Improving Domain Filtering
using Restricted Path Consistency

P. Berlandier

SECOIA Project, INRTA-CERMICS, B.P. 93, 06902 Sophia Antipolis, FRANCE

Abstract

This paper introduces a new level of partial con-
sistency for constraint satisfaction problems, which is
situated between arc and path-consistency. We call
this level restricted path-consistency (RPC). Two pro-
cedures to emforce complete and partial RPC are pre-
sented. They both use path-based verifications to de-
tect inconsistencies but retain the good features of arc-
consistency since they only touch the wvariables do-
mains and do not augment the connectivity of the con-
straint graph. We show that, although they perform a
limited number of checks, these procedures exhibit a
considerable pruning power.

1 Introduction

Constraint satisfaction problems (csp) have proved
useful to encode various instances of combinatorial
problems. A csp is simply defined by giving a set
of variables, each having a finite domain, and a set
of constraints, each connected to a subset of the vari-
ables. Constraints are partial informations that re-
strict the values that can be assigned simultaneously
to their variables.

Enforcing the global consistency of a CSP consists in
finding a set of value assignments, one for each vari-
able, so that all the constraints are simultaneously sat-
isfied. This is a NP-complete problem that is usually
attacked with now sophisticated [Tsang 93] but still
exponential search procedures. It is thus crucial to
narrow the search space as much as possible by enforc-
ing some level of partial consistency with a polynomial
time filtering procedure.

Currently, the best known levels of partial consis-
tency are arc and path-consistency. The first one is
used almost universally because it can be computed
at low cost and its enforcement simply comes to the
elimination of some value assignments (which is quite
valuable since value elimination represents a maximal
simplification operation with regard to the problem
combinatorics).

Now, except for some temporal reasoning applica-
tions, path-consistency does not have the same good

press. There are mainly three reasons for this. The
first one is that the ratio between its complexity and
the simplification factor it brings is far less interesting
than the one brought by arc-consistency.

Then comes the fact that the action of a path-
consistency procedure amounts to the elimination of
pairs of values assignments [Han 88]. This imposes
that constraints should have an extensive represen-
tation from which individual pairs can somehow be
deleted (e.g. boolean matrices [Montanari 74]). Such
a representation is often unacceptable for the imple-
mentation of real-world problems for which intensive
representations are much more concise and efficient.

Finally, enforcing path-consistency has the major
disadvantage of bringing some modifications to the
connectivity of the constraint graph by adding some
edges to this graph. These drawbacks are the reasons
why path-consistency algorithms are almost never im-
plemented in commercial cSp-solving systems.

In this paper, we present a level of partial consis-
tency called restricted path-consistency (RPC) which
is half-way between arc and path-consistency. The
procedures that will enforce this consistency level will
turn the above three problems of path-consistency by
their incompleteness: path-consistency checking will
be engaged for a given assignment pair if and only if
the deletion of this pair implies the deletion of one of
its element.

Such a situation occurs when a given assignment
pair represents the only support for one of the two as-
signments with regard to some constraint. Below is a
simple example of this state of affair. Figure 1.1 shows
the compatibility graph (also called the microstruc-
ture) of a binary csp with three variables i, j and k.

As it is defined here, the problem is initially arc-
consistent. However, for example, the status of the
assignment (i, a) is rather fragile since it has only one
supporting value on j (i.e. value ¢).

If we now consider path-consistency between a and
¢, we observe that there are no existing path through
k. Therefore, the assignment pair ({i,a), (J,c)) could
be ruled out, leaving a without any support on j.
This implies in turn that assignment (i,a) can be
eliminated. From there, it is possible to reapply arc-
consistency to propagate this elimination and delete

Figure 1.2: after enforcing RPC

successively the values e for £ and d for j. The re-
sulting problem (which, incidentally, is globally con-
sistent) is shown on figure 1.2.

We thus can see that, focusing our attention on a
limited number of correctly chosen assignment pairs,
it is possible to operate a domain filtering that is more
powerful than the one offered by arc-consistency alone.
Due to its incomplete nature, RPC breaks away from
the drawbacks of path-consistency:

The complexity of the filtering process is lowered
since the number of assignment pairs that are to be
checked is greatly restricted.

No particular representation for the constraints is
necessary since no assignment pair is withdrawn
from the constraints.

No additional constraint is created by the filtering
process since, once again, there is no pair to with-
draw.

The rest of the paper shows how restricted path-
consistency can be built on top of arc-consistency.
In section 2, we recall some definitions about csp,
arc and path-consistency and we give a formal defi-
nition of RPC. In sections 3 and 4, we present the
details of two RPC procedures that are developed us-
ing Acy4 [Mohr 86]. Finally, in section 5, we evaluate
experimentally the merits of RPC on some randomly
generated constraint problems.

2 Preliminaries

A Dbinary constraint satisfaction problem P is a
quadruple (V,D,C, R) in which:
V is a set of n variables {1,...,n};

— D is the set of domains {D,,...,D,} correspond-
ing to each variable. A value assignment (i,a) is
possible iff a € D;. We note d the maximum size

of the domains.

C is the set of constraints. Each constraint is a
pair of distinct variables {i, j} noted C;; for conve-
nience. We note e the size of C.

— R is the set of relations associated to the con-
straints. The relation R;; defines the set of legal
pairs of values for 7 and j.

Reaching global consistency for a CSP means finding
a value assignment for each variable in V so that all
the constraints in C are satisfied. Partial consistency
imposes some weaker conditions about the possible
value assignments of the problem. For arc and path-
consistency, the conditions are the followings:

a variable 7 is arc-consistent iff:

for all @ € Dy,
J € V such that C;; € C,
there exists b € D; such that (a,b) € R;;.

— a pair of variables {i,j} is path-consistent iff:

both ¢ and j are arc-consistent,
for all (a,b) € D; x D,
k € V such that C;, and Cy; € C,
there exists ¢ € Dy, such that (a,c) € R;, and
(C./ b) € Ry;.

Based on the above, we can derive the following defi-
nition for restricted path-consistency:

— a variable i is restrictedly path-consistent iff:

1 is arc-consistent,
for all @ € Dy,
J € V such that C;; € C and
EILNS Dj, (a7b) € Rij7
k € V such that Cy, and Cy; € C,
there exists ¢ € Dy, such that (a,¢) € R and
(C, b) € RLJ

A ¢sP is said arc-consistent iff all of its variables
are arc-consistent and none of them have an empty
domain. Similarly, a CSP is said path-consistent iff all
of the possible pairs of variables are path-consistent.
Therefore, we will say a CSp is restrictedly path-
consistent iff all its variables are restrictedly path-
consistent. By definition, a csP that is restrictedly
path-consistent, is also arc-consistent (of course, the
reciprocal is false). Now, a cspP that is path-consistent
is also restrictedly path-consistent (and again, the re-
ciprocal is false).

3 Enforcing RPC

To enforce restricted path-consistency in a binary
CsP, we have to enforce arc-consistency and also to se-
lect the pairs of assignments that are eligible for path-
consistency checking. To achieve the latter operation,
we need to count the supports of all possible value
assignments with respect to all possible constraints.
Now, this accounting is precisely the keystone of the
ACq4 algorithm [Mohr 86]. It thus make AC,4 a natural
choice for the development of RPC.

Figure 2 shows the three procedures that implement
complete RPC. Procedures initialize and prune are di-
rectly derived from AC4. As in the original algorithm,
initialize builds two data structures: S;, which stores
the set of assignments supported by value a at vari-
able i and counter[(7, j),a] which counts the number
of supports on j of the assignment (i, a).

The main difference of initialize and prune from
their original versions is the respective addition of lines
11 to 14 and 7 to 14. In the procedure initialize, those
four lines allow, when the support counter of an as-
signment has just been initialized, to check whether
the assignment in question has got only one support
left. If this is the case, we enqueue the information in
list pc under the form of a triple describing the assign-
ment, the variable on which the one support remains
and the third variable through which a path will be
searched.

In the procedure prune, reaching line 7 means that
the pair ({(i,a), {j, b)) has just been deleted and that
this deletion did not provoke the deletion of the value
a for i. We are then faced with one of the following
cases:

— There is only one remaining arc that supports the
value a on ¢ with respect to j. We are thus back to
the case handled by lines 11 to 14 of initialize where
a triple ({7, a), j, k) is enqueued for every variable k
connected to both ¢ and j.

The lately deleted arc might have been the only
one that could compose a path from i through j
to a third variable k such that a has got only one
support on k. For every such k, we thus have to
enqueue the triple ({7, a), k, 7). This case is handled
by lines 11 to 14 of prune.

When prune ends, the procedure check is invoked
with the list po that has just been determined. For
each triple ({7, a), 7, k) in this list, we determine in S,,
the value b that is the only support of a on j (cf.
line 4). Then, given the variable k connected both
to ¢ and j, we check that there is a path from a to
b passing through k. If this is not the case, we know
that value a can be deleted from the domain of 7. We
thus decrement its support counter and propagate its
suppression in the graph by reapplying the procedure
prune.

{step 1: initializing the data structure}

procedure initialize(var listac, var listpc);
1 forall (7,j) such that C;; € C do

2

00 ~N O 0w

9

10
11
12
13
14

forall a € D; do
total — 0;
forall b€ D; do
if (a,b) € Ri; then
total — total + 1;
S""l - S""l U {(.]a b)}’
counter|(1, J), a] < total;
if counter[(7,j),a] =0 then
listac — listac U{(i,a)}; D; — D;\ {a}
else if counter[(i,j),a] =1 then
forall ke V
such that Cj and Ci; € C do
listpc — listpo U {((3,a),7,k)}.

{step 2: pruning inconsistent values}

procedure prune(listac, var listpo);
1 while listac # 0 do

2

00N Uk Ww

9

10
11
12
13
14

choose and delete (j,b) from listac;
forall (i,a) € Sj, do
counter|(t, j), a] — counter|(i,7),a] — 1;
if counter[(i,j),a] =0 and a € D; then
listac — listac U{(i,a)}; D; — D;\ {a}
else if counter[(i,j),a] =1 then
forall ke V
such that Cj; and Cj; € C do
listpc — listpo U{((i,a),7,k)}
else forall ke V
such that (C;; and Ci; € C do
if counter[(i,k),a] =1 then
listpc — listpc U{({(i,a), k,7)}.

{step 3: checking path existence}

procedure check(var listpc);
1 while listpc # 0 do

2

~N O O W

choose and delete ({i,a),j, k) from listpc;
if a € D; then
Tet {(J.0)} = () € S | 2 € D)
if {(k,c) € Sia N Sjb ‘ ce Dk} = then
counter[(i, j),a] — 0; D; — D; \ {a};
prune({(i,a)}, lstpc).

Figure 2: Computing complete RPC

Note that the triples that become eligible for a test
by check after the successive applications of prune are
added incrementally to listpc by prune itself.

In like manner of the arc-consistency algorithm, the
termination of the RPC algorithm is guaranteed by the
monotonic decrease of the number of eligible assign-
ment pairs and the decrease of list pc ensured by line
2 of check.

3.1 Complexity

Compared to ACy4, our algorithm introduces the list
of triples listpc. This list reaches its maximal size
when, for all the variables of the problem, each as-
signment has only one support with respect to each
constraint. In this case, the size of the list is in O(ned).
The space complexity of Ac, being O(ed?), this gives
us an upper bound of O(ed(n + d)) for RPC.

Let us now deal with the time complexity. The
updates that we brought to the procedures initialize
and prune do not change the complexity of Ac4. Now,
for procedure check, the loop at line 1 is executed at
most ned times. Of course, the cost of the executions
of prune, called at line 7, is covered by the worst-case
cost calculated for the execution of arc-consistency.
Therefore, the time complexity of check is in O(ned).

This gives us a upper bound time complexity of
O(ed(n + d)) for rRPc. For the comparison, we recall
that the time complexity of the best path consistency
algorithm, pc3 [Han 88], is in O(n®d?).

4 Enforcing Partial RPC

The algorithm presented above is complete i.e. it
stops only when the RPC property presented in sec-
tion 2 is fully installed in the constraint problem.
While testing this algorithm on examples, we noticed
that ensuring this completeness usually requires some
extra work that is of little profit from a domain filter-
ing point of view.

A partial but fast enforcement of RPC can be
achieved by checking only once every possible value
assignment after arc-consistency has been enforced.
To implement this, the simple partial-check procedure,
presented on figure 3 can be used. The prune proce-
dure that is invoked here is the basic Ac4 propagation
procedure since we do not wish to maintain the revi-
sion list list pc any more.

The upper bound space and time complexities of
AC4 are not affected by the addition of the partial-
check procedure. Indeed, partial-check does not intro-
duce any new data-structure and its worst case time
complexity is in O(ed).

procedure partial-check;
1 forall i € V do
2 forall a € D; do
forall j € V such that C;; € C do
if counter[(i,j),a] =1 then
Tet {{,0)} = {(j.) € Sia | # € D,1};
if {(k,c) € SiaNSjs|c € D} =0 then
counter((1,7),a] — 0; D; — D; \ {a};
prune({(i,a)}) .

00N Uk W

Figure 3: Computing partial RPC

5 Experimental Evaluation

In order to check out the benefits brought by our
consistency procedures, we have experimented them
on some random constraint problems.

As usual, the generation of random problems is
based on four parameters: the number n of variables,
the size d of the variables domain, the constraint den-
sity cd in the graph and the constraint tightness ct.

The constraint density corresponds to the fraction
of the difference in the number of edges between a n-
vertices clique and a n-vertices tree. A problem with
density 0 will show n — 1 constraints; a problem with
density 1 will show n(n — 1)/2 constraints.

The constraint tightness ct corresponds to the frac-
tion of the number of tuples in the cross-product of
the domain of two variables that will not be allowed
by the constraint between these two variables. Tight-
ness 0 stands for the universal constraint and tightness
1, the unsatisfiable constraint.

We have run two sets of experiments, one with n =
16 and d = 8 and the other with n = 8 and d =
16. For each set, we had the constraint density range
from 0 to 1 by steps of 0.05 and for each density, we
have repeated the execution of the filtering procedures
on 100 different instances, reporting the average of
the results. The performances of basic arc-consistency
(AC), partial RPC and complete RPC are compared on
three grounds:

— the execution time,

the portion of the possible assignments that are
ruled out after the execution of the procedure i.e.

Ziev Ai
Ziev D;
where A; is the domain of i after being filtered.

This indicates the raw quantity of filtering work
that has been achieved.

1—

the portion of the initial search space that is ruled
out after the execution of the procedure i.e.

Hiev Aj

1—
Hiev D;

This indicates the impact of the filtering work on
the problem simplification.

Figures 4 and 5 show the results that we have ob-
tained for two sets of parameters that have been found
relevant i.e. the problems that were generated from
these parameters were correctly constrained: enough
for arc-consistency to have some effect and not too
much for inconsistencies to be detected right away.

Our main observations are:

— The computation time added by the application of
partial RPC is small with regard to the time con-
sumed by AC. On our examples, the application of
partial RPC takes at most half more time than the
application of Ac. This turns out to be a small
additional cost when it is weighted against the cor-
responding portion of the pruned search space. A
reason why the additional cost of RPC is limited is
that the most expansive part of the process is the
initialization step, which is achieved by Ac. So, in
some sense, the application of RPC allows a bet-
ter amortizing of the work that is done during this
initialization phase.

The application of RPC offers a far better domain
filtering power than the application of AC alone.
Figure 4 shows that RPC (be it partial or com-
plete) can detect inconsistent problems very early,
i.e. starting at a constraint density of 0.5 while,
with the use of AC alone, inconsistent problems are
never detected. Figure 5 shows that complete RPC
performs a better filtering job than partial RPC on
easy problems. However, complete RPC is much
more expansive and this expanse is not rewarded
since these problems are anyway easy to solve!

— Partial RPC does almost the same job as complete
RPC with far better performances. Partial RPC ap-
pears as a good tradeoff between the time con-
sumed and the filtering power. On the one hand,
the execution time of partial RPC seems to be lin-
early related to the cost of AC whereas the cost of
complete RPC is diverging for high constraint den-
sities. On the other hand, the pruning capability
of partial RPC stays close to the one of complete
RPC especially for difficult problems (e.g. problems
with a density between 0.4 and 0.5 in figure 4).

6 Conclusion

We have presented a new level of partial consistency
and two procedures to enforce it. These procedures
are based on the AC, algorithm and therefore, every
arguments against the use of AC, also fall on them.

First, there has been some criticisms against the
space greediness of the data structures used by ACy.

Then, in [Wallace 93] it was established that Acs algo-
rithm [Mackworth 77] performs almost always better
than AC4 to enforce arc-consistency.

This is true when arc-consistency is considered as a
preprocessing step but it is not any more when arc-
consistency is maintained incrementally during the
resolution of the problem as shown in [Sabin 94]; here
again, the reason is that the cost of building the data
structures for Acy is well amortized by their repeated
use during the search. One future work is thus to ex-
plore the benefits of using RPC during the search on
hard problems, as it was done with full arc-consistency
in the MAC algorithm [Sabin 94].

Future developments of RPC are primarily two gen-
eralizations. The first one concerns the handling of
n-ary constraints using the GAc, algorithm [Mohr 88],
which is itself a generalization of ACy.

The second one concerns the restriction that we
have imposed on the maximum number of supports
of an assignment beyond which we will not bother to
trigger path-consistency checking. Here, this number
was fixed to 1 because of the good property it induced.
But it might be interesting to investigate the effect of
using a variable bound and perhaps tune this bound
according to the tightness of the constraints.

References

[Han 88] C. Han, C. Lee. Comments on Mohr and
Henderson’s path consistency algorithm. Artificial
Intelligence, 36:125 130, 1988.

[Mackworth 77] A. Mackworth. Consistency in net-
works of relations. Artificial Intelligence, 8:99 118,
1977.

[Mohr 86] R. Mohr, T. Henderson. Arc and path con-
sistency revisited. Artificial Intelligence, 28:225—
233, 1986.

[Mohr 88] R. Mohr, G. Masini. Good old discrete re-
laxation. In Proc. ECAI, Munich, Germany, 1988.

[Montanari 74] U. Montanari. Networks of constr-
aints: Fundamental properties and application to
picture processing. Information Science, 7(3):95—
132, 1974.

[Sabin 94] D. Sabin, E. Freuder. Contradicting con-
ventional wisdom in constraint satisfaction. In Proc.
ECAI Amsterdam, Netherlands, 1994.

[Tsang 93] E. Tsang. Foundations of Constraint Sat-
isfaction. Academic Press, 1993.

[Wallace 93] R. Wallace. Why AC-3 is almost always
better than AC-4 for establishing arc consistency in
CSPs. In Proc. IJCAI, Chambéry, France, 1993.

100
90 -
80 -
70 -
60 -

50 =

40 =
30 -
20 -

10 -

execution time

% of pruned values

| | m»«B"E;;@F'H}*E}EWEﬂ—ﬁHfE}{ﬁ

% of pruned space

R i e
w

5
S
,,
iy

eof—
7of—
603—
5 -
20 -
30 -

20 -

[uN

execution time

100 - | | | | | | | | | 1

AC <—

90 — p-RPC —-- -

c-RPC -Et--

Figure 4: n =16,d =8, ¢t = 0.5

Figure 5: n =8, d =16, ¢t = 0.7

