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Control of Nondeterministic Discrete-Event Systems
for Bisimulation Equivalence

Changyan Zhou, Student Member, IEEE, Ratnesh Kumar, Senior Member, IEEE, and Shengbing Jiang

Abstract—Most prior work on supervisory control of discrete
event systems is for achieving deterministic specifications, expressed
as formal languages. In this paper we study supervisory control for
achieving nondeterministic specifications. Such specifications are
useful when designing a system at a higher level of abstraction so
that lower level details of system and its specification are omitted
to obtain higher level models that may be nondeterministic. Non-
deterministic specifications are also meaningful when the system to
be controlled has a nondeterministic model due to the lack of infor-
mation (caused for example by partial observation or unmodeled
dynamics). Language equivalence is not an adequate notion of be-
havioral equivalence for nondeterministic systems, and instead we
use the finest known notion of equivalence, namely the bisimulation
equivalence. Choice of bisimulation equivalence is also supported
by the fact that bisimulation equivalence specification is equiva-
lent to a specification in the temporal logic of -calculus that sub-
sumes the complete branching-time logic CTL*. Given nondeter-
ministic models of system and its specification, we study the de-
sign of a supervisor (possibly nondeterministic) such that the con-
trolled system is bisimilar to the specification. We obtain a small
model theorem showing that a supervisor exists if and only if it ex-
ists over a certain finite state space, namely the power set of Carte-
sian product of system and specification state spaces. Also, the no-
tion of state-controllability is introduced as part of a necessary and
sufficient condition for the existence of a supervisor. In the special
case of deterministic systems, we provide an existence condition
that can be verified polynomially in both system and specification
states, when the existence condition holds.

Index Terms—Bisimulation equivalence, controllability, dis-
crete-event systems (DESs), nondeterministic systems, supervisory
control.

I. INTRODUCTION

D ISCRETE-event systems (DESs) are systems with
discrete states and are event-driven. Communication

networks, manufacturing systems, and traffic systems are
examples of DESs. In supervisory control [33], a DES is
modeled as an automaton and its behavior is represented by the
language of the automaton. A controller, called a supervisor,
is also modeled as another automaton that exercises control
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by operating in synchrony with the system under control. The
control objective is to ensure that the language of the controlled
system is as desired.

Nondeterminism in plant model can arise from unmodeled
dynamics or abstraction. A nondeterministic plant can have a
language or a finer specification such as: Failures [11], refusal-
trace (same as trajectory) [31], [10], ready-trace [4], simulation
and bisimulation equivalences [29]. Also, the supervisors can
be deterministic as well as nondeterministic.

The control of nondeterministic plant subject to language
specification is studied in [37], [21], and [22], where plant is
modeled using the trajectory model. In [30] and [9], both plant
and specification are nondeterministic and are represented
using failures and trajectory models, respectively. The authors
in [9] showed how to transform their control problem of non-
deterministic setting to one of deterministic setting with an
added partial observability. Control of plants modeled using
nondeterministic state machines for language specification is
also studied in [19] and [15]. All these work used deterministic
supervisors.

The use of nondeterministic supervisors for specification
represented using language model was explored in [13] and
[38]. The notion of nondeterministic control was formalized
in [20] and used for control under partial observation for
language specification, and the notion of achievability (a prop-
erty weaker than controllability and observability combined)
was introduced. The problem of finding a nondeterministic
supervisor so that it’s parallel-composition with plant conforms
to a deterministic specification (via language containment) is
studied in [41]. Nondeterministic supervisors were also used in
[16] where nondeterministic specification was specified in the
temporal logic of CTL*, generalizing the work reported in [1]
which used CTL to express specification. Other work related
to control subject to temporal logic-based specification include
[23]–[25], [2], and [34].

In general, plant, specification, and supervisor all can be
nondeterministic. Nondeterministic plant and specification are
useful when designing a system at a higher level of abstraction
so that lower level details of system and its specification are
omitted to obtain higher level models that are nondeterministic.
Nondeterministic specifications are also meaningful when the
system to be controlled has a nondeterministic model due to
the lack of information (caused for example by partial obser-
vation or unmodeled dynamics). For nondeterministic systems
numerous notions of behavioral equivalence that are finer than
the language equivalence have been proposed ([40] provides a
classification of these equivalences). In this paper, we study the
control of nondeterministic plants subject to the requirement
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of bisimulation equivalence with respect to a nondeterministic
specification using nondeterministic supervisors.

Bisimulation equivalence was first introduced in communi-
cating systems by Milner [28]. A bisimulation equivalence spec-
ification is equivalent to a specification in the temporal logic
of -calculus that subsumes the complete branching-time logic
CTL* [8]. So if a supervisor is designed to ensure that the con-
trolled system is bisimilar to a specification system, then this
is equivalent to ensuring that the controlled system satisfies the
same -calculus or CTL* specification that is satisfied by the
specification system. On the other hand, a language equiva-
lence based control only guarantees the satisfaction of a linear
temporal logic (LTL) specification which is a strict subclass of

-calculus and CTL*.
Control for achieving CTL* specification was studied by

Jiang and Kumar in [14], under the assumption that plant model
is deterministic. [3] studied the synthesis of controllers for
deterministic plants subject to -calculus based specifications
under partial observation, where the observation mask is re-
stricted to be projection type. The control problem is solved
by reduction to a discrete-event game problem, and explicit
conditions for the existence of a supervisor are not provided. In
this paper, we allow both plant and specification models to be
nondeterministic. Furthermore, our approach is quite different:
In [14], the control problem was reduced to a decision problem
of CTL*, whereas our results are based on the properties of
the automata models of the plant and the specification. Given
nondeterministic models of plant and its specification, we study
the design of a supervisor (possibly nondeterministic) such that
the controlled system is bisimilar to the specification system.

The input–output model matching control studied in [7] also
uses the notion of simulation, and as shown in [6] it can be casted
as an instance of standard supervisory control problem of deter-
ministic setting. Bisimulation relation has been used as a tech-
nique for supervisory control of deterministic systems subject to
language equivalence in [36], [18], [5], [27], and [17]. In [36],
[17], the controllability and observability is characterized as a
bisimulation type relation. [32] studied the problem of synthe-
sizing a supervisor so that the controlled system is bisimilar to
a deterministic specification. The event set of the system and
specification need not be same, and all events are treated con-
trollable. [26] studied control for bisimulation equivalence for a
partial specification (defined over an “external event set”). The
plant is taken to be deterministic and all events are treated con-
trollable. Further it is required that all events treated indistin-
guishable from the partial specifications point of view be either
all enabled or all disabled at a state. Such a requirement does not
make sense in supervisory control context. The author of [39]
studied the controller synthesis problem for deterministic plants
subject to a possibly nondeterministic partial specification such
that the controlled system is bisimulation equivalent to the spec-
ification. This is the same problem as that studied in [26] except
the aforementioned control requirement is removed.

To summarize the contribution of our work, we study a more
general bisimulation equivalence control problem, namely, in
which both the plant as well as the specification are nondeter-
ministic. No prior work addresses this problem in this gener-
ality—they impose determinism either on the plant or on the

specification. To understand the nature of the problem when
both the plant and the specification are nondeterministic, note
that even when the specification is the same as the plant (and so
trivially bisimilar to the plant), the specification itself may not
be work as a supervisor, for the composition of two of the same
system need not be bisimilar to the system itself. Note this com-
plication does not arise when either the plant or the specification
is deterministic, since in this case the specification (assumed
without loss of generality to be plant-simulated and state-con-
trollable) itself can be chosen as a supervisor. This is because the
composition of plant and specification will be bisimilar to the
specification (when plant is deterministic), or language equiva-
lent to the specification (when specification is deterministic). In
the more general case, the option of choosing the specification
itself as a supervisor is not necessarily available, which intro-
duces a nontrivial added complexity to the nature of the control
problem.

Our main result is a small model theorem showing that a
supervisor for enforcing bisimulation equivalence between the
specification and the controlled system exists if and only if it
exists over a certain finite state space, namely the power set of
Cartesian product of the plant and the specification state spaces.
Also, a stronger notion of controllability, called state-controlla-
bility, is introduced as part of the necessary and sufficient condi-
tion for the existence of such a supervisor. State-controllability
is stronger than the “language-controllability,” where the latter
is a property of language models, and the former is a property
of the automata models. We present an algorithm of linear com-
plexity for testing state-controllability matching the complexity
of testing the language-controllability.

For the special case of deterministic plants we obtain a nec-
essary and sufficient condition for the existence of a bisimilarity
enforcing supervisor which can be verified linearly in both the
plant and the specification sizes. Moreover, when the existence
conditions are satisfied, the complexity of synthesizing a super-
visor is linear in the size of the specification. These happen to
be the same as the complexity of verifying the existence and of
performing the synthesis of a supervisor when both the plant
and the specification are deterministic.

The rest of this paper is organized as follows. Section II
presents an illustrative example. Section III presents the re-
quired notation and a preliminary background. Section IV
develops the theory for bisimulation equivalence control and
presents the small model theorem. Section V presents a poly-
nomial test for state-controllability, a condition that appears
in our small model theorem. Section VI discusses the special
case of deterministic plants, and shows the polynomiality of the
solution in this case. Conclusions are given in Section VII, and
in Appendix A examples are given to show some differences
with the work in [26].

II. AN EXAMPLE

In this section, we give an example to illustrate some of the
issues that are prevalent when controlling a nondeterministic
system.

Example 1: Consider an automatic check-out scanner in a
shopping center, a state machine model of which is shown in
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Fig. 1. Plant G (left) and specification R (right).

Fig. 1. Initially, a customer presses the start button to start the
check-out process. Then it scans an item, upon which, owing to a
malfunction, the scanner nondeterministically transitions to one
of two states. In the first state, the scanner allows the customer
to either put the item in a bag, or cancel; whereas in the second
state the only option offered is to put the item in the bag. Not
giving an option to cancel in the second state is unacceptable.
A reset button may be pressed in either of the states to return to
the first state. After this, the scanner waits for either a request
for a next item, or if there is no more items then a request to
pay. In the latter case, scanner returns to its initial state, and in
the former case it goes back to the state from where check-out
process resumes. Since a customer must pay at the end of the
check-out process, the event “pay” is deemed uncontrollable.
All other events are controllable.

The partial specification , also shown in Fig. 1, is given
in order to restrict the plant to exhibit only an acceptable be-
havior. According to the specification, after start and scan, two
possible states may be reached nondeterministically. In both
states, cancel is an available option which is what we desire of
the scanner, while put is an additional option at the first state.
The rest of the behavior is the same as the one feasible in the
scanner. Note that the “reset” event does not appear in the spec-
ification state machine since an occurrence or nonoccurrence
of it is immaterial to the specification. This implies that the
specification is for the plant projected on to the event set

reset , denoted . (Projecting an automaton onto
replaces each event label outside of the automaton by .)
Note that , i.e., is language equiv-

alent to . Thus if we use language equivalence as a notion of
behavioral equivalence, then there is no need to control. How-
ever, as mentioned previously, can exhibit some behavior that
is not acceptable (i.e., not always giving the option to cancel
after scan). We develop a theory in this paper that lets us design
a supervisor such that is bisimilar to .

III. NOTATION AND PRELIMINARIES

Automata are used to model discrete event systems at the log-
ical level. A nondeterministic automaton is a 5-tuple [12], [33],

, where is the set of states, is the
alphabet of events, is the state transition
function, where with being a label for “silent”
transitions, is the set of initial states, and is

the set of final states. denotes the set of all finite sequences
of events in , called event-traces, and includes the zero length
trace, denoted . The -closure (denoted as ) of
is the set of states reached by the execution of a sequence of
-transitions from state . By using -closure map, we can ex-

tend the definition of transition function from events to traces,
, which is defined inductively as:

The language generated (respectively, marked) by , is denoted
as (respectively, ). is the sequence of events
generated starting from the initial state, i.e.,

, and is the set of generated se-
quences that end in a marked state, i.e.,

. For , we define

to denote the set of events defined at state .
A DES, called a plant, is controlled to restrict its behavior so

as to prevent any undesirable behavior by dynamically disabling
certain controllable events [33]. Such a controller is called a su-
pervisor. The supervisor can be modeled as another automaton
operating in synchronous composition with the plant. The syn-
chronous composition of two automata is defined as follows.

Definition 1: The synchronous composition of two automata
and , where and

, is the automaton

where for

if
if

We next introduce the notion of behavioral equivalence based
on bisimulation.

Definition 2: Given ,
, a simulation relation is a binary rela-

tion such that
implies

1) , , such that
;

2) .
We write to denote that there exists a simulation

relation with , read as is simulated by . We
sometimes omit the subscript from when it is clear from
the context.

A bisimulation relation is a symmetric simulation relation
which is captured by the following definition.

Definition 3: Given two automata and as de-
fined above, a bisimulation relation is a binary relation

such that for ,
implies

1) , , such that
;
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Fig. 2. G (first), G (second), G = G kG (third), and G (fourth).

2) , , such that
;

3) .
We write to denote that there exists a bisimulation
relation with , read as is bisimilar to .
We sometimes omit the subscript from when it is clear
from the context. From the definition of bisimulation relation
and simulation relation, we easily observe that if and
only if , and is symmetric. Next, we give
the definition of simulation and bisimulation relation between
two automata.

Definition 4: Given and as defined previously,
is simulated by (denoted as ) if there exists a
simulation relation such that

such that

i.e., . Further and are said to be bisimilar
(denoted as ) if is symmetric so that .

It is easily observed that given two automata and ,
if and only if , and is sym-

metric. Next, we give an example to illustrate these concepts.
Example 2: Consider two automata and shown in

Fig. 2. Their synchronous composition is shown
in Fig. 2. Note that . However,

. Thus although synchronous composition pre-
serves “language equivalence,” it may not preserve bisimulation
equivalence.

Consider another automaton shown in Fig. 2, then there
exists a simulation relation :

Thus, . Also, there exists a simulation relation
:

Thus, . Therefore, there exists a symmetric simula-
tion relation given by

So, we conclude .
Our construction of a bisimilarity enforcing control requires

merger of states of a certain automaton as defined below.
Definition 5: We use to de-

note in which two states are

merged. Use to denote the merger of two states and .
Then

and ,

in in

in in

in in

in in

in in

in in

in in

It is known (see [35]) that merger of bisimilar states in an
automaton yields a bisimilar automaton.

Theorem 1: [35] Given an automaton , if are
such that , then .

IV. SUPERVISORY CONTROL FOR BISIMILARITY

In this section, we study the control of a nondeterministic
plant to ensure bisimilarity of the controlled plant and the given
specification. The set of events is partitioned into uncontrol-
lable and controllable events: . The events
in can be disabled when desired, while those in
are events that the supervisory controller cannot disable. This is
ensured by requiring the supervisor to be -compatible. Un-
less otherwise stated, we will use ,

, and to denote
the plant, the specification, and the supervisor, respectively. The
controlled system is denoted by

.
Definition 6: A supervisor is said to be -compatible if

each uncontrollable event is defined at each state of .
In the deterministic setting, the controllability of specifica-

tion language with respect to plant language and
uncontrollable event set is defined as

This definition of “language-controllability” requires the fol-
lowing extension to the nondeterministic setting where instead
of language models, automata models are used for plant and
specification.
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Definition 7: Given plant automaton and specification au-
tomaton with , we say is state-controllable
with respect to and if

such that

is state-controllable with respect to if for trace in
and uncontrollable event defined at some state reachable by

in , is defined at all states reachable by in . Clearly,
state-controllability implies language-controllability; the con-
verse need not hold.

The following lemma establishes a type of equivalence be-
tween -compatibility and state-controllability.

Lemma 1: Suppose is state-controllable with respect to
and . Define as augmented with self-loops at each

state on undefined uncontrollable events at the state. Then, is
-compatible and .

Proof: Since is state-controllable, for any state of
such that has uncontrollable events defined, also has

those events defined at . Therefore, adding self-loops at each
state on undefined uncontrollable events in does not change
the result of synchronous composition. It follows that

. Thus, .
Before we give the main result of this section, we first give

some preliminary results.
Lemma 2: For , , and defined as before, consider

.

1) If , then and .
2) If and , then .

Proof:

1) implies there exists a simulation relation
such that . Also any pair

implies

By Definition 1

Define a relation .
Then, implies

such that

Clearly, is simulation relation. By Definition 2,
. Similarly, we can prove .

2) implies there exists a simulation relation
with . Also, for any pair

such that

Similarly, implies there exists a simulation re-
lation with . Also for any pair

such that

Define a relation
. Then im-

plies

such that

Thus, .
The following corollary follows from Lemma 2 and serves as
a necessary condition for the existence of a supervisor for en-
forcing bisimulation equivalence.

Corollary 1: Given , and , if , then .
Proof: implies . By Definition 4,

. By Lemma 2, . Then by Definition 4,
.

Remark 1: For a deterministic and any , it can be verified
that is equivalent to and

.
Next, we present our main result on the existence of a super-

visor for plant such that is bisimilar to the specifica-
tion .

Theorem 2: Given nondeterministic and , there exists a
-compatible supervisor such that if and only

if there exists a state-controllable automaton with state space
such that .

Proof:
Given , , and such that , we con-

struct a -compatible such that and state space
of is . We assume without loss of generality that all tran-
sitions of participate in the composition with . If a transition
of never participates in , then we can remove this transi-
tion from , and call the result as . Then and
every transition of participates in the composed automaton

. We compute from , and as follows.

1) For , we define

and

to be the states in that are reachable by a same trace
as is the state of . In other words, if
and only if is a reachable state in . Since

, each such state is bisimilar to some
state . Collection of all such states is denoted as

, i.e.,
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2) Label each state of by , such
that if and only if

and .
3) Define . For , is obtained by

merging two states of carrying the same label, stop
when .

Define to be . Then each state of carries a unique label
that is an element of , and so the state space of can
be thought to be . Next, we prove that by
induction on the number of mergers.

Base case: . So .
Induction step: Suppose at step , . Denote the

state of as with label . At step of merging,
suppose we merge , where .
Now we prove . Merging and
causes the merger of states and of
for all . Define automata as
follows.

1) , , .
2) If , then , where

, , ; else stop,
and .

Since , it follows that both and
are bisimilar to same state of , i.e.,

. From the repeated application of Theorem 1 it fol-
lows that .
This proves the induction step. It remains to show that is

-compatible. Since is -compatible, and since -com-
patibility is preserved under state mergers, is -com-
patible. Since -compatibility implies state-controllability,
is state-controllable.

Define as augmented with self-loops at each
state on all undefined uncontrollable events at the state (as in
Lemma 1). Then is -compatible and the result follows from
Lemma 1.

Remark 2: Note that implies is trim (a marked
state can be reached from every reachable state) if and only if
is trim. So, bisimilarity of controlled system and specification
implies that the supervisor is nonblocking if and only if the spec-
ification automaton is trim. In other words, requiring a bisimi-
larity enforcing supervisor to be nonblocking is equivalent to
requiring that the supervisor be bisimilarity enforcing and spec-
ification be trim. Thus, there is no need to separately study non-
blocking control in context of bisimulation equivalence specifi-
cation (all that is needed is the specification automaton be trim).

Remark 3: From Theorem 2, an exhaustive search can be
performed to determine the existence of a supervisor over
the state space , the complexity of which is .
Since there may exist more systematic ways of searching for a
desired , the tightness of the upper bound complexity remains
open.

In the following example, we illustrate the computation of
through labeling states of by as in the proof of
Theorem 2. Next, we also show that labeling states of just by

and using such labels to perform mergers of the
states of can yield a for which need not hold.
This example illustrates that it may not be possible to replace

Fig. 3. Plant G (left) and supervisor S (right).

Fig. 4. Controlled system GkS (left) and specification R (right).

the labeling function used in the proof of Theorem 2 by
something simpler such as .

Example 3: Consider nondeterministic and as shown in
Fig. 3.

and are shown in Fig. 4, and we can easily see that
. By step 1), we compute :

Since

is computed as:

Then by step 2), label of each is given by:



760 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 5, MAY 2006

Fig. 5. Gk[S] (left) and [S] (right).

Fig. 6. Supervisor S (left) and labeling of its states (right).

No states can be merged since no states have the same label, so
step 3) simply yields .

In contrast, if we label each of by , and merge two
states and having the same label, then since

, we merge and . The resulting state machine
is shown in Fig. 5. The synchronous composition

is shown in Fig. 5. It can be seen that , since the
states and of are bisimilar to
no state of .

Now, we revisit the motivating example.
Example 4: We need to find a -compatible supervisor

such that , where reset . Such a su-
pervisor is shown in Fig. 6. The synchronous composition of

and is drawn in Fig. 7. The following bisimulation relation
exists between and :

Thus, the controlled system is bisimilar to the specification
with respect to . States in can be labeled by elements of

as guaranteed by Theorem 2 (shown in Fig. 6). A state
belongs to the label of a state of if

appears in (i.e., exists a common trace from to in
and from to in so is a reachable state of ), and

Fig. 7. Controlled system (GkS) " �̂.

is bisimilar to state of . All states of with identical
labels may be merged to obtain the state machine stated in
Theorem 2. is same as in this case, and so .

V. TEST FOR STATE-CONTROLLABILITY

A condition in Theorem 2 is that of state-controllability. We
present here an algorithm of polynomial complexity for veri-
fying state-controllability of an automaton with respect to a
plant .

Algorithm 1: Algorithm for testing state-controllability of
with respect to .
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1) Construct by augmenting with a new
state called dump, and by adding tran-
sitions at each state of on each un-
defined uncontrollable event at that
state to the dump state, i.e.,

, where

if
dump if

2) Obtain .
3) is state-controllable with respect
to if and only if there does not exist

such that is reachable in
.

The following lemma is needed in order to prove Algorithm
1.

Lemma 3: is state-controllable with respect to if and
only if

(1)

Proof:
For each state of define

to be the set of states of that are reachable by a common trace,
i.e.,

and

Pick , such that . Then,
for any , and so from hypothesis,

. It follows that is state-controllable with
respect to .

Pick . It
suffices to show that . Since , exists

such that and . Then,
from state-controllability, .

The following theorem establishes the correctness of Algo-
rithm 1.

Theorem 3: Algorithm 1 is correct.
Proof: Let be a state reachable in .

Then it is obvious that , and so for
state-controllability to hold condition of (1) must hold. On the
other hand, if this condition is violated, i.e., if exists

, then a transition for some is defined
in and the transition is defined in . So the
transition is defined in . It follows
that a state dump is reachable in if and only if is
not state-controllable with respect to .

Remark 4: Since and are nondeterministic, their number
of transitions is and , respectively. So the com-
plexity of constructing is , and the com-
plexity of checking the reachability of dump in is also

. So the complexity of the algorithm for testing
state-controllability of with respect to is ,
i.e., it is quadratic in the number of states of both and
(equivalently, linear in size of and ).

Fig. 8. R (left) and GkR (right).

Example 5: Consider the automata and shown in
Fig. 2. Set and , and suppose event is
uncontrollable. Then, following the definition of the state-con-
trollability, it is obvious that is not state-controllable with
respect to ( , but is not defined
at , one of the states reached by the execution of in ).

Now, we verify the state-controllability of with respect to
by our algorithm. The constructed and are depicted in

Fig. 8. It can be seen that the state (4, dump) is reachable in .
Thus, from Algorithm 1, is not state-controllable with respect
to . It should be noted that ,
and so is language-controllable with respect to .

VI. SPECIALIZATION TO DETERMINISTIC PLANT

In the earlier sections, we studied the supervisory control
problem for enforcing bisimilarity in the setting of nondetermin-
istic plants. In this section, we study the specialized case when
plant is deterministic and specification is (possibly) nondeter-
ministic and show that now the problem can be polynomially
solved. Suppose exists -compatible such that .
Due to -compatibility of , we find that is state-control-
lable. The bisimilarity of with however does not guar-
antee the state-controllability of since as shown by the fol-
lowing example the state-controllability may not be preserved
under the bisimilarity.

Example 6: Consider the plant and two specifications
and shown in Fig. 9. Let . It can be verified that

, and is state-controllable with respect to . How-
ever, is not state-controllable since in , is defined
after , but in , is not defined at state .

The reason for the nonpreservation of the state-controllability
under bisimulation is the nonpreservation of the set of events de-
fined at a pair of bisimilar states. In the following, we introduce
the notion of which is the NSM with its states renamed and
transition function replaced by . We show that possesses
the properties that and further, if is state-controllable
then remains state-controllable.

Definition 8: Given , we define
, where

• ;
• :

, ;
• ;
• .
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Fig. 9. G (first), R (second), R (third), and R (fourth).

Note that in the absence of -transitions, .
Fig. 9 shows an example illustrating Definition 8.
Since the definition of bisimilarity between two NSM’s

( , 2) depends on the transition func-
tion (and not ), it is obvious that any two NSMs and
are bisimilar. This and another property is summarized in the
following lemma.

Lemma 4: Consider NSMs and . Then

1) ;
2) : .

Proof:

1) It is easy to see that we can pick
to establish .

2) Follows from the fact that for all
and .

Prior to obtaining the main result of this section, we need to
prove the following lemmas.

Lemma 5: Given a deterministic plant , a possibly nonde-
terministic , if , then .

Proof: Choose

state in

Since , , and so for each and
, exists singleton such that

. So for each , exists a unique such that
. Since is symmetric, it suffices to show that

it is a simulation relation. Pick and -successor
for some . Since , there exists such

that , and is a state in . It
follows that . Similarly, pick
and -successor for some .
Then, is a state in . Also, since is
unique and , . It follows that as
desired.

Further, if is marked, implies that is marked. I.e., if
is marked, then is marked. Moreover, if is not marked,

then is not marked. So, for , such that ,
.

Finally, implies , which further implies
for and .

Thus, by definition of bisimulation equivalence, .
Lemma 6: For two bisimilar automata , if is

state-controllable with respect to , then is state-control-
lable with respect to .

Proof: Since is state-controllable, from Lemma 3,
and implies

(2)

To prove that is state-controllable with respect to , it suf-
fices to show that for each state of and for each

it holds that

Since (2) holds, it suffices to show that .
Since , exists a trace such that

and . Bisimilarity of and
implies (from Lemma 4). From the fact that

(which is equivalent to ), we know
and exists a state such

that (obtained by inductively extending the definition
of bisimulation equivalence from one step to multiple steps).

From Lemma 4, implies . Since

implies . From Lemma 4,
and so we have as desired.

The following lemma holds for a deterministic plant but not
in general.

Lemma 7: Let be a deterministic plant, and be a
-compatible supervisor. Then is state-controllable.

Proof: To prove state-controllability of with re-
spect to , we apply the test of Algorithm 1 to .
Since is deterministic if a state is reached in

, then . We claim that there does not exist
a state reachable in from where a state

dump in can be reached. For this to hold, every
uncontrollable event defined at in must also be defined at

in , i.e., we need to show that is a subset
of . This follows since

where in the first equality we have used the -compatibility of
, which implies . This completes the proof.
Now, we are ready to present a necessary and sufficient con-

dition for the existence of a bisimilarity enforcing supervisor for
a deterministic plant.

Theorem 4: Given a deterministic plant and a possibly
nondeterministic specification , there exists a -compatible
supervisor such that if and only if and
is state-controllable.

Proof:
Choose (where is obtained by

adding in self-loops at each state on undefined uncontrol-
lable events). Then is -compatible. Also from Lemma
1, . Further since (since

and ), and is deterministic, from Lemma 5,
. And so .
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Fig. 10. Plant TS (first), spec TS (second), G = TS kTS (third), TS (fourth).

Since is -compatible, from Lemma 7,
is state-controllable. Also, since , it follows from
Lemma 6 that is state-controllable. Finally, since ,

, which implies that .
Remark 5: The statement of Theorem 4 above is a slight

refinement of the one appearing in the conference version of
[42, Th. 4]. The two statements are identical when there are no
-transitions (so that ).

Remark 6: From Theorem 4, the complexity of checking the
existence of a supervisor for enforcing bisimilarity for a deter-
ministic plant is , which is linear in the sizes of
the plant and the specification. Moreover, when the existence
conditions are satisfied, serves as a supervisor, i.e., the com-
plexity of synthesizing a supervisor is linear in the size of the
specification. It is interesting to note that when specification is
deterministic but the plant is nondeterministic, the complexity
of existence as well as synthesis is again polynomial [20]. In
contrast, the situation seems to be different when both the plant
and the specification are nondeterministic.

VII. CONCLUSION

In this paper, we extended the prior work on supervisory con-
trol in deterministic as well as nondeterministic setting by al-
lowing both plant and specification to be nondeterministic, and
requiring control specification to be bisimulation equivalence
of specification and controlled plant. It is known that the lan-
guage equivalence is not an adequate notion of equivalence for
nondeterministic systems, whereas the bisimulation equivalence
is the finest known notion of behavioral equivalence. Choice
of bisimulation equivalence is also supported by the fact that
bisimulation equivalence specification is equivalent to a spec-
ification in the temporal logic of -calculus that subsumes the
complete branching-time logic of CTL*. We obtained a small
model theorem showing that a supervisor exists if and only if it
exists over a certain finite state space. We extended the control-
lability concept in language setting to a stronger notion, called
state-controllability, as part of the necessary and sufficient con-
dition for the existence of a supervisor and provided a test of
complexity linear in the plant and the specification sizes for it.
We also obtained a necessary and sufficient condition for the ex-
istence of a bisimilarity enforcing supervisor for the special case
of deterministic plants. In this case, the complexity of verifying
existence using our condition is linear in the size of the plant
and the specification. Moreover, when the existence conditions

are satisfied, the complexity of synthesizing a supervisor is also
linear in the size of the specification.

APPENDIX

SUPPORTING EXAMPLES

Here, we describe the bisimulation equivalence control
studied in [26] and demonstrate through examples some of
the differences with our work and also the limitations of the
requirement of determinism. The control problem studied in
[26] can be stated as follows:

Given deterministic plant and deterministic speci-
fication , empty set of uncontrollable events ( ),
and a “partial specification” mask , does there exists a
supervisor such that , with
the requirement that at any state an event is enabled if
and only if all events with are enabled.
The first example shows the limitation of requiring plant and

specification to be deterministic in [26]. In this example, the
specification is nondeterministic. If we apply the algorithm in
[26] no supervisor is found. Yet a supervisor exists.

Example 7: Consider deterministic plant and nonde-
terministic specification shown in Fig. 10 with

, , , and . (as de-
fined in [26]) is shown in Fig. 10, and it can be verified that it
does not possess a strong subgraph (defined in [26]) implying
that the algorithm is unable to find a supervisor. However there
does exist a supervisor as shown in Fig. 10.

Next example shows the limitation of [26] due to its restric-
tion to supervisors that are deterministic. The example has deter-
ministic plant and specification. By the algorithm in [26], there
exists no supervisor. Yet a nondeterministic supervisor exists.

Example 8: Consider deterministic plant and determin-
istic specification shown in Fig. 11 with

, , , and . (as defined
in [26]) is shown in Fig. 11. By condition (BS3) of the defini-
tion of strong subgraph, does not contain a strong subgraph,
meaning the algorithm given in [26] does not find a (determin-
istic) supervisor. However, the nondeterministic supervisor
shown in Fig. 11 works.

The previous example illustrates that allowing nondeter-
minism in the supervisor provides us additional capability
of control. In contrast, allowing nondeterminism in the plant
and the specification (resulting for example from labeling)
can make it harder to control, i.e., while the given plant and
specification possess a supervisor, the labled versions of plant
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Fig. 11. Plant TS (first), spec TS (second), G = TS kTS (third), TS (fourth).

Fig. 12. TS (first), TS (second), G (third), R (fourth).

and specification may not possess a supervisor (since labeling
may introduce nondeterminism). This is illustrated by the next
example.

Example 9: Consider plant and specification
shown in Fig. 12 with , , and

. It can be shown that itself can serve as a
supervisor, i.e., . In contrast for

and (also shown in Fig. 12) there is
no supervisor such that . This is because labeling
of yields a nondeterministic , and any supervisor that
only observes the labeling would be unable to determine which
of the two branches the plant initially executed.
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