ,

where µ(x) ·y is the multiset consisting of exactly µ(x) copies of y. Furthermore, for a mapping

h : X → Y and a multiset µ over X, we denote h{|µ|}
df

= {|h(x) | x ∈ µ|}. For example,
{|x2+1 | x ∈ {| − 1, 0, 0, 1|}|} = {|1, 1, 2, 2|}.

3 Low-level Petri nets

In this section, we first present basic definitions concerning Petri nets, and then recall (see
also [7, 9, 20]) notions related to net unfoldings.

A net (with weighted arcs) is a triple N
df

= (P, T,W) such that P and T are disjoint sets
of respectively places and transitions, and W is a multiset over (P × T) ∪ (T × P) called the
weight function. The net N is called ordinary if W is a set; in such a case, W can be considered
as a flow relation on (P × T) ∪ (T × P). A marking of N is a multiset M over P , and the set
of all markings of N will be denoted by M(N). (Note that M is finite whenever P is.) We
adopt the standard rules about drawing nets, viz. places are represented as circles, transitions
as boxes, the weight function by arcs with the indicated weight (we do not draw arcs whose
weight is 0, and we do not indicate the weight if it is 1), and markings are shown by placing

Prefixes of HL Petri Net Unfoldings 3

tokens within circles. The multisets •z
df

= {|y | (y, z) ∈ W |} and z•
df

= {|y | (z, y) ∈ W |}, denote
the pre- and postset of z ∈ P ∪T . (Note that for an ordinary net, both •z and z• are sets.) We
will assume that •t 6= ∅ 6= t•, for every t ∈ T .

A net system is a pair Σ
df

= (N,M0) comprising a finite net N = (P, T,W) and an initial
marking M0. A transition t ∈ T is enabled at a marking M if •t ≤ M . Such a transition can

be fired, leading to the marking M ′ df

= M − •t + t•. We denote this by M [t〉M ′. The set of
reachable markings of Σ is the smallest (w.r.t. set inclusion) set RM(Σ) containing M0 and
such that if M ∈ RM(Σ) and M [t〉M ′, for some t ∈ T , then M ′ ∈ RM(Σ).

Σ is k-bounded if, for every reachable marking M and every place p ∈ P , M(p) ≤ k, and
safe if it is 1-bounded. Moreover, Σ is bounded if it is k-bounded for some k ∈ N. One can
show that the set RM(Σ) is finite iff Σ is bounded.

Note that if a safe net system Σ has arcs of weight more than 1, the transitions incident
to them can never become enabled, and so can be removed (together with their incoming and
outgoing arcs) without changing the behaviour of Σ. Thus, one can assume that the underlying
nets of safe net systems are ordinary.

Places p1, . . . , pk of a net system Σ are mutually exclusive if no reachable marking puts
tokens on more than one of them, i.e., for every M ∈ RM(Σ), M(pi) ≥ 1 implies M(pj) = 0,
for all j ∈ {1, . . . , k} \ {i}.

Low-level branching processes Two nodes (places or transitions), y and y′, of an ordinary
net N = (P, T,W) are in conflict, denoted by y#y′, if there are distinct transitions t, t′ ∈ T

such that •t ∩ •t′ 6= ∅ and (t, y) and (t′, y′) are in the reflexive transitive closure of the flow
relation W , denoted by ¹. A node y is in self-conflict if y#y.

An occurrence net is an ordinary net ON
df

= (B,E,G), where B is the set of conditions
(places), E is the set of events (transitions) and G is a flow relation, satisfying the following:
ON is acyclic (i.e., ¹ is a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B∪E, ¬(y#y)
and there are finitely many y′ such that y′ ≺ y, where ≺ denotes the transitive closure of G.
Min(ON) will denote the set of minimal (w.r.t. ≺) elements of B ∪ E. The relation ≺ is the
causality relation. Two nodes are concurrent, denoted y co y′, if neither y#y′ nor y ¹ y′ nor
y′ ¹ y.

Definition 1. A homomorphism from an occurrence net ON = (B,E,G) to a net system Σ

is a mapping h : B ∪ E → P ∪ T such that

– h(B) ⊆ P and h(E) ⊆ T (conditions are mapped to places, and events to transitions).
– For each e ∈ E, h{|•e|} = •h(e) and h{|e•|} = h(e)• (transition environments are preserved).
– h{|Min(ON)|} = M0 (minimal conditions are mapped to the initial marking).
– For all e, f ∈ E, if •e = •f and h(e) = h(f) then e = f (there is no redundancy).

A branching process of Σ is a pair π
df

= (ON , h) such that ON is an occurrence net and h is a
homomorphism from ON to Σ. 3

If an event e is such that h(e) = t then we will often refer to it as being t-labelled. A branching
process π′ = (ON ′, h′) of Σ is a prefix of a branching process π = (ON , h), denoted by π′ ⊑ π,
if ON ′ = (B′, E′, G′) is a subnet of ON = (B,E,G) containing all minimal elements and such
that: if e ∈ E′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G then e ∈ E′;
and h′ is the restriction of h to B′ ∪E′. For each Σ there exists a unique (up to isomorphism)
maximal (w.r.t. ⊑) branching process Unf max

Σ , called the unfolding of Σ (see [7]).
Sometimes it is convenient to start a branching process with a (virtual) initial event ⊥,

which has the postset Min(ON), empty preset, and no label; we will henceforth use such an
event, without drawing it in figures or treating it explicitly in algorithms.

An example of a safe net system and two of its branching prefixes is shown in Figure 1,
where the homomorphism h is indicated by the labels of the nodes. The process in Figure 1(b)
is a prefix of that in Figure 1(c).

4 V. Khomenko, M. Koutny

(a)

p1 p2

p3 p4 p5

p6 p7

t1 t2 t3

t6 t7

t4 t5

(b)

p1 p2

e1 t1 e2 t2 e3 t3

p3 p4 p5

e4t4 e5 t5

p6 p7 p6 p7

e6 t6 e7 t7 e8 t6 e9 t7

p1 p2 p1 p2

(c)

p1 p2

e1 t1 e2 t2 e3 t3

p3 p4 p5

e4t4 e5t5

p6 p7 p6 p7

e6 t6 e7 t7 e8 t6 e9 t7

p1 p2 p1 p2

e10 t1 e11 t2 e12 t3 e13 t1 e14 t2 e15 t3

p3 p4 p5 p3 p4 p5

e16t4 e17 t5 e18t4 e19 t5

p6 p7 p6 p7 p6 p7 p6 p7

Fig. 1. A net system (a) and two of its branching processes (b,c).

Prefixes of HL Petri Net Unfoldings 5

Configurations and cuts A configuration of an occurrence net ON is a set of events C such
that for all e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies f ∈ C; since we assume the
initial event ⊥, we additionally require that ⊥ ∈ C. For every event e ∈ E, the configuration

[e]
df

= {f | f ¹ e} is called the local configuration of e, and 〈e〉
df

= [e] \ {e} denotes the set of
causal predecessors of e. Moreover, for a set of events E′ we denote by C ⊕ E′ the fact that
C ∪ E′ is a configuration and C ∩ E′ = ∅. Such an E′ is a suffix of C, and C ⊕ E′ is an
extension of C.

The set of all finite (resp. local) configurations of a branching process π will be denoted
by Cπ

fin (resp. Cπ
loc), and we will drop the superscript π in the case π = Unf max

Σ .

A set of events E′ is downward-closed if all causal predecessors of the events in E′ also
belong to E′. Such a set induces a unique branching process π whose events are exactly the
events in E′, and whose conditions are the conditions adjacent to the events in E′ (including ⊥).

A set of conditions B′ such that for all distinct b, b′ ∈ B′, b co b′, is called a co-set. A cut
is a maximal (w.r.t. set inclusion) co-set. Every marking reachable from Min(ON) is a cut.

Let C be a finite configuration of a branching process π. Then the set

Cut(C)
df

=
(

Min(ON) ∪
⋃

c∈C

c•
)

\
(

⋃

c∈C

•c
)

is a cut; moreover, the multiset of places Mark(C)
df

= h{|Cut(C)|} is a reachable marking of Σ,
called the final marking of C. A marking M of Σ is represented in π if there is C ∈ Cπ

fin such
that M = Mark(C). Every marking represented in π is reachable in the original net system Σ,
and every reachable marking of Σ is represented in Unf max

Σ .

Complete prefixes of Petri net unfoldings Though unfoldings are infinite whenever the
original net systems have infinite runs, it turns out that often they can be truncated in such a
way that the resulting prefixes, though finite, contain enough information to decide a certain
behavioural property, e.g., deadlock freeness. We then say that the prefixes are complete for
this property.

There exist several different methods of truncating Petri net unfoldings. The differences
are related to the kind of information about the original unfolding one wants to preserve in
the prefix, as well as to the choice between using only local configurations (which can improve
the running time of an algorithm), or all finite configurations (which can result in a smaller
prefix), to cut the unfolding. In [20], a uniform approach to truncating unfoldings, based on
cutting contexts, was proposed.

Cutting contexts For greater flexibility, the approach proposed in [20] is parametric. The
first parameter determines the information to be preserved in a complete prefix (in the standard
case, the set of reachable markings). The main idea there was to shift the emphasis from the
reachable markings of Σ to the finite configurations of Unf max

Σ . Formally, the information to
be preserved in the prefix corresponds to the equivalence classes of some equivalence relation ≈
on Cfin . The other two parameters are more technical: they specify under which circumstances
an event can be designated as a cut-off event (intuitively, this means that all its causal successors
in the full unfolding can be removed).

Definition 2. A cutting context is a triple Θ
df

=
(

≈ , ¢ ,
{

Ce

}

e∈E

)

, where:

1. ≈ is an equivalence relation on Cfin .

2. ¢, called an adequate order, is a strict well-founded partial order on Cfin refining ⊂, i.e.,
C ′ ⊂ C ′′ implies C ′

¢ C ′′.

6 V. Khomenko, M. Koutny

3. ≈ and ¢ are preserved by finite extensions, i.e., for every pair of configurations C ′ ≈ C ′′,
and for every suffix E′ of C ′, there exists1 a finite suffix E′′ of C ′′ such that:
(a) C ′′ ⊕ E′′ ≈ C ′ ⊕ E′, and
(b) if C ′′

¢ C ′ then C ′′ ⊕ E′′
¢ C ′ ⊕ E′.

4. {Ce}e∈E is a family of subsets of Cfin , i.e., Ce ⊆ Cfin , for all e ∈ E. 3

The main idea behind the adequate order is to specify which configurations will be preserved
in the complete prefix; it turns out that all ¢-minimal configurations in each equivalence class
of ≈ will be preserved. The last parameter is needed to specify the set of configurations used
later to decide whether an event can be designated as a cut-off event. For example, Ce may
contain all finite configurations of Unf max

Σ , or, as it is usually the case in practice, only the local
ones. We will say that a cutting context Θ is dense (saturated) if Ce ⊇ Cloc (resp. Ce = Cfin),
for all e ∈ E.

In practice, Θ is usually dense (or even saturated, see [13]), and at least the following three
kinds of the equivalence ≈ have been used:

– C ′≈marC
′′ if Mark(C ′) = Mark(C ′′). This is the most widely used equivalence (see [9, 13,

15, 24]). Note that the equivalence classes of ≈mar correspond to the reachable markings
of Σ.

– C ′≈codeC
′′ if Mark(C ′) = Mark(C ′′) and Code(C ′) = Code(C ′′), where Code(C) is the

signal coding function. Such an equivalence is used in [28] for unfolding Signal Transition
Graphs (STGs) specifying asynchronous circuits.

– C ′≈symC ′′ if Mark(C ′) and Mark(C ′′) are symmetric (equivalent) markings. This equiv-
alence is the basis of the approach exploiting symmetries to reduce the size of the prefix,
described in [6].

We will write e ¢ f whenever [e] ¢ [f]. Clearly, ¢ is a well-founded partial order on the set of
events refining ≺. Hence, one can use the Noetherian induction for definitions and proofs, i.e.,
it suffices to define or prove something for an event under the assumption that it has already
been defined or proven for all its ¢-predecessors. In the rest of this section, we assume that
the cutting context Θ is fixed.

Completeness of branching processes We now recall (see [20]) the notion of completeness
for branching processes.

Definition 3. A branching process π of Σ is complete w.r.t. a set Ecut of events of Unf max
Σ

if the following hold:

1. If C ∈ Cfin , then there is C ′ ∈ Cπ
fin such that C ′ ∩ Ecut = ∅ and C ≈ C ′.

2. If C ∈ Cπ
fin is such that C ∩ Ecut = ∅, and e is an event such that C ⊕ {e} ∈ Cfin , then

C ⊕ {e} ∈ Cπ
fin .

A branching process π is complete if it is complete w.r.t. some set Ecut . 3

Note that π remains complete following the removal of all events e for which 〈e〉 ∩ Ecut 6= ∅,
after which the events from Ecut (usually referred to as cut-off events) will be either maximal
events of the prefix or not in the prefix at all. Note also that the last definition depends only
on the equivalence ≈, and not on the other components of the cutting context.

For the relation ≈mar , each reachable marking is represented by a configuration in Cfin

and, hence, also by a configuration in Cπ
fin , provided that π is complete. This is what is usually

expected from a correct prefix. Moreover, Definition 3(2) implies that all firings enabled by
the configurations from Cπ

fin containing no events from Ecut are preserved (see [20] for the
explanation why this property is desirable).

1 Unlike [9], we do not require that E′′ = I2

1 (E′), where I2

1 is the ‘natural’ isomorphism between the
finite extensions of C′ and C′′. That isomorphism may be undefined if Mark(C′) 6= Mark(C′′), and
thus cannot be used in our generalised setting.

Prefixes of HL Petri Net Unfoldings 7

Static cut-off events Here we recall (see [20]) the definition of static cut-off events. They
are defined w.r.t. the whole unfolding, so that they are independent on an algorithm (hence
the term ‘static’), together with feasible events, which are precisely those events whose causal
predecessors are not cut-off events, and as such must be included in the prefix determined by
the static cut-off events.

Definition 4. The sets of feasible events, denoted by fsbleΘ, and static cut-off events, denoted
by cutΘ, of Unf max

Σ are defined thus:

1. An event e is a feasible event if 〈e〉 ∩ cutΘ = ∅.
2. An event e is a static cut-off event if it is feasible, and there is a configuration C ∈ Ce such

that C ⊆ fsbleΘ \ cutΘ, C ≈ [e], and C ¢ [e]. Any C satisfying these conditions will be
called a corresponding configuration of e. 3

It turns out that, due to the well-foundedness of ¢, fsbleΘ and cutΘ are well-defined sets
(see [20]). Since 〈⊥〉 = ∅, ⊥ ∈ fsbleΘ by the above definition. Furthermore, ⊥ 6∈ cutΘ, since ⊥
cannot have a corresponding configuration. Indeed, [⊥] = {⊥} is the smallest (w.r.t. set inclu-
sion) configuration, and so ¢-minimal by Definition 2(2).

Remark 1. A näıve attempt to define an algorithm-independent notion of a cut-off event as an
event e for which there is a configuration C ∈ Ce such that C ≈ [e] and C ¢ [e] generally fails
for non-saturated cutting contexts, e.g., when (as it is often the case in practice) only local
configurations can be used as cut-off correspondents. Indeed, a corresponding local configura-
tion C of a cut-off event e defined in this way may contain another cut-off event. Though in
this case Unf max

Σ contains another corresponding configuration C ′ ≈ C with no cut-off events
such that C ′

¢ C, C ′ is not necessarily local.
Our approach, though slightly more complicated, allows one to deal uniformly with arbitrary

cutting contexts. Moreover, it coincides with the described näıve approach when Θ is saturated.
3

Canonical prefix Once the feasible events are defined, the following notion arises quite
naturally. The canonical prefix of Unf max

Σ is the branching process Unf Θ
Σ induced by fsbleΘ.

Thus Unf Θ
Σ is uniquely determined by the cutting context Θ. The paper [20] proves that the

canonical prefix is complete (in the sense of Definition 3), and also investigates the conditions
which guarantee its finiteness. Further in this paper we will show that all these results can be
imported to the theory of branching processes of high-level Petri nets.

Algorithms for generating canonical prefixes It turns out that canonical prefixes can
be constructed by straightforward generalizations of the existing unfolding algorithms (see,
e.g., [9, 15]). The slicing algorithm from [15], parameterised by a cutting context Θ, is shown
in Figure 2. (The algorithm proposed in [9] is its special case.) It is assumed that the function
PotExt(π) finds the set of possible extensions of a branching process π, according to the
following definition.

Definition 5. For a branching process π of Σ, a possible extension is a pair (D, t), where D

is a co-set in π and t is a transition of Σ, such that h{|D|} = •t and π contains no t-labelled
event with preset D. 3

We will take the pair (D, t) as a t-labelled event having D as its preset.
Compared to the standard unfolding algorithm in [9], the slicing algorithm has the following

modifications in its main loop. A set of events Sl , called a slice, is chosen on each iteration and
processed as a whole, without taking or adding any events from or to pe. A slice must satisfy
the following conditions:

– Sl is a non-empty subset of the current set of possible extensions pe.

8 V. Khomenko, M. Koutny

input : Σ = (N, M0) — a net system
output : Pref

Σ
— the canonical prefix of Σ’s unfolding (if it is finite)

Pref
Σ

← the empty branching process
add instances of the places from M0 to Pref

Σ

pe ← PotExt(Pref
Σ

)
cut off ← ∅

while pe 6= ∅ do
choose Sl ∈ Slices(pe)
if ∃e ∈ Sl : [e] ∩ cut off = ∅

then
for all e ∈ Sl in any order refining ¢ do

if [e] ∩ cut off = ∅

then
add e together with its postset to Pref

Σ

if e is a cut-off event of Pref
Σ

then cut off ← cut off ∪ {e}
pe ← PotExt(Pref

Σ
)

else pe ← pe \ Sl

Note: e is a cut-off event of Pref
Σ

if there is C ∈ Ce such that
the events of C belong to Pref

Σ
but not to cut off , C ≈ [e], and C ¢ [e].

Fig. 2. Unfolding algorithm with slices.

– For every e ∈ Sl and every event f ¢ e of Unf max
Σ , f 6∈ pe \ Sl and pe ∩ 〈f〉 = ∅.

In particular, if f ∈ pe and f ¢ e for some e ∈ Sl , then f ∈ Sl . The set Slices(pe) is
chosen so that it is non-empty whenever pe is non-empty. Note that this algorithm, in general,
exhibits more non-determinism than the one from [9]: it may be non-deterministic even if the
order ¢ is total. Since the events in the current slice can be processed independently, the slicing
algorithm admits efficient parallelization (along the lines proposed in [15]). A crucial property
of the slicing unfolding algorithm is that it generates the canonical prefix.

Theorem 6 ([15, 20]). If Unf Θ
Σ is finite then the slicing algorithm generates Unf Θ

Σ in a finite
number of steps.

4 High-level Petri nets

In this paper we use M-nets (see [1]) as the main high-level Petri net model, as we believe that
it is general enough to cover many other existing relevant formalisms. The full definition of
M-nets can be found in [1]. Here, in order to match the presentation of low-level nets as closely
as possible, we give a suitably adapted short description omitting those details which are not
directly related to our purposes. In particular, [1] devotes a lot of attention to the composition
rules for M-nets, which are relevant only at the construction stage of an M-net, but not for
model checking of an already constructed one.

M-nets

It is assumed that there exists a (finite or infinite) set Tok of elements (or ‘colours’) and a set

VAR of variable names, such that Tok∩VAR = ∅. An M-net N is a quadruple N
df

= (P, T,W, ι)
such that P and T are disjoint sets of respectively places and transitions, W is a multiset over
(P × VAR × T) ∪ (T × VAR × P) of arcs, and ι is an inscription function with the domain

Prefixes of HL Petri Net Unfoldings 9

P ∪ T . It is assumed that, for every place p ∈ P , ι(p) ⊆ Tok is the type of p and, for every
transition t ∈ T , ι(t) is a boolean expression over Tok ∪VAR, called the guard of t. We assume
that the types of all places are finite.2 In what follows, we assume that N = (P, T,W, ι) is a
fixed M-net.

For a transition t ∈ T , let •t
df

= {|pv | (p, v, t) ∈ W |}, t•
df

= {|pv | (t, v, p) ∈ W |}, and

VAR(t)
df

= {v | (p, v, t) ∈ W} ∪ VAR(ι(t)), where VAR(ι(t)) is the set of variables appearing
in ι(t). A firing mode of t is a mapping σ : VAR(t) → Tok such that σ(v) ∈ ι(p), for all pv

in •t + t•, and ι(t) evaluates to true under the substitution given by σ. (The notation pv,
similarly as px and tσ used later on, is a shorthand for the pair (p, v).)

We define the set of legal place instances as P
df

= {px | p ∈ P ∧ x ∈ ι(p)} and the set of

legal firings as T
df

= {tσ | t ∈ T and σ is a firing mode of t}. For every tσ ∈ T , we will also

denote •tσ
df

= {|pσ(v) | pv ∈ •t|} and tσ• df

= {|pσ(v) | pv ∈ t•|}. According to the definitions given
below, all valid markings of an M-net will be composed of legal place instances, and its firing
sequences will be composed of legal firings. Furthermore, the sets P and T will provide the
basis for the construction of the low-level net corresponding to a high-level one.

A marking M of N is a multiset over P. We will denote the set of all such markings
by M(N). (Traditionally, a marking is a mapping which, to every place p ∈ P , associates a
multiset over ι(p). Clearly, such a representation is equivalent to that we chose to use.)

The transition relation is a ternary relation on M(N) × T × M(N) such that a triple
(M, tσ,M ′) belongs to it (denoted M [tσ〉M ′) if •tσ ≤ M and M ′ = M − •tσ + tσ•. Note that σ

is a firing mode of t, which guarantees that M ′ is a valid marking of N .

M-net systems

An M-net system is a pair Υ
df

= (N,M0) comprising a finite M-net N and an initial marking M0.
The set of reachable markings of an M-net system Υ is the smallest (w.r.t. set inclusion) set
RM(Υ) containing M0 and such that if M ∈ RM(Υ) and M [tσ〉M ′ in N , for some tσ ∈ T ,
then M ′ ∈ RM(Υ).

An M-net net system Υ is k-bounded if, for every marking M ∈ RM(Υ) and every px ∈ P,
M(px) ≤ k; safe if it is 1-bounded; and bounded if it is k-bounded for some k ∈ N. Moreover, Υ

is strictly k-bounded if, for every marking M ∈ RM(Υ) and every place p ∈ P , |{|x | px ∈
M |}| ≤ k, and strictly safe if it is strictly 1-bounded. One can show that strictly k-bounded
M-net systems are k-bounded, strictly safe ones are safe, and the set RM(Υ) is finite iff Υ

is bounded. Note that according to the above definitions, a safe M-net system can have a
reachable marking which places several tokens on the same place, provided that their ‘colours’
are all distinct. The rational behind our choice of the definition is that the low-level expansion
(defined below) of an M-net system is safe iff the original M-net system is safe, and so the total
adequate order proposed in [9] for safe net systems can be re-used (see the end of Section 5).

As an example, consider the M-net system shown in Figure 3(a). At the initial marking, t1

can fire with the firing mode σ
df

= {v1 7→ 1, v2 7→ 2, v3 7→ 1} or σ′ df

= {v1 7→ 1, v2 7→ 2, v3 7→ 2},
consuming the tokens from p1 and p2 and producing respectively the token 1 or 2 on p3.
Formally, we have {|p1

1, p
2
2|}[t

σ
1 〉{|p

1
3|} and {|p1

1, p
2
2|}[t

σ′

1 〉{|p2
3|}.

Transforming M-net systems into low-level nets For each M-net it is possible to build an
‘equivalent’ low-level one. Such a transformation is called ‘unfolding’ in [1], but since this term
is used in this paper with a different meaning (see Section 3), we will use the term ‘expansion’
instead.

2 In general, allowing infinite types yields a Turing-powerful model. Nevertheless, this restriction can
be omitted in certain important cases (see Section 6).

10 V. Khomenko, M. Koutny

1

p1:{1..2}

2

p2:{1..2}

p3:{1..4}

t1v3 < v1 + v2

v1 v2

v3

(a)

p1

1 p2

1 p1

2 p2

2

p1

3 p2

3 p3

3 p4

3

t1111 t1211 t1221 t2111 t2121 t2211 t2221 t2231

(b)

p1

1 p2

2

p1

3 p2

3

e1 t1211
e2 t1221

(c)

Fig. 3. An M-net system (a), its expansion (b), and its unfolding (c). Note that a firing mode σ of t

is represented as a three-element string σ(v1)σ(v2)σ(v3).

Prefixes of HL Petri Net Unfoldings 11

The expansion E(N) of an M-net N = (P, T,W, ι) is a low-level net E(N)
df

= (P, T ,W ′)
where

W ′ df

=
∑

tσ∈T

(

{|(pσ(v), tσ) | (p, v, t) ∈ W |} + {|(tσ, pσ(v)) | (t, v, p) ∈ W |}
)

.

Moreover, the expansion E(M) of a marking M of N is M itself, i.e., E(M)
df

= M (this is
possible since we chose our definitions so that there is no difference between the markings of

E(N) and N .) Finally, the expansion of an M-net system Υ = (N,M0) is defined as E(Υ)
df

=
(E(N), E(M0)). Figure 3(a,b) illustrates the last definition.

One can show that the following hold.

Proposition 1 ([1]). Let N be an M-net, and M ′,M ′′ ∈ M(N).
Then M ′[tσ〉M ′′ in Υ iff M ′[tσ〉M ′′ in E(Υ).

Proposition 2. Let Υ = (N,M0) be an M-net system.

– For every k ∈ N, E(Υ) is k-bounded iff Υ is k-bounded.

– E(Υ) is safe iff Υ is safe.

– If Υ is strictly safe and p is a place of Υ , then the places px, x ∈ ι(p), are mutually exclusive
in E(Υ).

Proof. Follows directly from the definitions. ⊓⊔

Though, according to Proposition 1, the expansion of an M-net system faithfully models the
original system, the disadvantage of this transformation is that it usually yields a very large net.
Moreover, the resulting net system is usually unnecessarily large, in the sense that it contains
many places which cannot be marked and many dead transitions. This is so because the place
types are usually overapproximations, and the transitions of the original M-net system may
have many firing modes, only few of which are realized when executing the net from the initial
marking. For example, only two out of eight transitions of the expansion of the M-net system
in Figure 3(a), shown in Figure 3(b), can actually fire. Therefore, though the M-net expansion
is a neat theoretical construction, it is often impractical.

5 Branching processes of high-level nets

In this section we develop the main results of this paper, namely the notions of a branching
process of an M-net system, the associated unfolding, and its canonical prefix. We also show
that there is a strong correspondence between the branching processes of an M-net system and
those of its expansion. This allows for importing many results from the theory of branching
processes of low-level Petri nets.

Definition 7. A homomorphism from an occurrence net ON = (B,E,G) to an M-net sys-
tem Υ is a mapping h : B ∪ E → P ∪ T such that

– h(B) ⊆ P and h(E) ⊆ T (conditions are mapped to legal place instances, and events to
legal firings).

– For every e ∈ E, h{|•e|} = •h(e) and h{|e•|} = h(e)• (the environments of legal firings are
preserved).

– h{|Min(ON)|} = M0 (minimal conditions are mapped to the initial marking).

– For all e, f ∈ E, if •e = •f and h(e) = h(f), then e = f (there is no redundancy).

A branching process of Υ is a pair π
df

= (ON , h) such that ON is an occurrence net and h is a
homomorphism from ON to Υ . 3

12 V. Khomenko, M. Koutny

The above definition is illustrated in Figure 3.
Definition 7 closely follows the definition of a (low-level) branching process of E(Υ). Thus

most of the definitions for branching processes of low-level net systems can now be lifted to
branching processes of M-net systems. In particular, this is the case for the notions of a config-
uration, cut, final marking, prefix relation ⊑, cutting context, and the notion of completeness
of a prefix. Similarly, most of the results proven for branching processes of low-level Petri nets
can also be lifted to branching processes of M-net systems. In particular, for each M-net sys-
tem Υ there exist a unique (up to isomorphism) maximal w.r.t. ⊑ branching process Unf max

Υ

of Υ , called the unfolding of Υ . Moreover, for any cutting context Θ there exists unique canon-
ical prefix Unf Θ

Υ (coinciding with Unf Θ
E(Υ)) of Unf max

Υ , and the theory of canonical prefixes
(see [20]) can be transferred without any changes.

Remark 2. One should be careful when dealing with adequate orders: though they are defined
on the configurations of the unfolding, in practice the node labels are often employed in order
to compute it. In particular, ¢ is often parameterized by some order ≪ on the set of transitions
of the low-level Petri net (see [8, 9]). Hence, in order to unfold a high-level net Υ one has to
define such an order on T rather than on T . 3

It is straightforward to give an upper bound on the size of Unf Θ
Υ , since the results of [9,

20] regarding the size of the canonical prefix are still applicable. In particular, if the cutting

context Θ =
(

≈ , ¢ ,
{

Ce

}

e∈E

)

is dense, ¢ is total, and C ′ ≈ C ′′ ⇔ Mark(C ′) = Mark(C ′′),

then the number of non-cut-off events in Unf Θ
Υ does not exceed |RM(Υ)|.

6 M-net unfolding algorithm

Thanks to the results developed in the previous section, it is now possible to suggest a suitable
modification of the standard unfolding algorithms, e.g., that in Figure 2, which is capable of
building canonical prefixes of M-net unfoldings. It turns out that the only thing which has to be
changed is the notion of a possible extension (so all the modifications are inside the PotExt

function and thus are not visible in the top-level description of the algorithm).

Definition 8. For a branching process π of an M-net system Υ , a possible extension is a pair
(D, tσ), where D is a co-set in π and tσ is a legal firing, such that h{|D|} = •t and π contains
no tσ-labelled event with preset D. 3

Similarly as in the low-level case, we will take the pair (D, tσ) as a new event of the prefix, with
the preset D. After it is inserted into the prefix, its postset D′ consisting of new conditions
such that h{|D′|} = tσ• is also inserted.

It is worth noting that most of the existing heuristics aiming at speeding up the prefix
generation can be applied. In particular, the total adequate order for safe net systems proposed
in [9] can be used to unfold safe M-net systems. It is still adequate, since Unf max

Υ coincides
with Unf max

E(Υ) and the expansion of a safe M-net system is safe. Moreover, the concurrency
relation (see [8, 27]) can also be employed, even for non-safe systems. As for the preset trees
(see [19]), they can be used without any modifications to unfold strictly safe M-net systems
(and we work now on generalizing them to a wider class of M-net systems).

It turns out that direct unfolding a high-level net not only avoids the generation of its
(potentially, very large) expansion, but often is also more efficient than unfolding its expansion.
Indeed, the most time-consuming part of the algorithm is computing the possible extensions.3

Since one high-level transition usually corresponds to several low-level ones, less transitions
have to be tried each time possible extensions are computed, which may lead to considerable
savings in the running time.

3 Checking whether the set of possible extensions is empty is, in fact, an NP-complete problem
(see [12]).

Prefixes of HL Petri Net Unfoldings 13

It is often the case that the information about the firing mode of an event needs not be
explicitly stored. Indeed, this information almost always can be discarded, since one is usually
not interested what was the precise firing mode of a transition, as long as the consumed and
produced tokens are the same.

An important extension of our approach allows for M-nets with places having infinite types.
For example, it is often convenient to assign to a place the type N rather than {1, . . . , n}, since
n might be not known in advance. Even when the set of reachable markings of such an M-net
system is finite, its expansion is infinite and so of little use for model checking, whereas with
our direct approach we still can build the canonical prefix and complete the verification. The
only thing which needs to be ensured is that at any stage of prefix construction only a finite
number of legal firings needs to be considered. This will be the case if, for every transition t

and every finite multiset Z over P, the set of all firing modes σ of t such that •tσ ≤ Z is both
finite and computable.

Having built a canonical prefix, one can easily construct the refined version of the low-
level expansion of the original M-net system, with unreachable places and dead transitions
removed. This may be important, e.g., for directly mapping a Petri net to a circuit simulating
its behaviour.

Finally, it is worth mentioning that since our method constructs exactly the same prefix
which would have been generated from the corresponding expansion of the M-net system, all
the existing model checkers employing unfolding prefixes derived from low-level nets can be
used without any changes when dealing with prefixes generated directly from M-net systems.

7 Case studies

In this section, we compare our approach with the traditional one, viz. the unfolding of M-net
expansions. We used the unfolding engine described in [15, 19] which after suitable modifications
was able to unfold both low-level and high-level nets. For building M-net expansions, we used
the hl2ll utility from the PEP tool (see [3, 4]). The experiments were conducted on a PC with
a PentiumTM III/500MHz processor and 128M RAM.

The meaning of the columns in the tables is as follows (from left to right): the size of the
problem; the number of places and transitions in the original M-net system; the number of
places and transitions in the corresponding expansion, together with the time required by the
hl2ll utility to build the expansion; the number of conditions, feasible events, and cut-off
events in the canonical prefix; the times (in seconds) required to unfold the M-net system and
its expansion, respectively.

The first example is data-intensive, and so the traditional (via low-level nets) approach is
extremely inefficient, whereas we expected our algorithm to perform well. The second example
is control-intensive, so the M-net expansions are just slightly larger that the original M-nets.
It was chosen to test the worst-case performance of our method relatively to the unfolding of
the low-level expansion.

7.1 Greatest common divisor

An M-net simulating the Euclid’s algorithm for computing the greatest common divisor of two
non-negative integers, together with its unfolding, is shown in Figure 4. In our experiments,
for each N we computed the greatest common divisor of FN and FN−1, where Fi denotes
the i-th Fibonacci’s number (such numbers are known to produce the longest sequences of
computational steps for the Euclid’s algorithm). The results of our experiments are summarized
in Table 1. From the structure of the M-net it is easy to calculate that its expansion contains
3(FN + 1) places and (FN + 1)2 transitions. These values are reported in the corresponding
columns of the table, even though hl2ll failed to produce the expansions when they became
large.

14 V. Khomenko, M. Koutny

2p1:{0..3} 3 p2:{0..3}

p3:{0..3}

t1

v1 6= 0 ∧ u1 = v2%v1 ∧ u2 = v1

t2 v1 = 0 ∧ u1 = v2

v1 v2

u1

v1

u1

v2

u2

(a)

p2

1 p3

2

e1 t1

p1

1 p2

2

e2 t1

p0

1 p1

2

e3 t2

p1

3

(b)

Fig. 4. An M-net system modelling the Euclid’s algorithm for computing the greatest common divisor
of two non-negative integers (a), and its unfolding (b). Firing modes are not shown in the unfolding.

The experimental results show that for this example the high-level unfolding is clearly
superior. Though the M-net expansion grows very quickly, the resulting prefix has only 2N −1
conditions and N−1 events. Therefore, our algorithm was able to build it for relatively large N

(we had to stop the experiments after N = 45 since F50 overflows 4-bytes integer, but it is a
limitation of the current implementation rather than of the method itself).

M-net Expansion Unfolding Time[s]
N |P | |T | |P | |T | Time[s] |B| |E| |Ecut| LL HL

5 3 2 18 36 <1 9 4 0 <1 <1
10 3 2 168 3136 1 19 9 0 6 <1
15 3 2 1833 >105 — 29 14 0 — <1
20 3 2 >104 >107 — 39 19 0 — <1
25 3 2 >105 >109 — 49 24 0 — <1
30 3 2 >106 >1011 — 59 29 0 — <1
35 3 2 >107 >1013 — 69 34 0 — <1
40 3 2 >108 >1016 — 79 39 0 — <1
45 3 2 >109 >1018 — 89 44 0 — <1

Table 1. Experimental results for the M-net system simulating the Euclid’s algorithm.

7.2 Mutual exclusion algorithm

The previous example was rather favourable for our algorithm, since the expansions of the
M-net systems were very large. We therefore checked the performance of our approach in a
totally opposite case, when the expansion of an M-net is relatively small. This happens when
the transitions of the M-net are connected to few places and the cardinality of most place types

Prefixes of HL Petri Net Unfoldings 15

start :
< bi ← true >;
< x ← i >;
if < y 6= 0 >

then
< bi ← false >;
await < y = 0 >;
goto start;

< y ← i >;
if < x 6= i >

then
< bi ← false >;
for j ← 1 to N do

await < bi = false >;
if < y 6= i >

then
await < y = 0 >;
goto start;

critical section;

< y ← 0 >;
< bi ← false >;

Fig. 5. The pseudocode of the i-th process in Lamport’s mutual exclusion algorithm.

is 1. Such an M-net arises when modelling Lamport’s mutual exclusion algorithm (see [16, 23]),
which employs ‘very small’ atomic actions. The pseudo-code of this algorithm is shown in
Figure 5, where N is the number of processes trying to access the critical section. We encoded
it in the B(PN)2 language supported by the PEP tool, as shown in Figure 6. Note that we had
to replicate parts of the code since B(PN)2 currently does not support the goto operator.
The type of the places corresponding to the variables x and y is {0, . . . , N}, the type of places
corresponding to bi’s is {false, true}, and all the other places have the type {•} and thus
are not replicated in the expansion. Every transition has not more than 2 incoming and 2
outgoing arcs, and is connected to at least two places of type {•}; moreover, in all assignments
and conditions, one of the operands is always a constant. Therefore, the number of transition
replicas in the expansion is relatively small.

The experimental results for the mutual exclusion algorithm are shown in Table 2. As one
can see, our algorithm performs almost as well as the algorithm for low-level nets. Though
there is some overhead when computing transition guards and more complicated final states,
it is relatively small, because the most time-consuming operation is computing the possible
extensions of a current prefix. Moreover, this overhead becomes relatively smaller as the size
of the prefix grows (it is just 0.5% for the last example in the table).

M-net Expansion Unfolding Time[s]
N |P | |T | |P | |T | Time[s] |B| |E| |Ecut| LL HL

2 52 50 58 88 <1 711 368 102 <1 <1
3 77 76 86 154 <1 23424 12026 4562 29 30
4 104 104 116 236 <1 736507 375983 167780 28772 28917

Table 2. Experimental results for the M-net system simulating the mutual exclusion algorithm.

16 V. Khomenko, M. Koutny

begin

VAR x : {0..N} init 0;
VAR y : {0..N} init 0;
VAR b1, . . . , bN : {false, true} init false;

proc PROCESS(const i : {1..N}, ref b : {false, true}) max N

begin
do

< b′ = true >; < x′ = i >;
do

< y # 0 >; < b′ = false >; < y = 0 >;
exit

2 < y = 0 >; < y′ = i >;
do

< x#i >; < b′ = false >; < b1 = false >; . . . ; < bN = false >;
do

< y#i >; < y = 0 >;
exit

2 < y = i >;

critical section

< y′ = 0 >; < b′ = false >;
exit

od ;
exit

2 < x = i >;

critical section

< y′ = 0 >; < b′ = false >;
exit

od ;
exit

od ;
repeat

od
end ;

PROCESS(1, b1) ‖ . . . ‖ PROCESS(N, bN)

end

Fig. 6. The B(PN)2 code for Lamport’s mutual exclusion algorithm.

Prefixes of HL Petri Net Unfoldings 17

After the prefixes had been build, we verified using the efficient model checker described
in [17, 18] that the M-net system is deadlock free, and that the places corresponding to the
critical sections of the processes are mutually exclusive. This was done without recompiling
the model checker, since our unfolding algorithm generates prefixes which are indistinguishable
from those generated by a low-level net unfolder from the corresponding expansions of the M-
nets.

It is worth noting that in this example partial-order methods have advantage over the
state-space ones. In [16], this mutual exclusion algorithm was verified for N = 3 by building
a reachability graph of the Petri net model and for N = 4 by applying symmetry reductions.
We managed to verify the case N = 4 without applying symmetry reductions, using a PC with
smaller memory (128M rather than 256M), for a net which was generated from a relatively high-
level description (B(PN)2 language) rather than built by hand. Moreover, as it was already
mentioned, our specification was not optimal since we had to replicate parts of the code. In
principle, it is also possible to apply partial-order methods together with symmetry reductions
(see [6, 20]) to achieve even better results, but we have not implemented the combined method
yet.

8 Conclusions

In this paper, we have defined branching processes and unfoldings of high-level Petri nets
and proposed an algorithm which builds finite and complete prefixes of such unfoldings. We
establish an important relation between the branching processes of a high-level net and those
of its low-level expansion. This allows us to import results proven for branching processes of
low-level nets rather than re-prove them. Among such results are the canonicity of the prefix
for different cutting contexts, the usability of the total adequate order proposed in [9], and the
parallel unfolding algorithm proposed in [15]. Our approach is conservative in the sense that
all the verification tools employing the traditional unfoldings can be reused with such prefixes.
The conducted experiments demonstrated that it is, on one hand, superior to the traditional
approach on data-intensive application, and, on the other hand, has the same performance on
control-intensive ones.

Acknowledgements

This research was supported by an Ors Awards Scheme grant ORS/C20/4, and by Epsrc

grants GR/M99293 and GR/M94366 (Movie).

References

1. E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz: A Class of Composable
High Level Petri Nets. Proc. of ATPN’1995. G. DeMichelis and M. Diaz (Eds.). Springer LNCS
935 (1995) 103–120.

2. E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz: An M-net Semantics of
B(PN 2). Proc. of International Workshop on Structures in Concurrency Theory (STRICT’95).
J. Desel (Ed.). Berlin (1995) 85–100.

3. E. Best and B. Grahlmann: PEP. Documentation and User Guide. Version 1.4. Manual (1995).
4. E. Best and B. Grahlmann: PEP — more than a Petri Net Tool. Proc. of TACAS’96: Tools and

Algorithms for the Construction and Analysis of Systems. Margaria T., Steffen B. (Eds.). Springer
LNCS 1055 (1996) 397–401.

5. E. M. Clarke, O. Grumberg, and D. Peled: Model Checking. MIT Press (1999).
6. J. -M. Couvreur, S.Grivet, and Denis Poitrenaud: Unfolding of Products of Symmetrical Petri

Nets. Proc. of ICATPN’2001. J. -M. Colom and M. Koutny (Eds.). Springer LNCS 2075 (2001)
121–143.

7. J. Engelfriet: Branching processes of Petri Nets. Acta Inf. 28 (1991) 575–591.

18 V. Khomenko, M. Koutny

8. J. Esparza and S. Römer: An Unfolding Algorithm for Synchronous Products of Transition Systems.
Proc. of CONCUR’99, Invited paper, LNCS 1664 (1999) 2–20.

9. J. Esparza, S.Römer and W. Vogler: An Improvement of McMillan’s Unfolding Algorithm. Proc.
of TACAS’96. Margaria T., Steffen B. (Eds.). Springer LNCS 1055 (1996) 87–106. Full version to
appear in Formal Methods in System Design.

10. H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN 2) with Procedures which Allows
Verification. Techn. Rep. 21, Universität Hildesheim (1996).

11. H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN 2) with Procedures. Proc. of Par-
allel and Distributed Software Engineering (PDSE’97). IEEE Computer Society Press. Boston
(1997) 15–27.

12. K. Heljanko: Deadlock and Reachability Checking with Finite Complete Prefixes. Techn. Rep. A56,
Laboratory for Theoretical Computer Science, HUT, Espoo, Finland (1999).

13. K. Heljanko: Minimizing Finite Complete Prefixes. Proc. of CS&P’99, Workshop Concurrency,
Specification and Programming (1999) 83–95.

14. K. Heljanko: Using Logic Programs with Stable Model Semantics to Solve Deadlock and Reacha-
bility Problems for 1-Safe Petri Nets. Fund. Inf. 37(3) (1999) 247–268.

15. K. Heljanko, V. Khomenko and M. Koutny: Parallelisation of the Petri Net Unfolding Algorithm.
Proc. of TACAS’02, Springer LNCS 2280 (2002) 371–385. Full version: Techn. Rep. CS-TR-733,
Dept. of Comp. Sci., Univ. of Newcastle (2001).

16. K. Jensen: Colored Petri Nets. Basic Concepts, Analysis Methods and Practical Use. EATCS Mono-
graphs on Theoretical Computer Science (1992).

17. V. Khomenko and M. Koutny: LP Deadlock Checking Using Partial Order Dependencies. Proc. of
CONCUR’2000. C. Palamidessi (Ed.). Springer LNCS 1877 (2000) 410–425. Full version: Techn.
Rep. CS-TR-711, Dept. of Comp. Sci., Univ. of Newcastle (2000).

18. V. Khomenko and M. Koutny: Verification of Bounded Petri Nets Using Integer Programming.
Techn. Rep. CS-TR-711, Department of Computing Science, University of Newcastle (2000).

19. V. Khomenko and M. Koutny: Towards An Efficient Algorithm for Unfolding Petri Nets. Proc.
of CONCUR’2001. P. G. Larsen and M. Nielsen (Eds.). Springer LNCS 2154 (2001) 366–380. Full
version: Techn. Rep. CS-TR-726, Dept. of Comp. Sci., Univ. of Newcastle (2001).

20. V. Khomenko, M. Koutny, and V. Vogler: Canonical Prefixes of Petri Net Unfoldings. Proc. of
CAV’02, LNCS (2002) to appear. Full version: Techn. Rep. CS-TR-741, Dept. of Comp. Sci.,
Univ. of Newcastle (2001). URL: http://www.cs.ncl.ac.uk/research/trs/lists/2001.html

21. V. Khomenko, M. Koutny and A. Yakovlev: Detecting State Coding Conflicts in STGs Using Inte-
ger Programming. Proc. of DATE’02. C. D. Kloos and J. Franca (Eds.). IEEE Computer Society
Press (2002) 338–345. Full version: Techn. Rep. CS-TR-736, Dept. of Comp. Sci., Univ. of New-
castle (2001).

22. V. E.Kozura: Unfolding of Colored Petri Nets. Techn. Rep. 80, A. P. Ershov Institute of Informatics
Systems (2000).

23. L. Lamport: A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer Systems 5(1)
(1987) 1–11.

24. K. L. McMillan: Using Unfoldings to Avoid State Explosion Problem in the Verification of Asyn-
chronous Circuits. Proc. of 4th CAV. G. von Bochmann and D. K. Probst (Eds.). LNCS 663 (1992)
164–174.

25. K. L. McMillan: Symbolic Model Checking. PhD thesis, CMU-CS-92-131 (1992).
26. S. Melzer and S. Römer: Deadlock Checking Using Net Unfoldings. Proc. of Computer Aided Ver-

ification (CAV’97). O. Grumberg (Ed.). Springer LNCS 1254 (1997) 352–363.
27. S. Römer: Entwicklung und Implementierung von Verifikationstechniken auf der Basis von Net-

zentfaltungen. PhD thesis, Technische Universitat Munchen (2000).
28. A. Semenov: Verification and Synthesis of Asynchronous Control Circuits Using Petri Net Unfold-

ing. PhD Thesis, University of Newcastle upon Tyne (1997).

