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ABSTRACT
As the trends move towards data outsourcing and cloud comput-
ing, the efficiency of distributed data centers increases inimpor-
tance. Cloud-based services such as Amazon’s EC2 rely on vir-
tual machines (VM) to host MapReduce clusters in order to process
large amounts of data with off-the-shelf systems. However,current
VM scheduling does not provide adequate support for MapReduce
workloads, resulting in degraded overall performance. Forexam-
ple, when multiple MapReduce clusters run on a single physical
machine, the existing VMM scheduler does not guarantee fairness
across clusters.

In this work, we present the MapReduce Group Scheduler (MRG).
The MRG scheduler implements three mechanisms to improve the
efficiency and fairness of the existing VMM scheduler. First, the
characteristics of MapReduce workloads facilitate batching of I/O
requests from VMs working on the same job, which reduces the
number of context switches and brings other benefits. Second, be-
cause most MapReduce workloads incur a significant amount of
I/O blocking events and the completion of a job depends on the
progress of all nodes, we propose a two-level scheduling policy to
achieve proportional fair sharing across both MapReduce clusters
and individual VMs. Finally, the proposed MRG scheduler also
operates on symmetric multi-processor (SMP) enabled platforms.
The key to these improvements is to group the scheduling of VMs
belonging to the same MapReduce cluster.

We have implemented the proposed scheduler by modifying the
existing Xen hypervisor and evaluated the performance on Hadoop,
an open source implementation of MapReduce. Our evaluations,
using four representative MapReduce benchmarks, show thatthe
proposed scheduler reduces context switch overhead and achieves
increased proportional fairness across multiple MapReduce clus-
ters, without penalizing the completion time of MapReduce jobs.
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1. INTRODUCTION
The MapReduce model was proposed for parallel processing of

arbitrary large amounts of data [7]. The key concept is to break a
job into small tasks which can then be run in parallel on multiple
machines, which enables scalability to very large clustersof inex-
pensive commodity computers. With the emergence of cloud com-
puting infrastructures, including Amazon’s EC2, Eucalyptus [9],
Cloudera’s CDH [5], just to name a few, virtual machines (VMs)
have become an attractive entity for hosting MapReduce work-
loads. For example, instead of setting up complicated hardware
and software configurations for large clusters of MapReducenodes,
users can simply choose the number of Amazon EC2 nodes. Each
node is pre-installed with the Hadoop framework [1], a popular
open source implementation of the MapReduce model. These nodes,
in fact, are virtual machine instances with various capacities in
terms of the number of CPUs, disk spaces, memory sizes, etc.
Charges are billed on the amount of resources being used, i.e., from
the time job flow begins processing until it is terminated. The use
of virtual machines to deploy MapReduce tasks provides security
between users, ease of development process, and resource savings.

MapReduce clusters consist of a large number of nodes for re-
dundancy and fault tolerance. Each node in the cluster is assigned
a certain number of data chunks, which are in turn duplicatedon
several nodes based on a distributed filesystem [11]. A MapRe-
duce task is divided into two phases:map andreduce. During the
map phase, the input data is broken down into smaller problem
instances for several nodes to work on. In the reduce phase, the
results from the smaller problems are combined to obtain thesolu-
tion for the original input. Although the input data blocks for each
node could be different, the operation defined by the programmer
is identical for all nodes running the MapReduce job. In practice,
data centers build a MapReduce cluster for a user by deploying the
MapReduce nodes as VMs. To improve scalability, reliability, and
security, VMs in the same MapReduce cluster tend to be distributed
across different physical machines as shown in Figure 1. This is
done for three main reasons. First, the capacity of each physical
machine limits the number of MapReduce VMs it can host. The
size of a typical MapReduce cluster ranges from tens to hundreds
of nodes. Next, if any failure occurs on a single physical machine,
no single MapReduce cluster is affected. Finally, each VM can be
isolated, to some extent, from a security breach on another physi-
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Figure 1: Multiple MapReduce clusters deployed in a virtual-
ized data center. VMs with the same shade belong to one clus-
ter.

cal machine. With multiple MapReduce cluster nodes deployed on
each physical machine, as well as the heterogeneity of VM capac-
ities, it is imperative that the underlying virtual machinemonitor
(VMM), aka hypervisor, efficiently and fairly schedules each VM,
and therefore each data center user.

Xen provides a powerful open source solution for hosting mul-
tiple VMs by virtualizing different resources on the same physi-
cal machine. Its default scheduling mechanism is a credit sched-
uler. One key benefit of the credit scheduler is that the scheduler
provides proportional fair share CPU time to each VM based on
its CPU allocations. Unfortunately, although the credit scheduler
enforces fairness and responsiveness to each VM, the characteris-
tics of typical MapReduce workloads make such strategies ineffi-
cient and unpredictable. First, the large number of I/O requests
significantly increases the context switch overhead when schedul-
ing/descheduling VMs on the physical CPU. Second, when mul-
tiple MapReduce clusters are co-located on a single physical ma-
chine, fairness can not be guaranteed to each cluster with VM-level
fairness. As a result, the completion of a job for a MapReduceclus-
ter in terms of overall execution time and associated cost may in-
crease depending on the MapReduce node allocation and the work-
load of other co-located MapReduce jobs.

In this work, we propose a new VMM scheduler called MapRe-
duce group scheduler (MRG), which provides MapReduce cluster
fairness, reduces unnecessary domain context switching, and scales
to symmetric multi-processor machines. We find that in a MapRe-
duce cluster, VMs have homogeneity in their behaviors as they are
running the same map and reduce functions. For this reason, MRG
sorts the VMs in the run queue based on their priorities, as well
as the pending I/O operations. Batching the I/O operations from
several VMs achieves the benefit of reducing context switch and
potential energy costs. Fairness across multiple clustersis strictly
enforced by assigning weights to both clusters and their VMs. In
addition, current platforms are multi-core architectures; our sched-
uler is designed to work effectively as a load-balancing symmetric
multi-processor (SMP) scheduler.

The rest of the paper is organized as follows: Section 2 pro-
vides an overview of background information. Then we provide a
motivational example that illustrates the problem the default credit
scheduler has with MapReduce workloads. In Section 4, we de-
scribe the goals and characteristics of our enhanced scheduler. We
follow with a description of the proposed design and implemen-
tation details of our scheduler in Xen. Section 6 provides the de-
tails of the setup of our experiments, followed by evaluations of
the MRG scheduler. Section 7 discusses the limitations and adding
similar mechanisms in other hypervisors. Before we conclude, in
Section 8 we present the related research in this area.

2. BACKGROUND
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Figure 2: Detailed phases of a MapReduce job.

There are two primary motivating factors for the proposed MRG
scheduler. The first is the data-intensive nature and node homo-
geneity of MapReduce workloads. The second is the lack of fair-
ness provided by the default virtual machine scheduler on MapRe-
duce workloads.

2.1 MapReduce Workload Characteristics
There are two aspects that differentiate a MapReduce workload

from traditional web services in a data center. The first aspect is
that most MapReduce applications aredata-intensive and can be
divided into multiple subtasks, which results in a large number of
I/O-bound tasks at each node that involve input, output, andinter-
mediate data; Figure 2 illustrates the seven phases of execution of
a MapReduce job. As described earlier, the frequent I/O requests
from each VM lead to additional overhead on the VMM; each I/O
operation puts the VM into the wait queue, and delivery of a pend-
ing event by the driver domain to one VM lifts it to the top of the
CPU run queue. This can result in limiting the responsiveness to-
wards other VMs [16]. Since the combined outputs from all cluster
nodes form the final result to a MapReduce job, an increased wait-
ing time of any of the VMs can degrade the performance of the
whole MapReduce cluster. In addition, this I/O interrupt onthe
VMM also affects some CPU-bound jobs. For example, suppose
that a set of VMs from two different MapReduce clusters, a CPU-
bound task (Ccpu) and an I/O-bound task (CI/O) are allocated to
a single physical machine. Assume the scheduler selects andruns
a VM from Ccpu and completes its work quickly, the cluster must
still wait for the completion of the otherCcpu VMs to complete the
job. Before the scheduler can allocate the CPU to the next VM,the
driver domain satisfies a batch of I/O requests from a number of
VMs in CI/O. As a result, theseCI/O VMs are boosted to the top
of the run queue, delaying the completions of the remainingCcpu

VMs. Additionally, if all theCI/O VMs can not complete their
operations, theCI/O task also does not benefit from the scheduler
biasing mechanism.

The second aspect of MapReduce is the homogeneity of each
node in a MapReduce cluster. Traditional applications hosted in
data center are typically three-tier web services, including multi-
ple web, application, and database servers; each tier can consist
of one or many VMs. The mixture of these different VMs facili-
tates a general-purpose VMM scheduler which can provide fairness
to all the VMs running on the physical machine. A MapReduce
cluster, however, processes one job at each time round; jobsare
run in FIFO order of submit time. All nodes in the cluster per-
form the same map and reduce function most of time. Although a
general-purpose VMM scheduler such as the credit schedulercan
guarantee fairness to each VM on the physical machine, it is igno-
rant of the homogeneity of VMs in the same MapReduce cluster.
For example, three VMs in one cluster are co-located on a single
physical machine. During theirmap operation phase, all three VMs
read the input data and store the intermediate results on their local
disks. The I/O requests issued from the three VMs interrupt each
other when the driver domain is processing the I/O requests.The



interleaved scheduling of the privileged and unprivilegeddomains
incurs unnecessary context switches, imposing overhead onthe vir-
tualization. In contrast, if the scheduler knows that theseVMs be-
long to the same cluster and issue I/O requests at almost the same
time, it can delay the scheduling of the driver domain after VMs in
this cluster, allowing these I/O operations to be batched atdom0’s
block layer to reduce the cost of context switches. A side benefit
of this deferred scheduling of the driver domain is the energy sav-
ings gained from batching multiple I/O processing [28, 31].When
multiple MapReduce clusters share the resources of a physical ma-
chine the effect is compounded, and the current VMM scheduling
methods do not provide fairness to these clusters.

2.2 Virtual Machine Scheduling in Xen
The default scheduler in Xen is the credit scheduler. Each VMis

allotted a set number of credits which are used to schedule a VM on
the CPU. The credit scheduler assigns one of four prioritiesto each
VM: idle, under, over, andboost. Theidle state is assigned to VMs
which do not require the CPU at the moment (e.g. blocked waiting
for I/O). A VM is assigned theunder state if it still has credits
remaining. A VM is assigned theover state if it has gone over its
allotted credits. A VM is assigned theboost state if it receives an
I/O event while it is in theidle state [21]. The order of priorities
from highest to lowest isboost, under, over, and idle. VMs are
sorted in the run queue based on priorities. When a VM is being
descheduled after its allocated time slice, it loses a set number of
credits and yields the CPU to the next VM in the run queue. The
scheduler gives preference to VMs which have not consumed all its
credits, but only by priority, not the actual number of credits.

In Xen, domain0 (dom0) is a special driver domain that acts asa
layer of abstraction between the underlying physical hardware and
the other domains (the VMs). Hence, dom0 handles all of the I/O
processing. Whenever a VM makes an I/O request (i.e. hard disk,
network, etc.), a virtual interrupt occurs and the request is passed
along to dom0. When dom0 is scheduled to the CPU, it handles
any pending I/O requests. Additionally, when an I/O requestis
completed, the VM is boosted to the head of the run queue in order
to handle the I/O. This split driver model offers much flexibility in
hosting a wide variety of guest operating systems and using most
of the hardware, which have already been supported by the guest in
dom0 [10].

A context switch occurs when the scheduler schedules another
VM to run (i.e. the state of the running VM is saved and the state of
another VM is resumed), similar to process context switching [30].
Context switches in virtualization incur additional overhead over
standard context switching. When dom0 handles I/O events for the
other VMs, a context switch to dom0 is necessary in order for the
I/O requests to be processed. Since CPU resources are used when
dom0 handles these I/O events, there is a CPU overhead associ-
ated with each I/O request and consequently, each context switch to
dom0 [3]. It has been shown that scheduling dom0 too often leads
to a higher context switch overhead because fewer I/O requests will
be handled per scheduling of dom0 [4].

The overhead in context switches between VMs parallels the
overhead associated with context switches between processes on
the operating system level [29]. Context switches disturb the effec-
tiveness of the system caches. For example, context switches have
a severe negative impact on the translation lookaside buffer (TLB).
Each time a context switch occurs, the TLB must be flushed. As a
result, the utilization of the TLB decreases and more TLB misses
occur. Since each TLB miss requires several slower memory ac-
cesses, context switches can significantly reduce the throughput of
a system [30]. In a related study [22], as application workloads in-

crease, the average response time increases by as much as sixtimes
in Xen. The performance overhead is due to L2 cache misses [22].
Once again, this can be attributed to context switching: some por-
tion of the L2 cache must be re-populated after each context switch.
Thus, there are additional memory accesses as well as a larger strain
on the CPU. The effect of cache affinity on performance is exten-
sively studied in [15].

Although there are negative effects of context switching, VMs
running I/O-bound process can benefit from fast context switch be-
tween VMs. When a VM issues an I/O request, it is moved to
the idle state. As a result the scheduler selects another VM or the
driver domain to run on the CPU. Once the I/O request is satisfied,
additional context switches are necessary to schedule the waiting
VM such that it can continue. Thus, the increased rate of context
switching between I/O tasks increases the rate at which I/O-bound
requests are made.

3. MOTIVATIONAL EXAMPLE
In this section we present a concrete example to illustrate the

main drawbacks of the existing default credit scheduler when ap-
plied to MapReduce workloads. Figure 3(a) and (b) show the sched-
uled times and average running time of four domains on the same
physical machine during a five minute profiling under MapReduce
workloads. In this experiment, dom0 is the driver domain andthe
other three domains (dom1-3) belong to two MapReduce clusters.
One cluster (dom1 and dom2) ran a word count application and the
other one (dom3) a grep application. As Figure 3(a) illustrates the
time scheduled to dom0 by the credit scheduler is four times greater
than the other domains. This occurs because dom1-3 delegatetheir
I/O operations to dom0 which functions like a proxy; the sum of
scheduling times for the three domains is approximately thesame
as that of dom0.

The average running time of each domain (Figure 3(b)) is in-
versely proportional to its scheduled times. Because the average
running time of dom0 is much less than 30ms, which is the de-
fault time quantum of the credit scheduler, we know that dom0
spends most of its time on I/O processing. The cumulative den-
sity functions (CDF) of the running time for all domains (dom1-3)
exhibt the same behaviors as dom0. Figure 3(c) and (d) represent
the CDFs for dom0 and dom1. In both cases, more than90% of
the running times are less than 1ms, which is significantly smaller
than the 30ms time quantum. Since each scheduling of a domain
corresponds to a context switch, we can conclude that almostev-
ery descheduling of an unprivileged domain (i.e, dom1-3) incurs
a scheduling of the driver domain (dom0). While low latency for
an I/O event is necessary for each domain, the default creditsched-
uler does not consider when each domain in the MapReduce cluster
should send an I/O request to dom0 and thus results in inefficient
and excess context switches.

Figure 4 illustrates an excerpt from a trace file of the above ex-
periment under two cases, illustrating the root causes to the above
problem with the default Xen scheduler on a MapReduce workload.
In case 1, dom1 and dom2 attempt to issue I/O requests to dom0
and when a request is processed, that VM is boosted to the head
of the run queue, preempting other domains. As described in Sec-
tion 2.1, if the scheduler has cluster group support and dom1and
dom2 have similar task behaviors (e.g. frequency of I/O requests)
their I/O requests can be batched. By deferring dom0 in the sched-
uler until after dom2, two I/O requests are processed by a single
scheduling of the dom0 kernel. In this case, the device controller
can be used effectively and unnecessary context switches bythe
scheduler are eliminated.

Another problem, illustrated in case 2 of Figure 4, is that the
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Figure 3: Motivating example. (a) Scheduled times for each
domain in 5 minutes. (b) Average run time for each domain in
5 minutes; (c) CDF of running time for dom0 and dom1.
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….

time

….

dom3

I/O request of dom3 is delayedI/O request        boost       processing

case 1 case 2

Figure 4: Excerpt of the trace file of domain scheduling. Case
1: interleaving of domains issuing I/O requests; case 2: delayed
execution (I/O request of dom3 is delayed by dom1 and 2.)

scheduler continuously processes I/O for the VMs in one cluster
and delays the execution of VMs in the other one. Even worse, if
some domains in a cluster are scheduled first and then interrupted
by a large number of scheduling of VMs from a different cluster,
the remaining subtasks may be considered as stragglers and some
backup task will need to be executed by MapReduce. Fundamen-
tally, these problems are caused by the lack of knowledge about the
relationship between VMs and clusters, as well as the limitation of
fairness at the VM-level.

4. MRG SCHEDULER
In order to address the aforementioned limitations of the default

credit scheduler on MapReduce workloads, we present the MRG
scheduler. The scheduler has three main goals:

• to reduce the domain switch overhead: The scheduler incor-
porates the knowledge of the homogeneous behaviors of all
cluster nodes to re-order the run queue in favor of batching
I/O requests and reducing the number of context switches.

• fairness: We consider the fairness in terms of the MapReduce
cluster, as well as each single VM.

• scalability on a SMP-enabled machine: The scheduler should
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Figure 5: Sorting VCPUs in the run queue (We do not show
dom0, boost, and idle state for simplicity.). The run queue is
a doubly linked list. The scheduler picks up the VCPU to run
on the PCPU from head of the run queue. Each VCPU has the
priority of over or under.

behave well with virtual CPU migration or affinity on a SMP
machine.

In this section we present the new MRG scheduler in terms of
the modifications made on the default credit based scheduler.

4.1 Cluster Grouping
The virtual CPU (VCPU) of each VM is scheduled to run on the

physical CPU (PCPU) based on its state, priority, and the avail-
ability of the PCPU. When a VCPU’s state becomes runnable, itis
inserted in the run queue of the PCPU. Xen’s credit schedulersorts
the VCPUs from high priority to low and then for VCPUs with the
same priority, the credit scheduler places them in FIFO order. In
order to take advantage of the characteristics of the MapReduce
workload, we propose to additionally group the VMs belonging to
the same MapReduce cluster together in the run queue.

Periodically, the MRG scheduler sorts the VCPUs in the run
queue such that the high priority VCPUs are lifted to the firstpor-
tion of the run queue. If two VCPUs have the same priority, FIFO
priority is given. This indicates that VMs in different MapReduce
group can be interleaved. Thus, in addition to the priority and time
when entering the run queue, the proposed scheduler considers the
group information which is applicable to the MapReduce VMs.In
the proposed scheduler, VMs in the same cluster are grouped to-
gether if they have the same priority assignment. As an example
in Figure 5, the default credit scheduler divides the run queue of
a PCPU into two regions based on the VCPU priority ofover or
under. VMs in under priority are higher thanover as they still have
credits available. The proposed scheduler then reorders the VCPUs
within each priority region. As a result, VMs in the same cluster
are placed together in the same priority region.

As described in Section 3, VMs are interrupted by the driver do-
main due to a temporary boost of I/O processing, leading to inef-
ficient scheduling. We address this issue by considering theneeds
of dom0 differently than other VMs. Because VMs in the same
MapReduce cluster group exhibit similar operations, if oneVM in
the group issues I/O requests and enters theblocked state, the prob-
ability that other VMs in the same cluster will issue I/O requests
as well is high. Hence, dom0 should be deferred to after a cluster
group of VMs. On the other hand, if a boosted dom0 is deferred
until after a group of VMs which are not performing any I/O re-
quests, the latency and response time of other I/O-pending VMs
will be affected. We propose to remedy this issue by predicting a



VM’s likelihood to perform any I/O operation. We use the running
time of the VCPU in its last scheduled cycle to predict whether it
will issue any I/O request in a short time after it is to be scheduled
in the next run cycle. This is motived by the data-intensive charac-
teristic of MapReduce workloads. If the running time of a VCPU is
smaller than thresholdS, this means that the VCPU is more likely
to issue an I/O request and block in the next cycle. In this paper,
we setS to 105ns as more than half of the running time of a VM is
less than105ns as shown in Figure 3. At the same time,S should
not be a large number to prevent delaying dom0 aggressively.The
MRG scheduler places the VCPUs from the cluster group prior to
dom0 in order to batch the I/O requests together, and therefore ad-
ditionally reduce the number of context switches and improve I/O
response latency.

4.2 Cluster Fairness
In order to provide fair scheduling to each MapReduce cluster

group and prevent VM starvation, it is necessary to first provide
proportional fair CPU time to each group on the physical machine
and then to each VM belonging to a group. For example, VMs from
two clustersC1 andC2 are co-located on a physical machine;C1

consists of four VMs andC2 two VMs. Suppose all VMs have the
same resource allocations. ThenC1 has 2

3
of the CPU power and

C2 uses the remaining1
3
. WhenC1 is scheduled, the VMs inC1

will each run consecutively. VMs fromC2 will not be picked by the
scheduler until the allocated CPU time forC1 is used. The key in-
sight behind group scheduling is that by letting the scheduler track
the running time of each cluster and allowing context switches only
in the same cluster, tasks in the same group proceed at nearlythe
same rate. A side benefit is that if the MapReduce cluster is run-
ning on a network filesystem, more savings can be made in terms
of cache coherence and memory sharing [18].

Our proposed MRG scheduler uses a two-level scheduling hier-
archy. The terminology credit is still used in our work to denote
the CPU allocation unit, the same as in the credit scheduler.At the
first level, the scheduler allocates credits across groups using the
weighted fair sharing. The weight of a cluster group is the sum of
each VM’s credit in this group. The user can also allocate cred-
its to each group. At the second level, the scheduler allocates its
PCPU among the VMs in one group using each VM’s credit. Note
when the user explicitly allocates credits to a group, the credits of
the VMs in that group are only used as weights for the second-level
intra-group scheduling. In this case, the credit assigned to VM i
is normalized asCg × (Ci/

∑
Cj), whereCg is the group credit

andCi/
∑
Cj is the fraction of total VCPU credits in the group for

VM i.
Figure 6 shows an example of the scheduling hierarchy. The

credits for the three groups are respectively 600, 300, and 900,
which means the CPU sharing with a 2:1:3 ratio. Within group
1, the ratio of sharing is 2:1 and the two VMs are allocated2

9
and

1
9

of the overall CPU time. When group 1 is scheduled to run on
the PCPU, the scheduler only considers the two VMs in group 1
and allocates corresponding CPU time to them. Group 1 yieldsthe
CPU to VMs in other groups in the run queue when it consumes all
of its credits. The scheduler guarantees that each VM is given the
CPU time as its weighted shares as long as there is a running task
in it.

The two-level scheduling strategy, providing the capability of
specifying CPU sharing in both group and VM level, allows the
cloud provider and the user to follow their own resource allocation
rules, without worrying about each other. The provider allocates
credits to each group based on the demand of the group user. In

VMM scheduler

VM
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300

900

Group 1 Group 2 Group 3
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VM

100

VM

100

VM

100

VM
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VM
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Figure 6: Example of two-level scheduling hierarchy. Group1,
2, and 3 have the credit of 600, 300, and 900. The sharing ratio
between groups is 2:1:3. In each group, CPU time is allocated
to individual VMs using their credits (number in each VM) as
sharing weight.

turn, the group user who has a set of VMs to form a MapReduce
cluster can allocate credits to each VM.

It is possible for VMs in one group to issue too many I/O re-
quests in a batch in which case all VMs in the group are in the
blocked state. In order to eliminate wasted CPU cycles, we intro-
duce a timeout countert to each group. The timeout starts when
the scheduler finds that all VMs in the group are in I/O blocking
state and the group has remaining credit. Once the timeout expires
and there is still no runnable VM, the group must yield the CPUto
the next group in the run queue. Section 4.2.1 analyses how toset
t properly.

There are two priorities defined for a group:under and over.
Under means the group has remaining credit, whileover denotes
the group has used up its credit. Like the existing scheduler, under
has a higher priority thanover. For VMs, we use the same priority
relationship as the credit scheduler.

Two-level scheduling can be accomplished by extending the method
in Section 4.1, which we propose to group VCPUs belonging to the
same group in the run queue and assign them different priorities.
First, the group, which the VM on the head of the run queue be-
longs to, is selected as the current running group on the PCPU.
Second, because VCPUs vary in their remaining credits, VCPUs in
the same group can be spread across different priority regions as
shown in Figure 5. Because the scheduler is only allowed to se-
lect VCPUs in the same group, it must check each region for any
available VCPU. As described in Section 5, our implementation
achieves a time complexity of (O(n)) in picking the next VCPU
from the run queue.

4.2.1 Analysis of timeout
In this section, we explore how to set an appropriate value ofthe

timeout countert, which affects the fairness among different clus-
ter groups and I/O latency. Ift is set too low, the MRG scheduler
can switch between clusters of VCPUs quickly, prior to completion
of pending I/O requests, and therefore cluster-level fairness cannot
be guaranteed. The other extreme, i.e, a larget value, can make the
entire system underutilized by blocking cluster groups from execut-
ing when all VCPUs in the running cluster are blocked. In between
these two extremes, the scheduler must balance the trade-off be-
tween two factors: cluster-level fairness and utilization. These two
factors are directly correlated with VCPU credits and I/O blocking
time. Therefore, they are used to derive the value for timeout t.



First, we define credit-remaining ratio (CRR) for each groupas

CRR =

∑
credit remaining of each dom in the group

Total credit of the group
. (1)

CRR is the fraction of CPU credits that are remaining for the group.
With CRR close to 1, it means the group is far from using up its as-
signed CPU credits and therefore it can wait for some time, whereas
whenCRR approaches 0, it means the group has consumed most of
its CPU credit and we tend not to wait for a long time. We define
tw as the wakeup latency between the time when all VCPUs in a
group are blocked and any of them is boosted. We initializetw to
1 ms and then update the value only when all VCPUs of the cur-
rent running group are blocked. By combiningCRR andtw, we
calculate the timeout as follows:

t = tw × CRR. (2)

Sincetw is changed only on the condition that all VCPUs of
the running group are blocked by a set of consecutive I/O requests,
this update imposes minimal scheduler overhead. As described in
Section 4.1, a group of blocked VCPUs are placed in front of dom0,
which can process a subset of the tasks from the batch of requests.
As a result, it is very likely that at least one of the blocked VCPU
can be boosted.

4.3 Symmetric Multi-Processor Support
In a SMP-enabled platform, each PCPU has its own run queue

of VCPUs. Load balancing across each core is crucial for efficient
CPU utilization. VCPUs can be migrated from one core to another
to improve performance. Two factors must be considered by the
scheduler prior to migrating a VCPU. First, migrating loadsfrom
other cores should not cause severe starvation of VCPUs which
have already existed in the run queue. Second, the costs of migrat-
ing a VCPU include giving up a warm cache and resorting VCPUs
in the run queue.

In the current implementation of the credit scheduler, loadbal-
ancing across cores is invoked when the running VCPU yields the
PCPU. If the priority of the next VCPU in the current run queue,
snext, is higher than OVER, it is allowed to run on the CPU; then
no VCPU migration occurs. Otherwise, the scheduler first checks
the run queue of its peer CPUs to see whether migrating a VCPU
can improve the responsiveness of the overall system. The search
begins from the core on the same socket and iterates the VCPUsof
its run queue. If there is a VCPU in the peer’s run queue having
a priority higher thansnext and its cache is not hot on the peer
CPU, this VCPU can be migrated to the current CPU run queue.
The VCPU’s cache is considered hot, if its last scheduled time is
less than 1ms.

We propose a basic modification to the existing load balancing
algorithm in order to support the cluster groups. We allow load
balancing only if the cluster group of the next VCPU in the current
run queue is ofover priority. For convenience, we will usevc to
denote the next VCPU in the current run queue andg to denote its
group. We first consider the case that the group of the next VCPU in
the peer’s run queue is different fromg. If the priority of the peer’s
group is higher thang, we steal the next VCPU from the peer’s run
queue if that VCPU’s priority is higher or equal tounder. Since
there is only two priority options for a group, the peer’s group must
have anunder priority. In this situation, no matter which priority
vc has, continuing running it will further exceed the CPU sharing
of its group. But for the peer group withunder priority, stealing
an under VCPU to run on the current PCPU immediately will not

only reduce its waiting time in the run queue, but also increase the
progress of otherover VCPUs in the group if there is any.

If the priorities of the two groups are the same, i.e., both are
in over priority, the scheduler continues to compare the priorities
of the two next VCPUs of the run queues. Here, we apply the
same rule as the credit scheduler uses, i.e., the scheduler only steals
VCPU from other queues which has a higher priority thanvc and
vc’s priority is smaller thanunder. Besides the benefits mentioned
earlier, for MapReduce workloads this results in limiting the vari-
ance of running time among VCPUs in the same group.

In the second case when the group of the next VCPU in the peer’s
run queue is the same asg, we directly compare the two next VC-
PUs. When the group is of theunder priority, we use the credit
scheduler’s rule again to reduce the waiting time ofunder VCPUs
in the run queue. However, when the current group isover, we must
not starve other groups withunder priority in the current queue.
Thus, we only steal VCPUs withboosted priority.

Cache affinity must also be considered. Traditionally cacheaffin-
ity is exploited by the OS scheduler to improve performance;with
a high cache affinity most of a process’s data and instructions are
accumulated in the cache and thus the process runs more efficiently
when being scheduled to this core again. Because of the data-
intensive nature of MapReduce workloads, it is crucial thatthe
VMM scheduler can achieve a desirable cache affinity level for
such workloads.

A coarse granularity cache management algorithm is proposed
in [19] for real-time tasks: the scheduler which those real-time VC-
PUs bind with migrates real-time VCPUs in a coarser-granularity
(e.g., 1 second) to balance their loads based on CPU usage history
across cores. The MRG scheduler borrows the feature of coarse
granularity from [19] to achieve the balance between load balanc-
ing and cache affinity. That is for any VCPU of a MapReduce
cluster, MRG invokes VCPU migration once every second, instead
of 10ms. Coarse granularity load balancing is necessary, inorder to
give a VCPU a higher chance to be scheduled on the current CPU
and to gain benefits from cache affinity, especially for the I/O heavy
VMs, like MapReduce nodes.

5. DESIGN AND IMPLEMENTATION
In this section, we provide details of the design and implemen-

tation of the scheduler for Xen version 3.4.11. We demonstrate
that the proposed scheduler can be easily integrated with the ex-
isting credit scheduler based on its per-CPU run queues. Because
there is no modification to the guest operating system, any open
source and closed source OS can be used to host the MapReduce
node as a virtual machine with the proposed scheduler. First, we
added two configurable variables to the guest domain:group_id
andgroup_credit to support MapReduce cluster groups. VMs
with the samegroup_id belong to a single MapReduce cluster.
The group_id is then assigned to the VCPU(s) owned by the
VM. The basic algorithm is presented in Figure 7.

As described in Section 4.1, each PCPU has its own run queue
to sort the VCPUs in the priority order. To support grouping VC-
PUs with the samegroup_id in the run queue, it is necessary to
link VCPUs in the same group together. Furthermore, in the run
queue, VCPUs in the same group can be in different priority re-
gions. Therefore, it is necessary to track all VCPUs based onits
running PCPU, as well as itsgroup_ID. A double linked list is
used for each group as shown in Figure 8. When sorting VCPUs in

1The modification is downloadable as a patch to Xen v3.4.1
(changeset 19717) athttp://ntl.cewit.stonybrook.
edu/mrg-scheduler



// A vcpu becomes runnable

Insert_VCPU_runqueue(vcpu):

pcpu = current;

if vcpu is dom0:

check if vcpu can be deferred;

else:

insert vcpu to its group based on priority;

// every 10ms

Sched_tick:

sort vcpu in the runqueue;

// every 30ms

Sched_acct:

allot credits to VCPUs of VMs in each group;

if timer=1 second:

run load balancing algorithm;

Figure 7: Pseudo code for MRG scheduler.
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Figure 8: Linked list of VCPUs for each group

the run queue, the scheduler can use the group list to quicklyfind
the VCPUs with the samegroup_ID. When one group is sched-
uled to run on the PCPU, the scheduler can locate the VCPUs in
this group, which may be in discrete priority regions. In addition,
recall that the scheduler needs to decide whether an unprivileged
VCPU can be inserted in front of dom0’s VCPU based on its last
running time. Alast_rtime field is added to each VCPU to
record the previous running time.

Once the scheduler has constructed the data structures for all
VCPUs and groups, the two-level scheduling mechanism is used to
coordinate the VCPUs to run on the PCPU. Each VCPU and group
are initialized by assigning proportional weights of credits from the
configuration files. In the main function, the scheduler updates the
credits for VCPUs and groups and sorts VCPUs in the run queue of
the PCPU. In practice, these two events of sorting VCPUs in the run
queue and credit accounting are separated (Figure 7). The former
occurs in every scheduling tick (10ms) only if any of the VCPU’s
credits have been updated, which happens in each accountingpe-
riod (30ms). Since the existing credit scheduler already assigns
constant weights for credit accounting, our implementation retains
these weights as default. After sorting the VCPU in the run queue,
the head of the run queue is the next one to be scheduled. With the
two-level scheduling policy, VCPUs in the same group are allowed
to run on the PCPU as long as there are remaining credits for the
group and the blocking timer has not expired. The scheduler tries
stealing a VCPU to the current run queue every second if the prior-
ity condition is satisfied. Note that all the modifications tothe VMs
configured as MapReduce nodes do not affect VMs of other types.
If the scheduler finds the VCPU does not have agroup_id, this
VCPU is treated by the default scheduling.

6. EXPERIMENTAL EVALUATION
We begin by evaluating the performance of a single MapReduce

cluster group running on a single physical machine. This solely
evaluates the improvement of group clustering (Section 4.1) within
the scheduler which is the underlying principle of the othertwo
improvements. We compare the results of four benchmark applica-
tions with Xen’s default credit scheduler (baseline) and analyze the
root causes of the improvements. Subsequently, we evaluatethe
proposed MRG scheduler running multiple cluster groups hosted
on three physical machines and mixing different benchmarks.

All experiments were performed on Dell servers, running the
modified Xen hypervisor (v3.4.1). The VMs run Fedora 8 and ker-
nel v2.6.18.8 in all cases with one virtual CPU, 512MB memory,
and 40G disk space. We run Hadoop-0.20.2 on the VMs with its de-
fault configuration, except for setting the replication factor of data
blocks to 2.

We usexentrace to capture the virtualization events such as
context switches between VMs, scheduled times, VCPU block wait,
and running time.xentrace is able to output the trace buffer from
the hypervisor level to the user level in a binary format. We trace
only the events related to VM scheduling when runningxentrace.
They are runstate changes, domain wake, schedule switch, and so
forth.

The benchmark workloads we use throughout the experimental
evaluations are from the examples shipped with the Hadoop dis-
tribution and a SQL-like query in Hive [26] – a data warehouse
infrastructure built on Hadoop. We choose three types of bench-
marks from Hadoop:word count, grep, and sort. Word count
counts the number of occurrences of each word in the input file.
Word count is I/O-intensive, while grep searching for a regular ex-
pression is limited by CPU resources. The sort benchmark in the
experiment uses the merge-sort algorithm; it reads chunks of data
to each map node, generating intermediate data, and comparing the
results. Thus, although the sort application has a lot of I/Oop-
erations, it still consumes much more CPU resources than word
count. We choose these workloads because they represent typi-
cal MapReduce applications and exercise different system metrics
for evaluating the performance of Hadoop. Moreover, they are the
building blocks of software frameworks such as searching, index-
ing, pattern mining, and optimizing advertisement. At last, we use
a Hive query to a database, including join, select, and insert opera-
tions. The Hive query (hql) differs from the previous benchmarks
in that the query will be parsed into several MapReduce jobs by
the query compiler and represent more advanced data structure of
MapReduce. The dataset and Hive query script can be downloaded
at the project website2. The configurations of the four applications
are listed in Table 1. The input data to word count, grep, and sort
are generated by the tools shipped with the Hadoop, while theHive
database is populated from a local disk file. We choose a wide va-
riety of data input sizes for these jobs such that the execution time
ranges from approximately10 to nearly80 minutes.

6.1 Single Cluster Group
We begin by running a 4-node single cluster of MapReduce VMs

on a single physical machine, which is the machine type 1 of Ta-
ble 2. In total there are five VMs running on the machine, includ-
ing dom0. A single core on the physical machine is used to run
all VMs, as well as dom0. By doing so we can study the effects
of grouping VMs on reducing the number of unnecessary context
switches caused by boosting dom0 and other VMs. We run the four

2http://ntl.cewit.stonybrook.edu/
mrg-scheduler



Table 1: Application types and input sizes for the workloads
Applications Word count Grep Sort Hql

Category Label Input size Label Input size Label Input size Label Table size (# entries)
Small S-wc 2G S-grep 10G S-sort 512M S-hql 100,000

Medium M-wc 5G M-grep 15G M-sort 1G M-hql 200,000
Large L-wc 10G L-grep 20G L-sort 2G L-sql 400,000
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Figure 9: Finish time and number of context switches for word
count, grep, sort, and Hive benchmarks. Each benchmark run
with small, medium, and large input sizes. (a) finish time; (b)
number of context switches. White bars show the results using
the baseline, while results of the MRG scheduler are plottedin
different patterns to denote each application.

types of benchmark applications using the baseline and the pro-
posed MRG scheduler and measure the workload completion time
and the number of context switches during the executions. Wealso
vary the job size of each benchmark to see how the proposed sched-
uler scales when the job size increases. The results are presented
in Figure 9. White bars show the results using the baseline, while
results of the MRG scheduler are plotted in different patterns to de-
note each application. All results are the average of 10 runs; error
bars show the standard deviations calculated.

The first observation from the results is that for all types ofap-
plications, the proposed scheduler is able to reduce the overhead
of context switches, without penalizing the job finish timesof the
MapReduce jobs. However, the effects on the finish time and re-
ducing the number of context switches vary depending on the appli-
cation type. For example, for the word count of all input sizes the
MRG scheduler can reduce the number of context switches by more
than a half, while the savings for the grep application is around
22%. Second, we see that batching I/O requests improves the job
completion time for grep, sort, hql by about25% of all input sizes,
but not for word count. This is due to the fact that word count is
more I/O-heavy, compared with the other applications. Therefore,
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Figure 10: CDF of running time for dom0 and dom1 using the
baseline and MRG scheduler.

each node has more I/O requests to issue to dom0. As a result, when
dom0 of word count is scheduled, it can process more batched I/O
requests than that of grep and sort, reducing more interleaved con-
text switches between other VMs and dom0. On the other hand,
since processing of an I/O from a VM at dom0 could be postponed
after other VMs are inserted, the savings from batching I/O will be
offset by this delay. However, given the significant improvements
on the context switch overhead, the adverse effect on the finish time
for word count is negligible.

Figure 10 compares the cumulative distributions of runningtime
of two VMs for a medium input size sort application, which is pro-
filed for 10 minutes during the middle of execution using the base-
line and MRG scheduler. Note that thex-axis is on a log scale.
There are two interesting observations here. First, we find that for
dom0 (Figure 10(a)), the MRG scheduler has running times con-
centrated at values larger than105ns, which are much longer than
the default credit scheduler. That is80% of the running time of
dom0 are less than or equal to105ns with the baseline, while about
20% fall in that range with MRG. Second, the difference between
the CDFs of the default and proposed scheduler for the unprivi-
leged domain (dom1), shown in Figure 10(b), is not as significant
as dom0. This is because that MRG scheduler is clustering I/O
requests from a group of VMs in a MapReduce cluster before the
real device driver starts to process them. Thus, the MRG sched-
uler makes dom0 run longer to process more I/O when dom0 is
scheduled. In addition, provided that the completion timesare not
impacted by the proposed scheduler, the increased average running



Table 2: VM deployment in the multiple cluster testbed.
Consolidation level group 1 group 2 Machine type

3 VMs / host 2 1 1
5 VMs / host 3 2 2
4 VMs / host 2 2 2

total 7 5 –

Machine type 1: Pentium D 2.8GHz, 2MB L2 cache, and 3G memory
Machine type 2: Core 2 Duo 3.0GHz, 6MB L2 cache, and 6G memory

times for individual domains indicates that the number of context
switches must be decreased, confirming our previous results.

6.2 Multiple Cluster Groups
In this section we performed studies by deploying two MapRe-

duce clusters across three physical machines to evaluate the overall
performance of the MRG scheduler. Table 2 summarizes the place-
ment of VMs in the testbed. We use physical machines with dif-
ferent capacities and have various consolidation levels toresemble
the practical allocation of provisioning multiple MapReduce clus-
ters, like Amazon EC2. In particular, since VMs in a cluster are
placed across several physical machines, machine capability and
network traffic will affect the performance of MapReduce jobs. In
Table 2, the first column lists the number of VMs hosted on the
physical machines. The second and third columns are the number
of VMs belonging to each cluster. All physical machines run the
same patched Xen and OS version, the same for all guest domains.
In total, cluster 1 and 2 consist of 7 and 5 VMs, respectively.We
also enable the two cores on the machine in this experiment toshow
the effect of the proposed SMP load balancing support.

The CPU resource allocation to these VMs is described as fol-
lows. On three physical machine each cluster is assigned 500cred-
its and all VMs are configured to have the same credit of 256. Thus,
two clusters have equal share of the CPU resource on each physical
machine, which in turn allocate the same CPU resources to each
VM in the same group. VMs of different cluster groups, however,
may have different allocated CPU resources. For example, accord-
ing to the two-level credit assignment policy, the two clusters on
the second physical machine (row 2 in Table 2) have equal share of
CPU time, while the ratio of CPU time of VMs in cluster 1 to those
in cluster 2 is 2:3.

6.2.1 Performance
Figure 11 compares the finish time for different combinations

of MapReduce jobs running on the two clusters using the baseline
and the proposed scheduler. There are four groups of results(i-iv)
in Figure 11; each group consists of one application job on each
cluster with varying input sizes. For example, the two whitebars
of the rightmost four bars of group (i), represent the finish times
of S-wc and S-grep by the baseline scheduler, the two coloredbars
by the MRG scheduler. As expected, although the proposed sched-
uler outperforms the baseline in overall finish time, the effects vary
depending on the combinations of job types. For any combination
with word count (group (i-ii) in Figure 11), MRG scheduler im-
proves the finish time of the other group application. Since word
count is the most I/O-heavy workload among the three types of
jobs, its VCPU will be boosted more aggressively than VCPUs of
VMs running the grep and sort tasks. As a result of the two-level
scheduling policy, the VCPUs of grep and sort clusters can run their
allocated time slots without being interrupted by VCPUs of other
clusters. Thus, the disadvantage of boosting VCPU of I/O-heavy
task is effectively limited. Similar to the single-group results, the
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Figure 12: Percentage of duplicated tasks.

performance of word count does not change too much. For the job
combinations of grep, sort, and hql shown in group (iii) and (iv), the
MRG scheduler outperforms the baseline by∼ 30%, on average.

A unique feature of the MapReduce framework isspeculative
execution, which provides high availability and robustness of the
cluster [7]. However, speculative tasks are not free; the downsides
are duplicated tasks and more resource contentions, especially in
the virtualized environment. Although the MRG scheduler runs
in the hypervisor level unlike other MapReduce scheduling algo-
rithms, it has indirect impact on this metric. Thus, it is important to
evaluate the number of speculative tasks.

A speculative task is launched when the progress of one running
task is below average in either the map or reduce phase. A slowtask
can be caused by many reasons such as hardware failure, resource
contentions, or misconfiguration. Although a speculative task is
important to achieve fault-tolerance, it has negative impacts due to
the extra energy and resource costs. Figure 12 shows the percent-
age of duplicated map tasks from the results of two MapReduce
clusters. The MRG scheduler reduces duplicated tasks in allbut
one case. Furthermore, in Figure 12 the percentage of duplicated
tasks is higher with the sort application running in one cluster. This
is because the sort application generates a much larger number of
intermediate and final results than word count and grep. An in-
creased number of fetch failures within the map and reduce results
spans the creation of a larger number of duplicated tasks. Overall
these results imply that the proposed scheduler is able to balance
the progress of map tasks running on each VM of the cluster.

Combining with the results of execution times (Figure 11), we
can conclude that the MRG scheduler can deliver performanceim-
provement over the default credit scheduler under various combi-
nations of MapReduce clusters, while reducing the cost of context
switching and the number of duplicated tasks. In addition, the load-
ing balancing method of MRG allows VCPUs from the two cluster
groups to perform well on SMP platforms.

6.2.2 Fairness
We evaluate the fairness between two MapReduce clusters on

a physical machine by comparing the relative difference between
the running time of one group by the scheduler with the time de-
fined by a generalized processor sharing (GPS) scheduling algo-
rithm [23]. In a GPS system, the amount of service time obtained
by each processi during a time interval(τ1, τ2) is proportional to
its CPU weightψi. That is if processi and j are continuously
runnable with fixed real numbersψi andψj , then GPS satisfies

Ti(τ1, τ2)

Tj(τ1, τ2)
=
ψi

ψj
, j = 1, 2, · · · , N. (3)

This concept can be easily extended to running multiple MapRe-



!"

#!"

$!"

%!"

&!"

'!"

(!"

"""")*+,""""

)*-./0"

1*+,""""""""""

1*-./0"

2*+,"""""""""""

2*-./0"

)*+,"""""""""""

)*34.5"

1*+,""""""""

1*34.5"

2*+,"""""""""""

2*34.5"

)*-./0"""""""""

)*34.5"

1*-./0""""""""

1*34.5"

2*-./0"""""""""

2*34.5"

)*34.5"""""""""

)*678"

1*34.5""""""""

1*678"

2*34.5"""""""""

2*678"

9
:;
:3
6
"<
=
/
">
=
:;
?
5/
@"

"""" """" """ """"

>i@" >ii@" >iii@" >iv@"

Figure 11: Finish times of two clusters running different combinations of MapReduce applications. (i) Cluster 1: word count, cluster
2: grep; (ii) Cluster 1: word count, cluster 2: sort; (iii) Cl uster 1: grep, cluster 2: sort; (iv) Cluster 1: sort, cluster2: Hive query.
White bars show the results using the baseline, while results of the MRG scheduler are plotted in different patterns.

duce clusters on a physical machine. We consider clusters aspro-
cesses and the credit assigned to each cluster as the weight used by
the scheduler. Equation 3 can be transformed to

TCi
(τ1, τ2)

TCj
(τ1, τ2)

=
wi

wj
, j = 1, 2, · · · , N, (4)

whereTCi
(τ1, τ2) denotes the CPU time that clusterCi receives in

interval(τ1, τ2)andwi the credit assigned to clusterCi.
In practice, however, a GPS scheduler is infeasible becausea per-

fect fair scheduler requires that at least one VM in each cluster must
run simultaneously and be scheduled with infinitely small quanta,
which is infeasible. Therefore, a practical schedulerS, which aims
to guarantee proportional fairness to each cluster, can be evalu-
ated by the lag [2, 20]. However, there is a critical difficulty in
using lag directly to evaluate the fairness of VMM schedulers un-
der MapReduce workloads. Because MapReduce workloads do not
have100% CPU usage, the task running in each VM does not con-
sume all the CPU time allotted. Here we defined a modified lag for
clusterCi running in the interval(τ1, τ2) as

Li(t) = |TCi,GPS(τ1, τ2)µ− TCi,S(τ1, τ2)|, (5)

whereµ is the average CPU utilization of the VMs of clusterCi in
(τ1, τ2). Thus the modified lag can be explained as the difference
of CPU time scheduled between the normalized GPS scheduler and
the practical schedulerS. Intuitively, the smallerLi is, the fairer
the schedulerS is. In our experiment, because the two clusters are
allotted equal number of credits, we haveTCi(τ1,τ2) = TCj(τ1,τ2).
This means ideally in any time interval, the two clusters should
have the same amount of CPU time.

We compareLi of the baseline and the MRG scheduler under
the job combination of word count and sort, both with large input
size. We runxentrace for 15 minutes in the middle of the bench-
mark run on the second physical machine (row 2 of Table 2). Dur-
ing the profiling period all VMs are running MapReduce tasks and
keep nearly constant CPU utilization; the VMs running word count
have41% CPU utilization and VMs running sort have67%. Once
we have the trace outputs, which includes timestamps and VCPU’s
running times, we sum up the VCPU’s running time belonging to
each cluster for every 30 seconds. The sum is the actual CPU time
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Figure 13: Average modified lag with standard deviation for
two clusters running word count and sort.

a cluster receives in the 30-second interval. Because dom0’s CPU
utilization is low, we obtain word count cluster’s and sort cluster’s
CPU time by GPS as about 6 and 10 seconds, respectively in the
30-second interval. Figure 13 reports the modified lags averaged
over the sampling period. We see that the MRG scheduler achieves
improvements for both clusters, implying better fairness.Further-
more, we observed the MRG scheduler offers an overall fairness
to these MapReduce clusters. For the word count cluster, three
VMs have their running time approximately about 2 seconds. The
sum is also close to the running time allotted to the cluster by the
GPS scheduler. For the sort cluster, the GPS scheduler assigns 10
seconds to the two VMs in a 30-second sampling period. We can
see that the running times of sort-1 and sort-2 are around 5 sec-
onds. From the results, we can also conclude that the two-level
scheduling policy in MRG scheduler provides fairness to VMsof a
MapReduce cluster.

7. DISCUSSION
Our work is motived by running MapReduce in a virtualized en-

vironment, which has become the dominant paradigm for largedata
processing in a very short time. Two key aspects of MapReduce
workloads enable the MRG scheduler to perform well. First, all



nodes in a cluster run the same map and reduce function. Second,
most MapReduce applications are I/O-intensive. The MRG sched-
uler performs well when these two conditions hold. However,as
the MapReduce technology evolves, some of the conditions may
change. For example, in a shared MapReduce cluster, nodes can
perform different tasks to improve the cluster utilizationby allo-
cating slots to different jobs [33]. This breaks the first condition.
At the same time, if some slots are running CPU-intensive tasks,
which breaks the second condition, batching I/O will be ineffective.
We leave generalizing the MRG scheduler to different MapReduce
frameworks as future work.

Although MRG scheduler is designed inside the Xen hypervi-
sor, we consider the possibility of adding similar capabilities to
other options of hypervisors such as VMware ESX, KVM [17], and
Hyper-V [14]. In fact, because the proposed MRG scheduler takes
advantage of batching I/O in a privileged domain and grouping VC-
PUs of VMs in the same cluster, the architecture of those hyper-
visors must be considered.Kernel-based virtual machine (KVM)
converts the Linux kernel into a hypervisor and makes use of many
components of Linux kernel such as scheduler and memory man-
agement, instead of reimplementing them like Xen and ESX. KVM
implements each VM as a regular process, scheduled by the stan-
dard Linux scheduler. Thus, we can adapt the Linux schedulerto
the MRG scheduler by assigning a cluster ID to each VCPU pro-
cess and batching I/O requests from VCPU processes in the same
cluster.Hyper-V, which is Windows 2008 server’s hypervisor, iso-
lates virtual machines in terms of partitions. A root partition runs
as a privileged partition like dom0 in Xen and is able to create a
child partition as a virtual machine. As child partitions donot have
access to hardware and the root partition performs all the privileged
operations, it is possible to modify the root partition’s scheduler to
enable the MRG scheduler. VMware’sESX server has a quite dif-
ferent architecture than Xen, KVM, and Hyper-V. There is no priv-
ileged domain in ESX and thus all VMs run with the same priority.
Instead, ESX includes a VMkernel, which provides the function-
alities as resource scheduling, I/O stack, and device drivers. As a
result, all I/O from VMs will be queued at VMkernel’s virtualSCSI
layer. In addition, ESX considers VCPUs asworlds. Thus, reorder-
ing I/O could be implemented at the host’s queue of the SCSI layer
based on the VCPU worlds. In conclusion, the scheduling algo-
rithms of the above hypervisors can also profit from the mechanism
of the MRG scheduler.

8. RELATED WORK
In this section, we present the related work on CPU and I/O

scheduling in operating systems and several job schedulingalgo-
rithms to improve the performance of MapReduce.

8.1 CPU and I/O scheduling
There is a long history of work in CPU scheduling in both academia

and industry on supporting a variety of applications ranging from
real-time applications [12], e.g., video/music player to resource in-
tensive applications, e.g., web servers [8]. To combine thebene-
fits of different ones, a hierarchy loadable scheduler (HLS)allows
users to assign each application its preferred scheduler and organize
them based on their priorities [24]. According to [24], the proposed
MRG scheduler falls into the category of homogeneous hierarchical
scheduler, which uses the same scheduling algorithm throughout
the hierarchy. Homogeneous hierarchical schedulers provide a hi-
erarchical isolation between groups of resource consumers, which
fits the MapReduce model. However, it is difficult to assign CPU
time to each VM under the existing HLS because higher prior-
ity processes may preempt lower ones. To address proportional

sharing between VMs running simultaneously, assigning each VM
some accurate number such as credit (in Xen) or shares ( VMware
ESX [27]) performs better than setting coarse-granular priorities as
in traditional OSs, e.g., Linux, Solaris, and Mac OS X. In addi-
tion, group scheduling has been developed previously in Linux to
improve the desktop interactivity, e.g., TTY-based and CFSgroup
scheduling [6]; however, to our knowledge, this is the first time that
group scheduling has been used directly for the scheduling of VMs
and to guide their resource allocations.

Given the open source nature of the Xen hypervisor, a great deal
of research has been done to advance it. Specifically, we would like
to highlight efforts to improve Xen’s support for near–real–time
applications [19] and I/O intensive applications [13]. A near-real-
time application is a task that does not require strict guarantees,
but it still needs low latency and enough CPU resources within a
certain amount of time. An example would be a server that han-
dles enterprise telephony. Similar to our situation with MapRe-
duce workloads, the Xen VMM is not aware of the characteris-
tics of near-real-time tasks. Lee et al. [19] modified Xen’s credit
scheduler to provide better support for near-real-time workloads.
Their primary modifications included a scheduling technique that
inserted the VCPU of a near-real-time task into a position ofthe
run queue where it would be scheduled before its desired deadline.
Their experimental results indicate that the aforementioned modifi-
cation improves the performance of near-real-time workloads with-
out negatively impacting regular (non-real-time) workloads. In Hu’s
recent work [13], processor cores are divided into several subsets
with each employing a specific scheduling algorithm to handle CPU-
intensive or I/O-intensive workloads. However, this imposes the
burden of run-time monitoring to distribute VCPUs to properPC-
PUs.

Ye et al. [31] proposed the idea of batching hard disk I/O requests
in a VM environment to reduce power consumption. By grouping
I/O requests, the hard disk is able to remain in the idle statefor
longer periods of time, thereby lowering power usage. The idea
was combined with two more techniques to further prolong the
length of idleness: buffering to delay writes and flushing writes
early. Their results from their implementation in Xen indicated a
considerable savings in energy consumption with a small cost (i.e.
increase) in disk access time.

On the operating system level, Zhuravlev et al. [35] examined
the issue of shared resource contention in multicore processors.
Their survey of different classification schemes for scheduling al-
gorithms established that cache contention was not the onlyreason
for performance degradation. Performance was also influenced by
contention for the prefetching hardware and the memory controller
and bus. They determined that the cache miss rate of an application
was a good indicator of shared resource contention. Consequently,
the scheduling algorithms they implemented aimed to allocate ap-
plications among the cores such that the miss rate is spread evenly.

8.2 MapReduce performance improvement
Job scheduling in the MapReduce architecture has been stud-

ied for improving the fairness and responsiveness, due to the poor
performance of the default FIFO scheduling [25, 34, 32]. The
approach proposed in this paper is fundamentally differentfrom
these existing work in that the MRG scheduler provides hypervisor-
level scheduling which tries to fit the characteristics of MapReduce
workloads. LATE [34] performs speculative tasks based on a more
generic task progress rate, which takes into account node hetero-
geneity in a consolidated system. Sandholm and Lai [25] use regu-
lated and user-assigned priorities to manage the MapReduceVMs
and automatically adjust the resource allocation during run time



to meet the deadline or service level for different jobs. Thedelay
scheduling in [32] solves the conflict between fairness and local-
ity by delaying the launch of a non-local task for a certain amount
of time when running multiple MapReduce jobs together. A com-
monality among these works is that they all consider runningthe
MapReduce jobs in a shared virtualized environment. Thus, we be-
lieve that instead of conflicting with each other, the proposed work
fills the gap between the high-level job management and the under-
lying VM scheduling.

9. CONCLUSION
We designed and implemented MRG scheduler, a new Xen sched-

uler for VMs running MapReduce workloads. The scheduler fa-
cilities MapReduce job fairness by introducing a two-levelgroup
credit based scheduling policy. Efficiency is improved through
batching of I/O requests within a group and elimination of super-
fluous context switches. Additionally, the proposed mechanism
also operates on SMP-enabled platforms. The MRG scheduler was
implemented and tested on the Hadoop platform. Evaluationson
MapReduce benchmarks show the MRG scheduler can deliver∼
30% performance improvement over the default scheduler with-
out runtime overhead, while simultaneously reducing the costs of
context switching and duplicated tasks. In terms of fairness, the
MRG scheduler provides MapReduce cluster group level fairness
and fairness at the VM-level.
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