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Summary

An empirical protein-ligand binding affinity estimation method, SCORE, was incorporated into a popular docking
program, DOCK4. The combined program, ScoreDock, was used to reconstruct the 200 protein-ligand complex
structures and found to give good results for the complexes with high binding affinities. A quality assessment
method for docking results from ScoreDock was developed based on the whole test set and tested by additionally
selected complexes. The method significantly improves the docking accuracy and was shown to be reliable in
docking quality assessment. As a docking tool in structural based drug design, ScoreDock can screen out final
hits directly based on the predicted negative logarithms of dissociation equilibrium constants of protein-ligand
complexes, and can explicitly deal with structure water molecules, as well as metal atoms.

Introduction

Structural Based Drug Design (SBDD), which is
based on the three dimension (3-D) protein structures
from X-ray crystallographic or nuclear magnetic reso-
nance (NMR) methods, is one of the most successful
strategies in computer-aided drug design (CADD) [1–
3]. As one advantage for this approach, new specific
binding ligands can be rationally produced based on
the information of the protein-ligand binding mode.
And the native 3-D complex structure is the very start
point of the whole process. Although the number of
possible ligands for each protein can be large, due
to the restriction of X-ray crystallographic and NMR
methods, the protein-ligand complexes with known 3-
D structure are not many. At present, two prevalent
strategies in SBDD are database screening [4–6] and
de novo design [7–10]. However, how to find out the
most possible binding modes between ligands and pro-
teins, and to rank them based on the binding affinity
remain challenging.
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Kuntz, I.D. and coworkers first introduced and ex-
tensively developed a so-called docking method to
predict 3-D structure of ligand-receptor complexes [5,
6, 11]. In general, docking process can be divided
into two phases. One is the searching algorithm, which
finds possible binding geometries of the protein and its
ligand. The other is the scoring function, which ranks
the searching results and selects out the best bind-
ing geometry based on the energies of the complexes
or, more theoretical value,1Gbind, the binding free
energy difference between the bound and unbound
states of the ligand and protein. The program suite,
DOCK, which was distributed by Kuntz, I.D., is one
of the most popular docking tools [6]. The basic idea
of DOCK searching algorithm is to generate a set of
spheres to fill the whole pocket as the ‘negative im-
age’ of the protein binding site. Then DOCK program
matches the ligand to this set of spheres and gener-
ates many complementary binding geometries of the
ligand into the protein. Besides DOCK, many dock
programs based on other searching algorithms, e.g.
surface complementary matching [12–14], fragments
growing [15–17], random sampling using stochastic
processes (Monte Carlo, simulate annealing) [18–22],
and genetic algorithm [23–25] have been developed.
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Except for receptor flexibility, scoring method-
ology is more attractive and challenging than other
problems in docking studies. Ajay and Murcko have
provided a comprehensive review of this area [26].
Similar to the requirement of searching algorithm, ac-
curacy and efficiency have almost equal importance
in scoring algorithm application. Although elaborate
methods, such as free energy perturbation (FEP) and
thermodynamic integration (TI), sound more theoreti-
cally convincing, the demand of computational power
prevent them from being applied widely in docking
and other molecule modeling processes. However they
remain the basic methods presently, due to their ex-
plicit treatment of calculation ensemble averages and
solvent molecules [27–29]. There are still attempts to
introduce these methods into real computer-aided drug
design process [30].

Most of the docking tools use empirical poten-
tial energy functions to calculate the binding ener-
gies of protein-ligand complexes. These functions
sum up several basic energy terms, such as Van der
Waals interaction, electrostatic interaction and hydro-
gen bonds. The set of parameters and the functional
forms used in energy functions is a so-called force
field. Nowadays, many force fields [31–37], which
differ in the values of corresponding parameters and
in the functional forms to deal with particular chem-
ical or biological system, have been widely used in
molecular modeling.

Meanwhile, another calculation technique – so-
called grid-based energy evaluation has also been in-
troduced into scoring to facilitate the calculation of
binding energy [38, 39]. Applying this technique, an
evenly divided cubic grid is generated in the box that
efficiently encloses the space that ligands are likely
to occupy. Then the receptor-dependent terms in the
potential function at points of grid are precalculated
and stored. During the docking process, the energy of
each binding mode is calculated based on the carte-
sian coordinates of ligand atoms and the precalculated
terms, avoiding to calculate through each protein atom
repeatedly. To balance between the accuracy and the
efficiency, the selection of cubic grid resolution is a
dilemma of this method.

Recently, empirical schemes have met with signif-
icant interest, with the attempt to circumvent the huge
computational load and cover the physical effects as
many as possible. Generally, these empirical methods
try to partition the binding affinity into several additive
terms, which will cover both of enthalpic and entropic
effects in binding affinity. The parameters used by this

method are often determined by the analysis of bind-
ing affinity data set of complexes. And this kind of
method is also referred as ‘Master Equation’ [26]. In
early stage of studies, only a series of ligands of one
particular protein have been investigated, and the valid
scope of the equation is restricted to the complexes
of the target protein either [40]. Richard D. Head et
al. [41] analyzed a diverse training set of 51 crystal
complexes by partial least squares (PLS) statistics and
neural network analysis, and obtained models for the
general prediction of the binding affinity of complexes
with known 3-D structure. Subsequently, several em-
pirical scoring models have been advanced [42–47], in
which parameters cover parts of the following chemi-
cal and physical effects, e.g. hydrophobic, electrosta-
tic, the number and geometry of hydrogen bonds, ionic
interactions between the protein and ligand, the size
of the lipophilic contact surface, the flexibility of the
ligand, the electrostatic potential in the binding site,
structure water, etc. [42]

Recently, another method denoted knowledge-
based potential of mean forces (PMFs) has attracted
a great deal of interest in ligand-protein complex
binding affinity estimation [48–50]. Holger Gohlke
et al. [50] developed a new knowledge-based scoring
function named DrugScore to predict protein-ligand
interactions, and tested their models by re-ranking
the docked results of two docking programs. Differ-
ent from the previous empirical methods, DrugScore
focused on the statistic thermodynamic properties of
complex crystal structures. Using the Boltzmann for-
mat function, DrugScore scored complexes by sum-
ming up the distance dependent pair-preferences and
solvent-accessible surface (SAS) dependent singlet-
preferences of protein and ligand atoms, based on
the assumption that only those binding modes are
favorable that fit to the maxima of distributions of
occurrence frequencies among interatomic contacts
between particular atom pairs in experimentally deter-
mined structures.

SCORE is an empirical method for estimating the
binding affinity for protein-ligand complexes devel-
oped in the author’s group [51]. Based on the analysis
of a diverse training set of 170 protein-ligand com-
plexes, one robust scoring function has been obtained:
the standard multivariate regression yielded a squared
correlation coefficient (r2) of 0.777, and a standard de-
viation of 6.6 kJ/mol in binding free energy. Although
the final model has been used to predict the binding
affinity of additional 11 protein-ligand complexes to
test its predictive ability, its power to discriminate be-
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tween the native or near-native binding geometries and
those largely deviating from the native structure gen-
erated by docking process has not yet been tested. In
this paper we applied this scoring method to a popu-
lar docking tool, DOCK4, as the ranking function in
the second stage of docking process. A test set which
contains 200 complexes has been used, and the dock-
ing results generated by the combination program of
SCORE and DOCK are compared to those generated
by original DOCK.

Methods

SCORE function

In SCORE method, the protein-ligand binding affinity
is partitioned into several terms, e.g. Van der Waals
interaction between the protein and its ligand, metal-
ligand bonding, hydrogen bonding, desolvation effect,
and deformation of ligand. Each term is described
briefly in the following text. For detailed information
about this method, please refer to Ref. 51.
(1) Van der Waals (VDW) interaction

The term for VDW interaction is simply a pairwise
counting of VDW bumps between the protein and the
ligand.

Kvdw =
∑
i

∑
j

V B(dij ) (1)

wheredij is the distance between atomi andj , VB is
a step function ofdij .
(2) Metal-ligand bonding

The term for metal-ligand bonding in SCORE
method is the sum over all metal- O/N bonds,

Kmetal=
∑
i

∑
j

MB(dij ) (2)

wheredij refers to the distance between ligand atomi
and metalj , andMB is a step function ofdij .
(3) Hydrogen bonding

In this model hydrogen bonds can be seen as two
types: one (HB) is completely formed by the atoms
from protein and ligand, the other (WH) is involved
by water molecule. Based on a step function of the
distance of the atoms involved in hydrogen bond, these
two kinds hydrogen bonds are classified as strong,
moderate, and weak (water-involved) hydrogen bonds
with SHB (SWH), MHB (MWH), and WHB (WWH)
as the indicator respectively.

Without taking the angle dependence of hydrogen
bonding strength, the contribution of hydrogen bond-
ing between the protein and its ligand is calculated
as
Khbond = KSHB+KMHB+KWHB+KSWH

+KMWH+KWWH
=

∑
i

∑
j

SHB(dij )+
∑
i

∑
j

MHB(dij )+∑
i

∑
j

WHB(dij )

+
∑
i

∑
j

SWH(dij )+
∑
i

∑
j

MWH(dij )+∑
i

∑
j

WWH(dij )

(3)

(4) Desolvation and deformation effect
Since both the protein and its ligand are solvated

before complexation, the desolvation effect accompa-
nies the whole binding process. The contribution to
the binding affinity of desolvation effect is calculated
using the following equation,

KHM =
∑
i

Fi ×HMi (4)

whereHM is an indicator of hydrophobic matching
between the ligand atom and its environment. It is
set to 1 if ligand atomi is hydrophobic and placed
in a hydrophobic environment; otherwise it is set to 0.
Fi is the atomic hydrophobic scale of ligand atomi.
Here the atom hydrophobic scale (both of protein and
ligand) is referred to the results of a previous work
[52].

In calculation of deformation effect, only the num-
ber of ligand rotatable bonds, i.e. rotors, is used in the
term, because the protein is considered as rigid body
in this method.

KRT =
∑
i

0.5× RTi (5)

HereRTi is the number of rotors in which ligand atom
i is involved. The factor 0.5 means that each rotor
is split into halves and assigned onto the two atoms
involved.

The dissociation constant of a protein-ligand com-
plex can be calculated by summing up all of the
terms,

pKd = K0+ c1×KVB + c2×KMB
+c3×KSHB + c4×KMHB
+c5×KWHB + c6×KSWH
+c7×KMWH + c8×KWWH
+c9×KHM + c10×KRT

(6)
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K0 is the regression constant, which may contain the
translational and rotational entropy loss upon the bind-
ing process, andci is the regression parameter for each
term.

DOCK process

We used the 4.0 version of DOCK program [6]. The
core process of DOCK4 program suite is the program
dock, which is written in C and Fortran languages.
DOCK4 requires a set of overlapped spheres, which
describes geometry of the receptor active pocket,
while the ligand structure is input as mol2 file format
in preference [53]. Then the ligand atoms are matched
to the spheres set. Each matching is one of the pos-
sible orientations for ligand in the binding pocket. If
ligand flexibility is considered in docking process, the
ligand molecule will be taken apart into several rigid
fragments, and one appropriate fragment is selected as
anchor. Then the selected anchor is matched into the
binding site initially. After that, the program searches
the position of the remaining fragments and links them
to the anchor subsequently. Meanwhile, each fragment
is scored and the score is used to direct the further
conformation searching. After the whole searching
process, the searching results, i.e., ligand conforma-
tion and orientation is scored and sorted altogether,
and the best scored solutions are output as final results
of docking. Figure 1 shows a brief flow chart of the
dock process.

The application of SCORE in the scoring stage of
DOCK4

The main purpose to develop scoring methods is to
predict the binding affinity of a given protein-ligand
complex structure. A practical usage of scoring func-
tion is to distinguish between native or near native
binding modes and those largely deviate from the na-
tive structure. Therefore applying it directly in dock-
ing process as a criterion to rank the matching results
will be a better way to test SCORE method than just
re-ranking the output results of docking process, in
consideration of some good poses can be discarded
by the scoring function used by dock program. In the
whole process of dock program, there are two choices
for SCORE function to apply: first, SCORE function
can be applied as searching driver during ligand con-
formation searching phase; second, it can act as final
scoring function after searching process.

Although the whole equation of SCORE can be
expressed in atom addition form [51], all of the pa-

Figure 1. The flowchart of dock in DOCK4 (dashed lines indicate
the application of SCORE in DOCK4).

rameters are generated by multiple linear regression
analysis based on the full structure of each complex
in the training set. Therefore these parameters implic-
itly require the completeness of ligand structure. For
instance, the regression constantK0 in equation re-
flects the translational and rotational entropy change
of the whole binding process. On the other hand, in
each calculation process of SCORE, all of protein
atoms will be examined one by one, including struc-
ture water molecules. This calculation process is quite
time-consuming comparing to the grid-based energy
calculation method used in DOCK4 program. Based
on these analysis, we chose the second stage of dock-
ing process to apply the SCORE function, i.e., using
SCORE method to rank the ligand poses generated af-
ter searching stage. Finally, the top ranking solutions
are written to the output file.

During the modification of DOCK program, the
searching algorithm of original program remains in-
tact. The SCORE function is added to the final scoring
part as optional for user. If users select SCORE as final
scoring method, the whole docking process is the com-
bination of searching engine of dock and the SCORE
method. Therefore the qualities of final output results
are mainly influenced by the power of searching en-
gine and the discrimination ability of SCORE method.
In the following text, we will refer the combination of
the two programs as ScoreDock for convenience. The
flowchart of ScoreDock is also shown in Figure 1, by
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flowing in and out the scoring box through the dashed
lines.

Results

Test set and data preparation

To test ScoreDock, we selected 200 complexes1 crys-
tal structures from Protein Data Bank [54] as the test
set. There are 85 complexes taken from the data-
base of human disease-related protein structures [55],
while the other 115 complexes in the test set were
randomly selected from the ReLibase [56]. All of
the 200 crystal structures have resolutions better than
2 Å. The number of non-hydrogen atoms of these
200 ligands range from 4 to 110 with an average
value of 28.8. The number of rotatable bonds in
these ligands range from 0 to 49 with an average
value of 7.1. For all the docking schemes (rigid and
flexible), the following boolean parameters, such as
‘write_orientations’, ‘rank_orientations’, ‘intramole-
cular_score’, ‘intermolecular_score’, ‘bump_filter’,
‘energy_minimize’ are set as yes. The parame-
ter ‘maximum_iterations’, ‘rank_orientation_total’,
‘bump_maximum’ are set to 500, 10 and 3, re-
spectively. For flexible docking scheme, the boolean
parameters, ‘flexible_ligand’, ‘anchor_search’, ‘min-
imize_anchor’, ‘peripheral_search’, ‘torsion_drive’,
‘torsion_minimize’, ‘reminimize_ligand’ are set as
yes. The parameter ‘clash_overlap’ is set to 0.3.
The chemical score and energy score can be used
as scoring function by set ‘chemical_score’ and ‘en-
ergy_score’ as ‘yes’, respectively [57]. All of other
parameters not mentioned here are set as default.

To prepare the data set for Dock process, we
extracted the ligand molecules from the complexes,
delete all of the water molecules and heterogenous

1 16pk 181l 1a09 1a27 1a4q 1a8b 1abe 1abf 1afl 1aim 1ake 1amk
1aoe 1aqv 1ax0 1azm 1ba8 1bcd 1bck 1ben 1bhp 1bht 1bji 1bjv
1bk0 1bmb 1bul 1bv3 1bv7 1bz0 1bzm 1bzy 1can 1cbm 1cbs 1cbx
1cg8 1cil 1ckb 1clu 1coy 1cwl 1cyn 1daa 1dae 1dan 1dhj 1dim 1dor
1drf 1dyj 1ecf 1ela 1eus 1fkb 1fkf 1fkg 1frp 1gai 1get 1ghb 1grb
1gua 1gup 1gux 1hcb 1hck 1hew 1hfc 1hgx 1hne 1hrn 1hsb 1hsg
1hsl 1hvr 1hyt 1iak 1icn 1ida 1ir3 1ivd 1jah 1jap 1kbc 1klt 1kvr
1lcp 1ldg 1lhc 1lic 1lkk 1llo 1lna 1lst 1meu 1mh1 1mik 1mld 1mrg
1mrj 1mrk 1mtv 1mwe 1nes 1nsc 1nue 1phf 1php 1poc 1pph 1ppl
1pso 1qa7 1qqp 1rbp 1rdn 1rds 1rnn 1rnt 1rob 1rpj 1ruv 1rxg 1scn
1sdk 1sep 1sha 1shd 1snc 1sre 1srj 1sth 1syb 1tag 1tem 1tgj 1tng
1tnh 1tni 1tnk 1tpb 1tpp 1tyr 1udh 1ukz 1v39 1vbs 1vp3 1vpe 1vps
1vpt 1vwo 1wap 1wyk 1xan 1xid 1xie 1xif 1xym 1xzm 1zfp 21gs
2ak3 2bpv 2clr 2cmd 2cpp 2fal 2fmb 2gbp 2hbe 2ki5 2mth 2qwc
2rth 2shp 2sim 2sns 2tmn 2xis 3bto 3ca2 3chb 3cla 3cpa 3er5 3ptb
3sli 4csc 4est 4fiv 4gal 5abp 5tmn 6abp 6rnt 6rsa 6tmn 7tim

atoms including metal atoms for the protein surface
calculation. For the SCORE calculation, we kept all
of the atoms except the ligand atoms. All of the struc-
tural water molecules can be kept for SCORE function
without causing VDW bumps, because the program
can automatically select appropriate water molecules
for hydrogen bonding calculation and simply disre-
gard others.

Here we choose a generally accepted value to
measure the quality of docking results: the root-mean-
square deviation (RMSD) of the docking position with
respect to the original pose of the ligand in the crys-
tal structure. Considering the restriction of crystal
structure imposed by experimental method, such as
resolution, the temperature factor etc., a ligand pose
with RMSD less than 2.0 Å can be considered as a
‘well-docked’ solution [50]. To evaluate the power
of scoring function to distinguish between the ‘well-
docked’ solutions and those poses largely deviating
from the crystal structure, we select the criterion that
the scoring function can be regarded as good only if
one well-docked pose is scored best among all of the
computer generated solutions.

Calculated results of the full test set

For the 200 complexes, ChemicalDock (DOCK using
the ‘chemical score’) ranks a well-docked solution first
in 27 cases, while EnergyDock (DOCK program using
energy score) and ScoreDock perform well in 105 and
108 cases, respectively. Here we sorted the first ranked
RMSD values of the whole test set ascendingly, and
plotted the rank number versus the RMSD values (Fig-
ure 2). In addition, for all the complexes, the poses
with the smallest RMSD value generated by Score-
Dock are also selected and plotted in Figure 2, without
considering the ranks of these poses. ScoreDock and
EnergyDock act at nearly the same good level at low
RMSD value (0–2.0 Å), while ScoreDock shows slight
improvement in the region of 2.0–4.0 Å. Both Score-
Dock and EnergyDock generated much better results
than ChemicalDock. In Table 1, a detailed comparison
of these methods is presented. As Table 1 shows, the
searching method acts rather satisfactorily here – for
almost 91% of all the complexes, at least one well-
docked solution has been found. So the main factor
that limits the selective ability of scoring functions is
their own deficiency. In the consideration of the vari-
able size of ligands, the uniform cutoff value (2.0 Å)
for ‘well-docked’ cases may not be suitable. We have
plotted the smallest RMSD values among all the gen-
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Figure 2. Sorted number of the first ranked solution according to the RMSD value for the three scoring functions. The results after the
post-docking selection based on the docking quality estimation are also plotted. ‘Best RMSD’ indicates the smallest RMSD generated by
ScoreDock disregarding the rank number.

erated solutions versus non-hydrogen atom numbers
(Figure 3). For most cases in the test set, the ligands
are large enough comparing to the best RMSD. There-
fore the 2.0 Å cutoff value is reasonable for this test
set.

The differences between the RMSD values of
first ranked solutions by EnergyDock and ScoreDock,
which reflect the fine distinction of these two meth-
ods, are shown in Figure 4. For 117 cases, the RMSD
difference between these two methods is lower than
1.0 Å. And in 42 cases, the poses selected by Score-
Dock are more than 1.0 Å closer to the crystal struc-
ture. For the remaining 41 cases, the poses selected
by EnergyDock are closer to the crystal structure. Al-
though EnergyDock and ScoreDock generate similar
statistical results (see Table 1), the cases, for which
these two functions could rank a well-docked solu-
tion best, as expected, are not completely identical.
There are 82 complexes altogether that both Energy-
Dock and ScoreDock correctly rank one well-docked
solution at first. However each of them can only tell
slightly different partial truth of whole story – for 26
cases, ScoreDock could rank a well-docked solution
first, while EnergyDock failed, and for the other 23
cases,vice versa.

Assessment of ScoreDock running quality

According to the statistic results for the full test set,
the probability that ScoreDock can rank a well-docked
solution first is 54%. Among the ScoreDock running
results, there are 92 cases that ScoreDock failed to
rank a well-docked solution first among the final re-
sults. In those 92 complexes, the RMSD value of
the first ranked solution ranges from 2 Å to 25 Å.
We assumed that higher RMSD values indicate lower
reliability of ScoreDock. To inspect the relationship
between the ligand property and the reliability of
ScoreDock, we averaged the number of non-hydrogen
atoms, the number of rotors and the RMSD of the
first ranked solution. Next, the lowest RMSD case is
deleted from the data set and the remaining cases are
averaged. The calculation is repeated until the last case
with the largest RMSD value remains. The averaged
rotor number and non-hydrogenatom number are plot-
ted versus the corresponding average value of RMSD
in Figure 5. In general, the larger RMSD, the more
rotors and non-hydrogen atoms will the ligands have.

However, to determine the quality of docking re-
sults, we need more information in addition to the
size of the ligands. To meet this requirement, an as-
sessment method to predict the quality of ScoreDock
running results is necessary, especially for cases where
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Table 1. Statistics of docking results by applying three scoring functions and
post-docking selection on the whole test set

The number of complexes with RMSD

reference to crystal structure

<1.0 Å <1.5 Å < 2.0 Å ≥ 2.0 Å

All ranks of

ScoreDocka
140 167 182 18

Chemical

dock
13 20 27 173

First

rankb
Energy

dock
86 99 105 95

Score

dock
82 97 108 92

Post-Docking

selectionc
91 106 117 83

aThe smallest RMSD generated by ScoreDock is selected for all of 200 com-
plexes.
bThe first ranked solutions of each complex according to three methods are
considered
respectively.
cThe results after performaning the post-docking selecting on ScoreDock re-
sults using
docking quality estimation method.

Figure 3. The smallest RMSD value among all the generated solutions for each case versus non-hydrogen atom numbers.
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Figure 4. The differences between RMSD value of the first ranked solution by ScoreDock and EnergyDock. The mean value of all differences
is−0.21.

the complex crystal structures are unavailable. After
analyzing the full test set, we advanced an assessment
method to meet this need.

Based on ScoreDock running results, we divided
the full test set into two groups: one group contains
the well-docked cases, while the remaining cases in
the other one. When analyzing the full data set, we
found that the first ranked scores in these two groups
have distinct distributions (Figure 6). Obviously, the
pKd scores of those cases, for which the ScoreDock
fail to rank a well-docked solution first, are generally
lower than the well docked cases. The overlapedpKd
range of two groups is approximate from 3 to 8. We
averaged thepKd scores of these two groups respec-
tively: for the well-docked group, the averagedpKd
score is 7.23; for the other group, the averaged value is
4.39. We use these two values as cutoffs to determine
the quality of docking results, i.e. if the first ranked
pKd score is lower than 4.39, it is very probable that
ScoreDock fail to rank a well-docked solution first,
while for the value higher than 7.23, it is likely that
we get a well-docked pose ranked first.

In the range from 4.39 to 7.23, thepKd distribu-
tions of the two groups overlap substantially, and more
information are needed to distinguish these cases.
During the calculation of SCORE, each kind of inter-
action, e.g., Van der Waals, hydrogen bond, desolva-
tion and deformation effect are counted and summed
through all of the ligand atoms [51]. These count

numbers contains detail information about the binding
mode. The first ranked solutions of those cases with
the pKd score between 4.39 and 7.23 are extracted.
The count numbers of those interaction defined in
SCORE method are calculated. For the selected cases,
we define 2 as docking quality of well-docked cases,
while 1 for the remaining cases. Then the multiple lin-
ear regression analysis was performed on these data,
which yields r2 of 0.745, F value of 4.90, and N
of 73. And the empirical prediction equation has the
following additive form,

Q =
∑

PiCi (7)

whereQ is the calculated quality of docking result,Pi
is the regression parameter of each effect term defined
in SCORE [51], andCi is the count number of each ef-
fect calculated by program SCORE. ThePi values are
listed in Table 2. If the calculated qualityQ is larger
than 1.5, it is very possible that the docking result is
a well-docked solution, i.e. with RMSD lower than
2 Å; otherwise, it is more probable not a well-docked
solution.

Using this estimation function, we reselected the
ranked solution generated by ScoreDock based on the
reliability of each binding solution. To perform this
kind of post-docking selection, we calculated the reli-
abilities of the top 5 ranked solutions, and selected out
the most reliable (with the largestQ value) solution
as the final result without regarding the rank number.
During this process, the rank number is disregarded.
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Figure 5. The stepwise averaged numbers of rotor and nonhydrogen atom of ligand plotted versus the corresponding RMSD values exhibited
by the first ranked solutions for the cases the ScoreDock fail to rank a well-docked solution first.

Figure 6. ThepKd distribution of the well-docked cases and the remaining cases in the whole test set (200 cases).

Table 2. The multiple linear regression parameters for ScoreDock running quality estimationa

ScoreDock

interaction
VB WHB MHB SHB WWH MWH SWH MB HM RT

Regression

parameter(Pi )
−0.0860 0.1084 0.1466 0.2253 0.0983−0.1042 0.1544 0.3349 0.3846 −0.0429

aThe regression results:R2 = 0.745, F = 4.90, N = 73.
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As the reselected results, there are 117 cases with the
RMSD of final solution less than 2 Å. The reselected
results are also plotted in Figure 2. Comparing to the
EnergyDock and ScoreDock results (Table 1), this es-
timation method can obviously improve the docking
quality. In addition, whether or not use the cutoff
values 4.39 and 7.23, i.e., perform the Equation 7
on all the cases or only the cases which fall into the
range of 4.39–7.23, the post-docking selecting results
are almost the same. This shows the robustness of
this method. For all of the 200 cases, there are 154
cases for which this method could predict the quality
of docking results correctly. Furthermore, we ran-
domly selected 20 complexes with resolution better
than 2 Å from ReLibase [54] to test the reliability of
this method (see Table 3). The rotor numbers of the
ligands in these complexes range from 0 to 42 with
an average value of 6.6, while the number of non-
hydrogen atoms range from 9 to 94 with an average
value of 24.9. After the reselecting on these com-
plexes, there is one more well-docked case in final
results, and the assessment method correctly predicted
the quality of the docking results for 19 cases.

By far, one assumption of the above analysis re-
mains untested: does the complex, that ScoreDock
fail to rank a well-docked solution first, really have
low binding affinity, i.e., be less attractive in struc-
ture based ligand design? To answer this question, the
docking on complexes with known experimentally de-
termined binding affinity is necessary. In the original
test set (200 complexes), there are 30 complexes2

that the observed binding affinities are available [51].
In addition, we selected out 20 complexes3 from the
SCORE training set, in which, ten cases have observed
pKd lower than 4.39, while the other ten cases have
observedpKd higher than 7.23. After the performance
of ScoreDock on the additionally selected 20 cases,
we analyzed the distribution of observedpKd values
for these 50 complexes (Figure 7). The distributions
of observedpKd still have the trend we observed in
the original test set, i.e., for the complexes with high
binding affinity, the ScoreDock shows high reliability
on ranking a well-docked solution first. One possible
reasonable explanation for this phenomenon is that
those ligands with high binding affinities to their re-
ceptors have particular binding modes corresponding

21abe 1abf 1cbx 1drf 1fkb 1fkf 1hsl 1pph 1ppl 1rbp 1rnt 1snc 1tng
1tnh 1tni 1tnk 2ak3 2gbp 2sns 2tmn 2xis 3cla 3cpa 3ptb 5abp 5tmn
6abp 6rnt 6tmn 7tim
3 1apt 1apw 1csc 1hpv 1hvi 1hvl 1l83 2ctc 2rnt 3fx2 4dfr 4sga 4tmn
5can 5sga 5tim 6cpa 7can 7est 8xia

to the observed binding affinities. For these cases, any
different binding modes of ligands, including different
conformation and binding sites, will have much lower
binding affinities. This is the basic assumption for
molecular recognition theory. On the other hand, those
ligands in complexes with low binding affinity are
not selectively bound to the proteins. Some of these
complexes may take form during the crystallization
process. Therefore, it is reasonable that ScoreDock
can find another binding site for the ligand with near
or higher binding affinity, while both binding modes,
calculated by ScoreDock and taken by crystal, have
low binding affinities, and have no specificity either.
For these 50 cases with knownpKd values, the first
rankedpKd scores are plotted versus the experimental
values of corresponding crystal complexes in Figure 8.
The correlation between the observed and predicted
values of the 50 cases yielded correlation coefficient of
(r) 0.64, standard deviation (s) of 2.01. For most cases,
the binding affinities blindly predicted by ScoreDock,
i.e., from the separated structures of ligand and pro-
tein, do show the correlation to the observed value
of the corresponding crystal structure, although the
correlation is not very obvious. After discarding the
cases with first rankedpKd scores lower than 4.39, we
replotted the sorted numbers of cases versus RMSD
values in Figure 9. Among the 118 cases with best
RMSD less than 2.0 Å, EnergyDock succeeds in 89
cases, and ScoreDock detects 97 cases. After the post-
docking selection, there are 103 well-docked cases
altogether (Table 4).

Furthermore, we performed the post-docking se-
lection on those newly selected 20 cases with known
binding affinities. As additional proof, there are 16
cases that the predicted qualities of the running results
agree well with the RMSD of the first ranked solution,
and there is one more well-docked case in reselecting
results. (Data not shown.)

The recognition of crystal structures

For a scoring function with good discriminatory
power, the well-docked solutions should obtain bet-
ter scores than those poses largely deviating from the
crystal structure. As a more stringent criterion, the
crystal structure (RMSD= 0) should get the best
score, i.e., the score for the crystal structure should
rank first among all of the poses generated by docking
program, considering that the probability for dock-
ing search tools to generate exact the crystal structure
is extremely low. We scored all of the 200 crystal



439

Table 3. The post-docking selection results on randomly selected test set

PDB entrya pKd score
Calculated

qualityc
Predicted

qualityb
Real

quality

RMSD

(Å)

1aht 5.18 2.27 1 1 1.56

1art 3.92 0.90 0 0 6.15

1ax1 3.23 0.67 0 0 5.55

1bir 5.25 1.65 1 1 0.58

1bu4 7.39 2.10 1 0 4.85

1csi 4.36 1.14 0 0 4.51

1etb 5.27 1.05 0 0 10.19

1hnl 3.73 0.74 0 0 2.50

1mfa 4.27 1.70 1 1 0.92

1nsd 4.13 1.54 1 1 0.84

1rx9 8.34 2.76 1 1 1.09

1xig 3.29 0.52 0 0 2.41

1xzl 3.44 0.46 0 0 3.37

2izk 3.39 0.84 0 0 3.56

2qwf 4.78 1.50 1 1 0.47

2tps 6.65 2.02 1 1 0.45

3vgc 5.77 1.31 0 0 6.27

4sli 3.02 1.02 0 0 5.09

6cpp 10.62 3.05 1 1 0.61

8rsa 4.31 1.15 0 0 2.98

aThe data of the first ranked solution in each case are listed in the table.
bNumber 1 represents a well-docked solution, while 0 represents a pose with RMSD
larger than 2 Å.
cThe cutoff values (4.39 and 7.23) are not used for reselecting, i.e., reselection are
performed on all the cases, without considering the predictedpKd values.

Figure 7. The distributions of experimentalpKd scores for well-docked cases and the remaining cases in 50 complexes based on the running
results of ScoreDock.
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Figure 8. The first rankedpKd scores versus the experimentalpKd values of 50 complexesr = 0.64, s = 2.01.

Figure 9. Sorted number versus RMSD value for the first ranked solutions and post-docking selecting results of 137 cases from the origin test
set with the first rankedpKd score higher than 4.39. ‘Best RMSD’ indicates the smallest RMSD generated by ScoreDock disregarding the rank
number.
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Table 4. Statistics of docking results by applying the types of scoring functions and
post-docking selection on the 137 cases with predictedpKd higher than 4.39 from the original
test set

The number of complexes with RMSD reference to crystal

structure

<1.0 Å <1.5 Å <2.0 Å ≥2.0 Å

All ranks of

ScoreDocka
101 114 118 19

Chemical

dock
13 19 23 114

First

rankb
Energy

dock
78 86 89 48

Score

dock
76 89 97 40

Post-docking

selectionc
85 96 103 34

aThe smallest RMSD generated by ScoreDock is selected for all of 137 complexes.
bThe first ranked solutions of each complex according to three methods are considered re-
spectively.
cThe results after performing the post-docking selecting on ScoreDock results using docking
quality estimation method.

complexes and ranked them among the ScoreDock
generated results. Figure 10 shows the rank number
of each complex in the full test set. Indeed, crystal
structure score does rank first in 86 complexes. Using
a less strict criterion, i.e., those cases, for which the
RMSD values of those poses ranked better than crystal
structure are all less than 2.0 Å, will still be considered
as good discriminatory results, ScoreDock meets this
criterion in 125 cases altogether.

Flexible docking test

Although the above test results demonstrate the reli-
ability of ScoreDock for rigid docking, this program
still needs to be tested in consideration of the ligand
flexibility. After discarding the rigid ligands, for which
the rotor number is zero, we randomly selected out
100 complexes4 from the original test set to perform
flexible docking. For the flexible docking performance
of ScoreDock, EnergyDock and ChemicalDock, all
the boolean parameters in ‘Ligand Flexibility’ sec-
tion are set as ‘yes’, except that ‘multiple_anchors’

4 1afl 1aoe 1aqv 1ax0 1azm 1ba8 1bji 1bjv 1bk0 1bul 1bzm 1bzy
1cbx 1cg8 1cil 1ckb 1cwl 1daa 1dae 1dan 1dhj 1dim 1drf 1ela 1fkf
1gai 1get 1ghb 1gup 1hew 1hne 1hsl 1hyt 1icn 1ida 1ir3 1jap 1kvr
1lcp 1lic 1llo 1lna 1meu 1mld 1mrk 1mtv 1nes 1nsc 1phf 1php 1poc
1pph 1ppl 1pso 1rbp 1rdn 1rds 1rnn 1rob 1rpj 1ruv 1scn 1sep 1sha
1snc 1sth 1syb 1tag 1tng 1tnh 1tni 1tnk 1tpb 1tpp 1tyr 1vbs 1vpe
1vwo 1wap 1xid 1xie 1xym 2cmd 2fal 2gbp 2hbe 2mth 2sim 2sns
2tmn 2xis 3bto 3cla 3cpa 4csc 4est 5tmn 6rnt 6rsa 6tmn

and ‘reminimize_anchor’ are set as ‘no’. All the real
and integer parameters use default values, except that
‘clash_overlap’ is set to 0.3 [57]. In Figure 11, the
sorted numbers are plotted versus the corresponding
RMSD values. Meanwhile, the solutions with smallest
RMSD values according to ScoreDock running results
are plotted, too.

After the performance of post-docking selection
based on docking quality estimation, the number of
well-docked cases increases from 15 to 20 (Figure 11).
Since our approach is generated from the rigid docking
results, we found this result encouraging. Furthermore
we compared the flexible docking results to the ap-
plication of DrugScore on DOCK [50] in Table 5.
The percentage is the test cases found on first rank
or post-docking selecting results with RMSD values
of < 1.0 Å,< 1.5 Å,< 2.0 Å and≥ 2.0 Å com-
pared to the best approximating geometry found on
any rank. The last column percentages, except the
first two lines, are compared to the number of cases
with the best RMSD less than 2.0 Å according to the
test sets for DrugScore and ScoreDock respectively.
With respect to the recognition of well-docked solu-
tions on the first rank, the EnergyDock succeeds in
35%, whereas ScoreDock detects 48%. After the post-
dock selecting on the top 5 solutions, the successful
percentage is 65%.
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Figure 10. The crystal structure rank number among the ScoreDock generated solutions for whole test set.

Figure 11. Sorted number versus RMSD value based on the first ranked solutions and post-docking selecting results for the selected 100 cases
in consideration of the ligand flexibility. ‘Best RMSD’ indicates the smallest RMSD generated by ScoreDock disregarding the rank number.
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Table 5. Statistics of docking results by applying the types of scoring functions and post-docking se-
lection on the selected 100 complexes in consideration of the ligand flexibility, and comparison with
DrugScore[50].

aPercentage of cases number with the reference to the

best RMSD cases

<1.0 Å <1.5 Å <2.0 Å ≥2.0 Å

All ranks DrugScore[50] 17 31 43 57

of

ScoreDockb ScoreDock 10 17 31 d69

DOCK (using

chemical score)[50]
18 33 46 54

ChemicalDock 20 40 29 71

First

rankc
EnergyDock 20 35 35 65

DrugScore[50] 41 48 70 30

ScoreDock 60 59 48 52

Post-Docking Selection 60 65 65 35

aThe test set used by DrugScore is not same to ours.
bThe smallest RMSD generated by ScoreDock is selected for all of 100 complexes.
cThe first ranked solutions of each complex according to the methods are considered respectively.
dThe percentage in this column except the first two lines are compared to the number of cases with the
best RMSD less than 2.0 Å for DrugScore and ScoreDock test sets respectively

Figure 12. The binding modes of ligand in the crystal structure and the third ranked solution (RMSD 6.30 Å) of 1ICN are displayed together
with structure water and related residues. Possible hydrogen bonds among ligands, residues and structure water molecules are depicted as dotted
lines.
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Discussion

ScoreDock is the combination of DOCK4 searching
algorithm and an empirical binding affinities predic-
tion method, SCORE [51]. Recalling that the number
of possible orientations generated during the confor-
mation searching stage is very large, including those
well-docked solutions and those poses largely deviat-
ing from the crystal structures, application in docking
process is a real challenge for SCORE method. The
final results of rigid docking for 200 complexes and
flexible docking for 100 complexes show obvious
improvement comparing to the standalone program
DOCK4, thus demonstrate the discrimination ability
of SCORE method.

The development of SCORE method is based on
the analysis of protein ligand complexes crystal struc-
tures and their negative logarithms of dissociation
equilibrium constants, i.e.,pKd values. The latter in-
formation is more attractive in drug design process
than the binding energy calculated by force field
method, and is more suitable for screening out the final
hits of docking process, due to its chemical meaning.

According to the test results, the successful rate of
ScoreDock is limited, and even lower when consid-
ering the flexibility of ligands. In real docking work,
i.e., for those complexes the crystal structures are un-
known, to determine the reliability of docking results
is rather difficult. Here, we developed a new assess-
ment method to help users to judge the reliability of
docking results generated by ScoreDock. The test re-
sults of randomly selected complexes demonstrate the
robustness of this method. Using the computer-aided
prediction method, the estimation of docked solution
will be more constant than the direct observation by
eye. Tested by the original 200 complexes, randomly
selected 20 complexes, additional 20 complexes with
known pKd values, and 100 flexible docking cases,
this method shows its reliability on docking qual-
ity estimation and robustness to improve the docking
results.

Based on the analysis of test results, drug designer
will find ScoreDock attractive due to the following
features: (i) ScoreDock is more reliable in cases where
complex has highpKd score. (ii) An assessment
method is developed to predict the quality of docking
results and improve the docking accuracy. (iii) In ad-
dition to binding conformation of ligands, ScoreDock
can provide detail information about the interaction
mode between receptor and ligand [51]. Based on

these features, ScoreDock can provide a convenient
and reliable start point for drug design circle.

Furthermore ScoreDock can deal with the structure
water molecules, i.e., consider the hydrogen bonds
contribution involved by water into binding affinity
[51]. According to the calculated results of SCORE
method, these structure waters can play an impor-
tant role in binding process. For instance, in the third
ranked solution (RMSD 6.30 Å) of 1icn (resolution
1.74 Å), the ligand oleate retreats from the pocket
about 5 Å. In this new position, the carboxyl group of
oleate can form several hydrogen bonds to three struc-
ture water molecules, while the alkyl chain remains the
same orientation to the crystal structure (Figure 12).
Interestingly, the carboxyl group of oleate is highly
disordered in crystal structure. Therefore browsing
the less ranked solutions generated by ScoreDock can
provide valuable information about binding pocket.

In some docking cases, the crystal structure of un-
bound receptor is used, in stead of complex structure,
which is unknown by far. If using ScoreDock, user can
keep all of the structural water in receptor structure
for SCORE. On the other hand, because we do not
keep any water molecule for the surface calculation,
which is necessary in the data preparation, the search-
ing engine can generate all the possible conformation
and orientation for the ligand. In SCORE scheme, the
appropriate structural water can be considered for hy-
drogen bonding [51], which may play important role
in complex. Furthermore, if no crystal structure is
known, the structure generated by other methods can
be used for docking purpose. In these cases, we be-
lieve that randomly put water molecules around and
in binding pocket will help the process of ScoreDock,
because SCORE method can deal with these water
molecules automatically and appropriately. We need
to note that in the original DOCK4.0 manual [57], the
authors suggest to delete all of the structure water, un-
less the user exactly knows which water molecule is
essential in binding. Even though, there is one problem
remains, that is the space occupied by the reserved
water molecule will not be taken by ligand, because
the protein surface is calculated based on the given
structure in consideration of all atoms. In addition, the
scoring functions in DOCK4 can not take structural
water into account.



445

Conclusions

In this paper, we incorporated an empirical protein-
ligand complex binding affinity estimation method,
SCORE, into a popular docking tool, DOCK4, and
tested this scoring method for its ability to discrim-
inate between the near native poses of ligand and
those largely deviating from the native structure. The
combined docking program shows compatible predic-
tive power with DOCK4 for a test set containing 200
complexes. Furthermore, the new program shows im-
provement comparing to DOCK4, in consideration
of the flexibility of ligands. An empirical docking
quality assessment method is developed based on the
statistical results of test set to assist the validation of
ScoreDock running results. This method is also tested
on other selected complexes, and shows its reliabil-
ity in docking quality prediction. After the reselection
based on docking results qualities, the final results
show obvious improvements. Meanwhile, the SCORE
method shows good ability to recognize the crystal
structure out of the computer-generated poses for the
full test set.
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