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Object Detection with Discriminatively Trained

Part Based Models

Pedro Felzenszwalb, Ross Girshick, David McAllester and Deva Ramanan

Abstract

We describe an object detection system based on mixtures of multiscale deformable part models.

Our system is able to represent highly variable object classes and achieves state-of-the-art results in the

PASCAL object detection challenges. While deformable part models have become quite popular, their

value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system

relies on new methods for discriminative training with partially labeled data. We combine a margin-

sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A

latent SVM is a reformulation of MI-SVM in terms of latent variables. A latent SVM is semi-convex

and the training problem becomes convex once latent information is specified for the positive examples.

This leads to an iterative training algorithm that alternates between fixing latent values for positive

examples and optimizing the latent SVM objective function.

I. INTRODUCTION

Object recognition is one of the fundamental challenges in computer vision. In this paper we

consider the problem of detecting and localizing objects of a generic category, such as people or

cars in static images. This is a difficult problem because objects in a category can vary greatly in

appearance. Variations arise not only from changes in illumination and viewpoint, but also due

to non-rigid deformations, and intraclass variation in shape and other visual properties among

objects in a rich category. For example, people wear different clothes and take a variety of poses

while cars come in a various shapes and colors.

We have developed an object detection system that can effectively represent highly variable

objects using mixtures of multiscale deformable part models. These models are trained using a
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discriminative procedure that only requires approximate bounding boxes for the objects in a set

of images. The resulting system is both highly efficient and accurate, achieving state-of-the-art

recognition rates on the PASCAL VOC datasets [11]–[13].

Our approach is based on the pictorial structures framework [15], [20] where objects are

described by a collection of parts arranged in a deformable configuration. In a pictorial struc-

tures model each part encodes local appearance properties of an object, and the deformable

configuration is characterized by spring-like connections between certain pairs of parts.

Part-based models provide an elegant framework for representing object categories. However,

while these models are appealing from a conceptual point of view, it has been difficult to

establish their value in practice. On difficult datasets, part-based deformable models are often

outperformed by simpler models such as rigid templates [10] or bag-of-features [42]. One of the

goals of our work is to address this performance gap.

Deformable part-based models can capture significant variations in appearance but a single

deformable model is not expressive enough to represent a rich object category. Consider the

problem of modeling the appearance of bicycles in photographs. People build bicycles of different

types (e.g., mountain bikes, tandems, and 19th-century cycles with one big wheel and a small

one) and view them in various poses (e.g., frontal versus side views). In the system described

here we use mixture models to deal with these more significant variations.

We are ultimately interested in modeling objects using “visual grammars”. Grammar based

models (e.g. [16], [24], [43]) generalize deformable part models by representing objects using

variable hierarchical structures. Each part in a grammar based model can be defined directly or

in terms of other parts. Such models can represent very rich object categories, partly because

they allow for, and explicitly model, structural variations. Grammar based models also provide a

natural framework for sharing information and computation between object classes. For example,

different models might share reusable parts that represent fairly generic structures.

Although grammar based models are our ultimate objective, we have adopted a research

methodology under which we gradually move toward richer models while maintaining a high

level of performance. Improving performance by enriched models is surprisingly difficult. Simple

models have historically outperformed sophisticated models in computer vision, speech recogni-

tion, machine translation and information retrieval. For example, until recently speech recognition

and machine translation systems based on n-gram language models outperformed systems based
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on grammars and phrase structure. In our experience maintaining performance seems to require

gradual enrichment of the model.

One reason why simple models can perform better in practice is that rich models often suffer

from difficulties in training. For object detection, rigid templates and bag-of-features models can

be easily trained using discriminative methods such as support vector machines (SVM). Richer

models are more difficult to train, in particular because they often make use of latent information.

Consider the problem of training a part-based model from images labeled only with bounding

boxes around the objects of interest. Since the part locations are not labeled, they must be treated

as latent (hidden) variables during training. While it is possible that more complete labeling would

support better training, it could also result in inferior training if the labeling used suboptimal

parts. Automatic part labeling has the potential to achieve better performance by automatically

finding effective parts. More elaborate labeling is also time consuming and expensive.

The Dalal-Triggs detector [10], which won the 2006 PASCAL object detection challenge,

used a single filter on histogram of oriented gradients (HOG) features to represent an object

category. The Dalal-Triggs detector uses a sliding window approach, where a filter is applied at

all positions and scales of an image. We can think of the detector as a classifier which takes as

input an image, a position within that image, and a scale. The classifier determines whether or

not there is an instance of the target category at the given position and scale. Since the model

is a simple filter we can compute a score as β ·Φ(x) where β is the filter, x is an image with a

specified position and scale, and Φ(x) is a feature vector. A major innovation of the Dalal-Triggs

detector was the construction of particularly effective features.

Our first innovation involves enriching the Dalal-Triggs model using a star-structured part-

based model defined by a “root” filter (analogous to the Dalal-Triggs filter) plus a collection

of part filters and associated deformation models. The score of one of our star models at a

particular position and scale within an image is the score of the root filter at the given location

plus the sum over parts of the maximum, over placements of that part, of the part filter score on

its location minus a deformation cost measuring the deviation of the part from its ideal location.

Both root and part filter scores are defined by the dot product between a filter (a set of weights)

and a subwindow of a feature pyramid computed from the input image. Figure 1 shows a star

model for the person category. One interesting aspect of our models is that the features for the

part filters are computed at twice the spatial resolution of the root filter.
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(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (1)

Here β is a vector of model parameters, z are latent values, and Φ(x, z) is a feature vector.

In the case of one of our star models β is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and Φ(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of allowing for

deformations and using multiple components. In this model the first component captures sideways views of bicycles while the

second component captures frontal and near frontal views. Note how the sideways component can deform to match a “wheelie”.

data-mining for hard negative examples was adopted by Dalal and Triggs [10] but goes back at

least to the training methods used by [35] and [39]. Here we analyze data-mining algorithms

for SVM and LSVM training. We prove that data-mining methods can be made to converge to

the optimal model defined in terms of the entire training set.

Our object models are defined in terms of filters that score subwindows of a feature pyramid.

We have investigated feature sets similar to HOG [10] and found lower dimensional features

which perform as well as the original ones. By doing principal component analysis on HOG

features the dimensionality of the feature vector can be significantly reduced with no noticeable

loss of information. Moreover, by examining the principal eigenvectors we discover structure

that leads to “analytic” versions of low-dimensional features which are easily interpretable and

can be computed efficiently.
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We have also considered some specific problems that arise in the PASCAL object detection

challenge and similar datasets. We show how the locations of parts in an object hypothesis can be

used to predict a bounding box for the object. This is done by training a model specific predictor

using least-squares regression. We also demonstrate a simple method for aggregating the output

of object detectors for different categories. The basic idea is that objects of some categories

provide evidence for, or against, objects of other categories in the same image. We exploit this

idea by training a category specific classifier that rescores every detection of that category using

its original score and the highest scoring detection from each of the other categories.

II. RELATED WORK

There is a rich body of work in the use of deformable models of various types for object

detection, including several kinds of deformable template models (e.g. [7], [8], [21], [41]), and

a variety of part-based models (e.g. [2], [6], [9], [15], [18], [20], [28], [40]).

In constellation models [18], [40] parts are constrained to be in a sparse set of locations

determined by an interest point operator, and their geometric arrangement is captured by a

Gaussian distribution. In contrast, pictorial structure models [15], [20] define a matching problem

where parts have an individual match cost in a dense set of locations, and their geometric

arrangement is constrained by a set of “springs” connecting pairs of parts. The patchwork of parts

model from [2] is similar, but it explicitly considers how the appearance model of overlapping

parts interact to define a dense appearance model for images.

Our models are based on the pictorial structures framework from [15], [20]. We define a

dense set of possible positions and scales in an image, and a score for placing a filter at each of

these locations. The geometric configuration of the filters is constrained by a set of deformation

costs (“springs”) connecting each part filter to the root filter, leading to a star-structured pictorial

structure model. Note that we do not model interactions between overlapping parts. While we

might benefit from modeling such interactions, this does not appear to be a problem when using

models trained with a discriminative procedure, and it significantly simplifies the problem of

matching a model to an image.

The introduction of new local and semi-local features over the recent years has played an

important role in advancing the performance of object recognition methods. These features are

typically invariant to illumination changes and small deformations. Many recent approaches use
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wavelet-like features [30], [39] or locally-normalized histograms of gradients [10], [29]. Other

methods, such as [5], learn dictionaries of local structures from training images. In our work,

we use the histogram of gradient (HOG) features from [10] as a starting point, and introduce a

variation that reduces the feature size with no loss in performance. As in [26] we used principal

component analysis (PCA) to discover low dimensional features, but we note that the eigenvectors

we obtain have a clear structure that leads to a new set of “analytic” features. This removes the

need to perform a costly projection step when computing dense feature maps.

Some variations in shape and appearance, such as caused by extreme viewpoint changes, are

not well captured by a 2D deformable model. Aspect graphs [31] are a classical formalism for

capturing significant changes in appearance that are due to viewpoint variation. Mixture models

provide an alternative approach. For example, it is common to use multiple templates to encode

frontal and side views of faces and cars [35]. Mixture models can capture other aspects of

appearance variation as well, such as when there are multiple natural subclasses in an object

category. This was demonstrated in [5] in the context of character recognition.

Matching a deformable model to an image is a difficult optimization problem. Local search

methods require initialization near the correct solution [2], [7], [41]. To guarantee a globally

optimal match, more aggressive search is needed. One popular approach for part-based models

is to restrict part locations to a small set of possible locations returned by an interest point

detector [1], [18], [40]. Tree (and star) structured pictorial structure models [9], [15], [19] allow

for the use of dynamic programming and generalized distance transforms to efficiently search

over all possible object configurations in an image, without restricting the possible locations for

each part. We use these techniques for matching our models to images.

Part-based deformable models are parameterized by the appearance of each part and a geo-

metric model capturing spatial relationships among parts. For generative models one can learn

model parameters using maximum likelihood estimation. In a fully-supervised setting training

images are labeled with part locations and models can often be learned using relatively simple

methods [9], [15]. In a weakly-supervised setting training images may not specify locations of

parts. In this case one can simultaneously estimate part locations and learn model parameters

with the Expectation Maximization (EM) algorithm [2], [18], [40].

Discriminative training methods select model parameters so as to minimize the mistakes of a

detection algorithm on a set of training images. Such approaches directly optimize the decision
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boundary between positive and negative examples, avoiding the need to explicitly model the

class of background objects, which can be very complex. We believe this is one reason for the

success of simpler models trained with discriminative methods, such as the Viola-Jones [39] and

Dalal-Triggs [10] detectors. It has been more difficult to train part-based models discriminatively,

though strategies exist [4], [23], [32], [34].

Latent SVMs are related to hidden CRFs [32]. However, in a latent SVM we maximize over

latent part locations as opposed to marginalizing over them, and we use a hinge-loss rather than

log-loss in training. This leads to an an efficient coordinate-descent style algorithm for training,

as well as a data-mining algorithm that allows for learning with very large datasets. A latent

SVM can be viewed as a type of energy-based model [27].

A latent SVM is equivalent to the MI-SVM formulation of multiple instance learning (MIL)

in [3], but we find the latent variable formulation more natural for the problems we are interested

in.1 A different MIL framework was previously used for training object detectors with weakly

labeled data in [38].

Our method for data-mining hard examples during training is related to working set methods

for SVMs (e.g. [25]). The approach described here requires relatively few passes through the

complete set of training examples and is particularly well suited for training with very large data

sets, where only a fraction of the examples can fit in RAM.

The use of context for object detection and recognition has received increasing attention in the

recent years. Some methods (e.g. [37]) use low-level holistic image features for defining likely

object hypothesis. The method in [22] uses a coarse but semantically rich representation of a

scene, including its 3D geometry, estimated using a variety of techniques. Here we define the

context of an image using the results of running a variety of object detectors in the image. The

idea is related to [33] where a CRF was used to capture co-occurrences of objects, although we

use a very different approach to capture this information.

A preliminary version of our system was described in [17]. The system described here differs

from the one in [17] in many important ways including: the introduction of mixture models; we

now optimize the true latent SVM objective function using stochastic gradient descent, while

in [17] we used an SVM package to optimize a heuristic approximation of the objective; here

1We first defined a latent SVM in [17] before realizing the relationship to MI-SVM.
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we use new features that are both lower-dimensional and more informative; we now postprocess

detections via bounding box prediction and context rescoring.

III. MODELS

All of our models involve filters that are applied to dense feature maps. A feature map is an

array whose entries are d-dimensional feature vectors computed from a dense grid of locations

in an image. Intuitively each feature vector describes a local image patch. In practice we use a

variation of the HOG features from [10], but the framework described here is independent of

the specific choice of features.

A filter is a rectangular template defined by an array whose entries are d-dimensional weight

vectors. The response, or score, of a filter F at a position (x, y) in a feature map G is the “dot

product” of the filter and a subwindow of the feature map with top-left corner at (x, y),∑
x′,y′

F [x′, y′] ·G[x+ x′, y + y′].

We would like to define a score at different positions and scales of an image. This is done

using a feature pyramid, which specifies a feature map for a finite number of scales in a fixed

range. In practice we compute feature pyramids by computing a standard image pyramid via

repeated smoothing and subsampling, and then computing a feature map from each level of the

image pyramid. Figure 3 illustrates the construction.

The scale sampling in a feature pyramid is determined by a parameter λ defining the number

of levels in an octave. That is, λ is the number of levels we need to go down in the pyramid to

get to a feature map that was computed at exactly twice the resolution of another one. For the

experiments in this paper we have used λ = 5 in training and λ = 10 at test time. Fine sampling

of scale space is important for obtaining high performance with our models.

The system in [10] uses a single filter to define an object model. That system detects objects

from a particular category by computing the score of the filter at each position and scale of a

HOG feature pyramid and thresholding the scores.

Let F be a w×h filter. Let H be a feature pyramid and p = (x, y, l) specify a position (x, y)

in the l-th level of the pyramid. Let φ(H, p, w, h) denote the vector obtained by concatenating

the feature vectors in the w × h subwindow of H with top-left corner at p in row-major order.

The score of F at p is F ′ · φ(H, p, w, h), where F ′ is the vector obtained by concatenating
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Feature pyramidImage pyramid

Fig. 3. A feature pyramid and an instantiation of a person model within that pyramid. The part filters are placed at twice the

spatial resolution of the placement of the root.

the weight vectors in F in row-major order. Below we write F ′ · φ(H, p) since the subwindow

dimensions are implicitly defined by the dimensions of the filter F .

A. Deformable Part Models

Our star models are defined by a coarse root filter that approximately covers an entire object

and higher resolution part filters that cover smaller parts of the object. Figure 3 illustrates an

instantiation of such a model in a feature pyramid. The root filter location defines a detection

window (the pixels contributing to the part of the feature map covered by the filter). The part

filters are placed λ levels down in the pyramid, so the features at that level are computed at

twice the resolution of the features in the root filter level.

We have found that using higher resolution features for defining part filters is essential for

obtaining high recognition performance. With this approach the part filters capture finer resolution

features that are localized to greater accuracy when compared to the features captured by the

root filter. For example, consider building a model for a face. The root filter could capture coarse

resolution edges such as the face boundary while the part filters could capture details such as

eyes, nose and mouth.

The model for an object with n parts is formally defined by a (n+2)-tuple (F0, P1, . . . , Pn, b)

where F0 is a root filter, Pi is a model for the i-th part and b is a real-valued bias term. Each
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part model is defined by a 3-tuple (Fi, vi, di) where Fi is a filter for the i-th part, vi is a two-

dimensional vector specifying an “anchor” position for part i relative to the root position, and di

is a four-dimensional vector specifying coefficients of a quadratic function defining a deformation

cost for each possible placement of the part relative to the anchor position.

An object hypothesis specifies the location of each filter in the model in a feature pyramid,

z = (p0, . . . , pn), where pi = (xi, yi, li) specifies the level and position of the i-th filter. We

require that the level of each part is such that the feature map at that level was computed at

twice the resolution of the root level, li = l0 − λ for i > 0.

The score of a hypothesis is given by the scores of each filter at their respective locations

(the data term) minus a deformation cost that depends on the relative position of each part with

respect to the root (the spatial prior), plus the bias,

score(p0, . . . , pn) =
n∑

i=0

F ′
i · φ(H, pi)−

n∑
i=1

di · φd(dxi, dyi) + b, (2)

where

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (3)

gives the displacement of the i-th part relative to its anchor position and

φd(dx, dy) = (dx, dy, dx2, dy2) (4)

are deformation features.

Note that if di = (0, 0, 1, 1) the deformation cost for the i-th part is the squared distance

between its actual position and its anchor position relative to the root. In general the deformation

cost is an arbitrary separable quadratic function of the displacements.

The bias term is introduced in the score to make the scores of multiple models comparable

when we combine them into a mixture model. It also allows us to assume that positive scores

correspond to positive examples in training.

The score of a hypothesis z can be expressed in terms of a dot product, β ·ψ(H, z), between

a vector of model parameters β and a vector ψ(H, z),

β = (F ′
0, . . . , F

′
n, d1, . . . , dn, b). (5)

ψ(H, z) = (φ(H, p0), . . . φ(H, pn),−φd(dx1, dy1), . . . ,−φd(dxn, dyn), 1). (6)

This illustrates a connection between our deformable models and linear classifiers. We use this

representation for learning the model parameters with the latent SVM framework.
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B. Matching

To detect objects in an image we compute an overall score for each root location according

to the best possible placement of the parts,

score(p0) = max
p1,...,pn

score(p0, . . . , pn). (7)

High-scoring root locations define detections while the locations of the parts that yield a high-

scoring root location define a full object hypothesis.

By defining an overall score for each root location we can detect multiple instances of an

object (we assume there is at most one instance per root location). This approach is related to

sliding-window detectors because we can think of score(p0) as a score for the detection window

specified by the root filter.

We use dynamic programming and generalized distance transforms [14], [15] to compute the

best locations for the parts as a function of the root location. The resulting method is very

efficient, taking O(nk) time once filter responses are computed, where n is the number of parts

in the model and k is the total number of locations in the feature pyramid. We briefly describe

the method here and refer the reader to [14], [15] for more details.

Let Ri,l(x, y) = F ′
i ·φ(H, (x, y, l)) be an array storing the response of the i-th model filter in the

l-th level of the feature pyramid. The matching algorithm starts by computing these responses.

Note that Ri,l is a cross-correlation between Fi and level l of the feature pyramid.

After computing filter responses we transform the responses of the part filters to allow for

spatial uncertainty,

Di,l(x, y) = max
dx,dy

(Ri,l(x+ dx, y + dy)− di · φd(dx, dy)) . (8)

Intuitively this transformation spreads high filter scores to nearby locations, taking into account

the deformation costs. The value Di,l(x, y) is exactly the maximum possible contribution of the

i-th part to the score of a root location that places the anchor of this part at position (x, y) in

level l. The transformed array can be computed in linear time from the response array using the

generalized distance transform algorithm from [14].

Now the root scores at each level can be expressed by the sum of the root filter response at

that level, plus shifted versions of transformed and subsampled part responses,

score(x0, y0, l0) = R0,l0(x0, y0) +
n∑

i=1

Di,l0−λ(2(x0, y0) + vi) + b. (9)

June 4, 2009 DRAFT



13

Recall that λ is the number of levels we need to go down in the feature pyramid to get to a

feature map that was computed at exactly twice the resolution of another one.

Figure 4 illustrates the matching process.

To understand equation (9) note that once a root location is fixed we can independently pick

the best location for each part because there are no interactions among parts in the score of

a hypothesis. The transformed responses Di,l give the contribution of the i-th part to the root

score, as a function of the anchor position for the part. So we obtain the total score of a root

position at level l by adding up the root filter response and the contributions from each part,

which are precomputed in Di,l−λ.

In addition to computing Di,l the generalized distance transform algorithm from [14] can also

compute optimal displacements for a part as a function of its anchor position,

Pi,l(x, y) = argmax
dx,dy

(Ri,l(x+ dx, y + dy)− di · φd(dx, dy)) . (10)

After finding a root location (x0, y0, l0) with high score we can find the corresponding part

locations by looking up the optimal displacements in Pi,l0−λ(2(x0, y0) + vi).

C. Mixture Models

A mixture model with m components is defined by a m-tuple, M = (M1, . . . ,Mm), where

Mc is the model for the c-th component. Let nc to denote the number of parts in Mc.

An object hypothesis for a mixture model specifies a mixture component, 1 ≤ c ≤ m, and a

location for each filter of Mc, z = (c, p0, . . . , pnc). The score of this hypothesis is the score of

the hypothesis z′ = (p0, . . . , pnc) for the c-th model component.

As in the case of a single component model the score of a hypothesis for a mixture model can

be expressed by a dot product between a vector of model parameters β and a vector ψ(H, z).

For a mixture model the vector β is the concatenation of the model parameter vectors for each

component. The vector ψ(H, z) is sparse, with non-zero entries defined by ψ(H, z′) in a single

interval matching the interval of βc in β,

β = (β1, . . . , βm). (11)

ψ(H, z) = (0, . . . , 0, φ(H, z′), 0, . . . , 0). (12)

With this construction we see that β · ψ(H, z) = βc · ψ(H, z′).
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response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 
root locationslow value high value

color encoding of filter 
response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different resolutions in the

feature pyramid. The transformed responses are combined to yield a final score for each root location. We show the responses

and transformed responses for the “head” and “right shoulder” parts. Note how the “head” filter is more discriminative. The

combined scores clearly show two good hypothesis for the object at this scale.
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To detect objects using a mixture model we use the matching algorithm described above to

find root locations that yield high scoring hypotheses independently for each component.

IV. LATENT SVM

Consider a classifier that scores an example x with a function of the form,

fβ(x) = max
z∈Z(x)

β · Φ(x, z). (13)

Here β is a vector of model parameters and z are latent values. The set Z(x) defines the possible

latent values for an example x. A binary label for x can be obtained by thresholding its score.

In analogy to classical SVMs we can train β from labeled examples D = (〈x1, y1〉, . . . ,

〈xn, yn〉), where yi ∈ {−1, 1}, by minimizing the following objective function,

LD(β) =
1

2
||β||2 + C

n∑
i=1

max(0, 1− yifβ(xi)), (14)

where max(0, 1 − yifβ(xi)) is the standard hinge loss and the constant C controls the relative

weight of the regularization term.

Note that if there is a single possible latent value for each example (|Z(xi)| = 1) then fβ is

linear in β, and we obtain linear SVMs as a special case of latent SVMs.

A. Semi-convexity

A latent SVM leads to a non-convex optimization problem. However, a latent SVM is semi-

convex in the sense described below, and the training problem becomes convex once latent

information is specified for the positive training examples.

Recall that the maximum of a set of convex functions is convex. In a linear SVM we have

that fβ(x) = β · Φ(x) is linear in β. In this case the hinge loss is convex for each example

because it is always the maximum of two convex functions.

Note that fβ(x) as defined in (13) is a maximum of functions each of which is linear in

β. Hence fβ(x) is convex in β and the hinge loss, max(0, 1 − yifβ(xi)), is convex in β when

yi = −1. That is, the loss function is convex in β for negative examples. We call this property

of the loss function semi-convexity.

In a general latent SVM the hinge loss is not convex for a positive example because it is the

maximum of a convex function (zero) and a concave function (1− yifβ(xi)).
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Now consider a latent SVM where there is a single possible latent value for each positive

example. In this case fβ(xi) is linear for a positive example and the loss due to each positive is

convex. Combined with the semi-convexity property, (14) becomes convex.

B. Optimization

Let Zp specify a latent value for each positive example in a training set D. Now define

an auxiliary objective function LD(β, Zp) = LD(Zp)(β), where D(Zp) is derived from D by

restricting the latent values for the positive examples according to Zp. That is, for a positive

example we set Z(xi) = {zi} where zi is the latent value specified for xi by Zp. Note that

LD(β) = min
Zp

LD(β, Zp). (15)

In particular LD(β) ≤ LD(β, Zp). That is, the auxiliary objective function bounds the LSVM

objective. This justifies training a latent SVM by minimizing LD(β, Zp).

In practice we minimize LD(β, Zp) using a “coordinate descent” approach:

1) Relabel positives: Holding β fixed, optimize LD(β, Zp) over Zp by selecting the highest

scoring latent value for each positive example, zi = argmaxz∈Z(xi)
β · Φ(xi, z).

2) Optimize beta: Holding Zp fixed, optimize LD(β, Zp) over β by solving the convex

optimization problem defined by LD(Zp)(β).

Both steps always improve or maintain the value of LD(β, Zp). After convergence we have a

strong local optimum in the sense that step 1 searches over an exponentially-large space of

latent values for positive examples while step 2 searches over all possible models, implicitly

considering the exponentially-large space of latent values for all negative examples.

The semi-convexity property is important because it leads to a convex optimization problem

in step 2, even though the latent values for the negative examples are not fixed. We note that

a similar iterative procedure that fixes latent values for all examples in each iteration would

likely fail to yield good results. Suppose we let Z specify latent values for all examples in D.

Since LD(β) effectively maximizes over negative latent values, LD(β) could be much larger than

LD(β, Z), and we should not expect that minimizing LD(β, Z) would lead to a good model.

C. Stochastic gradient descent

Step 2 (Optimize Beta) of the coordinate descent method can be solved via quadratic pro-

gramming [3]. It can also be solved via stochastic gradient descent. Here we describe a gradient
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descent approach for optimizing β over an arbitrary training set D. In practice we use a modified

version of this procedure that works with a cache of feature vectors (see Section IV-E).

Let zi(β) = argmaxz∈Z(xi)
β · Φ(xi, z). Then fβ(xi) = β · Φ(xi, zi(β)).

We can compute a sub-gradient of the LSVM objective function as follows,

∇LD(β) = β + C
n∑

i=1

h(β, xi, yi) (16)

h(β, xi, yi) =

 0 if yifβ(xi) ≥ 1

−yiΦ(xi, zi(β)) otherwise
(17)

In stochastic gradient descent we approximate ∇LD using a subset of the examples and take a

step in its negative direction. Using a single example, 〈xi, yi〉, we approximate
∑n

i=1 h(β, xi, yi)

with nh(β, xi, yi). The resulting algorithm repeatedly updates β as follows:

1) Let αt be the learning rate for iteration t.

2) Let i be a random example.

3) Let zi = argmaxz∈Z(xi)
β · Φ(xi, z).

4) If yifβ(xi) = yi(β · Φ(xi, zi)) ≥ 1 set β := β − αtβ.

5) Else set β := β − αt(β − CnyiΦ(xi, zi)).

As in gradient descent methods for linear SVMs we obtain a procedure that is quite similar to

the perceptron algorithm. If fβ correctly classifies the random example xi (beyond the margin)

we simply shrink β. Otherwise we shrink β and add a scalar multiple of Φ(xi, zi) to it.

For linear SVMs (zi is fixed for every example) a learning rate αt = 1/t has been shown to

work well both in theory and practice [36]. However, the time for convergence depends on the

number of training examples, which for us can be very large. In particular, if there are many

“easy” examples, step 2 will often pick one of these and we do not make much progress.

D. Data-mining hard examples, SVM version

In object detection we often have a very large number of negative training examples. In

particular a single image can easily yield on the order of 105 negative examples for a scanning

window classifier. This can make it infeasible to train a model while considering all negative

examples at a time. Instead, it is common to construct training data consisting of the positive

instances and “hard negative” instances.
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A simple approach is to train a model with an initial random subset of negative examples,

and then collect negative examples that are incorrectly classified by this initial model to form

a set of hard negatives. A new model can then be trained with the hard negative examples and

the process may be repeated a few times.

Here we describe a general data-mining algorithm for training a classical (non-latent) SVM.2

The method solves a sequence of training problems using a relatively small number of hard

examples and converges to the exact solution of the training problem defined by a large training

set. This requires a margin-sensitive definition of hard examples.

We define hard and easy instances of a training set D relative to β as follows,

H(β,D) = {〈x, y〉 ∈ D | yfβ(x) < 1}. (18)

E(β,D) = {〈x, y〉 ∈ D | yfβ(x) > 1}. (19)

That is, H(β,D) are the examples in D that are incorrectly classified or inside the margin of

the classifier defined by β. Similarly E(β,D) are the examples that are correctly classified and

outside the margin. Note that examples exactly on the margin are neither hard nor easy.

Let β∗(D) = argminβ LD(β). Since LD is strictly convex β∗(D) is unique.

Given a large training set D we would like to find a small set of examples C ⊆ D such that

β∗(C) = β∗(D). Our method starts with an initial “cache” of examples and alternates between

training a model and updating the cache. In each cache update step we remove easy examples

from the cache and add new hard examples.

Let C1 ⊆ D be an initial cache of examples. The algorithm repeats the following steps until

it reaches the stopping condition:

1) Let βt := β∗(Ct) (train a model using Ct).

2) If H(βt, D) ⊆ Ct stop and return βt.

3) Let C ′
t := Ct\X for any X s.t. X ⊆ E(βt, Ct) (shrink the cache).

4) Let Ct+1 := C ′
t ∪X for any X s.t. X ⊆ D and X ∩H(βt, D)\Ct 6= ∅ (grow the cache).

In step 3 we shrink the cache by removing examples from Ct that are outside the margin

defined by βt. In step 4 we grow the cache by adding examples from D, including at least one

2This algorithm can also be used for LSVMs but we describe a more practical approach for LSVMs in the next section.
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new example that is inside the margin defined by βt. Such example must exist otherwise we

would have reached the stopping condition in step 2.

The following theorem shows that when we stop we have found β∗(D).

Theorem 1: Let C ⊆ D and β = β∗(C). If H(β,D) ⊆ C then β = β∗(D).

Proof: Note that C ⊆ D implies LD(β∗(D)) ≥ LC(β∗(C)) = LC(β). Since H(β,D) ⊆

C all examples in D\C have zero loss on β. This implies LC(β) = LD(β). We conclude

LD(β∗(D)) ≥ LD(β), and because LD has a unique minimum β = β∗(D).

It remains to show that we will eventually stop. Intuitively the result follows from the fact

that LCt(β
∗(Ct)) grows in each iteration, but it is bounded by LD(β∗(D)).

Theorem 2: The data-mining algorithm terminates.

Proof: When we shrink the cache C ′
t contains all examples from Ct with non-zero loss

in a ball around βt. This implies LC′
t

is identical to LCt in a ball around βt, and since βt is a

minimum of LCt it also must be a minimum of LC′
t
. Thus LC′

t
(β∗(C ′

t)) = LCt(β
∗(Ct)).

When we grow the cache Ct+1\C ′
t contains at least one example 〈x, y〉 with non-zero loss

at βt. Since C ′
t ⊆ Ct+1 we have LCt+1(β) ≥ LC′

t
(β) for all β. If β∗(Ct+1) 6= β∗(C ′

t) then

LCt+1(β
∗(Ct+1)) > LC′

t
(β∗(C ′

t)) because LC′
t

has a unique minimum. If β∗(Ct+1) = β∗(C ′
t) then

LCt+1(β
∗(Ct+1)) > LC′

t
(β∗(C ′

t)) due to the example 〈x, y〉.

We conclude that LCt+1(β
∗(Ct+1)) > LCt(β

∗(Ct)). Since there are finitely many caches the

loss in the cache can only grow a finite number of times.

E. Data-mining hard examples, LSVM version

Here we describe a data-mining algorithm for training a latent SVM when the labels for the

positive examples are fixed.

For a latent SVM instead of keeping a cache of examples x, we can keep a cache of (x, z)

pairs where z ∈ Z(x). This is very effective because it avoids doing inference over all of Z(x)

in the inner loop of an optimization algorithm such as gradient descent. Moreover, in practice

we can keep a cache of feature vectors, Φ(x, z). The feature vector representation is independent

of specific applications and can be much more compact than keeping (x, z) pairs.

Let D′ = D(Zp). A feature vector cache F for D′ is a set of pairs (i, v) where 1 ≤ i ≤ n is

the index of an example and v = Φ(xi, z) for some z ∈ Z(xi). Note that in general there are

several pairs (i, v) ∈ F for each negative example xi.
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Let I(F ) be the examples indexed by F . The feature vectors in F define an objective function

for β, where we only consider examples indexed by I(F ), and for each example we only consider

feature vectors in the cache,

LF (β) =
1

2
||β||2 + C

∑
i∈I(F )

max(0, 1− yi( max
(i,v)∈F

β · v)). (20)

We can optimize LF via gradient descent by modifying the method in Section IV-C to work

with a cache of feature vectors. Let V (i) be the set of feature vectors v such that (i, v) ∈ F .

Then each gradient descent iteration simplifies to:

1) Let αt be the learning rate for iteration t.

2) Let i ∈ I(F ) be a random example indexed by F .

3) Let vi = argmaxv∈V (i) β · v.

4) If yi(β · vi) ≥ 1 set β = β − αtβ.

5) Else set β = β − αt(β − Cnyivi).

Now the size of I(F ) controls the number of iterations needed for the procedure to converge,

while the size of V (i) controls the time it takes to execute step 3.

Let β∗(F ) = argminβ LF (β). We would like to find a small cache with β∗(F ) = β∗(D′).

We define the set of hard feature vectors of a training set D′ relative to β as,

H(β,D′) = {(i,Φ(xi, zi)) | zi = argmax
z∈Z(xi)

β · Φ(xi, z) and yi(β · Φ(xi, zi)) < 1}. (21)

H(β,D′) are pairs (i, v) where v is the highest scoring feature vector from an example xi that

is inside the margin of the classifier defined by β. Note that we only include the highest scoring

feature vector from each example. This is important when Z(xi) is large.

We define the easy feature vectors in a cache F relative to β as

E(β, F ) = {(i, v) ∈ F | yi(β · v) > 1} (22)

These are the feature vectors from F that are and outside the margin defined by β.

Let F1 be an initial cache. Now consider the following iterative algorithm:

1) Let βt := β∗(Ft) (train a model).

2) If H(β,D′) ⊆ Ft stop and return βt.

3) Let F ′
t := Ft\X for any X s.t. X ⊆ E(βt, Ft) (shrink the cache).

4) Let Ft+1 := F ′
t ∪X for any X s.t. X ∩H(βt, D

′)\Ft 6= ∅ (grow the cache).
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We can show this algorithm will eventually stop and return β∗(D′). This follows from argu-

ments analogous to the ones used in Section IV-D. In the next section we describe how we use

this algorithm for training models for object detection.

V. TRAINING MODELS

Here we consider the problem of training models from images labeled with bounding boxes

around objects of interest. This is exactly the type of data available in the PASCAL datasets. Each

dataset contains thousands of images and each image has annotations specifying a bounding box

and a class label for each target object present in the image. Note that this is a weakly labeled

setting since the bounding boxes do not specify component labels or part locations.

We describe a procedure for initializing the structure of a mixture model and learning all

parameters. Parameter learning is done by constructing a latent SVM training problem. We train

the latent SVM using the coordinate descent approach described in Section IV-B, together with

the data-mining and gradient descent algorithms that work with a cache of feature vectors from

Section IV-E. Since the coordinate descent method is susceptible to local minima we must take

care to ensure a good initialization of the model.

A. Learning parameters

Let c be an object class. We assume the training examples for c are given by positive bounding

boxes P and background images N . P is a set of pairs (I, B) where I is an image and B is a

bounding box for an object of class c in I .

Let M be a (mixture) model with fixed structure. Recall that the parameters for a model are

defined by a vector β. To learn β we define a latent SVM training problem with an implicitly

defined training set D, with positive examples from P , and negative examples from N .

Each example 〈x, y〉 ∈ D has an associated image and feature pyramid H(x). Latent values

z ∈ Z(x) specify an instantiation of M in the feature pyramid H(x). Now define Φ(x, z) =

ψ(H(x), z). Then β · Φ(x, z) is exactly the score of the hypothesis z for M on H(x).

Intuitively a positive bounding box (I, B) ∈ P specifies that the object detector should “fire” in

a location defined by B. This means the overall score (7) of a root location defined by B should

be high. For each (I, B) ∈ P we define a positive example x for the LSVM training problem.

We define Z(x) so the detection window of the root filter specified by z ∈ Z(x) overlaps with B
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by at least 50%. There are usually many root locations, including at different scales, that define

detection windows with 50% overlap. We have found this freedom in estimating root locations

helpful to compensate for noisy bounding box labels in P . A similar idea was used in [38].

Now consider a background image I ∈ N . We do not want the object detector to “fire” in any

location of the feature pyramid for I . This means the overall score (7) of every root location

should be low. Let G be a dense set of locations in the feature pyramid. We define a negative

example x for each location (i, j, l) ∈ G. We define Z(x) so the level of the root filter specified

by z ∈ Z(x) is l, and the center of mass of its detection window is (i, j). Note that there is a

very large number of negative examples obtained from each image. This is consistent with the

requirement that an object detector should have low false positive rate.

The procedure Train is outlined below. The outermost loop implements a fixed number of

iterations of coordinate descent on LD(β, Zp). Lines 3-6 implement the Relabel positives step.

The resulting feature vectors, one per positive example, are stored in Fp. Lines 7-14 implement

the Optimize beta step. Since the number of negative examples implicitly defined by N is very

large we use the LSVM data-mining algorithm. We iterate data-mining a fixed number of times

rather than until convergence for practical reasons. At each iteration we collect hard negative

examples in Fn, train a new model using gradient descent, and then shrink Fn by removing

easy feature vectors. During data-mining we grow the cache by iterating over the images in N

sequentially, until we reach a memory limit.

The function detect-best(β, I, B) finds the highest scoring object hypothesis with a root

filter that significantly overlaps B in I . The function detect-all(β, I, t) computes the best

object hypothesis for each root location and selects the ones that score above t. Both of these

functions can be implemented using the matching procedure in Section III-B.

The function gradient-descent(F ) trains β using feature vectors in the cache as de-

scribed in Section IV-E. In practice we modify the algorithm to constrain the coefficients of the

quadratic terms in the deformation models to be above 0.01. This ensures the deformation costs

are convex, and not “too flat”. We also constrain the model to be symmetric along the vertical

axis. Filters that are positioned along the center vertical axis of the model are constrained to

be self-symmetric. Part filters that are off-center have a symmetric part on the other side of the

model. This effectively reduces the number of parameters to be learned in half.
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Data:
Positive examples P = {(I1, B1), . . . , (In, Bn)}
Negative images N = {J1, . . . , Jm}
Initial model β

Result: New model β

Fn := ∅1

for relabel := 1 to num-relabel do2

Fp := ∅3

for i := 1 to n do4

Add detect-best(β,Ii,Bi) to Fp5

end6

for datamine := 1 to num-datamine do7

for j := 1 to m do8

if |Fn| ≥ memory-limit then break9

Add detect-all(β,Jj ,−(1 + δ)) to Fn10

end11

β :=gradient-descent(Fp ∪ Fn)12

Remove (i, v) with β · v < −(1 + δ) from Fn13

end14

end15
Procedure Train

B. Initialization

The LSVM coordinate descent algorithm is susceptible to local minima and thus sensitive to

initialization. This is a common limitation of other methods that use latent information as well.

We initialize and train mixture models in three phases as follows.

Phase 1) Initializing Root Filters: For training a mixture model with m components we

sort the bounding boxes in P by their aspect ratio and split them into m groups of equal size

P1, . . . , Pm. Aspect ratio is used as a simple indicator of extreme intraclass variation. We train

m different root filters F1, . . . , Fm, one for each group of positive bounding boxes.

To define the dimensions of Fi we select the mean aspect ratio of the boxes in Pi and the

largest area not larger than 80% of the boxes. This ensures that for most pairs (I, B) ∈ Pi we

can place Fi in the feature pyramid of I so it significantly overlaps with B.

We train Fi using a standard SVM, with no latent information, as in [10]. For (I, B) ∈ Pi we

warp the image region under B so its feature map has the same dimensions as Fi. This leads to

a positive example. We select random subwindows of appropriate dimension from images in N
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to define negative examples. Figures 5(a) and 5(b) show the result of this phase when training

a 2 component car model.

Phase 2) Merging Components: We combine the initial root filters into a mixture model with

no parts and retrain the parameters of the combined model using Train on the full (unsplit

and without warping) data sets P and N . In this case the component label and root location

are the only latent variables for each example. The coordinate descent training algorithm can

be thought of as a discriminative clustering method that alternates between assigning cluster

(mixture) labels for each positive example and estimating cluster “means” (root filters).

Phase 3) Initializing Part Filters: We initialize the parts of each component using the method

described in [17]. We fix the number of parts at six per component, and using a small pool of

rectangular part shapes we greedily place parts to cover high-energy regions of the root filter.3

Each part is either anchored along the central vertical axis of the root filter, or it is off-center

and has a symmetric part on the other side of the root filter. Once a part is placed, the energy

of the covered portion of the root filter is set to zero, and we look for the next highest-energy

region, until six parts are chosen.

The part filters are initialized by interpolating the root filter to twice the spatial resolution.

The deformation parameters for each part are initialized to di = (0, 0, .1, .1). This pushes part

locations to be fairly close to their anchor position. Figure 5(c) shows the results of this phase

when training a 2 component car model. The resulting model serves as the initial model for the

last round of parameter learning. The final car model is shown in Figure 9.

VI. FEATURES

We have experimented with a number of variants of the HOG features from [10]. Here we

describe the original 36-dimensional HOG features and an alternative 13-dimensional feature set

that captures essentially the same information as the higher dimensional ones.4 In practice we

have found that augmenting this low-dimensional feature set to include both contrast sensitive

and insensitive features, leading to a 31-dimensional feature vector, improves performance for

most classes of the PASCAL datasets.

3The “energy” of a region is defined by the norm of the positive weights in a subwindow.
4There are some small differences between the 36-dimensional features defined here and the ones in [10], but we have found

that these differences did not have any significant effect on the performance of our system.
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(a)

(b)

(c)

Fig. 5. (a) and (b) are the initial root filters for a car model (the result of Phase 1 of the initialization process). (c) is the initial

part-based model for a car (the result of Phase 3 of the initialization process).

A. HOG Features

1) Pixel-Level Feature Maps: Let θ(x, y) and r(x, y) be the orientation and magnitude of

the image gradient at a pixel (x, y) in an image. As in [10], we compute gradients using finite

difference filters, [−1, 0,+1] and its transpose. For color images we use the color channel with

the largest gradient magnitude to define θ and r at each pixel.

The gradient orientation at each pixel can be discretized into one of p values using either a

contrast sensitive (B1), or insensitive (B2), definition,

B1(x, y) = round

(
pθ(x, y)

2π

)
mod p B2(x, y) = round

(
pθ(x, y)

π

)
mod p (23)

Below we use B to denote either B1 or B2.

We define a pixel-level feature map with a sparse histogram of gradient magnitudes at each

pixel. Let b ∈ {0, . . . , p− 1} range over orientation bins. The feature vector at (x, y) is

F (x, y)b =

 r(x, y) if b = B(x, y)

0 otherwise
(24)

We can think of F as an oriented edge map with p orientation channels. For each pixel we

select an orientation channel by discretizing the gradient orientation. The gradient magnitude

can be seen as a measure of edge strength.

2) Spatial Aggregation: Let F be a pixel-level feature map for a w × h image. Let k > 0

be a parameter specifying the side length of a square image region. We define a dense grid of

rectangular “cells” and aggregate pixel-level features to obtain a cell-based feature map C, with
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feature vectors C(i, j) for 0 ≤ i ≤ b(w − 1)/kc and 0 ≤ j ≤ b(h − 1)/kc. This aggregation

provides some invariance to small deformations and reduces the size of a feature map.

The simplest way to aggregate pixel-level features into cell-based features is to map each

pixel (x, y) into a cell (bx/kc, by/kc) and define the feature vector at a cell to be the sum (or

average) of the pixel-level features in that cell. Rather than mapping each pixel to a unique cell

we follow [10] and use a “soft binning” approach where each pixel contributes to the feature

vectors in the four cells around it using bilinear interpolation.

3) Normalization and Truncation: Gradients are invariant to changes in bias. Invariance to

gain can be achieved via normalization. Dalal and Triggs [10] used four different normalization

factors for the feature vector C(i, j). We can write these factors as Nδ,γ(i, j) with δ, γ ∈ {−1, 1},

Nδ,γ(i, j) =
√
||C(i, j)||2 + ||C(i+ δ, j)||2 + ||C(i, j + γ)||2 + ||C(i+ δ, j + γ)||2. (25)

Each factor measures the “gradient energy” in a square block of four cells containing (i, j).

Let Tα(v) denote the component-wise truncation of a vector v by α. The HOG feature map is

obtained by concatenating the result of normalizing the cell-based feature map C with respect

to each normalization factor followed by truncation,

H(i, j) =


Tα(C(i, j)/N−1,−1(i, j))

Tα(C(i, j)/N+1,−1(i, j))

Tα(C(i, j)/N+1,+1(i, j))

Tα(C(i, j)/N−1,+1(i, j))

 (26)

Commonly used HOG features are computed using p = 9 contrast insensitive gradient ori-

entations (discretized with B2), a cell size of k = 8 and truncation α = 0.2. This leads to

36-dimensional feature vectors. We used these parameters in the analysis described below.

B. PCA and Analytic Dimensionality Reduction

We collected a large number of 36-dimensional HOG features from different resolutions of

a large number of images and performed PCA on these vectors. The principal components are

shown in Figure 6. The results lead to a number of interesting discoveries.

The eigenvalues indicate that the linear subspace spanned by the top 11 eigenvectors captures

essentially all the information in a HOG feature. In fact we obtain the same object detection

performance (in all categories of the PASCAL 2007 dataset) using the original 36-dimensional
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0.45617 0.04390 0.02462 0.01339 0.00629 0.00556 0.00456 0.00391 0.00367

0.00353 0.00310 0.00063 0.00030 0.00020 0.00018 0.00018 0.00017 0.00014

0.00013 0.00011 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00007

0.00006 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002

Fig. 6. PCA of HOG features. Each eigenvector is displayed as a 4 by 9 matrix so that each row corresponds to one normalization

factor and each column to one orientation bin. The eigenvalues are displayed on top of the eigenvectors. The linear subspace

spanned by the top 11 eigenvectors captures essentially all of the information in a feature vector. Note how all of the top

eigenvectors are either constant along each column or row of the matrix representation.

features or 11-dimensional features defined by projection to the top eigenvectors. Using lower

dimensional features leads to models with fewer parameters and speeds up the detection and

learning algorithms. We note however that some of the gain is lost because we need to perform

a relatively costly projection step when computing feature pyramids.

Now recall that a 36-dimensional HOG feature is defined using 4 different normalizations of

a 9 dimensional histogram over orientations. Thus a 36-dimensional HOG feature is naturally

viewed as a 4 × 9 matrix. The top eigenvectors in Figure 6 have a very special structure: they

are each (approximately) constant along each row or column of their matrix representation. Thus

the top eigenvectors lie (approximately) in a linear subspace defined by sparse vectors that have

ones along a single row or column of their matrix representation.

Let V = {u1, . . . , u9} ∪ {v1, . . . , v4} with

uk(i, j) =

 1 if j = k

0 otherwise
vk(i, j) =

 1 if i = k

0 otherwise
(27)

We can define a 13-dimensional feature by taking the dot product of a 36-dimensional HOG

feature with each uk and vk. Projection into each uk is computed by summing over the 4

normalizations for a fixed orientation. Projection into each vk is computed by summing over 9
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orientations for a fixed normalization.5

As in the case of 11-dimensional PCA features we obtain the same detection performance

using the 36-dimensional HOG features or the 13-dimensional features defined by V . However,

the computation of the 13-dimensional features is much less costly than performing projections

to the top eigenvectors obtained via PCA since the uk and vk are sparse. Moreover, the 13-

dimensional features have a simple interpretation as 9 orientation features and 4 features that

reflect the overall gradient energy in different areas around a cell.

We can also define low-dimensional features that are contrast sensitive. We have found that

performance on some object categories improves using contrast sensitive features, while some

categories benefit from contrast insensitive features. Thus in practice we use feature vectors that

include both contrast sensitive and insensitive information.

Let C be a cell-based feature map computed by aggregating a pixel-level feature map with 9

contrast insensitive orientations. Let D be a similar cell-based feature map computed using 18

contrast sensitive orientations. We define 4 normalization factors for the (i, j) cell of C and D

using C as in equation (25). We can normalize and truncate C(i, j) and D(i, j) using these factors

to obtain 4 ∗ (9 + 18) = 108 dimensional feature vectors, F (i, j). In practice we use an analytic

projection of these 108-dimensional vectors, defined by 27 sums over different normalizations,

one for each orientation channel of F , and 4 sums over the 9 contrast insensitive orientations,

one for each normalization factor. We use a cell size of k = 8 and truncation value of α = 0.2.

The final feature map has 31-dimensional vectors G(i, j), with 27 dimensions corresponding to

different orientation channels (9 contrast insensitive and 18 contrast sensitive), and 4 dimensions

capturing the overall gradient energy in square blocks of four cells around (i, j).

Finally, we note that the top eigenvectors in Figure 6 can be roughly interpreted as a two-

dimensional separable Fourier basis. Each eigenvector can be roughly seen as a sine or cosine

function of one variable. This observation could be used to define features using a finite number

of Fourier basis functions instead of a finite number of discrete orientations.

The eigenvectors of a d×d covariance matrix Σ form a Fourier basis when Σ is circulant, i.e.,

Σi,j = k(i− j mod d) for some function k. Circulant covariance matrices arise from probability

5The 13-dimensional feature is not exactly a linear projection of the 36-dimensional feature into V because the uk and vk

are not orthogonal. In fact the linear subspace spanned by V has dimension 12.
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distributions on vectors that are invariant to rotation of the vector coordinates. The appearance

of a two-dimensional Fourier basis in Figure 6 is evidence that the distribution of HOG feature

vectors on natural images have (approximately) a two-dimensional rotational invariance. We can

rotate the orientation bins and independently rotate the four normalizations blocks.

VII. POST PROCESSING

A. Bounding Box Prediction

The desired output of an object detection system is not entirely clear. The goal in the PASCAL

challenge is to predict the bounding boxes of objects. In our previous work [17] we reported

bounding boxes derived from root filter locations. Yet detection with one of our models localizes

each part filter in addition to the root filter. Furthermore, part filters are localized with greater

spatial precision than root filters. It is clear that our original approach discards potentially valuable

information gained from using a multiscale deformable part model.

In the current system, we use the complete configuration of an object hypothesis, z, to predict

a bounding box for the object. This is implemented using functions that map a feature vector

g(z), to the upper-left, (x1, y1), and lower-right, (x2, y2), corners of the bounding box. For a

model with n parts, g(z) is a 2n+3 dimensional vector containing the width of the root filter in

image pixels (this provides scale information) and the location of the upper-left corner of each

filter in the image coordinate frame.

Each object in the PASCAL training data is labeled by a bounding box. After training a model

we use the output of our detector on each instance to learn four linear functions for predicting

x1, y1, x2 and y2 from g(z). This is done via linear least-squares regression, independently for

each component of a mixture model.

This simple bounding box prediction method yields small but noticible improvements in

performance for some categories in the PASCAL datasets (see Section VIII).

B. Non-Maximum Suppression

Using the matching procedure from Section III-B we usually get multiple overlapping de-

tections for each instance of an object. We use a greedy procedure for eliminating repeated

detections via non-maximum suppression. After applying the bounding box prediction method

described above we have a set of detections D for a particular object category in an image. Each
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Fig. 7. A detection and the bounding box predicted from the object configuration.

detection is defined by a bounding box and a score. We sort the detections in D by score, and

greedily select the highest scoring ones while skipping detections with bounding boxes that are

at least 50% covered by a bounding box of a previously selected detection.

C. Contextual Information

We have also implemented a simple procedure to rescore detections using contextual infor-

mation. Let (D1, . . . , Dk) be a set of detections obtained using k different models (for different

object categories) in an image I . Each detection (B, s) ∈ Di is defined by a bounding box

B = (x1, y1, x2, y2) and a score s. We define the context of I in terms of a k-dimensional

vector c(I) = (σ(s1), . . . , σ(sk)) where si is the score of the highest scoring detection in Di,

and σ(x) = 1/(1 + exp(−2x)) is a logistic function for renormalizing the scores.

To rescore a detection (B, s) in an image I we build a 25-dimensional feature vector containing

the original score of the detection, the top-left and bottom-right bounding box coordinates, and

the image context,

g = (σ(s), x1, y1, x2, y2, c(I)), (28)

where the bounding box coordinates x1, y1, x2, y2 ∈ [0, 1] are normalized by the width and height

of the image. We then use a category-specific SVM to score this feature vector, leading to a new

score for the detection. The SVM is trained to distinguish correct detections from false positives

by integrating contextual information defined by g.

To get training data for the rescoring classifier we run our object detectors on images that are

annotated with bonding boxes around the objects of interest (such as provided in the PASCAL

datasets). Each detection returned by one of our models leads to an example g that is labeled as
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a true positive or false positive detection, depending on whether or not it significantly overlaps

an object of the correct category.

This rescoring procedure leads to a noticible improvement in the average precision on several

categories in the PASCAL datasets (see Section VIII). In our experiments we used the same

dataset for training models and for training the rescoring classifiers. We used SVMs with

quadratic kernels for rescoring.

VIII. EMPIRICAL RESULTS

We evaluated our system using the PASCAL VOC 2006, 2007 and 2008 comp3 challenge

datasets and protocol. We refer to [11]–[13] for details, but emphasize that these challenges are

widely acknowledged as difficult testbeds for object detection.

Each dataset contains thousands of images of real-world scenes. The datasets specify ground-

truth bounding boxes for several object classes. At test time, the goal is to predict the bounding

boxes of all objects of a given class in an image (if any). In practice a system will output a set of

bounding boxes with corresponding scores, and we can threshold these scores at different points

to obtain a precision-recall curve across all images in the test set. For a particular threshold the

precision is the fraction of the reported bounding boxes that are correct detections, while recall

is the fraction of the objects found.

A predicted bounding box is considered correct if it overlaps more than 50% with a ground-

truth bounding box, otherwise the bounding box is considered a false positive detection. More-

over, multiple detections are penalized. When a system predicts several bounding boxes that

overlap with a single ground-truth bounding box, only one prediction is considered correct, the

others are considered false positives. One scores a system by the average precision (AP) of its

precision-recall curve across a testset.

We trained a 2 component model for each class in each dataset. Figure 9 shows some of the

models we learned on the 2007 dataset. Figure 10 shows some example detections using those

models. We show both high-scoring correct detections and high-scoring false positives.

In some categories our false detections are often due to confusion among classes, such as

between horse and cow or between car and bus. In other categories false detections are often

due to the relatively strict bounding box criteria. The two false positives shown for the person

category are due to insufficient overlap with the ground-truth bounding box. The same is true
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for the cat category, where we often detect the face of a cat and report a bounding box that has

relatively little overlap with the correct bounding box enclosing the whole object. In fact, the top

20 highest scoring false positive bounding boxes for the cat category correspond to the face of

a cat. This is an extreme case but it gives an explanation for our low AP score in this category.

In many of the positive training examples for cats only the face is visible, and we learn a model

where one of the components corresponds to a cat face model, see Figure 9.

Tables I and II summarize the results of our system on the 2006 and 2007 challenge datasets.

Table III summarizes the results on the more recent 2008 dataset, together with the systems that

entered the official competition in 2008. Empty boxes indicate that a method was not tested in

the corresponding object class. The entry labeled “UofCTTIUCI” is a preliminary version of the

system described here. Our system obtains the best AP score in 9 out of the 20 categories and

the second best in 8. Moreover, in some categories such as person we obtain a score significantly

above the second best score.

For all of the experiments shown here we used the objects not marked as difficult from the

trainval datasets to train models (we include the objects marked as truncated). Our system

is fairly efficient. Using a Desktop computer it takes about 4 hours to train a model on the

PASCAL 2007 trainval dataset and 3 hours to evaluate it on the test dataset. There are

4952 images in the test dataset, so the average running time per image is around 2 seconds.

All of the experiments were done on a 2.8Ghz 8-core Intel Xeon Mac Pro computer running

Mac OS X 10.5. The system makes use of the multiple-core architecture for computing filter

responses in parallel, although the rest of the computation runs in a single thread.

We evaluated different aspects of our system on the longer-established 2006 dataset. Figure 8

summarizes results of different models on the person and car categories. We trained models

with 1 and 2 components with and without parts. We also show the result of a 2 component

model with parts and bounding box prediction. We see that the use of parts (and bounding box

prediction) can significantly improve the detection accuracy. Mixture models are important in

the car category but not in the person category of the 2006 dataset.

We also trained and tested a 1 component model on the INRIA Person dataset [10]. We scored

the model with the PASCAL evaluation methodology (using the PASCAL development kit) over

the complete test set, including images without people. We obtained an AP score of .869 in this

dataset using the base system with bounding box prediction.
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bike bus car cat cow dog horse mbik pers sheep

a) base .619 .490 .615 .188 .407 .151 .392 .576 .363 .404

b) BB .620 .493 .635 .190 .417 .153 .386 .579 .380 .402

c) context .623 .502 .631 .236 .437 .185 .429 .625 .401 .431

TABLE I

PASCAL VOC 2006 RESULTS. (A) AVERAGE PRECISION SCORES OF THE BASE SYSTEM, (B) SCORES USING BOUNDING

BOX PREDICTION, (C) SCORES USING BOUNDING BOX PREDICTION AND CONTEXT RESCORING.

aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv

a) base .290 .546 .006 .134 .262 .394 .464 .161 .163 .165 .245 .050 .436 .378 .350 .088 .173 .216 .340 .390

b) BB .287 .551 .006 .145 .265 .397 .502 .163 .165 .166 .245 .050 .452 .383 .362 .090 .174 .228 .341 .384

c) context .328 .568 .025 .168 .285 .397 .516 .213 .179 .185 .259 .088 .492 .412 .368 .146 .162 .244 .392 .391

TABLE II

PASCAL VOC 2007 RESULTS. (A) AVERAGE PRECISION SCORES OF THE BASE SYSTEM, (B) SCORES USING BOUNDING

BOX PREDICTION, (C) SCORES USING BOUNDING BOX PREDICTION AND CONTEXT RESCORING.

aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv

a) base .336 .371 .066 .099 .267 .229 .319 .143 .149 .124 .119 .064 .321 .353 .407 .107 .157 .136 .228 .324

b) BB .339 .381 .067 .099 .278 .229 .331 .146 .153 .119 .124 .066 .322 .366 .423 .108 .157 .139 .234 .328

c) context .351 .402 .117 .114 .284 .251 .334 .188 .166 .114 .087 .078 .347 .395 .431 .117 .181 .166 .256 .347

d) rank 2 1 1 1 1 1 2 2 1 2 4 5 2 2 1 1 2 2 3 1

(UofCTTIUCI) .326 .420 .113 .110 .282 .232 .320 .179 .146 .111 .066 .102 .327 .386 .420 .126 .161 .136 .244 .371

CASIA Det .252 .146 .098 .105 .063 .232 .176 .090 .096 .100 .130 .055 .140 .241 .112 .030 .028 .030 .282 .146

Jena .048 .014 .003 .002 .001 .010 .013 .001 .047 .004 .019 .003 .031 .020 .003 .004 .022 .064 .137

LEAR PC .365 .343 .107 .114 .221 .238 .366 .166 .111 .177 .151 .090 .361 .403 .197 .115 .194 .173 .296 .340

MPI struct .259 .080 .101 .056 .001 .113 .106 .213 .003 .045 .101 .149 .166 .200 .025 .002 .093 .123 .236 .015

Oxford .333 .246 .291 .125 .325 .349

XRCE Det .264 .105 .014 .045 .000 .108 .040 .076 .020 .018 .045 .105 .118 .136 .090 .015 .061 .018 .073 .068

TABLE III

PASCAL VOC 2008 RESULTS. TOP: (A) AVERAGE PRECISION SCORES OF THE BASE SYSTEM, (B) SCORES USING

BOUNDING BOX PREDICTION, (C) SCORES USING BOUNDING BOX PREDICTION AND CONTEXT RESCORING, (D) RANKING

OF FINAL SCORES RELATIVE TO SYSTEMS IN THE 2008 COMPETITION. BOTTOM: THE SYSTEMS THAT PARTICIPATED IN THE

COMPETITION (UOFCTTIUCI IS A PRELIMINARY VERSION OF OUR SYSTEM AND WE DON’T INCLUDE IT IN THE RANKING).
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Fig. 8. Precision/Recall curves for models trained on the person and car categories of the PASCAL 2006 dataset. We show

results for 1 and 2 component models with and without parts, and a 2 component model with parts and bounding box prediction.

In parenthesis we show the average precision score for each model.

IX. DISCUSSION

We have developed an object detection system based on mixtures of multiscale deformable

part models. Our system relies heavily on new methods for discriminative training of classifiers

that make use of latent information. It also relies heavily on efficient methods for matching

deformable models to images. The resulting system is both highly efficient and accurate, leading

to state-of-the-art results on difficult datasets.

Our models are already capable of representing highly variable object classes, but we would

like to move towards richer models. The framework described here allows for exploration of

additional latent structure. For example, one can consider deeper part hierarchies (parts with

parts) or mixture models with many components. In the future we would like to build grammar

based models that represent objects with variable hierarchical structures. These models should

allow for mixture models at the part level, and allow for reusability of parts, both in different

components of an object and among different object models.
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