
Improving Domain Filteringusing Restricted Path ConsistencyP. BerlandierSECOIA Project, INRIA{CERMICS, B.P. 93, 06902 Sophia Antipolis, FRANCEAbstractThis paper introduces a new level of partial con-sistency for constraint satisfaction problems, which issituated between arc and path-consistency. We callthis level restricted path-consistency (rpc). Two pro-cedures to enforce complete and partial rpc are pre-sented. They both use path-based veri�cations to de-tect inconsistencies but retain the good features of arc-consistency since they only touch the variables do-mains and do not augment the connectivity of the con-straint graph. We show that, although they perform alimited number of checks, these procedures exhibit aconsiderable pruning power.1 IntroductionConstraint satisfaction problems (csp) have proveduseful to encode various instances of combinatorialproblems. A csp is simply de�ned by giving a setof variables, each having a �nite domain, and a setof constraints, each connected to a subset of the vari-ables. Constraints are partial informations that re-strict the values that can be assigned simultaneouslyto their variables.Enforcing the global consistency of a csp consists in�nding a set of value assignments, one for each vari-able, so that all the constraints are simultaneously sat-is�ed. This is a np-complete problem that is usuallyattacked with now sophisticated [Tsang 93] but stillexponential search procedures. It is thus crucial tonarrow the search space as much as possible by enforc-ing some level of partial consistency with a polynomialtime �ltering procedure.Currently, the best known levels of partial consis-tency are arc and path-consistency. The �rst one isused almost universally because it can be computedat low cost and its enforcement simply comes to theelimination of some value assignments (which is quitevaluable since value elimination represents a maximalsimpli�cation operation with regard to the problemcombinatorics).Now, except for some temporal reasoning applica-tions, path-consistency does not have the same good

press. There are mainly three reasons for this. The�rst one is that the ratio between its complexity andthe simpli�cation factor it brings is far less interestingthan the one brought by arc-consistency.Then comes the fact that the action of a path-consistency procedure amounts to the elimination ofpairs of values assignments [Han 88]. This imposesthat constraints should have an extensive represen-tation from which individual pairs can somehow bedeleted (e.g. boolean matrices [Montanari 74]). Sucha representation is often unacceptable for the imple-mentation of real-world problems for which intensiverepresentations are much more concise and e�cient.Finally, enforcing path-consistency has the majordisadvantage of bringing some modi�cations to theconnectivity of the constraint graph by adding someedges to this graph. These drawbacks are the reasonswhy path-consistency algorithms are almost never im-plemented in commercial csp-solving systems.In this paper, we present a level of partial consis-tency called restricted path-consistency (rpc) whichis half-way between arc and path-consistency. Theprocedures that will enforce this consistency level willturn the above three problems of path-consistency bytheir incompleteness: path-consistency checking willbe engaged for a given assignment pair if and only ifthe deletion of this pair implies the deletion of one ofits element.Such a situation occurs when a given assignmentpair represents the only support for one of the two as-signments with regard to some constraint. Below is asimple example of this state of a�air. Figure 1.1 showsthe compatibility graph (also called the microstruc-ture) of a binary csp with three variables i, j and k.As it is de�ned here, the problem is initially arc-consistent. However, for example, the status of theassignment hi; ai is rather fragile since it has only onesupporting value on j (i.e. value c).If we now consider path-consistency between a andc, we observe that there are no existing path throughk. Therefore, the assignment pair (hi; ai; hj; ci) couldbe ruled out, leaving a without any support on j.This implies in turn that assignment hi; ai can beeliminated. From there, it is possible to reapply arc-consistency to propagate this elimination and delete

e f

a

b

c

d

k

i j

Figure 1.1: initial situation
f

b

c

k

ji

Figure 1.2: after enforcing rpcsuccessively the values e for k and d for j. The re-sulting problem (which, incidentally, is globally con-sistent) is shown on �gure 1.2.We thus can see that, focusing our attention on alimited number of correctly chosen assignment pairs,it is possible to operate a domain �ltering that is morepowerful than the one o�ered by arc-consistency alone.Due to its incomplete nature, rpc breaks away fromthe drawbacks of path-consistency:{ The complexity of the �ltering process is loweredsince the number of assignment pairs that are to bechecked is greatly restricted.{ No particular representation for the constraints isnecessary since no assignment pair is withdrawnfrom the constraints.{ No additional constraint is created by the �lteringprocess since, once again, there is no pair to with-draw.The rest of the paper shows how restricted path-consistency can be built on top of arc-consistency.In section 2, we recall some de�nitions about csp,arc and path-consistency and we give a formal de�-nition of rpc. In sections 3 and 4, we present thedetails of two rpc procedures that are developed us-ing ac4 [Mohr 86]. Finally, in section 5, we evaluateexperimentally the merits of rpc on some randomlygenerated constraint problems.

2 PreliminariesA binary constraint satisfaction problem P is aquadruple hV ;D; C;Ri in which:{ V is a set of n variables f1; : : : ; ng;{ D is the set of domains fD1; : : : ; Dng correspond-ing to each variable. A value assignment hi; ai ispossible i� a 2 Di. We note d the maximum sizeof the domains.{ C is the set of constraints. Each constraint is apair of distinct variables fi; jg noted Cij for conve-nience. We note e the size of C.{ R is the set of relations associated to the con-straints. The relation Rij de�nes the set of legalpairs of values for i and j.Reaching global consistency for a cspmeans �ndinga value assignment for each variable in V so that allthe constraints in C are satis�ed. Partial consistencyimposes some weaker conditions about the possiblevalue assignments of the problem. For arc and path-consistency, the conditions are the followings:{ a variable i is arc-consistent i�:for all a 2 Di,j 2 V such that Cij 2 C,there exists b 2 Dj such that (a; b) 2 Rij .{ a pair of variables fi; jg is path-consistent i�:both i and j are arc-consistent,for all (a; b) 2 Di �Dj ,k 2 V such that Cik and Ckj 2 C,there exists c 2 Dk such that (a; c) 2 Rik and(c; b) 2 Rkj .Based on the above, we can derive the following de�-nition for restricted path-consistency:{ a variable i is restrictedly path-consistent i�:i is arc-consistent,for all a 2 Di,j 2 V such that Cij 2 C and9!b 2 Dj ; (a; b) 2 Rij ,k 2 V such that Cik and Ckj 2 C,there exists c 2 Dk such that (a; c) 2 Rik and(c; b) 2 Rkj .A csp is said arc-consistent i� all of its variablesare arc-consistent and none of them have an emptydomain. Similarly, a csp is said path-consistent i� allof the possible pairs of variables are path-consistent.Therefore, we will say a csp is restrictedly path-consistent i� all its variables are restrictedly path-consistent. By de�nition, a csp that is restrictedlypath-consistent, is also arc-consistent (of course, thereciprocal is false). Now, a csp that is path-consistentis also restrictedly path-consistent (and again, the re-ciprocal is false).

3 Enforcing RPCTo enforce restricted path-consistency in a binarycsp, we have to enforce arc-consistency and also to se-lect the pairs of assignments that are eligible for path-consistency checking. To achieve the latter operation,we need to count the supports of all possible valueassignments with respect to all possible constraints.Now, this accounting is precisely the keystone of theac4 algorithm [Mohr 86]. It thus make ac4 a naturalchoice for the development of rpc.Figure 2 shows the three procedures that implementcomplete rpc. Procedures initialize and prune are di-rectly derived from ac4. As in the original algorithm,initialize builds two data structures: Sia which storesthe set of assignments supported by value a at vari-able i and counter [(i; j); a] which counts the numberof supports on j of the assignment hi; ai.The main di�erence of initialize and prune fromtheir original versions is the respective addition of lines11 to 14 and 7 to 14. In the procedure initialize, thosefour lines allow, when the support counter of an as-signment has just been initialized, to check whetherthe assignment in question has got only one supportleft. If this is the case, we enqueue the information inlistPC under the form of a triple describing the assign-ment, the variable on which the one support remainsand the third variable through which a path will besearched.In the procedure prune, reaching line 7 means thatthe pair (hi; ai; hj; bi) has just been deleted and thatthis deletion did not provoke the deletion of the valuea for i. We are then faced with one of the followingcases:{ There is only one remaining arc that supports thevalue a on i with respect to j. We are thus back tothe case handled by lines 11 to 14 of initialize wherea triple (hi; ai; j; k) is enqueued for every variable kconnected to both i and j.{ The lately deleted arc might have been the onlyone that could compose a path from i through jto a third variable k such that a has got only onesupport on k. For every such k, we thus have toenqueue the triple (hi; ai; k; j). This case is handledby lines 11 to 14 of prune.When prune ends, the procedure check is invokedwith the listPC that has just been determined. Foreach triple (hi; ai; j; k) in this list, we determine in Siathe value b that is the only support of a on j (cf.line 4). Then, given the variable k connected bothto i and j, we check that there is a path from a tob passing through k. If this is not the case, we knowthat value a can be deleted from the domain of i. Wethus decrement its support counter and propagate itssuppression in the graph by reapplying the procedureprune.

fstep 1: initializing the data structuregprocedure initialize(var listAC, var listPC);1 forall (i; j) such that Cij 2 C do2 forall a 2 Di do3 total 0;4 forall b 2 Dj do5 if (a; b) 2 Rij then6 total total + 1;7 Sia Sia [fhj; big;8 counter [(i; j); a] total;9 if counter [(i; j); a] = 0 then10 listAC listAC [fhi; aig; Di Di n fag11 else if counter [(i; j); a] = 1 then12 forall k 2 V13 such that Cik and Ckj 2 C do14 listPC listPC [f(hi; ai; j; k)g.fstep 2: pruning inconsistent valuesgprocedure prune(listAC, var listPC);1 while listAC 6= ; do2 choose and delete hj; bi from listAC;3 forall (i; a) 2 Sjb do4 counter [(i; j); a] counter [(i; j); a]� 1;5 if counter [(i; j); a] = 0 and a 2 Di then6 listAC listAC [fhi; aig; Di Di n fag7 else if counter [(i; j); a] = 1 then8 forall k 2 V9 such that Cik and Ckj 2 C do10 listPC listPC [f(hi; ai; j; k)g11 else forall k 2 V12 such that Cik and Ckj 2 C do13 if counter [(i; k); a] = 1 then14 listPC listPC [f(hi; ai; k; j)g.fstep 3: checking path existencegprocedure check(var listPC);1 while listPC 6= ; do2 choose and delete (hi; ai; j; k) from listPC;3 if a 2 Di then4 let fhj; big = fhj; xi 2 Sia j x 2 Djg;5 if fhk; ci 2 Sia \ Sjb j c 2 Dkg = ; then6 counter [(i; j); a] 0; Di Di n fag;7 prune(fhi; aig, listPC).Figure 2: Computing complete rpc

Note that the triples that become eligible for a testby check after the successive applications of prune areadded incrementally to listPC by prune itself.In like manner of the arc-consistency algorithm, thetermination of the rpc algorithm is guaranteed by themonotonic decrease of the number of eligible assign-ment pairs and the decrease of listPC ensured by line2 of check.3.1 ComplexityCompared to ac4, our algorithm introduces the listof triples listPC . This list reaches its maximal sizewhen, for all the variables of the problem, each as-signment has only one support with respect to eachconstraint. In this case, the size of the list is in O(ned).The space complexity of ac4 being O(ed2), this givesus an upper bound of O(ed(n + d)) for rpc.Let us now deal with the time complexity. Theupdates that we brought to the procedures initializeand prune do not change the complexity of ac4. Now,for procedure check, the loop at line 1 is executed atmost ned times. Of course, the cost of the executionsof prune, called at line 7, is covered by the worst-casecost calculated for the execution of arc-consistency.Therefore, the time complexity of check is in O(ned).This gives us a upper bound time complexity ofO(ed(n + d)) for rpc. For the comparison, we recallthat the time complexity of the best path consistencyalgorithm, pc3 [Han 88], is in O(n3d3).4 Enforcing Partial RPCThe algorithm presented above is complete i.e. itstops only when the rpc property presented in sec-tion 2 is fully installed in the constraint problem.While testing this algorithm on examples, we noticedthat ensuring this completeness usually requires someextra work that is of little pro�t from a domain �lter-ing point of view.A partial but fast enforcement of rpc can beachieved by checking only once every possible valueassignment after arc-consistency has been enforced.To implement this, the simple partial-check procedure,presented on �gure 3 can be used. The prune proce-dure that is invoked here is the basic ac4 propagationprocedure since we do not wish to maintain the revi-sion list listPC any more.The upper bound space and time complexities ofac4 are not a�ected by the addition of the partial-check procedure. Indeed, partial-check does not intro-duce any new data-structure and its worst case timecomplexity is in O(ed).

procedure partial-check;1 forall i 2 V do2 forall a 2 Di do3 forall j 2 V such that Cij 2 C do4 if counter [(i; j); a] = 1 then5 let fhj; big = fhj; xi 2 Sia j x 2 Djg;6 if fhk; ci 2 Sia \ Sjb j c 2 Dkg = ; then7 counter [(i; j); a] 0; Di Di n fag;8 prune(fhi; aig).Figure 3: Computing partial rpc5 Experimental EvaluationIn order to check out the bene�ts brought by ourconsistency procedures, we have experimented themon some random constraint problems.As usual, the generation of random problems isbased on four parameters: the number n of variables,the size d of the variables domain, the constraint den-sity cd in the graph and the constraint tightness ct.The constraint density corresponds to the fractionof the di�erence in the number of edges between a n-vertices clique and a n-vertices tree. A problem withdensity 0 will show n� 1 constraints; a problem withdensity 1 will show n(n� 1)=2 constraints.The constraint tightness ct corresponds to the frac-tion of the number of tuples in the cross-product ofthe domain of two variables that will not be allowedby the constraint between these two variables. Tight-ness 0 stands for the universal constraint and tightness1, the unsatis�able constraint.We have run two sets of experiments, one with n =16 and d = 8 and the other with n = 8 and d =16. For each set, we had the constraint density rangefrom 0 to 1 by steps of 0:05 and for each density, wehave repeated the execution of the �ltering procedureson 100 di�erent instances, reporting the average ofthe results. The performances of basic arc-consistency(ac), partial rpc and complete rpc are compared onthree grounds:{ the execution time,{ the portion of the possible assignments that areruled out after the execution of the procedure i.e.1� Pi2V �iPi2V Diwhere �i is the domain of i after being �ltered.This indicates the raw quantity of �ltering workthat has been achieved.{ the portion of the initial search space that is ruledout after the execution of the procedure i.e.1� Qi2V �iQi2V Di

This indicates the impact of the �ltering work onthe problem simpli�cation.Figures 4 and 5 show the results that we have ob-tained for two sets of parameters that have been foundrelevant i.e. the problems that were generated fromthese parameters were correctly constrained: enoughfor arc-consistency to have some e�ect and not toomuch for inconsistencies to be detected right away.Our main observations are:{ The computation time added by the application ofpartial rpc is small with regard to the time con-sumed by ac. On our examples, the application ofpartial rpc takes at most half more time than theapplication of ac. This turns out to be a smalladditional cost when it is weighted against the cor-responding portion of the pruned search space. Areason why the additional cost of rpc is limited isthat the most expansive part of the process is theinitialization step, which is achieved by ac. So, insome sense, the application of rpc allows a bet-ter amortizing of the work that is done during thisinitialization phase.{ The application of rpc o�ers a far better domain�ltering power than the application of ac alone.Figure 4 shows that rpc (be it partial or com-plete) can detect inconsistent problems very early,i.e. starting at a constraint density of 0:5 while,with the use of ac alone, inconsistent problems arenever detected. Figure 5 shows that complete rpcperforms a better �ltering job than partial rpc oneasy problems. However, complete rpc is muchmore expansive and this expanse is not rewardedsince these problems are anyway easy to solve!{ Partial rpc does almost the same job as completerpc with far better performances. Partial rpc ap-pears as a good tradeo� between the time con-sumed and the �ltering power. On the one hand,the execution time of partial rpc seems to be lin-early related to the cost of ac whereas the cost ofcomplete rpc is diverging for high constraint den-sities. On the other hand, the pruning capabilityof partial rpc stays close to the one of completerpc especially for di�cult problems (e.g. problemswith a density between 0:4 and 0:5 in �gure 4).6 ConclusionWe have presented a new level of partial consistencyand two procedures to enforce it. These proceduresare based on the ac4 algorithm and therefore, everyarguments against the use of ac4 also fall on them.First, there has been some criticisms against thespace greediness of the data structures used by ac4.

Then, in [Wallace 93] it was established that ac3 algo-rithm [Mackworth 77] performs almost always betterthan ac4 to enforce arc-consistency.This is true when arc-consistency is considered as apreprocessing step but it is not any more when arc-consistency is maintained incrementally during theresolution of the problem as shown in [Sabin 94]; hereagain, the reason is that the cost of building the datastructures for ac4 is well amortized by their repeateduse during the search. One future work is thus to ex-plore the bene�ts of using rpc during the search onhard problems, as it was done with full arc-consistencyin the mac algorithm [Sabin 94].Future developments of rpc are primarily two gen-eralizations. The �rst one concerns the handling ofn-ary constraints using the gac4 algorithm [Mohr 88],which is itself a generalization of ac4.The second one concerns the restriction that wehave imposed on the maximum number of supportsof an assignment beyond which we will not bother totrigger path-consistency checking. Here, this numberwas �xed to 1 because of the good property it induced.But it might be interesting to investigate the e�ect ofusing a variable bound and perhaps tune this boundaccording to the tightness of the constraints.References[Han 88] C. Han, C. Lee. Comments on Mohr andHenderson's path consistency algorithm. Arti�cialIntelligence, 36:125{130, 1988.[Mackworth 77] A. Mackworth. Consistency in net-works of relations. Arti�cial Intelligence, 8:99{118,1977.[Mohr 86] R. Mohr, T. Henderson. Arc and path con-sistency revisited. Arti�cial Intelligence, 28:225{233, 1986.[Mohr 88] R. Mohr, G. Masini. Good old discrete re-laxation. In Proc. ECAI, Munich, Germany, 1988.[Montanari 74] U. Montanari. Networks of constr-aints: Fundamental properties and application topicture processing. Information Science, 7(3):95{132, 1974.[Sabin 94] D. Sabin, E. Freuder. Contradicting con-ventional wisdom in constraint satisfaction. In Proc.ECAI, Amsterdam, Netherlands, 1994.[Tsang 93] E. Tsang. Foundations of Constraint Sat-isfaction. Academic Press, 1993.[Wallace 93] R. Wallace. Why AC-3 is almost alwaysbetter than AC-4 for establishing arc consistency inCSPs. In Proc. IJCAI, Chamb�ery, France, 1993.

execution time

0

500

1000

1500

2000

2500

3000

3500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
p-RPC
c-RPC

% of pruned values

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
p-RPC
c-RPC

% of pruned space

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
p-RPC
c-RPCFigure 4: n = 16, d = 8, ct = 0:5

execution time

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
p-RPC
c-RPC

% of pruned values

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
p-RPC
c-RPC

% of pruned space

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AC
p-RPC
c-RPC

Figure 5: n = 8, d = 16, ct = 0:7

