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Abstract

The problem of tracking multiple targets using nonlinear observations acquired at multiple sensors

is addressed by combining particle filtering with sparse matrix decomposition techniques. Sensors are

spatially scattered, while the unknown number of targets may be time-varying. A framework is put forth

where norm-one regularized factorization is employed to decompose the sensor data covariance matrix

into sparse factors whose support facilitates recovery of sensors that acquire informative measurements

about the targets. This novel sensors-to-targets association scheme is integrated with particle filtering

mechanisms to perform accurate tracking. Precisely, distributed optimization techniques are employed

to associate targets with sensors, and particle filtering is integrated to perform target tracking using

only the sensors selected by the sparse decomposition scheme. Different from existing alternatives, the

novel algorithm can efficiently track and associate targets with sensors even in noisy settings. Extensive

numerical tests are provided to demonstrate the tracking superiority of the proposed algorithm over

existing approaches.
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I. INTRODUCTION

The deployment of sensor networks and development of pertinent information processing techniques

can facilitate the requirement of situational awareness present in many surveillance and defense systems.

Sensor networks allow the collection and distributed processing of information in challenging environ-

ments whose structure is not known and is dynamically changing with time, e.g. battlefields. In such

harsh environments both equipment and infrastructure, as well as humans, are prone to threats that may

be generated due to malicious attacks, functional failures and even human errors. Threats can be quite

unpredictable both spatially and temporally, since they could happen anywhere anytime within a setting

that consists of heterogeneous units, e.g,. communication units, sensing units and humans. Effective and

fast target detection and tracking is really essential to avoid any potential negative effects.

A necessary step towards multi-target tracking is to associate sensors with targets across space and

time. Targets present in the sensed field affect only a small portion of the deployed sensor networks

(SNs). Thus, given the limited resources, it is pertinent to identify the sensors that acquire informative

observations about the targets and use only those which provide this information. We characterize such

sensors as ‘target-informative’ sensors in this manuscript. Many existing tracking techniques require all

sensors to be active [1], [8], [39], [40], [57] which may be resource-consuming given the locality of

the targets and the fact that only a few sensors bear information about the field targets. To this end, a

decentralized algorithmic framework is developed here that does not require a central fusion center and

it can associate sensors with targets combined with tracking.

Single-target tracking techniques have been developed for SNs using consensus-averaging techniques

[9], [31] combined with the skeleton of particle filtering, e.g., see [10]. Further, extended Kalman

filtering (EKF) for tracking a single-target is combined with a probabilistic framework for selecting

sensors in [29]; an EKF for distributed multi-target tracking is considered in [41]. Data association and

particle filtering have been applied in multi-target tracking applications where the measurements from a

single sensor are used, while association takes place in time to determine which measurements contain

information about a target [12], [16], [20]. Probabilistic models on the number of targets and the target-

measurement assignments are also employed in [36] to perform multi-target tracking in single-sensor

settings. Improved particle sampling techniques for single sensor settings are considered in [55], where

particles corresponding to closely spaced targets are sampled jointly. The latter approaches require the

availability of a probabilistic data model which is utilized to associate measurements acquired across time

with the targets present. A centralized algorithm, that relies on Markov chain Monte Carlo (MCMC) tools,
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performs data association on measurements acquired at a single-sensor across time in polynomial time

[38]. The previous framework is extended to a network of sensors in [37]. Again the data association

performs matching among temporal measurements and targets. Other centralized approaches that perform

data association in time utilize Monte Carlo filtering, see e.g., [52] and [16].

A distributed algorithm that combines joint probabilistic data association with Kalman filtering has been

developed in [42]. Though, some limitations are that linear Gaussian measurements models are assumed

which are not always suitable for tracking applications, e.g. in low SNR environments and/or when the

sensor observations are bearing and range (see e.g. [35]), while the consensus-averaging methods [54]

employed, force all sensors to be active and be used in the tracking process despite the fact that some

of them may have low quality observations. A different approach is followed in [48] where multiple

fusion centers are present in the sensor network and evaluate the posterior Cramer-Rao lower bound that

requires knowledge of the underlying data model. Then, as long as the fusion centers know which targets

they track, then they can select the sensors which result the smallest Cramer-Rao lower bound. The novel

algorithm proposed here does not require linear data models to operate and furthermore does not assume

that sensors are aware of which targets they track. A related distributed approach for tracking a single

target is also proposed in [29]. The latter approach utilizes extended Kalman filtering, while assuming

a probabilistic model to determine the sensors that are closely located to the target. Further, the scheme

in [29] relies on the target position estimates and leads to instability in noisy environments as will be

demonstrated via numerical tests. Finally, work has been done in sensor scheduling and tracking in [13],

[26] where the focus is to determine at which time-intervals a sensor operates and when it should be

idle. Further, the approach in [56] assumes the availability of the target position to activate sensors using

tree-based structures in the network topology.

An algorithmic framework is proposed here that associates targets with the sensors which acquire

informative measurements about these targets, and subsequently performs tracking using only these

informative sensors. Note that existing data association schemes [12], [16], [20], [36], [37], [52] match

measurements with targets across time and rely on probabilistic models. Differently, the sensors-targets

association task here is relying only on the acquired sensor data and no probabilistic models are adopted.

Specifically, sensors which are positioned close to the same target, acquire data measurements that tend

to be correlated, no matter what the underlying physical model is. Such correlations induce a sparse

structure (presence of many zeros) in the sensor data covariance matrix. Sparsity is an attribute found in

many natural and man-made signals, and it has been exploited in a wide range of applications including

sparse regression, sub-Nyquist sampling and statistical inference, e.g., see [7], [49].
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To facilitate association of sensor measurements with targets a pertinent framework is derived to analyze

the sensor data covariance into sparse factors whose support (position of the nonzero entries) will indicate

subsets of sensors sensing the same target. Different from [17], [19], [27], [28], [51], [58], the matrix

factorization scheme developed here does not require a central fusion center and does not impose structural

requirements to the unknown factors such as orthogonality and/or positivity of the factor entries. The idea

of covariance sparse factorization was also discussed in [44]. However, the work in [44] is dealing with

stationary settings where the targets/sources present in the field are static and immobile, while linear data

models are considered not pertinent for tracking applications. Here the framework in [42] is generalized

in nonlinear highly dynamic and time-varying settings where sensors acquire information about multiple

moving targets whose number may also be changing in time.

There is a plethora of strategies which address the multi-target-tracking problem, for example see

the partial list [4], [5], [24], [30], [32]–[35], [53] and references therein. The tracking process here

is carried out via particle filtering (PF) [2], [10], [15] due to its flexibility to handle nonlinear and/or

nonGaussian scenarios. PF will be combined here with the aforementioned sparse factorization scheme to

cope with the time-varying settings and perform real-time association of sensors and targets. A common

assumption present in existing multi-target schemes, e.g., [12], [16], [20], [36], [37], [52], is that sensor

measurements contain information about one target. Here a more relaxed assumption is introduced where

each sensor may be sensing multiple targets among which at most one of them will have the strongest

signal contribution in the measurement. The latter property holds true as long as the targets are positioned

such that no more than one targets are inside the sensing region of a sensor which further allows to

distinguish the targets as separate objects during sensor-to-target association. Effectively each sensor can

associate with at most one target.

After formulating the problem and giving the necessary background in Sec. II, the task of associating

targets with sensors is derived and generalized in the nonlinear and time-varying setting in III-A. Norm-

one regularization is combined with pertinent least-squares matrix decomposition which leads to a novel

minimization formulation that is tackled via coordinate descent techniques in Sec. III-B. A distributed

sensors-targets association algorithm is derived that requires communication only between neighboring

sensing units. The latter association scheme is combined with particle filtering (Sec. IV) to enable tracking

of multiple targets by utilizing only the measurements of target-informative sensors (Sec. V). After

studying the communication cost associated with the proposed algorithmic framework (Sec. VI), extensive

numerical tests in Sec. VII show the advantages of the novel scheme here over existing alternatives. Table

I summarizes the symbols and their functionality in the paper.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an ad-hoc multi-sensor network with a total number of m sensors. Each sensor is able

to communicate with its single-hop neighboring sensors which are within its range. The single-hop

neighborhood for sensor j will be denoted by Nj , while the sensor network (SN) is modeled as an

undirected graph and the inter-sensor links are assumed to be symmetric [see dashed lines (single hop)

in Fig. 1]. The connectivity information of the SN is summarized by the m × m adjacency matrix E

whose (j, j′)th entry will be 1 if sensors j and j′ are connected and zero otherwise. Sensors monitor a

field on which an unknown and time-varying number of multiple moving targets is present. The targets

on the field are sensed via measurements xj(t) acquired at sensor j and time instant t. For instance,

in Fig. 1, there are two targets whose location is denoted by the red and green stars. The targets are

moving at spatially different locations in the field affecting different parts of the SN. A general setting is

considered where new targets are sensed at a given time instance, while other targets maybe becoming

inactive (e.g., they are eliminated in a tactical environment). This leads to a setting where the number of

targets is time-varying.

Fig. 1. Tracking multiple targets in a sensor network.

Sensors measure the intensity of signals received from the different moving targets on the field. Sensor

j acquires a scalar measurement at time instant t that adheres to the following model

xj(t) =
∑R

ρ=1
bρ(t)d

−2
j,ρ(t) + wj(t), j = 1, . . . ,m (1)

where bρ(t) denotes the intensity of a signal emitted by the ρth target, while dj,ρ(t) denotes the distance

between the ρth target and sensor j at time t. The number R corresponds to the total number of different
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targets that move through the field over the lifetime of the SN, while wj(t) denotes the zero-mean

temporally white sensing noise with variance equal to σ2
w. Note that (1) is formulated assuming that the

targets act as transmitters. The signal bρ(t) emitted from target ρ propagates via free-space to arrive at

sensor j attenuated as bρ(t)/d2
j,ρ(t). From wireless transmission (see [14, Ch. 2]), it is known that signals

emitted from different targets and propagating via free-space are superimposed in the way described in

(1), while the additive noise corresponds to random perturbations generated by the sensors’ electronic

components. Each of the bρ(t) signals emitted by a moving target can be the result of, e.g., a radar signal

impinging on the ρ target surface and then bouncing back. Thus, bρ(t) could be viewed as the signal

resulting after the radar signal has bounced back from target ρ surface. If the radar signal has intensity

β(t), then the intensity of the signal emitted by the target would be proportional to bρ(t) ∼ β(t)
d2ρ(t) , where

dρ(t) denotes the distance of the radar from target ρ. This would give rise to fourth-order distance terms

in (1), however here since bρ(t) corresponds to the signal emitted by target ρ second-order distance terms

appear in (1). Assuming that each sensor will receive one reflection of the bounced radar signal,then the

superimposing argument given earlier can be used here to derive (1).

Assuming that targets are independently moving in space, the intensity of the signals bouncing back

from the target surfaces are considered to be uncorrelated. Note from (1) that among the summands

bρ(t)d
−2
j,ρ(t) some have very small amplitude when sensor j is far from target ρ, whereas others have

large amplitude when sensor j is close to target ρ [dj,ρ(t) is small]. Here it is assumed that among these

summands in (1) only one has strong amplitude whereas the rest are negligible. This pertains to a setting

where only one target, say the ρth target, is close to sensor j whereas the rest are sufficiently far thus

their contribution in xj(t) is very small. This can be realized when targets are sufficiently separated in

space such that no more than one targets are positioned inside the sensing region of a sensor, i.e., how far

the sensors can ‘see’. As the sensing range (and sensing region) of the sensors is reduced (cannot ‘see’

very far), targets can be located closer while ensuring the previous assumption of one dominant target. Of

course it is understood that the density of sensing units should increase in order to better cover the sensed

field. Thus, targets can be placed arbitrarily close by reducing the sensors’ sensing range. This is a more

‘relaxed’ version of the common assumption that sensor measurements in multi-target tracking contain

information about just one target [12], [16], [20], [36], [37], [52]. The intensity bρ(t) will be nonzero

only for the interval for which a target is sensed by the sensors, otherwise will be zero deactivating target

ρ in (1). For instance, if a target is sensed moving within interval [t1, t2], then bρ(t) = 0 for t < t1 and

t > t2. At a given time t a subset of the targets, say of cardinality r(t), will be active (bρ(t) 6= 0) in (1).

The distance term dj,ρ(t) is equal to ‖pj − pρ(t)‖, where ‖ · ‖ denotes the Euclidean norm, pj ∈ RK×1
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is the fixed and available position of sensor j, while pρ(t) := [pρ,x1
(t), pρ,x2

(t), . . . , pρ,xK (t)]T ∈ RK×1

denotes the unknown ρth target position in a K-dimensional manifold.

Each target, say the ρth is characterized by a 2K × 1 state vector sρ(t) that contains at a given time t

its location pρ(t) and the velocity vρ(t) := [vρ,x1
(t), . . . , vρ,xK (t)]T at the K different spatial directions,

i.e., sρ(t) := [pTρ (t),vTρ (t)]T . The target states evolve according to a general Markov model:

sρ(t+ 1) = g(sρ(t),uρ(t)), (2)

where g(·, ·) : R2K×1 × R2K×1 → R2K×1 is family of nonlinear, nonsingular functions, while uρ(t)

denotes the state noise. Details on the state model used for the numerical tests will be given in Sec. VII.

Fusing all sensor measurements in (1) on an m×1 vector we obtain the following measurement model

xt = Dtbt + wt, where bt := [b1(t) b2(t) . . . bR(t)]T , (3)

while Dt is a m × R matrix with entries Dt(j, ρ) = d−2
j,ρ(t) with j = 1, . . . ,m and ρ = 1, . . . , R. The

noise wt has covariance Σw = σ2
wIm, where Im denotes the m×m identity matrix. Note that vector xt

is not stored somewhere and it is introduced here for notational purposes. Given that the entries of bt

are uncorrelated, it follows that the data covariance matrix is

Σx,t = DtΣbD
T
t + σ2

wIm = D̄tD̄
T
t + σ2

wIm, (4)

where Σb is a diagonal matrix whose diagonal entries correspond to the variance of the entries in bt,

while D̄t := DtΣ
1/2
b . Note that the matrix Dt is time-varying since the distance of the sensors from

the targets is changing with time. Further, among the R entries in bt, there will be r(t) nonzero entries

corresponding to the active targets moving at the sensed field at t. Inactive targets at time instant t (either

far away from sensors) will be represented by zero bρ(t)’s that will further zero out the corresponding

columns in Dt. Here it is assumed that once a target becomes inactive (i.e. bρ(t) = 0) it remains inactive.

The ρth column of Dt contains the distances of all sensors from target ρ at time t. For sensors close

to target ρth, the corresponding distances, dj,ρ(t), will be relatively small, thus leading to relatively large

entries Dt(j, ρ) = d−2
j,ρ(t), compared to sensors that are further away. For example in Fig. 1, where the

number of targets R = 2 and K = 2, target 1 (green star) will be close to sensors {1, 2, 3, 4}, while

target 2 will be close to sensors {12, 13, 14, 16}. The measurements of the aforementioned sensors are

expected to be strongly affected by the target intensity signals and have a richer information content

about the present targets compared to the remaining sensors that are further away. Since targets at a

given instant t are very localized and close to a small percentage of sensors, many entries of any column,

say the ρth, in Dt are expected to be close to zero giving rise to an approximately sparse matrix Dt.
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Matrices Dt here are constantly changing, due to the presence of mobile targets. This is to be contrasted

with the stationary setting in [44] where sources are immobile and the corresponding covariance matrix

time-invariant.

Notice that the matrices Dt are not available since the targets’ locations are not available. Further,

someone may approximate Dt by first applying tracking techniques to estimate the targets’ locations

and subsequently the entries of Dt. However, the presence of a time-varying number of multiple-targets

and the fact that it is unknown which target corresponds to each measurement make our framework

more challenging and different than the one in [44]. Nonetheless, if there was a way to locate where the

strong-amplitude and small-amplitude entries are located in the ρth column Dt,ρ:, then we can identify

which sensors are close and acquire informative observations about a specific target, say the ρth. This

step of associating sensor measurements with targets will be of paramount importance before applying

any tracking techniques. A spatio-temporal data association framework will be designed here that allows

sensors to collaborate and determine which subsets of sensors acquire informative measurements about the

r(t) active targets at time instant t. This will be executed by employing sparsity-regularization techniques

to estimate Dt and decompose it into sparse factors. Note that existing data association schemes [12],

[16], [20], [36], [37], [52] match measurements with targets across time and rely on probabilistic models.

The sensor-target association framework proposed here will then be integrated with particle filtering

techniques that will be encountered across the different sets of informative sensors to track accurately

the targets’ positions. The goal here is twofold: i) determine the active targets and identify the sensors

that acquire informative measurements about them; and ii) perform tracking among the different subsets

of target-informative sensors.

III. SPATIO-TEMPORAL TARGET-TO-SENSOR DATA ASSOCIATION

A. Sparsity-Cognizant Minimization Framework

As mentioned earlier, at a given time instant, the number of targets present on the monitored field,

as well as which sensors have informative measurements about a specific target are unknown. Let Tρ,t
denote the subset of sensors that are closely located to target ρ and whose measurements [see eq. (1)]

are dominated by the ρth target component at time t. This implies that for all sensors j ∈ Tρ,t the

corresponding measurements will be approximately distributed as

xj(t) ∼ N (bρ(t)d
−2
j,ρ(t), σ2

w), (5)
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since sensors j ∈ Tρ,t are much closer to target ρ than the rest targets, resulting bρ(t)d
−2
j,ρ(t) to be the

dominant summand in (1). This stems directly from the assumption introduced in Sec. II that targets are

sufficiently separated in space, which further implies that dj,ρ � dj,ρ′ for ρ′ 6= ρ.

Next, we derive a technique to track the sensor subsets Tρ,t. In this way we will manage to associate

sensor measurements with targets. Note that the data association here is spatio-temporal and will be

done in a distributed manner and does not rely on specific probabilistic models. Different from [44],

the subsets Tρ,t are time-varying due to the moving targets. Thus, the stationary framework developed

in [44] is generalized here to dynamic and time-varying settings. Note that the rank of the information

component in the data covariance in (4), which is equal to r(t), reveals the number of active sensed targets

at time instant t, whereas the relatively strong-amplitude entries in each column {Dt,:ρ}Rρ=1 reveal the

members of a target-informative subset Tρ′,t. With these properties in mind, it is of interest to decompose

the sensor data covariance matrix Σx,t into sparse factors whose nonzero entries will indicate where the

strong-amplitude entries are in D̄t.

Note that the sensor data covariance Σx,t is time-varying due to the changing number of targets

and their movements, while in practical situations the ensemble covariance is not available. This is to

be contrasted with the setting in [44], where the sensor data covariance matrix is time-invariant. The

covariance matrix should be updated in a way that gives more emphasis to the more recent sensing data

while forgets the old data gradually. This process is achieved by utilizing exponential weighing, and is a

common technique in adaptive signal processing to estimate efficiently time-varying covariance matrices,

see e.g., [43], [46]. Specifically, the covariance entries are estimated by

Σ̂x,t =
1− γ

1− γt+1

t∑
τ=0

γt−τ (xτ − x̄t)(xτ − x̄t)
T , (6)

where γ ∈ (0, 1) denotes the forgetting factor that controls the ’memory’ process and

x̄t =
1− γ

1− γt+1

t∑
τ=0

γt−τxτ , (7)

corresponds to an adaptive estimate for the data ensemble mean which is also time-varying. Note that

γt−τ decreases as τ decreases (corresponding to past data), while for τ = t (present datum) the coefficient

multiplying xt is equal to one. Thus, the present datum is multiplied by the maximum possible value

that γt−τ can reach. The scaling (1 − γ)(1 − γt+1)−1 in (6) and (7) is introduced here to ensure that

the time-varying covariance and mean estimates Σ̂x,t and x̄t will be unbiased estimates of the ensemble

quantities Σx,t and E[xt] respectively, in a time-invariant (stationary) setting, i.e.

E[(1− γ)(1− γt+1)−1Σ̂x,t] = Σx,t, and E[x̄t] = E[xt].

April 15, 2015 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 10

Thus, the scaling introduced in (6) and (7) ensures that the obtained adaptive estimates are properly

normalized to give unbiased estimates in a stationary setting which further implies good estimation in

non-stationary settings too, see e.g., [43].

In order to adhere to the single-hop connectivity constraints summarized in the adjacency matrix E,

each sensor j is responsible for evaluating the ‘single-hop’ covariance entries Σ̂x,t(j, j
′) where j′ ∈

Nj . For example, sensor 5 in Fig. 1 will be able to evaluate only the single-hop covariance entries

Σ̂x,t(5, 5), Σ̂x,t(5, 6). The latter tasks involve the exchange of scalar measurements xj(t) between single-

hop neighbors during time t. Thus, covariance entries that correspond to sensors more than one hop away

will not be evaluated in the SN.

A standard least-squares based matrix factorization scheme would minimize the Frobenius norm-based

cost ‖Σ̂x,t −MtM
T
t − σ2Im×m‖2F with respect to (wrt) the factor estimates in Mt ∈ Rm×r. However,

such a formulation does not account for the nearly sparse structure of D̄t. In fact it assumes that the

number r of factors (sensed targets) is available, while all covariance entries are available. The need

for a framework that accounts for sparsity, unknown number of targets and single-hop connectivity is

apparent. To this end, the following framework is put forth(
M̂t, {σ̂j}mj=1

)
:= arg min

Mt,{σj}mj=1

‖E�
(
Σ̂x,t −MtM

T
t − diag(σ2

1,t, . . . , σ
2
m,t)

)
‖2F

+

L∑
`=1

λ`‖Mt,:`‖1 + φ

L∑
`=1

‖Mt,:`‖22, (8)

where � denotes the Hadamard operator (entry-wise matrix product), σ2
j is the local noise variance

estimate at sensor j, while L is an upper bound for the number of active sensed targets r(t) (L ≥ r(t))

and Mt,:` denotes the `th column of Mt. Although the sensing noise variance σ2
w is common across all

sensors we introduce different noise variance estimates σ2
j,t to facilitate the development of a decentralized

iterative minimization technique for (8). Matrix Mt ∈ Rm×L contains L columns that will estimate the

sparse matrix columns of D̄t, while L is selected sufficiently large to ensure that is an upper bound for

the number of present targets r(t).

Sensor j will be responsible for updating the jth row in Mt, namely Mt,j: for j = 1, . . . ,m.

The adjacency matrix E in (8) along with the nature of the Hadamard operator ensure that only the

available single-hop covariance entries will participate in the minimization formulation, while the updating

recursions that will be obtained later for each sensor j to find M̂t,j: will require message exchanges only

between single-hop neighbors. The first term in (8) accounts for the fact that the covariance assumes the

structure in (4). The second (norm-one) term in (8) induces sparsity in the columns of Mt to account

April 15, 2015 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 11

for the approximately sparse structure of D̄t. Norm-one regularization is well known to affect sparsity

in several estimation and regression problems [49], [58]. The larger the nonnegative sparsity-controlling

coefficient λρ is, the more zeros the estimated factor M̂t,:ρ will contain. The third term in (8), where

φ ≥ 0, is present to adjust the number of nonzero columns of M̂t needed to accurately represent Σ̂x,t.

The number of nonzero columns in M̂t will be smaller than L and can be used as an estimate for the

number of sensed targets r(t) at time t.

Notice that the optimization formulation in (8) is also different from the one given in [44]. The

difference is in the last two terms which are there to control the number of nonzero rows in matrix Mt.

In fact the number of nonzero rows in Mt will correspond to an estimate of the number of targets present

in the field. The scheme in [44] works under the assumption that the number of sources is known. Another

feature of the minimization formulation in (8), not present in [44], is the estimation of the sensing noise

variances σ2
j , which in general are unknown, and not available as is the case in [44].

B. Decentralized Algorithm

An iterative algorithm is proposed here to minimize numerically the cost in (8) derived using coordinate

descent techniques [6], [50]. The approach followed here is to minimize the cost in (8) recursively wrt

an entry of Mt or diag(σ2
1, . . . , σ

2
m), while keeping the remaining entries fixed. During one coordinate

descent cycle all the entries of matrix Mt and diag(σ2
1,t, . . . , σ

2
m,t) are updated. Sensor j is responsible

for updating the entries {Mt(j, `)}L`=1 and σ2
j,t. Given the most recent updates M̂k−1

t and {σ2
j,t,k−1} at

the end of coordinate cycle k− 1, updates M̂k
t (j, `) at sensor j can be formed by differentiating (8) wrt

Mt(j, `) while fixing the rest of the minimization variables to their most up-to-date values from cycle

k− 1. It turns out that (see Appendix A) during coordinate cycle k, the update M̂k
t (j, `) can be obtained

as the value that achieves the minimum possible cost in (8) (while fixing the rest of the variables) among

the candidate values: i) y = 0; ii) the real positive roots of the third-degree polynomial

4y3 + 4
[∑

i∈Nj [M̂
k−1
t (i, `)]2 − ζkt,Σ(j, j, `) + 0.5φ

]
y −

[
4
∑

i∈Nj ζ
k
t,Σ(j, µ, `)M̂k−1

t (i, `)
]

+ λ` = 0 (9)

and iii) the real negative roots of the third-degree polynomial

4y3 + 4
[∑

i∈Nj [M̂
k−1
t (µ, `)]2 − ζkt,Σ(j, j, `) + 0.5φ

]
y −

[
4
∑

i∈Nj ζ
k
t,Σ(j, i, `)M̂k−1

t (i, `)
]
− λ` = 0 (10)

where

ζkt,Σ(j, i, `) := Σ̂x,t(j, i)− δj,iσ̂2
j,t,k−1 −

L∑
`′=1,`′ 6=`

M̂k−1
t (j, `′)M̂k−1

t (i, `′) (11)

while δj,i denotes the Kronecker delta, i.e., δj,i = 1 if j = i, and δj,i = 0 if j 6= i.
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Further, the noise variance estimates across sensors can be updated during cycle k at time instant t as

σ̂2
j,t,k = Σ̂x,t(j, j)− M̂k

t,j:(M̂
k
t,j:)

T , j = 1, . . . ,m. (12)

The roots of (9) and (10) can be obtained using, companion matrices [18]. Sensor j can evaluate the

coefficients of the polynomials in (9) and (10) by communicating only with its neighbors in Nj . In detail,

sensor j receives {M̂k−1
t (i, 1), . . . , M̂k−1

t (i, L)} and the latest measurements {xi(t)} from sensors i ∈ Nj
to form the single-hop covariance updates Σ̂x,t(j, i) and subsequently evaluate ζkt,Σ(j, i, `). Similarly, it

sends to its neighbors the L scalar updates for the jth row of Mt, namely {M̂k−1
t (j, 1), . . . , M̂k−1

t (j, L)}

and its current measurement xj(t). Further, each sensor j can update the noise variance estimates σ̂2
j,t,k

using only locally available information as can be seen in (12). To facilitate a real-time implementation

a small fixed number, say κ, of coordinate cycles is applied per time t. Note that the proposed scheme

also involves constant updating of the single-hop covariance entries Σ̂x,t(j, i) needed in ζkt,Σ(j, i, `) to

account for the constantly changing statistical properties of the sensed field. Such online updating is not

present in [44].

The task of forming the updates {M̂t(j, `)}L`=1 at sensor j at time instant t boils down to determining

the roots of the third-degree polynomials given in (9) and (10). The latter task involves: i) evaluating the

quantities {ζkt,Σ(j, µ, `)}µ∈Nj∪{j},`=1,...,r, with a computational complexity of the order of O(|Nj |r2), i.e.,

L|Nj | coefficients each evaluated in (11) with a complexity of O(L); ii) evaluating the 4|Nj | coefficients

of the polynomials at (9) and (10) with a complexity of O(4|Nj |L); and iii) determining the roots of

the third-order polynomials in (9) and (10) that involves evaluation of the corresponding 2L companion

matrices of size 3×3 at a computational complexity of O(L). Note that the cost at sensor j per coordinate

cycle is linearly dependent on the number of single-hop neighbors |Nj |, while the dependency is quadratic

when it comes to the upper bound of the number of targets L. Nevertheless, the number of sources r

(and thus L) in practical scenarios is much smaller than the number of sensors m.

Once the sparse factors {M̂t,:`}
r̂(t)
`=1 are estimated, where r̂(t) < L corresponds to the number of

nonzero columns of M̂t := M̂κ
t at t, their support (nonzero entries) can be used to identify the sensors

that sense a specific target at time instant t. In that way sensor subsets T`t,t for `t = 1, . . . , r̂(t) can

be identified and used to track r̂(t) different targets. One challenge that will be addressed in Sec. V is

how to determine whether two subsets T`t,t and T`′t,t′ evaluated at different time instances correspond to

the same target or not. This time-association step is necessary to make sure that estimated trajectories

corresponding to different targets are updated using newly acquired sensor measurements that correspond

to the correct dominant target. At a given time instant t the steps followed across sensors, which form a
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connected network, to perform decentralized data association is tabulated as Algorithm 1. During time

instant t one coordinate cycle k involves updating the m× L entries M̂k
t and the m variance estimates

σ2
j,t,k via (9), (10) and (12). In Apdx. B it is demonstrated that Alg. 1 converges at least to a stationary

point of (8). The parameters {λ`}L`=1 can be set using the strategy proposed in [44].

To end the iterative process involved in Alg. 1, each sensor j proceeds to evaluate the Euclidean norm of

the difference between two consecutive estimates, namely ‖M̂k−1
t,j: −M̂k

t,j:‖2, found during iteration steps

k and k−1. Using a max consensus scheme, e.g., [21], the maximum of these m norm quantities can be

found across sensors which then they compare this maximum with a desired threshold of accuracy. Once

the maximum norm ‖M̂k−1
t,j: −M̂k

t,j:‖2 (sensor with largest updating difference) is less than a threshold ε

which could be set as a adjustable small positive value (in our tests is set as 5 · 10−3), then the updating

process involved in Alg. 1 will stop across sensors.

Algorithm 1 Distributed Target-Sensor Association
1: At time instant t:

2: Sensor j updates Σ̂x,t(j, j
′) for j′ ∈ Nj ∪ {j} using (6) after receiving the most recent data {xj′(t)}j′∈Nj

from its neighbors.

3: Sensor j initializes the jth row of Mt as M̂0
t,j: = 01×L, while it sets σ̂2

j,t,0 = 0.

4: for k = 1, 2, . . . , κ do

5: Each sensor j for j = 1, . . . ,m:

6: Transmits {M̂k−1
t (j, `′)}L`′=1 to its neighbors in Nj , and receives {M̂k−1

t (j′, `′)}L`′=1 from j′ ∈ Nj .

7: Evaluates ζkt,Σ(j, i, `) for i ∈ Nj ∪ {j} via (11).

8: Determine the updates {M̂k
t (j, `)}L`=1 after determining the positive roots of (9) and the negative roots of

(10).

9: If maxj=1,...,m(‖M̂k−1
t,j: − M̂k

t,j:‖2) ≤ ε then stop.

10: end for

IV. TRACKING VIA PARTICLE FILTERING

Next we will take into our advantage the target-informative sensor subsets Tρ,t which have been

retrieved using the decentralized framework in Sec. III in order to perform multi-target tracking. We

focus on executing the tracking process via particle filtering (PF) [2], [15] due to its flexibility to handle

nonlinear and/or nonGaussian scenarios as in our observation model in (1). For each subset Tρ,t a different

PF will be constructed to track the corresponding target ρ.
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Tracking objects consists of computing a conditional expectation

E(f(sρ,t)|xTρ,0:t) =

∫
f(sρ,t)p(sρ,t|xTρ,0:t)dsρ,t

of a function of the state, sρ,t, of a target ρ, using the measurements of the sensors within the informative

subset Tρ,t. Equivalently, the conditional density p(sρ,t|xTρ,0:t) given the measurements needs to be

computed instead. These measurements are denoted herein by the |Tρ,t|×1 vector xTρ,t := {xj(t)}j∈Tρ,t ,

where |Tρ,t| denotes the cardinality of sensor subset Tρ,t. The measurements are affiliated with a perti-

nent likelihood function which depends on the underlying observation model. We generally denote this

likelihood function by p(xTρ,t |sρ,t) given the state sρ,t of the ρth target at time t. The reader may refer

to Sec. VII for specific details on the likelihood and the associated observation model. All the available

data from time 0 up to the current time instant t will be used. Let xTρ,0:t denote the sensor measurements

associated with the informative sensor subsets Tρ,0, Tρ,1, . . . , Tρ,t within the time horizon [0, t].

However, in many instances, it is a rather formidable task to compute or approximate the condi-

tional density, p(sρ,t|xTρ,0:t). Therefore, employing importance sampling techniques, one may consider a

different distribution, say q(sρ,t|xTρ,0:t) and the aforementioned conditional expectation is derived

E(f(sρ,t)|xTρ,0:t) =

∫
f(sρ,t)

p(sρ,t|xTρ,0:t)
q(sρ,t|xTρ,0:t)

q(sρ,t|xTρ,0:t)dsρ,t.

Consequently, if one draws Q samples, siρ,t, i = 1, · · · , Q, from the proposal distribution q(sρ,t|xTρ,0:t),

the conditional expectation is in turn approximated by

E(f(sρ,t)|xTρ,0:t) ≈
1

Q

Q∑
i=1

f(siρ,t)
p(siρ,t|xTρ,0:t)
q(siρ,t|xTρ,0:t)

, (13)

and by further approximating Q ≈
∑Q

i=1

p(siρ,t|xTρ,0:t )
q(siρ,t|xTρ,0:t )

we have that

E(f(sρ,t)|xTρ,0:t) ≈

∑Q
i=1 f(siρ,t)

p(siρ,t|xTρ,0:t )
q(siρ,t|xTρ,0:t )∑Q

i=1

p(siρ,t|xTρ,0:t )
q(siρ,t|xTρ,0:t )

. (14)

Defining

wiρ,t ∝
p(siρ,t|xTρ,0:t)
q(siρ,t|xTρ,0:t)

(15)

to be the ith weight which corresponds to the ith particle siρ,t, the conditional expectation is approximated

by

E(f(sρ,t)|xTρ,0:t) ≈
Q∑
i=1

wiρ,tf(siρ,t).
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The particle filter is an importance sampling with a special importance density q(·). To identify this

density q(·), one takes into account that the conditional distribution, p(sρ,0:t|xTρ,0:t), can be written

p(sρ,0:t|xTρ,0:t) ∝ p(xTρ,t |sρ,t)p(sρ,t|sρ,t−1)p(sρ,0:t−1|xTρ,0:t−1
), (16)

where ∝ denotes that the two probability density functions (pdfs) on the right and left hand sides will

be equal after appropriate scaling with a constant not dependent on the unknown state. Furthermore, one

may consider that the importance density is factorized [2] such that

q(sρ,0:t|xTρ,0:t) = q(sρ,t|sρ,0:t−1,xTρ,0:t)q(sρ,0:t−1|xTρ,0:t−1
). (17)

However, only a filtering estimate is propagated at each time step. Therefore, the importance den-

sity q(sρ,t|sρ,0:t−1,xTρ,t) depends only on sρ,t−1 and xTρ,t which yields that q(sρ,t|sρ,0:t−1,xTρ,t) =

q(sρ,t|sρ,t−1,xTt). Employing the framework of eqs. (16) and (17) into eq. (15) at each time step, we

have that the weight corresponding to the ith particle can be updated by

wiρ,t ∝ wiρ,t−1

p(xTρ,t |siρ,t)p(siρ,t|siρ,t−1)

q(sρ,t|sρ,t−1,xTρ,t)
, (18)

where wiρ,t−1 = p(siρ,0:t−1|xTρ,0:t−1
)/q(siρ,0:t−1|xTρ,0:t−1

). A popular choice for the density q(siρ,t|siρ,t−1,xTρ,t) =

p(siρ,t|siρ,t−1) such that the weights are given by

wiρ,t ∝ wiρ,t−1p(xTρ,t |siρ,t) ; i = 1, . . . , Q (19)

where siρ,t is the ith sample from the Markov transition density p(siρ,t|siρ,t−1) and p(xTρ,t |siρ,t) the

corresponding likelihood function associated with the measurements xTρ,t . Consequently, the posterior

filtering density is approximated by

p(sρ,t|xTρ,0:t) ≈
Q∑
i=1

wiρ,tδ(sρ(t)− siρ,t),

where the weights are defined in (19) and δ is the Dirac delta function.

One may easily conclude that the particle filter’s implementation is straightforward and can be adapted

for different problems as long as the algorithm is tuned according to the specific dynamics. Precisely this

has led to the particle filter algorithm’s increased popularity [11]. However, it has been shown, in [15]

for example, that particle filter suffers from degeneracy and that it needs a lot of samples in order to

describe accurately the conditional density p(sρ(t)|xTρ,0:t). Therefore several resampling schemes have

been incorporated in order to alleviate this problem, e.g. see [15], [23], [24], [35], [47] by replicating

samples with significant weight and disregarding the rest. In our paper, we used the popular multinomial

resampling scheme, e.g. see [15]. After the resampling stage, the particles siρ,t, are used to estimate the
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state for target ρ at time instant t. Of course there are multiple targets present in the field, thus in the next

section it is described how the sensor-target distributed association algorithm in Sec. III can be combined

with PF to track effectively multiple-targets.

V. JOINT SENSOR-TARGET ASSOCIATION AND PARTICLE FILTERING

Here it is described in detail how the PF unit in Sec. IV and the sensor-target association scheme in

Sec. III interact to enable tracking using only target-informative sensors in the SN.

Specifically, during a start-up stage each sensor acquires Ts measurements, namely {xj(τ)}0τ=−(Ts−1).

It is assumed that the sampling rate is fast enough such that the present targets, say r(0) in number,

are essentially stationary/immobile. The Ts acquired data are then used by the distributed sensor-target

association framework in Sec. III to determine the sets of informative sensors {Tρ0` ,0}
r̂(0)
`=1 where each

ρ0
` ∈ {1, . . . , R} for ` = 1, . . . , r̂(0), and r̂(0) is the estimated number of r(0) sensed targets at time

t = 0. One sensor in each set Tρ0` ,0 is designated as a leading sensor Cρ0` ,0 which collects from all sensors

j ∈ Tρ0` ,0 their corresponding measurements xj(0) and their position pj for j ∈ Tρ0` ,0 and ` = 1, . . . , r̂(0).

During initialization the leading sensor Cρ0` ,0 can be selected randomly among the sensors in Tρ0` ,0. Then,

for time t > 0 it will be described later on how the leading sensors are selected. Each leading sensor

Cρ0` ,0, for ` = 1, . . . , r̂(0), then calculates the ‘average’ informative sensors’ position as

p̂ρ0` (0) =
∑

j∈Tρ0
`
,0

pj , ` = 1, . . . , r̂(0). (20)

Then, each leading sensor Cρ0` ,0 uses the corresponding average location in (20) to initialize the PF

recursions in Sec. IV, and find a state estimate ŝρ0` (0) for target ρ0
` using the informative measurements

xj(0), for j ∈ Tρ0` ,0 and ` = 1, . . . , r̂(0).

Suppose that at time t each leading sensor {Cρ`,t} has available state estimates ŝρ`(t) for ` =

1, . . . , r̂(t). From ŝρ`(t) the estimated target position p̂ρ`(t) can be extracted and it is utilized to select a

set of ‘candidate’ target-informative sensors, namely Jρ`,t+1, for target ρ`. Specifically, the leading sensor

Cρ`,t transmits ŝρ`(t) to its single-hop neighbors, which will subsequently transmit to their own neighbors

and the estimate propagates in time. A sensor j that receives ŝρ`(t) will forward this estimate only to

those neighbors in j′ ∈ Nj that are located within a radius Rs from the estimated target location, i.e.,

‖pj′ − ŝρ`(t)‖2 ≤ Rs. Note that through the aforementioned process the set of sensors Jρ`,t+1 selected

at time t+ 1 has the following two properties: i) each sensor j ∈ Jρ`,t is located within a radius Rs of

the estimated position p̂ρ`(t), i.e., ‖pj − p̂ρ`(t)‖ ≤ Rs; and ii) sensors in j ∈ Jρ`,t+1 form a connected
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communication subgraph characterized by the adjacency matrix Eρ`,t+1 which is going to be a submatrix

of E after keeping the rows and columns with indices in Jρ`,t+1.

In each of the subsets Jρ`,t+1 the distributed targets-to-sensors data association algorithm (Alg. 1) is

employed to determine the target-informative sensor subsets Tρ`,t+1 ⊆ Jρ`,t+1 for each of the targets ρ`

at time instant t+ 1. The radius Rs through which Jρ`,t+1 are constructed is up to our control, and the

faster the target moves the larger Rs should be set to guarantee that all target-informative sensors are

included in Jρ`,t+1. Performing the sensor-target association algorithm in different sensor subsets Jρ`,t+1

of the SN facilitates tracking the present targets, while it requires less computational and communication

complexity than when applied in the whole SN. In fact, there will also be instances where the sensors-

targets association algorithm (Alg. 1) will be implemented across the whole SN whenever it is detected

that the present targets may have changed in number and we have to redetermine the target-informative

subsets. Indicators used to determine when to apply the scheme in Sec. III across the whole SN are the

following:

C.1 If any of the estimated target-informative sets Tρ`,t+1, returned by Algorithm 1, are empty. This

implies that most likely some of targets being tracked at previous time instances are not present in

the sensed field anymore.

C.2 If the energy of the measurements of a given sensor, not currently in any set Tρ`,t exceeds a certain

threshold. This implies that most likely a new target has entered the sensed field and this is indicated

by an elevated energy level in the measurements of a currently non-informative sensor.

The procedure described earlier for the start-up stage is applied every time it is determined that the

distributed sensors-targets association scheme has to be applied in the whole network. This process is

necessary due to the fact that the target population has changed since old targets may not be sensed

anymore, while new ones may have entered the sensed field.

The leading sensor Cρ`,t+1 is chosen as that sensor in Tρ`,t+1, which is closest to the estimated position

of the ρ`th target, i.e.,

Cρ`,t+1 = arg min
j∈Tρ`,t+1

‖pj − p̂ρ`(t)‖2. (21)

The process of electing a new leading sensor can take place among the sensors in Tρ`,t+1
that can determine

their distance from p̂ρ`(t) and find which sensor has the minimum in a distributed fashion, e.g., see [21].

The leading sensor Cρ`,t+1 then collects i) the corresponding state particles and weights {siρ`,t, w
i
ρ`,t}

Q
i=1

from Cρ`,t; and ii) the sensors measurements xj(t+ 1) for j ∈ Tρ`,t+1, namely the updated informative

sensor subset for target ρ`th at time instant t+1. Assuming that the sampling rate is fast enough, the target
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locations sρ`(t) and sρ`(t + 1) will be close, thus a few communication hops (1 or 2 in simulations)

suffice to have the previous leading sensor Cρ`,t, as well as the current target-informative sensors in

Tρ`,t+1 transmit their information to Cρ`,t+1. For instance, in Fig. 2 sensor 4 corresponds to one leading

sensor at time instant t, while the informative sensors are {1,2,3,4}. Then, at time instant t+ 1 and since

the target has moved the informative sensor set changes to {5, 6, 8} while sensor 6 is elected as the new

leading sensor at t+ 1 being closer to the estimated target position.

The leading sensor Cρ`,t+1 proceeds to draw new state particles from the importance sampling pdf

q(sρ(t)|xTρ,0:t) and update their corresponding weights as in (19). Then, Cρ`,t+1 forms the new state

estimate ŝρ`(t+ 1) ≈ E[sρ`(t+ 1)|xTρ,0:t ] using (13), and extract from ŝρ`(t+ 1) the estimated location

for target ρ` at time instant t, namely p̂ρ`(t + 1). The leading sensor Cρ`,t+1 transmits ŝρ`(t + 1) to

its single-hop neighbors and the process described earlier is repeated to update the subsets of candidate

informative sensors Jρ`,t+2. The joint algorithmic framework for multi-target tracking and distributed

sensor-target association is tabulated as Algorithm 2.

Algorithm 2 Joint Target-Sensor Association and Multi-Target Tracking
1: Start-up stage (t = 0)/Reconfiguration (t 6= 0): Each sensor j collects Ts measurements xj(t) and Algorithm

1 is applied in the whole network to determine the target-informative groups Tρ`,t and ` = 1, . . . , r̂(t), where

r̂(t) is the estimated number of sensed targets.

2: for τ = t, . . . , do

3: Determine the leading sensor Cρ`,τ in each Tρ`,τ for ` = 1, . . . , r̂(t) as specified in (21).

4: Each leading sensor Cρ`,τ receives particles and weights from Cρ`,τ−1, and xj(τ) from j ∈ Tρ`,τ to perform

tracking for ρ` = 1, . . . , r̂(t) target via the PF recursions and obtain ŝρ`(τ) via (13).

5: The state estimates ŝρ`(τ) are propagated from Cρ`,τ via single-hop transmissions to every sensor j that

can be reached from Cρ`,τ by a multi-hop path and satisfies ‖pj − p̂ρ`(τ)‖2 < Rs. Then, the candidate

informative sets {Jρ`,τ+1}r̂(t)`=1 are formed.

6: Algorithm 1 is applied in each connected set of sensors Jρ`,τ+1 to obtain the target-informative sets Tρ`,τ+1.

7: If either condition C.1, or C.2 is true then go to step 1, otherwise go to step 2.

8: end for

VI. INTER-SENSOR COMMUNICATION COSTS

The information exchanges occurring during different steps of Algorithm 2 and the associated com-

munication costs are outlined next. Specifically, inter-sensor communications take place when Algorithm

1 is applied to perform sensors-to-targets association and every time a leading sensor has to be updated.
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Fig. 2. Update of the target-informative sets and the leading sensors as a target moves in the sensed field.

In detail at time instant t + 1 sensor j has to receive |Nj | scalar measurements from its neighbors,

namely {xj′(t+1)}j′∈Nj , to update Σ̂x,t+1(j, j′) (step 1 in Alg. 1). Further, sensor j receives the updates

{M̂k−1
t+1 (j′, `)}L`=1, L|Nj | scalars in total, to form its local updates {M̂k

t+1(j, `)}L`=1 (step 8 in Alg. 1).

Thus, sensor j receives (L + 1)|Nj | scalars. In the same way sensor j has to transmit xj(t + 1) and

{M̂k−1
t+1 (j, `)}L`=1, a total of L+1 scalars, to its neighbors per iteration k in Alg. 1. It is worth emphasizing

that the communication complexity for each sensor is linear with respect to its neighborhood size and

the number L used to bound the number of targets at a given time instant. Such a complexity can be

handled easily by networks of sensors. Note that the previous information exchanges occur during step

1 and step 6 in Alg. 2.

Every time the target-informative sets {Tρ,t+1} are updated, the old leading sensor, say Cρ,t, has to

send to the new leader Cρ,t+1 Q particles, each entailing 2K scalars, and Q corresponding scalar weights.

Further, Cρ,t has to send out the 2K scalars corresponding to the estimate ŝρ(t) (step 5 in Alg. 2). Thus,

Cρ,t has to transmit (2K + 1)Q + 2K scalars for implementing steps 3 − 5 in Alg. 2. Every sensor in

Tρ,t+1 has to also transmit its scalar measurement xj(t+ 1) that will reach Cρ,t+1, and will be used to

update the target state estimates. Thus, Cρ,t+1 receives in total (2K + 1)Q+ 2|Tρ,t| scalars. Clearly, the

communication cost is proportional to the number of particles Q and the dimensionality of the target

state vectors 2K.

In [29] a Monte Carlo method is employed to select the active sensors when tracking a single target.

Specifically, at time t there is a cluster head sensor, say sensor j, that selects among its neighbors, say

Nj , a number of µ sensors whose measurements will be used to track, via EKF, the target at the next time
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instance. A probability of detection is calculated for each sensor in the neighborhood Nj by the cluster

head, and the first active sensor is selected as the one in Nj having the highest probability of detection.

This task is carried out at a computational complexity of O(|Nj |). In the same way the second active

sensor is selected, as the one among the remaining |Nj | − 1, achieving the highest value of a pertinent

joint probability of detection metric; the corresponding complexity is O(|Nj |−1). Similarly the ith active

sensor is determined at a complexity of O(|Nj | − i) for i = 1, . . . , µ. Thus, the total complexity at the

cluster head for selecting µ sensors is O(µ(|Nj | − µ−1
2 )). Depending on the number of active sensors

chosen (1 ≤ µ ≤ |Nj |), if µ = 1 then complexity is in the order of O(|Nj |) per cluster head which is

the same as in our scheme for r = 1 target. If µ = |Nj | (all sensors selected), then the computational

complexity of [29] is in the order of O(|Nj |2/2) which leads to a higher complexity compared to the

one achieved in our case when |Nj | > 2. Further, in [29], all neighboring sensors send their data to the

current leading sensor, leading to a communication cost which is proportional to the neighborhood size

|Nj |.

The approach for choosing active sensors in [29] relies on the prediction state estimate and MSE

covariance obtained through extended Kalman filtering (EKF), see, e.g., [25]. The latter two quantities

are used in a Gaussian pdf to evaluate the aforementioned probabilities of detection whose values will

determine the active sensors. Different from [29], the proposed sensors-to-targets association scheme does

not depend on the state and observation model parameters in (1) and (22). On the contrary, the novel

tracking scheme here relies on the sensor measurements to update the target-informative portion of the

SN, and it is not affected by the tracking algorithm [cf. (9) and (10)]. Linearization in EKF may result

errors in the tracking process which can propagate to the sensor selection process in [29] and deteriorate

performance. In the same way, selecting the closest sensors to the estimated target position is prone

to error propagation and cannot perform better than [29]. Numerical tests will corroborate the previous

claims.

VII. NUMERICAL TESTS

A. Target Dynamics and Particle Sampling

As in the majority of methods developed for target tracking, e.g., [29] in the numerical tests we consider

a scenario where the targets move according to a near constant velocity model [3]. Specifically, the ρth

target’s state vector evolves according to the following model

sρ(t+ 1) = Asρ(t) + uρ(t), (22)
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where A is a 2K×2K transition matrix, while uρ(t) denotes zero-mean Gaussian noise with covariance

Σu. The matrices A and Σu have the following structure (e.g., see [3])

A =



1 0 . . . ∆T . . . 0
...

...
...

...
...

...

0 1 0 0 . . . ∆T

0 0 1 . . . 1 0

0 0 0 . . . 0 1


, Σu = σ2

u

(∆T )3/3 · IK (∆T )2/2 · IK
(∆T )2/2 · IK ∆T · IK



where ∆T is the sampling period, and σ2
u is a nonnegative constant controlling the variance of the noise

entries in uρ(t) while IK denotes the K×K identity matrix. The state noise is assumed to be temporally

white and uncorrelated with the observation noise across sensors, namely wt := [w1(t), . . . , wm(t)]T .

Using the state transition model in (22) it follows readily that state transition pdf p(sρ(t)|siρ,t−1) is

Gaussian with expectation Asiρ,t−1 and covariance Σu. Thus, the new Q state particles at time instant t

can be generated from the ones obtained at time instant t− 1 as follows:

siρ,t = A× siρ,t−1 + vt, i = 1, . . . , Q (23)

where vt ∈ R is a 2K × 1 zero-mean Gaussian vector with covariance Σu.

From the observation model in (1) it turns out that the likelihood pdf of the informative observations

corresponding to the sensors in Tρ,t, given the ith particle for the state of target ρ, i.e., p(xTρ,t |siρ,t) in

(19) is Gaussian, i.e.,

p(xTρ,t |siρ,t) =
1

(2πσ2
w)|Tρ,t|/2

exp

(
−
∥∥xTρ,t − dρ(s

i
ρ,t)
∥∥2

2σ2
w

)
(24)

where σ2
w denotes the observation noise variance, while

dρ(s
i
ρ,t) =

[
‖pjt1 − piρ,t‖−2, ‖pjt2 − piρ,t‖−2, . . . , ‖pjt|Iρ,t| − piρ,t‖−2

]T
(25)

where pjt1 is the known position of sensor j1 at time t, while jt1, j
t
2, . . . , j

t
|Iρ,t| are the indices of the

sensors in the informative set Tρ,t. Further, piρ,t is the estimated position for target ρ extracted from the

state particle siρ,t for i = 1, . . . , Q. Intuitively, the vector dρ(s
i
ρ,t) in (25) can be viewed as an estimate

(prediction) of the informative sensor measurements xTρ,t using the most recent particles. In this way,

only the measurements from the informative sensors in Tρ,t will be used to find the weights for the

sampled particles, and thus track the corresponding target ρ.
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B. Tracking of a Single-Target

We start by testing the performance of the novel tracking Alg. 2 and compare to existing alternatives

in a wireless network setting with m = 150 sensors which are randomly placed in a region [0, 100] ×

[0, 100]m2. A scenario with a single target is considered first. The target starts at location [27.00, 72.00]

and moves with a speed of 1.8m/s at the x-axis and the y-axis. The state and observation models

introduced in (22) and (1) are utilized here for K = 2.

In the following numerical tests we compare the tracking performance, via the localization root mean-

square error (RMSE), among i) the novel Alg. 2; ii) the EKF approach with sensor selection in [29];

iii) EKF combined with the sensor-targets association Alg. 1 (EKF+Alg. 1); iv) EKF with all sensor

measurements used and there is no sensors-targets association (EKF-All sensors); v) PF with all sensor

measurements used and there is no sensors-targets association (PF-All sensors); vi) PF combined with

a scheme that selects as target-informative sensors the J-nearest sensors to the current target position

estimate (Nearest sensor) with J = 3; and vii) unscented Kalman filtering (UKF) (see e.g., [22]) combined

with the sensors-to-targets association Alg. 1 (UKF+Alg. 1).

In all these tracking methods, the target position is initialized by applying Alg. 1 and finding (20),

ensuring that the initial error is the same for all different tracking approaches. As for the parameters in

Alg. 2, the forgetting factor for updating (6) is set to γ = 0.1, while the radius Rs, used in forming the

candidate sets Jρ,t, is set equal to 15. The threshold to decide which entries in M̂t are zero and which are

nonzero is set to be 10−5 in the single-target case. The parameters λ` are set using the method in [44, Sec.

V-A], and φ = 1.1. Fig. 3 displays the root mean-square tracking error (RMSE) achieved by the tracking

schemes described earlier versus time t. Four different test cases are considered in Fig. 3 in which the

state noise and the measurement noise variances change. On the top left diagram a setting with relatively

small state and observations noise variances, namely σ2
u = 0.005 and σ2

w = 0.0001 (corresponding to a

sensing signal-to-noise ratio of 30dB), is considered. The bottom left diagram corresponds to a setting

with relatively small state variance, and relatively large observation noise variance, namely σ2
u = 0.005

and σ2
w = 0.1 (corresponding to a sensing signal-to-noise ratio of 2dB). The top right diagram deals

with a setting with relatively large state variance, and relatively small observation noise variance, namely

σ2
u = 0.05 and σ2

w = 0.0001 (corresponding to a sensing signal-to-noise ratio of 30dB). Finally, the

bottom right diagram corresponds to a setting where both the state and observation noise variances are

relatively large, i.e., σ2
u = 0.005 and σ2

w = 0.1 (corresponding to a sensing signal-to-noise ratio of 2dB

which is low).
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Fig. 3. Tracking root mean-square error (RMSE) vs. time (t) for different tracking schemes and different tracking conditions.

Fig. 3 corroborates that the novel tracking Alg. 2 outperforms in terms of tracking RMSE alternative

tracking approaches when the observation and/or state noise variance are relatively high. The EKF-based

approaches rely on linearization and therefore the presence of high-variance noise in the state and/or

observation models will result such approaches to deviate as time progresses. The method in [29] utilizes

the EKF target position estimates to determine the target informative sensors and as it can be seen in

Fig. 3 the RMSE will diverge. The reason for the big performance gap between the EKF and Alg. 2

lies on the linearization errors involved in EKF. Such errors are accentuated in the presence of state

and measurement noise of high variance. Then, bad trajectory estimates further deteriorate the sensor

selection process causing an error propagation behavior. The same behavior is also exhibited when the
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nearest to the estimated target position sensor are selected to perform tracking. This method also diverges

in the presence of high variance noises. Further, it can be seen that UKF combined with Alg. 1 performs

better than EKF+Alg. 1 as expected, however its performance is still worse than Alg. 2. This is expected

since UKF aims to approximate the mean and covariance of the state, whereas the particle filters in fact

track the posterior pdf which in our setting is not Gaussian despite the presence of Gaussian noise.

Alg. 2 performs reliable tracking even under high-variance noise environments. The reason is that

the sensors-to-targets association scheme (Alg. 1) does not rely on the tracking algorithm and employs

the data directly to determine target-informative sensors. Another important property of Alg. 2 is that

its tracking performance is very close to that of a particle filtering approach that uses all the sensors

in the network. This demonstrates the efficiency of Alg. 2 in selecting a few target-informative sensors

without compromising the tracking performance. Clearly, Alg. 2 has the potential to prolong the lifetime

of the network without losing much tracking accuracy when compared to a setting where all sensors

measurements are utilized during tracking. When the state and observation noise variances are small,

then all six different methods perform well and reach a small tracking RMSE. In such a setting the

PF-based methods appear to reach steady-state at a slower rate than the EKF-based and UKF-based

approaches. The reason is the small number of particles used here Q = 100 per time instant t that results

slower convergence. Nonetheless, what is important is that the novel tracking Alg. 2 is able to accurately

track the target even in hostile settings suffering from high variance noises.
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Fig. 4. Number of selected sensors vs. time t in a single-target setting.
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Next, we consider the same setting as in the upper diagram of Fig. 3 where the state and observation

noise variances, σ2
u = 0.005 and σ2

w = 0.0001, are relatively small. Fig. 4 depicts the number of sensors

selected to utilize their measurements for tracking per time instant t. Alg. 2, the scheme in [29] and

the nearest sensor selection rule for J = 3 are applied. Notice that the average number of selected

sensors per method is equal to 3 ensuring a fair comparison in terms of RMSE in Fig. 3 (top). The

bottomline is that for the same number of active sensors our approach outperforms existing alternatives

for selecting informative sensors, while it performs closely to the benchmark (but demanding) scheme

where all sensors are used to perform tracking.

C. Changing the number of particles

Fig. 5 depicts the tracking RMSE achieved by Alg. 2 versus time for different values of the number

of particles Q used. Two different settings are considered: Fig. 5 (left) corresponds to a setting with

relatively high state and observation noise; and Fig. 5 (right) corresponds to a setting with relatively

low-variance state and observation noise. As expected the left diagram in Fig. 5 indicates worse tracking

performance than the right diagram. Nonetheless, in all cases an increasing number of particles always

leads to considerable improvements of the tracking performance. The reason for observing inflexions has
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Fig. 5. Tracking RMSE vs. time t for different number of particles Q using Alg. 2.

to do with the number of sensors around the target at a give time instant. At certain time instances there

may be only one sensor close to the target whereas the number of sensors may increase or decrease with
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time. The more sensors in the proximity of a target, the more active sensors will be selected via Alg. 1,

resulting a reduction in the tracking RMSE. However, at times if there are not many sensors close to the

target the RMSE may increase in value as observed in Fig. 5.

D. Tracking of multiple targets

A setting where three targets are moving in the sensed field is considered next. Note that the scheme

in [29] and nearest sensor method are not capable to track multiple targets. The same applies when using

all sensors measurements and there is no sensor-data association embedded in the tracking scheme (EKF

or PF). Here we will test the tracking RMSE achieved by Alg. 2, as well as the scheme where EKF is

combined with Alg. 1. A setting with m = 120 sensors is considered that are randomly deployed in the

area of [0, 100] × [0, 100]m2. The three targets are set to move from initial positions [30, 80], [35, 25]

and [40, 45], respectively. The speed of the targets per x-axis and y-axis is set equal to 1.8m/s. These

trajectories are well separated in space and satisfy the assumption of having one dominant term in (1),

as introduced in Sec. II. Step 1 in Alg. 2 is applied to associate sensors with targets and initialize Alg.

2. Fig. 6 depicts the average tracking RMSE (averaged across the three different targets) versus time

for i) Alg. 2; and ii) the EKF combined with the sensors-to-targets association Alg. 1. The left diagram

corresponds to a relatively low-variance state and observation noise setting, i.e., σ2
u = σ2

w = 8 · 10−3 (the

corresponding sensing SNR is 13dB). The right diagram corresponds to a relatively high-variance state

and observation noise setting, i.e., σ2
u = σ2

w = 8 · 10−2 (the corresponding sensing SNR is 3dB). As in
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Fig. 6. Average tracking RMSE versus time for a low-variance noise setting (left); and a high-variance noise setting (right).
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the single-target case it follows that both Alg. 2 and the EKF-based schemes perform accurate tracking

for the low-variance noise setting. Again Alg. 2 converges slower to steady state because of the limited

number of particles, Q = 100, used per time instant t. In the high-variance noise setting clearly Alg. 2

is still able to track the three targets whereas the EKF based method fails since the linearization process

breaks down and results misleading target position estimates that eventually diverge.

Fig. 7 demonstrates how the steady-state tracking RMSE behaves as a function of the state and obser-

vation noise variance. Two curves are depicted, for the blue curve the x-axis corresponds to measurement

noise variance while the state noise variance is set to σ2
u = 0.1, whereas for the red curve the x-axis

corresponds to state noise variance while the measurement noise variance is set to σ2
w = 0.1. Note

that although the noise variance increases almost by an order of magnitude on the x-axis, the RMSE

increases approximately by 1.6 meters which in the [0, 100] × [0, 100] area corresponds to a relatively

small tracking performance degradation. This advocates the robustness and ‘graceful’ degradation of Alg.

2 in the presence of state/measurement noise.
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Fig. 7. Steady-state RMSE versus state/ measurement noise variance.

E. Time-varying number of targets

Next, we test the tracking performance of our proposed method in a setting where the number of

targets can change in time. Again a number of m = 120 sensors are placed randomly in the region of

[0, 100]× [0, 100]m2. The total number of targets appearing and disappearing across time is R = 12. In

that region, five groups of different targets appear and disappear orderly. The target configuration in the
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test is set as follows: Targets ρ = 1, 2, 3 start moving at positions [35, 25], [40, 45], [20, 55] and follow

the dynamics in (22), with a speed of 2m/s across the x-axis. Targets ρ = 1, 2, 3 move in the field for

the time interval [1, 15]s and then are not sensed anymore. In the interval [15, 17]s no targets are present

in the field. Then, targets ρ = 4, 5 start at positions [12, 25], [30, 80] and move according to same state

model followed by the first three for the time interval [17, 30]s but with speed 1.5m/s across the x-axis.

Again no targets are present during [30, 32]s. Then, targets ρ = 6, 7 show up at initial positions [75, 35],

[10, 30] and start moving, according to (22), for the time interval [32, 45]s and speed 1.5m/s per axis.

Two new targets, namely ρ = 8, 9, appear in initial positions [40, 10], [40, 70] and move in the field for

the time interval [47, 60]s with speed 1.7m/s on the y-axis, and speed 1.5m/s across the x-axis. Finally,

the last three targets ρ = 10, 11, 12 start at positions [60, 20], [60, 70] and [70, 50] and move within the

field for the time interval [62, 72]s. Target ρ = 10 follows the same state model as targets ρ = 6, 7, while

targets ρ = 11, 12 follow the same state model as targets ρ = 1, 2, 3. Again, the targets are placed in the

field such that at every time instant t every sensor senses one dominant target in (1).

Here we have to emphasize that when testing the novel Alg. 2 we do not know the number of targets

present in the field at a given time instant, and we do not know when the target configuration changes,

with old targets vanishing and new targets showing up. Alg. 2 entail steps 1 and 7 that detect when a

change in the targets’ configuration may have happened and estimate the number of targets present as

well as the sensors acquiring informative observations for the different targets present in the field. Thus,

Alg. 2 does not really have available the time period for which each target is active; this is something

that it estimates. This is to be contrasted with the sensor selection framework in [44], where the number

of sources/targets is known and fixed. The parameter L in Alg. 1 is set to 4, which indicates that at every

time instant the number of targets present in the field will not exceed 4. The radius Rs for determining the

candidate informative sensors subsets Jρ,t is set equal to Rs = 10. The forgetting factor is set γ = 0.1.

The state noise variance is set as σ2
u = 0.1, while the measurement noise variance is also set to σ2

w = 0.1

(which amounts to an observation SNR of roughly 10dB).

Fig. 8 depicts the true target trajectories (blue dashed curves), along with the estimated trajectories

from Alg. 2 (light green curves). The blue stars correspond to the starting position of the targets and

the red stars denote the ending position. Clearly, Alg. 2 is able to carry out accurate tracking of all

R = 12 targets. Another interesting property shown in Fig. 8 is the small number of sensors selected

by Alg. 1 to be utilized in the tracking process. The red circles in Fig. 8 depict the target informative

sensors at time instances 15s, 30s, 45s, 60s and 72s, thus all the red circles correspond to the cumulative

number of informative sensors throughout the simulation. As it can be seen the informative sensors are
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Fig. 8. Tracking of multiple targets in a setting with time-varying number of targets. Blue dashed curves indicate the true target

trajectories, while the light green curves correspond to the estimated trajectories. The red circles represent the active sensors.

selected such that they are closely located to a corresponding target. This further implies that Alg. 2

performs efficient tracking by utilizing only a small portion of the sensors available in the network. It is

worth mentioning that only a small portion of the network is used to gather data. In Fig. 9 it is depicted

where the target is (red star) and what sensors are active during time-instances 45s and 72s. Clearly the

active sensors are in the vicinity of the targets’ location corroborating the capability of Alg. 1 to utilize

the sparse covariance sensing data structure and select those sensors acquiring informative measurements

about the present targets. Another tracking scenario where there are many trajectory crossings, the targets
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Fig. 9. Active sensors and position of targets at time instances (left) t = 45s; and (right) t = 72s. The red circles represent the

active sensors.

are moving at different directions and different speeds is depicted in Fig. 10. The noise remains the same
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as before and there are R = 12 targets in total. Specifically, targets ρ = 1, 2, 3 start moving at positions

[35, 25], [40, 45], [20, 55] and follow the dynamics in (22). While targets ρ = 1, 3 move at a speed of

2m/s across the x-axis, target ρ = 2 moves with a speed of 2m/s across the y-axis. Targets ρ = 1, 2, 3

move in the field for the time interval [1, 15]s and then are not sensed anymore. In the interval [15, 17]s

no targets are present in the field. Then, targets ρ = 4, 5 start at positions [23, 40], [50, 75] and move

according to same state model followed by the first three for the time interval [17, 30]s but with speeds

−1.3m/s and −1.7m respectively across the x-axis. Again no targets are present during [30, 32]s. Then,

targets ρ = 6, 7 show up at initial positions [75, 35], [10, 30] and start moving, according to (22), for the

time interval [32, 45]s and with speed 1.5m/s on x-axis and 1.7m/s across y-axis. Three new targets,

namely ρ = 8, 9, 10, appear in initial positions [40, 70], [40, 10], [60, 70] and move in the field for the

time interval [47, 60]s with different speed 1.4, 1.2, 1.6m/s on both the y and x-axis. Finally, the last

two targets ρ = 11, 12 start at positions [85, 25] and [48, 48] and move within the field for the time

interval [62, 72]s. Target ρ = 11 moves with −1.0m/s and 2.6m/s across x and y-axis, while target

ρ = 12 with corresponding x-axis and y-axis speeds of −0.7m/s and −2.5m/s, respectively. Clearly, it

can be seen that the configuration of the targets does not really affect the tracking performance of Alg.

2 corroborating its flexibility to track under different geometric configurations of the targets.
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Fig. 10. Tracking of multiple targets in a setting with time-varying number of targets. Trajectories are crossing with each other

and targets are moving at different speeds and directions.

In fact. Fig. 11 depicts the number of informative sensors versus time throughout the simulation.

Clearly, the number of informative sensors does not exceed 20 (16% of the network), while the average

number of informative sensors is equal to approximately 8. Fig. 11 depicts the capability of Alg. 1 to
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Fig. 11. Number of target-informative sensors versus time t for the setting in Fig. 8.

select only the target-informative sensors to perform tracking. Despite the fact that only a small percentage

of the sensors is utilized, still it can track the trajectories quite accurately as seen by Fig. 8.

Fig. 12 depicts the average tracking RMSE corresponding to the tracking of the different targets present

in the field at every time instant. Alg. 2, the EKF-based scheme combined with Alg. 1 and the UKF

scheme combined with Alg. 1 are compared. Note that at the time intervals 15, 30, 45, 60s the average
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Fig. 12. Average tracking RMSE versus time in a setting with R = 12 targets for the setting in Fig. 8.

tracking RMSE is zero. It is initialized there because during these time intervals no targets are detected in

the field and thus there is nothing to track and no corresponding tracking RMSE. However, when targets

are present, the superiority of Alg. 2 over the EKF based approach combined with Alg. 1 is apparent in

Fig. 12. Clearly, the EKF-based approach cannot perform efficient tracking which is further challenged

by the varying number of targets and high-variance state and observation noise. The linearization error is
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the reason for the big performance gap between the two aforementioned schemes. Further, it can be seen

that UKF combined with Alg. 1 performs better than EKF combined with Alg. 1 as expected, however

its performance is still worse than Alg. 2. Again EKF suffers from linearization errors, such errors are

resolved by UKF which still is worse than Alg. 2 since it just estimates the posterior mean and covariance

instead of tracking the posterior pdf (see also details for Fig. 3).

Last but not least, we demonstrate in Fig. 13 the performance of the novel tracking scheme in a

setting where some targets are moving in close distance. Specifically, m = 120 sensors are randomly

employed in the region [0, 100]× [0, 100]m2. As before a total number of R = 12 targets show up and

vanish orderly in the sensed field. The configuration is set as follows: Targets ρ = 1, 2, 3 start moving

at positions [35, 25], [40, 45], [20, 55] and follow the dynamics in (22), with a speed of 2m/s across the

x-axis. The three targets move in the field for the time interval [1, 15]s and then are not sensed anymore.

In the interval [15, 17]s, no targets are present in the field. Then, targets ρ = 4, 5 start moving closely at

positions [12, 25], [10, 29] and move in parallel according to the same state model followed by the first

three targets but with speed 1.5m/s across the x-axis. The latter takes place during the time interval

[17, 30]s. Again no targets are present during [30, 32]s. Then, targets ρ = 6, 7 show up at close initial

positions [76, 30], [76, 34] and move within the time interval [32, 45]s. Target ρ = 6 moves with 1.0m/s

and 1.0m/s across x and y-axis, while target ρ = 7 with corresponding x-axis and y-axis speeds of

−1.0m/s and −1.0m/s. The two targets are crossing and they move away from each other (far right of

Fig. 13). The remaining targets follow the same configuration as the one used in generating Fig. 8.

Targets can be placed as close as possible, as long as no more than one targets are positioned inside

the sensing region of a sensor, i.e., the region specifying how far the sensor can ‘see’. As the sensing

region of the sensors is reduced, targets can be located closer while ensuring that all targets will be

distinguished and tracked. One may wonder how is it possible to track both targets at the far right in

Fig. 13 when they cross. A crucial step is that the two targets should be sufficiently apart when the

sparsity-aware decomposition scheme is utilized to detect the targets and associate them with the sensor

measurements. Once both targets have been associated successfully then they can be tracked accurately

no matter how close they appear.

VIII. CONCLUDING REMARKS

A novel method performing distributed sensor-target association and multi-target tracking was designed

and tested in multi-sensor networks. Our approach is based on a novel blending of particle filtering

and sparsity-aware matrix decomposition techniques. Target-informative sensors are selected online and
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Fig. 13. Tracking of multiple targets in a setting with time-varying number of targets and some targets’s trajectory closely placed.

Blue dashed curves indicate the true target trajectories, while the light green curves correspond to the estimated trajectories.

their measurements are used for tracking. The proposed approach is capable to detect changes in the

configuration and population of the targets present in the sensed field. Extensive numerical tests show

that the proposed tracking framework outperforms related approaches in tracking multiple targets. The

novel tracking methodology is robust even in high-variance state and observations noises, and provides

accurate estimates of the targets’ position by utilizing only a small number of the available sensors.

APPENDIX A

PROOF OF EQS. (9), (10) AND (12)

Let Mt(j, `) = y, while setting the rest minimization variables in (8) to their most up-to-date values

at the end of cycle k − 1. It follows that M̂k
t (j, `) is the minimizer of

arg min
y
y4 + c1 · y2 + c2 · y + λρt, s. to |y| ≤ t, (26)

where

c1 = 2
∑

i∈Nj [M̂
k−1
t (i, `)]2 − 2ζkt,Σ(j, j, `) + φ, and c2 = −4

∑
i∈Nj ζ

k
t,Σ(j, i, `)M̂k−1

t (i, `). (27)

After evaluating the derivatives of the cost in (26) wrt y and t and applying the Karush-Kuhn-Tucker

optimality conditions [6] it follows that y∗ := M̂k
t (j, `) should satisfy 4(y∗)3 + 2c1y

∗+ c2 +µ∗1−µ∗2 = 0

and −µ∗1 − µ∗2 + λ` = 0, where µ∗1 and µ∗2 are the optimal multipliers corresponding to the inequality

constraints of (26). Note that µ∗1 ≥ 0, µ∗2 ≥ 0, while the complementary slackness conditions impose that

µ∗1(y∗ − t∗) = µ∗2(−t∗ − y∗) = 0. If y∗ > 0 the slackness conditions imply that µ∗2 = 0 from which
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it follows that µ∗1 = λ`. Substituting the latter values in 4(y∗)3 + 2c1y
∗ + c2 + µ∗1 − µ∗2 = 0 gives (9).

Similarly, the negative candidate minimizers of (26) can be obtained by the roots of (10). Differentiating

the cost in (8) with respect to σj,t and setting the derivative equal to zero we can obtain (12). �

APPENDIX B

CONVERGENCE OF ALG. 1:

Let h({Mt(j, ρ)}m,Lj=1,ρ=1, {σj,t}mj=1) denote the cost given in (8) which is defined over Rm(L+1)×1,

and let’s define

h0({Mt(j, ρ)}m,Lj=1,ρ=1, {σj,t}
m
j=1) :=

∑m
j=1

∑
j′∈Nj

[Σ̂x,t(j, j
′)

−
∑L

l=1 Mt(j, l)Mt(j
′, l)]2 + φ

∑L
`=1 ‖Mt,:`‖22.

Further, consider the level set

H0
t := {{Mt(j, ρ)}m,Lj,ρ=1 : h({Mt(j, ρ)}m,Lj=1,ρ=1, {σj,t}

m
j=1) ≤ h(M̂0

t )}, (28)

where M̂0
t is the m×L matrix used to initialize Alg. 1 and selected such that ‖M̂0

t ‖1 <∞ from which

it follows that h(Ĥ0) <∞, while the noise variances σj,t,0 = 0 for j = 1, . . . ,m. Then, from (28) and

the form of h(·) it follows that the member matrices Mt of H0
t satisfy

L∑
`=1

m∑
j=1

λ`|Mt(j, `)| ≤ h(M̂0
t ) <∞.

Thus, the set H0 is closed and bounded (compact). Also, h(·) is continuous on H0.

Recall that the cost involved in updating M̂k
t (j, `) can be written as Jkt (j, `) := y4 +c1y

2 +c2y+λρ|y|,

[cf. (26)]. If c2 6= 0 then after determining the monotonicity of Jkt (j, `) it follows that it has a unique

minimizer. If c2 = 0, then Jk(j, ρ) is symmetric around zero. In that case if c1 > 0 then the unique

minimizer of Jkt (j, ρ) is 0. Though, if c1 < 0 then Jkt (j, ρ) has two minimizers with the same magnitude

but different sign. In that case we can consistently select the positive (or negative) minimizer ensuring

a unique minimizer per iteration. Function h(·) satisfies the regularization conditions outlined in [50,

(A1)]. In detail, the domain of h0(·) is formed by matrices whose entries satisfy Mt(j, `) ∈ (−∞,+∞).

Then, domain(h0) = (−∞,∞)m(L+1)×1 is an open set. Further, h0(·) is Gâteaux differentiable over

domain(h0). The Gâteaux derivative is

h′0(M; ∆M ) := lim
ε→0

[h0(M + ε∆M )− h0(M)]/ε. (29)
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After carrying out the necessary algebraic operations it follows readily that h′0(M; ∆M ) exists for all

∆M ∈ domain(h0), and it is equal to

−2tr[(E� (Σ̂x,t −MtM
T
t ))(E� (Mt∆

T
M + ∆MMT

t )] + 1T (Mt �∆M )1.

The aforementioned properties ensure convergence of the Alg. 1 iterates to a stationary point of h(·) [50,

Thm. 4.1 (c)]. �
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TABLE I

TABLE OF VARIABLES.

Variables Denotes

A State transition matrix

bρ(t) Intensity of signal emitted by the ρth target

Cρ`,t Leading sensor at t for the ρ`th target

dj,ρ(t) Distance between sensor j and target ρ at t

Dt Distance matrix

E Adjacency Matrix of the SN

Jρ,t Candidate target-informative sensors for target ρ at t

K State vector dimensionality

λρ Sparsity controlling coefficient

L Upper bound on number of active targets

m Number of sensors

Mt Sparse factors matrix

Nj Single-hop neighborhood of sensor j

Pj Sensor j’s position

pρ(t) Unknown position of target ρ at t

p(sρ(t)|xTρ,0:t) Posterior pdf for target ρ

Q Total number of particles

q(sρ(t)|xTρ,0:t) Importance sampling pdf

R Total number of targets

r(t) Number of active targets at t

Rs Radius for constructing candidate sets Jρ,t
sρ(t) State of target ρ

siρ,t i-th particle for target ρ at t

Σu State noise covariance matrix

σ2
w Sensing noise variance

Σw Measuring noise covariance matrix

Σx,t Sensor data covariance matrix at t

Σ̂x,t Covariance matrix estimate

Tρ,t Informative-sensors selected for target ρ at t

Ts Number of measurements acquired at the start-up phase

uρ(t) State noise associated with target ρ

vρ(t) Velocity for target ρ

wt Sensing (Measurement) noise

wiρ,t Weight corresponds to the i-th particle for target ρ at t

x̄t Estimate for the data ensemble mean

xj(t) Measurement of sensor j at time t

γ Forgetting factor

∆T Sampling period
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