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Abstract

There are two competing definitions for the derivative of a twist, wrench, motor,
or similar 6-D vector quantity: one obtained by treating it as a 6-D vector, and the
other by treating it as a pair of 3-D vectors. This paper shows that the former is
the absolute derivative, while the latter is an apparent derivative with respect to
a moving reference point. The proof makes use of a mapping, based on a set of
Plücker basis vectors, that defines the exact relationship between a motor and the
3-D vectors used to represent it. Both derivatives can be interpreted as motors.
Differentiation in the dual space is also considered.

Keywords: screw theory, motor algebra, acceleration, Plücker coordinates.

1 Introduction

This paper considers the question of how to differentiate a twist, wrench, motor, or other
similar 6-D vector quantity, with respect to a scalar variable. However, for the sake of
clarity, a detailed argument is presented only for the time derivative of a motor. The result
generalizes trivially to twists and wrenches, and to derivatives with respect to variables
other than time. The only detail that is lost in this treatment is the (disputed) issue of
duality, which is considered in Section 4.

There is much disagreement on the question of how to differentiate a twist, wrench
or motor. This is because there are two opposing views on how to define the derivative,
leading to two different expressions for the differential operator. One is obtained by
treating the quantity as a 6-D vector, and the other by treating it as a pair of 3-D vectors.
I shall call these operators D6 and D3, respectively. They are defined by the equations

D6(m̂A) =

[

ṁ

ṁA + vA × m

]

(1)

and

D3(m̂A) =

[

ṁ

ṁA

]

, (2)
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where: m̂A is a representation of an abstract motor, m̂, at a reference point A, in terms
of a pair of 3-D vectors m and mA; ṁ and ṁA are the time-derivatives of m and mA;
and vA is the velocity of A.1

Motors are unusual in that there are two distinct representations in common use,
which I shall call component motors and coordinate motors. A component motor is a pair
of 3-D vectors, and a coordinate motor is a sextuple of real numbers. The quantity they
represent is called an abstract motor. m̂A in Eqs. 1 and 2 is a component motor.

This paper shows that Eq. 1 is the correct expression for the absolute differentiation
operator, which I shall call Dabs, and that Eq. 2 must therefore be interpreted an an
apparent or componentwise derivative. It also shows that the RHS of Eq. 2 can be
interpreted as a motor if one takes into account the velocity of the reference point.

Briefly, the argument proceeds as follows. If m̂A is a representation of m̂ then there
exists a mapping, L, such that m̂ = L m̂A. The absolute derivative of m̂A is the motor
that represents ˙̂m, so

Dabs m̂A = L−1 ˙̂m

= L−1
d

dt
(L m̂A)

= L−1 (L̇ m̂A + L ˙̂mA)

= ˙̂mA + L−1 L̇ m̂A .

This paper proves that Dabs = D6 by obtaining an explicit expression for L, substituting
it into the above equation, and showing that the result is identical to Eq. 1.

D6 is the operator used in [4], and is apparently the operator used by Mises [16]. It
is also the real-number equivalent of the motor derivative in Brand [3]. D6 is compatible
with the way that general vectors are differentiated (e.g. in analytical mechanics); and
the D6 derivative of a motor is itself a motor, which makes quantities like acceleration
easier to use [7, 16].

D3 is the operator implied by the classical treatment of rigid-body dynamics via 3-
D vectors, and its appeal lies in its compatibility with 3-D methods and concepts. For
example, if D3 is applied to the velocity motor of a rigid body, then the result is a quantity
composed of the 3-D angular acceleration of the rigid body and the 3-D linear acceleration
of a particular body-fixed point. These are exactly the quantities that would be used in
the traditional 3-D vector approach. In contrast, if D6 is applied to a rigid-body velocity
then the linear component of the result is the rate of change in the velocity with which
successive body-fixed points pass through a fixed point in space [4, 7]. This quantity does
not appear in the classical treatment of rigid-body acceleration. Indeed, this discrepancy
has prompted some authors to say that the D6 derivative should not be called simply ‘the
acceleration’, but should be given some other name [15, 16].

The crucial difference between D3 and D6 lies in the treatment of the reference point,
A. The argument that leads to D6 says that A is part of the mapping from m̂A to m̂,
so if A is moving then we have something analogous to a moving coordinate system.
Therefore the absolute derivative must be the sum of the componentwise derivative of

1In this paper, symbols denoting vectors appear in a bold typeface, and motors are distinguished from
other vectors by a caret. Vectors with some internal structure, such as coordinate vectors and component
vectors, are distinguished from abstract vectors by an underline.
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m̂A and a term that accounts for the time-varying nature of the mapping from m̂A to
m̂. In contrast, the argument that leads to D3 starts from a premise that the absolute
derivative of m̂A is the concatenation of the absolute derivatives of its two component
vectors, regardless of the velocity of A. Proponents of D6 see D3 as an apparent derivative
in a moving coordinate system; whereas proponents of D3 see D6 as a partial derivative,
since it does not account for the motion of the reference point.

Another way to approach the question is to invoke the equivalence between motors
and helicoidal vector fields [7, 9, 14, 15, 16].2 The derivative of a screw can then be defined
via the derivative of a vector field. Unfortunately, this approach also leads to two possible
answers: D6 and D3. The argument that leads to D6 starts from the premise that the
derivative of a vector field is the rate of change of the field itself. The argument that
leads to D3 is best understood with reference to the velocity field of a moving rigid body.
Since this field maps points in space to the velocities of the body-fixed points currently
passing through them, it is possible to argue that its derivative should be the field that
maps points in space to the accelerations of the body-fixed points passing through them.

Good expositions of the D3 argument can be found in [9, 15], and of the D6 argument
in [3, 4, 7]. A more equivocal treatment can be found in [16], where Wohlhart argues that
the Mises derivative (D6) is the right one to use, but Sections 5 and 6 still contain traces
of the D3 argument. A derivation of D3 via the vector field argument can be found in [14].
(By the way, this paper does not prove the assertion in its abstract that the derivatives
of twists and wrenches are screws, but only a weaker statement that they can be screws
under certain special circumstances.) Other contributions to the subject in recent years
include [2, 10, 11, 12]; and a survey of who uses which derivative in the robotics literature
can be found in [7].

Most of the results in this paper have been published before (e.g. [7]); so the novel
contribution of this paper is not the results themselves, but the argument used to ob-
tain them. In particular, this paper considers the mapping from a representation to the
quantity it represents, and presents explicit expressions for the mappings from coordinate
motors and component motors to the abstract motors they represent. These expressions
involve the basis vectors that define systems of Plücker ray and axis coordinates on twist,
wrench and motor spaces. Given their role, it seems reasonable to call them Plücker

bases. Although it is obvious that any coordinate system in a vector space must have
an associated basis, and Ball himself used explicit bases for his screw coordinates [1], the
only reference I can find that makes explicit use of Plücker bases is [4, §2.4], where they
are called standard bases. Plücker bases provide the key to the correct interpretation of
Eqs. 1 and 2, but they appear to have been largely ignored up to now.

The significance of the argument presented here is that it forces a change in the way
we conceive of 6-D quantities: rigid-body acceleration really is a vector, and it really is
a screw; whereas the classical description of rigid-body acceleration, if translated into a
6-D vector, really is not the absolute acceleration of a rigid body, but merely its apparent
acceleration in a moving coordinate system. It also forces a change in the way we think
of coordinate systems: the basis vectors of a coordinate motor are not the basis vectors
for 3-D coordinate vectors. The former are a set of six Plücker basis vectors, all of them
motors; while the latter are a set of three 3-D Euclidean vectors, each having properties

2My references to [9] are based on the reviewed version of this paper, since the final version did not
yet exist at the time of writing.

3



of magnitude and direction, but no definite location in space. The fact that the latter
do not depend on the position of the reference point is a red herring: the Plücker basis
vectors do, so if the reference point moves then the Plücker basis moves with it.

The rest of this paper proceeds as follow. First, the concepts of representation and
differentiation are explained in the setting of general n-dimensional vectors, so they can
be understood free of any distractions caused by motors. These concepts are then applied
directly to the problem of defining the exact relationship between a motor and its repre-
sentations; which in turn leads to a proof that D6 is the absolute differentiation operator
for a component motor referred to a moving point A. The correct interpretation of D3

is then discussed; and finally, the (very minor) impact of duality on the differentiation of
screws and motors is considered.

2 Derivatives of General Vectors

Suppose we have two n-dimensional vector spaces, VA and VR, over the field of real
numbers; and suppose we are really interested in the elements of VA, but wish to use
the elements of VR as a means of representing them. This is possible if we define a
1 : 1 mapping between VA and VR so that each element of VA can be associated uniquely
with an element of VR, and vice versa. Typically, the elements of VA are described as
abstract vectors, on the grounds that no mathematical properties have been specified
beyond the fact that they are elements of a particular vector space; whereas the elements
of VR usually do have some internal structure. For example, VR might be a space of n-
dimensional coordinate vectors, in which case the elements of VR will be n-tuples of real
numbers—quantities with a specific internal structure.

Let L : VR 7→ VA be a 1 : 1 mapping such that, for any u ∈ VR, the abstract
vector u = Lu is the quantity represented by u; and let us also require that L be a
linear mapping, which means that it must satisfy α Lu1 + β Lu2 = L(α u1 + β u2) for all
u1,u2 ∈ VR and all real numbers α, β. Technically, this makes L an isomorphism—a 1 : 1
mapping that preserves the mathematical structure of a vector space.

Now suppose we wish to study the derivative of a vector u ∈ VA by means of elements
and operations in VR. Differentiation is defined in any vector space by the general formula

u̇ =
d

dt
u(t) = lim

δt→0

u(t + δt) − u(t)

δt
. (3)

However, differentiation in VA is not necessarily the same operation as differentiation in
VR, because L might itself depend on t. This is where the notions of absolute and apparent
differentiation make an entrance. Both are defined in the representation space, VR, but
refer to the differential operator in VA. If u = Lu then the absolute derivative of u is
the vector that represents u̇; and the apparent derivative is what the absolute derivative
appears to be to an observer that is unaware of the time dependence of L (i.e., an observer
that thinks L̇ = 0).

Let us introduce the symbols Dabs and Dapp to denote the absolute and apparent
differential operators. It turns out that the apparent derivative of a vector is the same
as its ordinary derivative; i.e., Dapp u = du/dt = u̇. However, the absolute derivative is
given by the general formula

Dabs u = L−1 u̇
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= L−1
d

dt
(Lu)

= L−1 (L̇u + L u̇)

= u̇ + L−1 L̇u

= Dapp u + L−1 L̇u . (4)

2.1 Coordinate Vectors

To apply the preceding theory to a particular case, we need to specify the internal structure
of VR; so let us now suppose that VR is a space of n-dimensional coordinate vectors. The
relationship between a coordinate vector and the quantity it represents is determined by
a basis, which is a set of n linearly-independent vectors in the abstract vector space. Let
E = {e1, . . . , en} ⊂ VA be such a basis, then the relationship between u and the quantity
it represents is given by

u = LE u = LE









u1

...
un









=
n
∑

i=1

ui ei , (5)

where LE is the representation map defined by E. LE can be written in the form of a
1 × n matrix with the basis vectors as its elements:

LE =
[

e1 · · · en

]

. (6)

With this notation, the action of LE on u is by implied matrix multiplication; i.e.,

LE u =
[

e1 · · · en

]









u1

...
un









=
n
∑

i=1

ei ui .

To get an expression for L−1

E , we must first introduce a quantity called the dual basis
of E, which is given by E∗ = {e∗

1
, . . . , e∗

n}. The vectors e∗

i satisfy

e∗

i · ej = δij ; (7)

and we can express L−1

E in terms of these vectors as follows:

L−1

E =









e∗

1
·

...
e∗

n ·









, (8)

where the expression ‘e∗

i ·’ denotes an operator that maps a vector v ∈ VA to the scalar
e∗

i ·v. Again, the action of this operator on its operand is by implied matrix multiplication.
Observe that

L−1

E LE =









e∗

1
·

...
e∗

n ·









[

e1 · · · en

]

=









1 0
. . .

0 1









,
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which is the identity operator in VR, and

LE L−1

E =
[

e1 · · · en

]









e∗

1
·

...
e∗

n ·









=
n
∑

i=1

ei e
∗

i · ,

which is the identity operator in VA. The expression ‘e∗

i ei ·’ denotes an operator that
maps a vector v ∈ VA to the vector ei (e

∗

i · v).
In general, the vectors e∗

i must be elements of the dual space of VA, which is denoted
V ∗

A; but there are some special cases where this isn’t necessary, and e∗

i can instead be
elements of VA. Motors and Euclidean vectors are two such cases.

2.2 Component Vectors

Now let us suppose that VR is the Cartesian product of m vector spaces; i.e., VR =
V1×V2×· · ·×Vm, where dim(Vi) = ni and

∑m
i=1

ni = n. The elements of VR are therefore
m-tuples of smaller vectors. Specifically, if u ∈ VR then u = [u1, . . . ,um]T , where ui ∈ Vi.
I shall call u a component vector, and ui is the ith component of u. Vi are assumed to be
abstract vector spaces.

The relationship between a component vector and the quantity it represents can be
expressed in the form

u = Lu = L









u1

...
um









=
m
∑

i=1

Li ui , (9)

where Li is a 1 : 1 mapping from Vi to the ni-dimensional subspace Si = range(Li) ⊂ VA.
We can express L in terms of Li as follows:

L =
[

L1 · · · Lm

]

. (10)

Equations 9 and 10 are the component-vector equivalents of Eqs. 5 and 6 for coordinate
vectors. The mappings Li play the same role here as that played previously by the basis
vectors ei.

We can obtain a detailed expression for Li by the following procedure. First, choose
an arbitrary basis on Vi. Let Ci = {ci1, . . . , cini

} be such a basis. Given Ci, we can define
a basis Ei = {ei1, . . . , eini

} on Si such that eij = Li cij; thus Ei is the image of Ci under
Li. If LCi and LEi are the linear mappings associated with Ci and Ei then

Li = LEi L
−1

Ci =
ni
∑

j=1

eij c∗ij · . (11)

Note that both LCi and LEi depend on the choice of Ci, but Li is invariant.
And finally, the derivative of a component vector is given by

u̇ =
d

dt









u1

...
um









=









d
dt

u1

...
d
dt

um









=









u̇1

...
u̇m









. (12)
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Figure 1: The description of a motor by two 3-D vectors.

This equation follows directly from Eq. 3 and the basic properties of vectors that are
m-tuples. It therefore also applies to coordinate vectors (with trivial modification). As
the quantity on the RHS consists of the derivatives of the components of u, this operation
is sometimes called the componentwise derivative of u; but the name ‘componentwise
derivative’ is really just a longer, more descriptive name for the standard derivative of a
vector, as in Eq. 3, when that vector just happens to be an m-tuple.

3 Derivatives of Motors

This section constructs explicit expressions for the mappings between abstract motors,
coordinate motors and component motors, and uses them to derive expressions for the
absolute derivatives of coordinate and component motors. It is shown that Eq. 1 is the
correct expression for the absolute derivative, while Eq. 2 is the apparent derivative as
viewed by an observer translating with the reference point. It is also shown that the latter
behaves like a motor under a change of reference point, provided the new reference point
has the same velocity as the old.

3.1 Coordinate Motors and Component Motors

Referring to Figure 1, the usual method for defining a motor proceeds as follows. First, a
reference point must be chosen. This is point A in Figure 1. The motor itself can then be
described by two 3-D vectors. The first vector, m, does not depend on the choice of A.
It is sometimes called the resultant vector, and it describes the magnitude and direction
of the line-vector component (or screw axis) of the motor. The second vector, mA, does
depend on the choice of A. It is sometimes called the moment vector, and it describes
the ‘moment’ of the motor about A. Together, these vectors form a componentwise
representation of an abstract motor, m̂, referred to the point A:

m̂A =

[

m

mA

]

. (13)

The subscripts on m̂A and mA indicate that these quantities depend on the location of
A. The abstract motor represented by m̂A is, of course, independent of A.

One of the defining properties of a motor is that if we choose a different reference
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point, say B, then the moment motor at B is related to the moment motor at A by

mB = mA +
−→

BA × m , (14)

which is known as the shifting formula.
Eq. 13 describes a motor by means of a component vector comprising two 3-D abstract

Euclidean vectors. If we introduce a Cartesian coordinate frame (Oxyz in Figure 1) then
we can obtain the Cartesian coordinates of m and mA, which can be assembled into a
coordinate motor, m̂Axyz, as follows:

m̂Axyz =

[

m

mA

]

=



























mx

my

mz













mAx

mAy

mAz



























=





















mx

my

mz

mAx

mAy

mAz





















. (15)

In contrast, m̂A is given by

m̂A =

[

m

mA

]

=

[

mx i + my j + mz k

mAx i + mAy j + mAz k

]

, (16)

where i, j and k are the basis vectors of the coordinate system in Euclidean 3-space defined
by Oxyz. m̂Axyz and m̂A are therefore quite different quantities.

Equation 15 shows the most common coordinate representation of a motor, and this
particular coordinate system is called Plücker ray coordinates. The subscript Axyz is
unusual. In standard motor notation, the subscript would be A. I am using this longer
subscript to indicate that the coordinate system, and hence also the mapping from the
coordinate motor to the abstract motor, depends on both the position of A and the
orientation of Oxyz. In fact, the coordinate system is defined by a single coordinate
frame, Axyz, with its origin at A and its axes parallel to Oxyz.

From Eqs. 15 and 16, the exact relationship between m̂A and m̂Axyz is given by

m̂A = L2xyz m̂Axyz , (17)

where

L2xyz =

[

Lxyz 0
0 Lxyz

]

(18)

and
Lxyz =

[

i j k
]

. (19)

Lxyz is just the mapping from 3-D coordinate vectors to abstract vectors, and L2xyz

performs this mapping on pairs of vectors.
Having established the mapping between m̂A and m̂Axyz, all that remains is to find a

mapping between m̂ and either m̂A or m̂Axyz. The latter is easier, since all we have to
do is identify the basis vectors. Consider the six motors whose Plücker ray coordinates
are [1, 0, 0, 0, 0, 0]T , [0, 1, 0, 0, 0, 0]T , and so on. The first three are unit line vectors with
lines of action passing through A in the x, y and z directions. Let us call them êAx,
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êAy and êAz, respectively. The remainder are three unit free vectors in the x, y and z
directions, which we can call êx, êy and êz. These six motors constitute a Plücker basis
on the coordinate frame Axyz.

We can now say that the relationship between the abstract motor, m̂, and the coor-
dinate motor that represents it, m̂Axyz, is

m̂ = mx êAx + my êAy + mz êAz + mAx êx + mAy êy + mAz êz . (20)

Notice the pattern of subscripts: the coordinates that don’t change when you move A are
multiplied by the basis vectors that do change, and vice versa.

One minor flaw in this notation emerges if we consider the identity of the dual basis.
If PAxyz = {êAx, . . . , êz} is the Plücker basis defined by Axyz then, logically, the dual
basis is P ∗

Axyz = {ê∗

Ax, . . . , ê
∗

z}. If we interpret ê∗

Ax as being the member of the dual basis
corresponding to êAx then all is fine; but if we interpret the subscript in ê∗

Ax to mean that
it is a line vector passing through A then that is incorrect. From Eq. 7 and the definition
of the scalar product of two motors [16], we can deduce that the dual basis is actually
P ∗

Axyz = {êx, êy, . . . , êAz}, which is the basis for Plücker axis coordinates, and is just a
permutation of PAxyz.

Let LAxyz be the mapping defined by the Plücker basis PAxyz, so

LAxyz =
[

êAx êAy êAz êx êy êz

]

, (21)

then
m̂ = LAxyz m̂Axyz (22)

and (from Eq. 17)
m̂ = LA m̂A , (23)

where
LA = LAxyz L−1

2xyz . (24)

Note that LA is independent of Oxyz, just as Li in Eq. 11 is independent of Ci.
There is another useful expression relating m̂ and m̂A:

m̂ = linevecA(m) + freevec(mA) , (25)

where linevecA(m) is a line vector with magnitude and direction given by m and a line of
action passing through A, and freevec(mA) is a free vector having magnitude and direction
given by mA. This equation says that m̂ is the sum of a line vector passing through A
and a free vector, and that the two 3-D components of m̂A describe the magnitude and
direction of each of these vectors [4]. If we compare Eq. 25 with Eq. 23 then we get
another expression for LA:

LA =
[

linevecA freevec
]

,

where
linevecA = êAx i · + êAy j · + êAz k ·

and
freevec = êx i · + êy j · + êz k · .
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There is one important detail that should be mentioned here before we move on. It is
sometimes said that m describes (or even is) the part of the motor that is independent of
A. This can be misleading, since, as we have just seen, m represents a line vector passing
through A. If we switch to another reference point, B, then the m in m̂B represents a
different line vector to the m in m̂A. It is precisely because the line vector changes when
we move the reference point, that it becomes necessary to add a different free vector so
that the sum remains unchanged. Indeed, if we set m = 0 then mA, despite its name, does
not vary with A because it represents a free vector. I believe equations like Eq. 20 give a
clearer picture of the relationship between a motor and the quantities used to represent
it: m is mx i + my j + mz k, but m represents mx êAx + my êAy + mz êAz.

3.2 Absolute Derivatives

From Eqs. 4, 22 and 23, we can immediately write

Dabs m̂Axyz = ˙̂mAxyz + L−1

Axyz L̇Axyz m̂Axyz (26)

and
Dabs m̂A = ˙̂mA + L−1

A L̇A m̂A . (27)

If the frame Axyz is moving with twist velocity v̂Axyz = [ ωT vT
A ]T (which is the same

thing as saying Oxyz is rotating with angular velocity ω and A is moving with velocity
vA), then we have the following two established results:

L−1

xyz L̇xyz =







0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





 = ω× (28)

and

L−1

Axyz L̇Axyz =

[

ω× 0
vA× ω×

]

= v̂Axyz× . (29)

The latter is the motor equivalent of the former, and can be found in [3, 4, 16]. The
cross notation is interpreted as follows. As ω is a coordinate vector, the expression ‘ω×’
denotes the operator that maps a coordinate vector v to ω × v. The equivalent abstract
operator is denoted ω×. Likewise, v̂Axyz× is the operator that maps a coordinate motor
m̂Axyz to v̂Axyz × m̂Axyz, and the equivalent operators on component motors and abstract
motors are v̂A× and v̂×.

Applying Eq. 29 to Eq. 26 gives

Dabs m̂Axyz = ˙̂mAxyz + v̂Axyz × m̂Axyz , (30)

which is the well-known formula for differentiating a coordinate motor in a moving co-
ordinate system [3, 4, 16]. Applying Eq. 24, the identity L̇−1 L + L−1 L̇ = 0, and then
Eqs. 29, 18 and 28 to the expression L−1

A L̇A gives

L−1

A L̇A = L2xyz L−1

Axyz (L̇Axyz L−1

2xyz + LAxyz L̇−1

2xyz)

= L2xyz (L−1

Axyz L̇Axyz + L̇−1

2xyz L2xyz) L−1

2xyz

= L2xyz (L−1

Axyz L̇Axyz − L−1

2xyz L̇2xyz) L−1

2xyz
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= L2xyz

([

ω× 0
vA× ω×

]

−

[

ω× 0
0 ω×

])

L−1

2xyz

=

[

0 0
vA× 0

]

, (31)

where the final step uses the identity

Lxyz vA×L−1

xyz = vA× ,

which is the mapping from the coordinate-vector operator vA× to its equivalent abstract
operator. Substituting this result into Eq. 27 gives

Dabs m̂A =

[

ṁ

ṁA

]

+

[

0 0
vA× 0

] [

m

mA

]

=

[

ṁ

ṁA + vA × m

]

, (32)

which is in complete agreement with Eq. 1. Thus, Eq. 1 is indeed the correct definition
of the absolute derivative of a component motor.

3.3 Interpreting D3

Another way to write Eq. 32 is

Dabs m̂A = ˙̂mA +

[

0

vA

]

× m̂A . (33)

This equation is the component-motor equivalent of Eq. 30. It states that the absolute
derivative of a component motor is the sum of its apparent derivative and a term that
accounts for the velocity of the observer. In the case of Eq. 30, the observer is fixed to a
moving coordinate frame with velocity [ ωT vA ]T . In the case of Eq. 33, the observer is
fixed only to the point A, and therefore has a velocity of vA. We may therefore conclude
that D3(m̂A) in Eq. 2, which equates with ˙̂mA in Eq. 33, is the apparent derivative of a
component motor as seen by an observer with the same velocity as the reference point.

The same conclusion can be reached by considering the special case of a Plücker basis
with velocity v̂Axyz = [ 0T vT

A ]T . D3 is defined as an operation on a component motor;
but if Oxyz is not rotating then the absolute and componentwise derivatives of a 3-D
coordinate vector are the same, which allows us to equate D3 with the componentwise
derivative ˙̂mAxyz in Eq. 30. In this case, Eq. 30 tells us that D3 is the apparent derivative
of a motor in a non-rotating Plücker basis with the same velocity as the reference point.

This observation has been made before in [7]. However, there is another related
observation that should be mentioned here. It is often said that the derivative of a
motor (or screw), as defined by Eq. 2, is not itself a motor (e.g. see [9, 15, 16]). This
is a reasonable statement to make if you believe that D3 is the absolute differentiation
operator. However, we have just seen that D3 is really an apparent derivative, and this
fact allows us a new possibility to interpret it (correctly) as a motor.

The point about an apparent derivative is that it is calculated relative to a moving
observer. Thus, D3 yields a quantity that depends on both the position of the reference
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point and the velocity of the observer. Now, two observers at the same point, but with
different velocities, will disagree on the value of the apparent derivative, unless an ad-
justment is made to account for the difference in their velocities. In other words, two
apparent derivatives can only be compared if their reference points coincide and their
observer velocities are the same.

Suppose that m̂A and m̂A′ are two component motors representing the same abstract
motor, m̂; and suppose also that A and A′ coincide at the current instant, but their
velocities differ. It therefore follows that m̂A = m̂A′ and Dabs m̂A = Dabs m̂A′ at the
current instant; so we can deduce (from Eq. 33) the following relationship between the
apparent derivatives:

Dapp m̂A′ = Dabs m̂A −

[

0

vA′ × m

]

= Dapp m̂A +

[

0

(vA − vA′) × m

]

. (34)

This is the velocity shift formula for a component motor. It applies only to apparent
derivatives, and it accounts for the velocity difference between two coincident reference
points. (Higher apparent derivatives would also need an acceleration shift formula, and
so on.)

Let us now investigate the relationship between D3(m̂A) and D3(m̂B), where m̂A and
m̂B represent the same abstract motor at two different reference points:

D3(m̂B) = D3(m̂A) +

[

ṁ

ṁB

]

−

[

ṁ

ṁA

]

= D3(m̂A) +

[

0

d
dt

(mA +
−→

BA × m) − ṁA

]

= D3(m̂A) +

[

0

( d
dt

−→

BA) × m +
−→

BA × ṁ

]

= D3(m̂A) +

[

0

(vA − vB) × m +
−→

BA × ṁ

]

(35)

(cf. [9, §4.3]). Now define the point B ′ to be instantaneously coincident with B, but
travelling with velocity vA. According to Eq. 34, the relationship between D3(m̂B′) and
D3(m̂B) is

D3(m̂B′) = D3(m̂B) +

[

0

(vB − vA) × m

]

; (36)

so the relationship between D3(m̂B′) and D3(m̂A) is

D3(m̂B′) = D3(m̂A) +

[

0
−→

BA × ṁ

]

. (37)

This is just the usual shifting formula for motors. Therefore, the apparent derivative of a
motor, as given by Eq. 2, obeys the shifting formula in Eq. 14, provided the new point has
the same velocity as the old. If the velocities differ then one must also use the velocity
shifting formula in Eq. 34.
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4 Derivatives and Duality

In analytical mechanics, a generalized velocity vector is considered to be an element of
the tangent space to the configuration manifold at the current configuration; whereas a
generalized force vector is considered to be an element of the cotangent space, which is
the dual of the tangent space. Traditionally, neither screw theory nor motor algebra has
incorporated this concept of duality, although this situation is now starting to change
[6, 8, 13].

For vectorial quantities, like motors, the change from a non-dual theory to a dual
theory is quite simple: replace the original structure, in which a single vector space
contains all motors, with a new structure comprising two vector spaces. Twists, and
other motion-like vectors, go into one space; while wrenches, and other force-like vectors,
go into the other. I call these spaces M

6 and F
6, respectively. The inner product in the

original motor space is replaced by a scalar product that takes one argument from each
space. Thus, if m̂ ∈ M

6 and f̂ ∈ F
6 then m̂ · f̂ is the work done by a wrench f̂ on a twist

m̂, but expressions like m̂ · m̂ and f̂ · f̂ are no longer permitted. For more details, see [6]
and the appendix of [5].

To work in a dual-space setting, the following changes must be made to the theory in
Section 3.

1. The original Plücker basis, PAxyz, is placed in M
6, and its dual, P ∗

Axyz, is placed
in F

6. (They were previously both in the same vector space.) PAxyz now defines a
system of ray coordinates in M

6, and P ∗

Axyz a system of axis coordinates in F
6.

2. Introduce two new mappings: L∗

Axyz = [ ê∗

Ax · · · ê∗

z ] and L∗

A = L∗

Axyz L−1

2xyz. The
differentiation of elements of M

6 now proceeds as described in Section 3, while the
differentiation of elements of F

6 proceeds according to a parallel set of equations in
which L∗

Axyz and L∗

A replace LAxyz and LA.

Two notable differences between the the equations for F
6 and for M

6 are:

L∗−1

Axyz L̇∗

Axyz =

[

ω× vA×
0 ω×

]

(38)

(cf. Eq. 29) and

L∗−1

A L̇∗

A =

[

0 vA×
0 0

]

(39)

(cf. Eq. 31). Equation 38 puts the motor cross-product notation into a bit of difficulty,
since v̂×m̂ is now a different operation from v̂× f̂ , which means that the expression v̂× on
its own is ambiguous. Lie algebra gets over this difficulty by using two different symbols:
ad

v̂
for the v̂× in v̂×m̂ and ad∗

v̂
for the v̂× in v̂× f̂ [13]. I have been experimenting with

the notation crm(v̂) for ad
v̂

and crf (v̂) for ad∗

v̂
wherever disambiguation is required, and

v̂× wherever it is clear from the context which operator is intended.

5 Conclusion

This paper has shown that if a twist, wrench or motor is represented by means of a
pair of 3-D vectors, one of them depending on the position of a reference point, A, then
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the mapping from the representation to the actual motor is necessarily a function of A.
If A has a nonzero velocity then we have a situation analogous to an ordinary vector
represented in a time-varying coordinate system: the componentwise derivative of the
motor is not its absolute derivative, but only an apparent derivative relative to an observer
with the same velocity as A. The absolute derivative is the sum of the componentwise
derivative and a term depending on the velocity of A, as shown in Eq. 1 in the introduction.

One immediate consequence of this result is that the absolute derivative of a motor
is itself a motor. However, this paper goes on to show that the apparent derivative can
also be regarded as a motor, on the grounds that it depends on both the position and
the velocity of the reference point. If one changes only the position, then the apparent
derivative behaves like a motor. If one changes both the position and the velocity then a
separate velocity-shifting formula accounts for the change in velocity.

Most of the results in this paper have been published before, so the novelty is mainly
in the argument used to get them. Explicit 1 : 1 mappings are formulated to express the
relationships between motors and their representations, so as to avoid any possibility of
vagueness, ambiguity, or alternative interpretations, on the critical questions of the exact
interpretation and role of the two 3-D vectors and the reference point used to represent
a motor. This is accomplished using Plücker basis vectors. Although the paper focuses
on the time derivative of a motor, the results generalize trivially to twists and wrenches,
and to differentiation with respect to variables other than time. The only detail that is
not completely straightforward is the issue of duality, which is considered separately at
the end of this paper.

In my opinion, the debate over the correct way to define and interpret the derivative
of a twist, wrench or motor should now come to an end.
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