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ABSTRACT 
Classification is one of the most popular data mining tasks with a 
wide range of applications, and lots of algorithms have been 
proposed to build accurate and scalable classifiers.  Most of these 
algorithms only take a single table as input, whereas in the real 
world most data are stored in multiple tables and managed by 
relational database systems. As transferring data from multiple 
tables into a single one usually causes many problems, 
development of multi-relational classification algorithms becomes 
important and attracts many researchers’ interests.  Existing 
works about extending Naïve Bayes to deal with multi-relational 
data either have to transform data stored in tables to main-
memory Prolog facts, or limit the search space to only a small 
subset of real world applications. In this work, we aim at solving 
these problems and building an efficient, accurate Naïve Bayesian 
classifier to deal with data in multiple tables directly. We propose 
an algorithm named Graph-NB, which upgrades Naïve Bayesian 
classifier to deal with multiple tables directly.  In order to take 
advantage of linkage relationships among tables, and treat 
different tables linked to the target table differently, a semantic 
relationship graph is developed to describe the relationship and to 
avoid unnecessary joins. Furthermore, to improve accuracy, a 
pruning strategy is given to simplify the graph to avoid examining 
too many weakly linked tables.  Experimental study on both real-
world and synthetic databases shows its high efficiency and good 
accuracy.   

Categories and Subject Descriptors 
H.2.8 [Database Application]: Data Mining  

General Terms 
Algorithm, Management, Performance, Design, Experimentation. 

Keywords 
Classification, Naïve Bayes, Data Mining 

 

1. INTRODUCTION 
Most real-world structured data are stored in multiple relations. 
Multi-relational data mining aims at discovering interesting 
knowledge directly from multiple tables without joining data of 
multiple tables into a single table explicitly.  It has attracted the 
interests of many researchers, and has been successfully applied 
in many application areas, such as marketing, sales, finance, fraud 
detection, and natural sciences.  

Classification is one of most popular tasks in data mining, and 
therefore one has witnessed numerous studies targeting on solving 
multi-relational classification problems. Generally, there are 
basically two major directions. One is to use conventional 
classification algorithms to deal with multi-relational data. In 
order to do that, various methods are proposed to convert multiple 
relations into one by flattening and feature construction, which is 
known as propositionalization. Most of the propositionalization 
methods are heuristic, and the representation change is 
incomplete.  So information is lost in the process [1].  The other 
direction is to update existing classification algorithms to deal 
with multi-relational data directly [2, 3, 4, 5, 6, 7, 8, 15, 9, 23]. 
Most approaches of this direction are either inductive logic 
programming (ILP) approaches or probabilistic relational learning 
approaches. The above approaches have shown their high 
classification accuracy in multi-relational environments. 
Unfortunately, due to the complex structure of multi-relational 
data, it is a time-consuming task to explore the hypothesis space 
in relational databases for useful attributes or relational structural 
neighbors, which makes these algorithms quite expensive in terms 
of runtime. 

Naïve Bayesian [16, 17, 18] is a good classification method.  It is 
simple to train, easy to understand, and performs pretty well for 
real applications.  In this paper, we extend Naïve Bayes 
classification to deal with multi-relational data directly.  There are 
already some works [19, 12, 13, 23, 7] about it.  We have the 
following observations about them.  First, most of such works use 
the ILP-based method.  They are usually two-step based methods. 
In the first step, a set of first-order features or rules are extracted, 
and then in the second step, these features or rules are combined 
to compute probabilities according to Naïve Bayesian formula. 
Although these methods can deal with multi-relational data, most 
of them cannot do it directly.  They usually work on a set of 
main-memory Prolog facts, while in real application data are 
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stored in tables in database.  Transforming tuples in tables to 
ground facts has many disadvantages [23].  Second, some 
methods can deal with data in tables directly, but they limit the 
search space by only allowing one type of join paths.  For 
example, while linking tables to target table, only tables along 
primary-key to foreign-key path are considered [23]. Tables in a 
foreign-key to primary-key path or foreign-key and primary-key 
mixed path are neglected. This constraint limits their application 
to real world situation. Third, most of these methods consider all 
tables linked to the target table equally important. In real 
applications, databases usually have complicated schemas. A 
database may contain many tables, some of which may be almost 
irrelevant to the classification task, and could not improve the 
classification accuracy. Therefore, how to deal with data in tables 
directly, how to describe the relationship between tables, how to 
treat tables differently are some major challenges to make a good 
multi-relational classifier. 

In order to solve these problems, we propose an algorithm called 
Graph_NB to build an accurate classifier efficiently. We make the 
following contributions in this paper. 

• We upgrade conventional Naïve Bayes method to deal with 
multi-relational classification task. We call this method multi-
relational Naïve Bayes. With this method, data stored in 
multiple tables can be mined directly, and no transformation is 
needed.  

• In order to guide the search within the hypothesis space (called 
relation space) in relational database, we define a semantic 
relationship graph (SRG) to describe relationship between 
tables, and also to avoid unnecessary joins between tables.  We 
will give the formal definition of this graph in the next section. 
SRG not only offers a method to navigate among all tables, but 
also provides a way to express the semantic relationship 
between tables. Also, it makes capable to treat the tables 
linked to target table differently according to the relationship 
presented in the graph. 

• In order to ignore those weakly linked tables, instead of 
controlling the rule length by user-defined parameters, we 
propose a pruning strategy named “cutting off” strategy to 
optimize the semantic relationship graph so that we can stop 
further futile mining to prevent introducing weakly linked 
tables.  Experimental results show that this pruning strategy is 
effective for improving accuracy. 

• We implement algorithm Graph_NB for training multi-
relations and algorithm Classify_NB for classifying unseen 
objects. Comprehensive experimental study shows that it 
achieves good accuracy and high efficiency. 

The rest of the paper is organized as follows.  Section 2 presents 
the definition and case study of semantic relationship graph. 
Section 3 describes how to extend Naïve Bayes to deal with 
multiple relations directly.  The algorithm and pruning strategy 
are introduced in section 4, and experiments results are presented 
in section 5.  Finally, related work is discussed in section 6 and 
we conclude this study in section 7. 

2. SEMANTIC RELATIONSHIP GRAPH 
For a classification task in a multi-relational database, there is 
usually one table containing the class label attribute. We call this 

table as target table, and call the class label attribute as target 
attribute.  Apart from the target table, there are usually many 
other tables linked to the target table directly or indirectly through 
arbitrarily long chains of joins.  In order to represent this kind of 
relationship between tables, we propose to use a graph, which is 
called a semantic relationship graph. 

Definition 2.1 (Semantic Relationship Graph) Semantic 
Relationship Graph is a directed acyclic graph SRG (V, E, W), 
where V is a set of vertices, each of which corresponding to a 
table in the database.  E is a set of directed edges, and an edge (v, 
w) means table w can be linked to table v by directly joining these 
two tables.  W is a set of attributes, each of which links two 
tables.  We call this kind of attribute link attribute.  

Each edge of the semantic relationship graph represents one of the 
following two relationships between table v and table w: 

(1) Primary-key to foreign-key relationship, indicating that table 
w contains foreign-key referring to primary-key in table v. 

(2) Foreign-key to primary-key relationship, indicating that table 
v contains foreign-key referring to primary-key in table w. 

The reason we define a directed graph instead of undirected graph 
is that we need to start from the target table and link other tables 
with the target table step by step.  Suppose table t is the target 
table, and there is an edge pointing to v from t and an edge 
pointing to w from v.  After joining table v with t, and join w with 
v, usually we do not need to join w and v by same link attribute in 
the same path again.  For example, suppose table student contains 
information of each student, table professor contains information 
of each professor.  Between these two tables, there is a semantic 
relationship by meaning of supervision, and assume there is no 
other relations between them in the context of the application.  In 
this case, we can join table professor with table student.  If they 
are only involved in one path, then this kind of join only needs to 
be done once.  If they are involved in more than one path but with 
the same semantic relationship, then this join could be done many 
times. With directed graph, we can prevent unnecessary iteration 
for one specific relationship in one path.  

When there are more than one relationship between two tables or 
there is a relationship between tuples of one table (i,e, there is a 
self-join on that table), there might be a cycle in the relationship 
graph. In this case, to prevent the iteration to go on too deep, we 
can limit the number of iterations, and transform the cyclic graph 
into acyclic graph. We argue that this kind of links become 
weaker as more iterations are done. Taking table student and 
professor as example, suppose there is another relationship 
between them by meaning of friend, which means that a student is 
linked to a professor if the student is a friend of the professor.  
Now there is a cycle between these two tables.  If two is the 
maximum number of iterations, then we can make two additional 
tables named student1 and professor1 to duplicate these two 
tables, and link them by directed edge. 

We can also relax the constraints of semantic relationship graph 
by allowing the existence of cycle.  If so, in order to avoid the 
iteration doing too many times, we can also set a parameter to 
control the iteration times.  In the following sections, we only 
regard SRG as an acyclic graph. 



Semantic relationship graph is similar to ER diagram, which is 
usually used to model data during conceptual design of database 
[9].  Some commercial database systems also provide graphic 
interface to define the foreign-key and primary-key relationships 
between tables.  Semantic relationship graph can be automatically 
generated from these diagrams. Following are two cases about 
semantic relationship graph. 

2.1 Case Study: Financial Database 
Figure 1 shows the foreign-key primary-key relationship diagram 
of a financial database from PKDD CUP99. Among these tables, 
table loan is the target table, and attribute status is the target 
attribute.  Basically, each edge between these tables is a primary 
key and foreign key relationship. For example, attribute 
account_id is the primary key of table Account, and it is a foreign 
key of target table loan. By this kind of relationship, we can 
easily join them together. Based on this relationship diagram, 
each edge can lead to many iterative join operations, which is 
usually not very meaningful in semantics.  So we believe 
semantic relationship graph could be a better choice to guide the 
join operations between tables. Figure 2 shows a Semantic 
Relationship Graph of this database.  

In Figure 2, each vertex is a table.  Tables are linked together by 
directed edges, and the attribute names used to join the two tables 
are neglected for simplicity.  For example, attribute account_id 
can be used to join table Account with table Loan.  Here we 
assume these two tables use the same attribute name to represent 
the link attribute.  In real life applications, sometimes attributes 
having the same semantic meaning may have different names in 

different tables.  This problem can be easily solved by doing some 
mappings. 

Note that between two tables, there may be several edges, each of 
them having a different link attribute with different semantic 
meaning.  Also, for a specific application, one could create 
several different semantic relationship graphs. By doing this, one 
can easily put one’s domain knowledge into the graph.  For 
example, if according to the domain knowledge, table Client 
should be linked to target table by table Disposition other than 
District, one can link Client to Disposition instead of linking 
District to Client. 

2.2 Case Study: Mutagenesis Database 
Figure 3 shows the foreign-key primary-key relationship diagram 
of a Mutagenesis database, which is a frequently used ILP 
benchmark. There are four tables in this database. Table Mole is 
the target table, and attribute label is the target attribute.  

 One can see from Figure 3 that there is a cycle between table 
Atom and Bond. In order to create a semantic relationship graph 
for this database, we can do decyclization by making duplications 
for table Atom and Bond. In Figure 4, it is done by duplication of 
Atom once. However, several times of duplication is also allowed. 
This kind of duplication can be done virtually and automatically 
by doing some mapping. As mentioned earlier, this kind of cycle 
can also be dealt with by using a parameter to limit the times of 
iteration. 

3. Multi-relational Naïve Bayes 
Naïve Bayes is a statistical classification method. It is simple but 
usually performs well even compared with many complicated 
methods.  Originally it only deals with the data in one single 
table. We extend it to make it capable of dealing with multiple 
tables directly. 

For a single table learning task, given an object x which can be 
described by a set of attribute values: x = (x1, x2, …, xn), we assign 
it the most probable class label ci∈C as follows: 
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According to Bayes rule and the assumption that the values of 
different attributes are independent given the class label, we can 
get the following Naïve Bayesian formula: 
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For a multi-relational learning task, in order to deal with multiple 
tables by Naïve Bayes, there are two types of methods.  One is 
converting multiple tables into one table, and the other is dealing 
with each table separately.  In this paper, we prefer the latter.  For 
the former method, a simple method is to join all tables together, 
which will be shown in Example 1. Now we need to extend the 
formula 2 to deal with multiple tables. 

Suppose t is the target table, and s is another table that can be 
joined with table t.  Table t has n attributes and table s has m 
attributes.  For a tuple x in table t: x=(x1, x2, …, xn), there are l 
tuples in table s which can be joined with x.  These l tuples are 
(yk1, yk2, .ykl), where each tuple yki is represented by m values: yki = 
(yki1,yki2, …, ykim).  Then, the class label of tuple x can be assigned 
according to the following formula: 
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Besides the original assumption about the independence of 
attribute values of different attributes, we further assume that 
given the class label, each tuple (yk1,yk2, …, ykm) from table s that 
can join with t is independent. Then, formula (3) becomes formula 
(4). 
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Note that in formula (4), although each computation result 
(

kqj === 1j11
) corresponding to each class 

label C
)P(c) |cP(y) |cP(x i

m

iqj

kln

ij ∏∏∏
i is not the probability of Ci, and they do not sum to one, 

by comparing them we can know which class label is more likely 
for current tuple x.  We also can make them sum to 1 by 
normalizing them using formula (5).  Although the number of 
tuples linked to each target tuple is not fixed, whenever there is a 
tuple linked to it, the probability of each attribute value of this 
tuple with respect to each class label will be considered. In the 
end, we use the ratio of likelihood of different classes to decide 
the class label of each target tuple.  Thus it does matter if different 
target tuples are joinable with different numbers of tuples in other 
relations. When the number of linked tuple becomes big, the ratio 

may become very small, and this can be easily solved by doing 
logarithm conversion or by multiplying a positive number.               

Example 1 (Naïve Bayes and Multi-relational Naïve Bayes) 
Tables 1, 2 and 3 are three tables named Researcher, University 
and Paper respectively, among which Researcher is the target 
table.  Attribute status in Researcher is the target attribute. The 
primary key and foreign key relationship is clear in this context. 
Table 4 is the universal relation obtained by joining these three 
tables together. 

Table 1. Researcher 

R# sex age U# status 

r1 F 48 u1 Y 

r2 M 51 u2 N 

r3 M 62 u3 Y 

r4 F 36 u4 N 

Table 2. University 

U# rank history 

u1 2 ≥100 

u2 2 ≥100 

u3 1 <100 

u4 2 <100 

Table 3. Paper 

P# type level R# 

p1 conference 1 r1 

p2 conference 2 r2 

p3 conference 3 r3 

p4 journal 1 r1 

p5 journal 1 r4 

p6 journal 2 r2 

p7 conference 2  

Table 4. Universal Relation 

R# sex age P# type level U# rank history status

r1 F 48 p1 conference 1 u1 2 ≥100 Y 

r2 M 51 p2 conference 2 u2 2 ≥100 N 

r3 M 62 p3 conference 3 u3 1 <100 Y 

r1 F 48 p4 journal 1 u1 2 ≥100 Y 

r4 F 36 p5 journal 1 u4 2 <100 N 

r2 M 51 p6 journal 2 u2 2 ≥100 N 

 



Now suppose there is an unseen example u = (r5, F, 30, u2, p7), 
we can classify it by two methods.  The first is taking Table 4 as 
training table, then, we can compute probabilities with respect to 
P(Y|u) and P(N|u) as follows: 
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Note that in the above computation, the first six figures are 
probabilities regarding to six attributes, sex, age, rank, history, 
type and level.  As the first one is greater than the second, its class 
label will be assigned Y.  

The second method is to take Tables 1, 2 and 3 as training data 
individually, and compute the probabilities according to formula 
(4) as follows. 
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The class label information of these tables can be obtained by 
tuple ID propogation [14]. In this case u should be classified as 
class label N. Now a question arises about which of the two 
different answers is correct. In the first method, tuples in table 
Researcher and University are blown up after joining with table 
Paper. Originally there are only four researchers in table 
Researcher. But putting all of tables together, there seems to have 
six different researchers. As a result, the probability of each 
attribute value of tables Researcher and University cannot reflect 
the real statistical information. Because skewed information is 
used to compute the final probability of an example belonging to 
a class label, we believe that the answer could not be as correct as 
the second method.  

In sum, from the above example one can see that simply joining 
all tables together could distort semantics in classification, and 
thus lead to wrong classification result. 

4. Algorithms 
With the help of semantic relationship graph and the extended 
Naïve Bayesian formula shown in formula (4), we can implement 
the multi-relational Naïve Bayes algorithm easily. In order to 
speed up the join operation, we adopt tuple ID propagation 
method [14] to do virtual join along each path of the semantic 
relationship graph.  However, is it necessary to take all tables in 
the semantic graph into account? Our experimental results 
indicate that only part of these tables contribute to the 
improvement of classification accuracy. Therefore, we need to 
decide which part of the semantic relationship graph needs to be 
considered in order to achieve better classification accuracy.  To 
do that, we design a pruning strategy that is called “cutting off”.  

Just as the meaning of the phrase “cutting off”, we want to cut the 
semantic relationship graph into two parts just like cutting it by a 
knife. The part that contains the target table will be the optimized 
semantic relationship graph, and will be used to classify test 
dataset or unseen objects. The other part will be discarded. The 

challenge is that how to cut it.  Our method is simple.  Since we 
want to get the best classification accuracy, we can use training 
dataset to help make the decision.  While navigating within the 
semantic relationship graph, whenever a table is linked to the 
target table directly or indirectly, we could classify each training 
tuple of the target table using the probability information of each 
attribute value for each class label in each table corresponding to 
each vertex currently already processed, and get an accuracy 
result.  

For example, in Figure 2, after we collect information for each 
attribute value in table Loan, we can classify every tuple in Loan 
by this probability information, and get a classification accuracy 
result, say accuracy1. Then after joining table Account with Loan, 
we can use the probability information of both table Account and 
Loan to classify each tuple in Loan, and get another accuracy 
result, say accuracy2. In the end, we could choose the most 
accurate result among all of accuracy results, and cut off the 
graph at that point. For example, if accuracy2is the best one, then 
only table Account and Loan and the edge between them will 
remain in the graph, and other tables and edges will be discarded. 

Integrated with the “cutting off” pruning strategy, a multi-
relational Naïve Bayes training algorithm called Graph-NB is 
designed and outlined in Figure 5. 

Algorithm Graph-NB                                        
Input:    A training target table tt, a set T of other tables, and 

the semantic relationship graph G 
Output:  An optimized semantic relationship graph OG, and a 

set P of attribute value probabilities corresponding to 
each class label. 

Method: 
1. maxAccuracy= CollectAndClassify(tt) 
2. Initialize edgeNo=0, maxEdgeNo=0; 
3. for each out edge of target table tt do 

edgeNo++; 
NextEdge(tt) 

4. Cut off all of edges with number≥maxEdgeNo, and 
output remaining part of G as OG. 

Subroutine NextEdge(parentTable pt) 
Method:  

1. let t=table pointed to by edge with number edgeNo; 
2. propagate(pt, t); 
3. accuracy=CollectAndClassify(t);  
4. if  (accuray> maxAccuracy)  then  

maxAccuracy=accuracy; 
maxEdgeNo=edgeNo; 

5. for each out edge of current table t do  
edgeNo++; 
NextEdge(t); 

Fig. 5. Training algorithm Graph-NB 

Figure 5 shows the main processing steps of algorithm Graph-NB. 
First of all, Function collectandClassify is called to scan target 
table tt, collect attribute value count information for each class 
label, and use this information to classify each tuple of target 



table tt. The overall classification accuracy is returned to variable 
maxAccuracy. Then in step 2, global variable edgeNo and 
maxEdgeNo are initialized, where edgeNo is a number used to 
record the processing order of all of the edges in graph G, and 
maxEdgeNo is one of these numbers with the maximum 
classification accuracy. After that, table pointed to by each out 
edge of target table tt is processed by calling the main subroutine 
NextEdge.  Finally, with best accuracy among all the edges in the 
graph, we can cut off all of edges with number greater than 
maxEdgeNo, and the remaining part of the graph will be used to 
classify test or unseen objects.  In the mean time, probability of 
attribute value in every table pointed to by each edge included in 
the SRG will also be returned. 

In subroutine NextEdge, for the table t pointed to by current edge 
with number edgeNo, function propogate is called to propagate 
tuple ID from parent table pt to table t. Then Function 
collectandClassify is used to collect probability information and 
classify each tuple of target table.  If the current accuracy is better 
than the existing best one, value of maxAccuracy and maxEdgeNo 
are changed to reflect this.  After that, in step 5, each out edge of 
current table t is dealt with by recursive call of NextEdge. 

Based on the optimized semantic relationship graph, and the 
probability information returned by the training algorithm Graph-
NB, any tuple of the test table or unseen object can be classified 
by algorithm Classify-NB, which is illustrated in Figure 6. The 
main procedure of this algorithm is similar to Graph-NB, so we 
will not explain it in detail. 

5. Experimental Study 
We conduct comprehensive experiments on both real and 
synthetic databases to compare the performance of multi-
relational Naïve Bayes with those of other multi-relational 
classifiers: CrossMine[14], FOIL[10], 1BC[12], 1BC2[13], and 
Mr-SBC[19].  For CrossMine, We use CrossMine with sampling 

[25] and set the same values for parameters as in [14], that is, 
MIN FOIL GAIN = 2.5. MAX RULE LENGTH = 6. NEG POS 
RATIO = 1. MAX NUM NEGATIVE =600.  

All experiments were performed on an IBM R40 laptop with 
Pentium 4 2.2Ghz CPU and 512MB RAM, running windows 
2000 Professional. All runtimes for algorithm Graph-NB and 
FOIL include both computation time and I/O time, and runtimes 
for CrossMine only include computation time. 

For both real world databases and synthetic databases, each table 
is stored in file to simulate the table in database. These files do 
not need to reside in memory.  In the following subsections, we 
study the accuracy, efficiency and scalability of these algorithms. 
Besides, we also show the effectiveness of the “cutting off” 
pruning strategy.  

5.1 Real World Databases 
As illustrated in the case study in Section 2, we performed the 
first part of experiments on two real world databases.  Accuracy is 
the result of ten-fold cross-validation. 

5.1.1 Mutagenesis Database 
This database is widely used in the area of ILP. It contains 4 
tables and totals to 15218 tuples.  The target table contains 188 
elements of Mutagenesis.  SRG showed in Figure 4 is used for 
this database.  In order to compare the performance of Graph-NB 
with other methods for which experimental results are available in 
the literature, we use three levels of background knowledge of 
this dataset.  Table 5 shows these three sets of background 
knowledge used in our experiments.  

Table 5. Background knowledge for Mutagenesis databases 

Background Description 

BK0

For each compound, it obtains atoms, 
bonds, bond types, atom types, and 
partial charges on atoms. 

BK1
Consists of definitions in BK0 plus 
attributes indl and inda in the mole table. 

BK2
Attributes logp and lumo are added to the 
mole table used in BK1. 

Table 6. Performance on BK0

Algorithm Accuracy Runtime  
(second) 

Graph-NB with pruning 77% 1.2 

Graph-NB without pruning 77.5% 1.1 

CrossMine  68.8% 2.5 

FOIL 61% 4950 

TILDE 75% 41 

1BC 80.3% --- 

1BC2 72.9% --- 

Mr-SBC 76.5% 36 

       Algorithm Classify-NB 
Input: a test target table st, a set T of other tables, and  

the optimized semantic relationship graph OG  
Output: class label for each tuple of table st 
Method: 

1. computeProb(st); 
2. for each table t pointed to by each out edge 

of target table st do 
 Classify(st,t) 

3. output class label of each tuple in table st. 

Subroutine Classify(parentTable pt, currentTable t) 
Method:  

1. propagate(pt, t); 
2. computeProb(t); 
3. for each table ct pointed to by each out edge 

of table t do 
  Classify(t, ct) 

Fig. 6. Test algorithm Classify-NB 



Table 7. Performance on BK1

Algorithm Accuracy Runtime  
(second) 

Graph-NB with pruning 84.1% 1.1 

Graph-NB without pruning 77% 1.1 

CrossMine  88.2% 1.6 

FOIL 61% 9138 

TILDE 79% 170 

1BC --- --- 

1BC2 --- --- 

Mr-SBC 81% 42 

Table 8. Performance on BK2

Algorithm Accuracy Runtime  
(second) 

Graph-NB with pruning 86.2% 1.1 

Graph-NB without pruning 78.1% 1.1 

CrossMine  88.8% 1.4 

FOIL 61% 0.5 

TILDE 85% 142 

1BC 87.2% --- 

1BC2 72.9% --- 

Mr-SBC 89.9% 48 
 
The performances of the three algorithms for these two databases 
are shown in Tables 6, 7 and 8.  In these tables, results for FOIL, 
TILDE are taken from [11]. Results for 1BC are taken from [24]. 
Results for 1BC2 are taken from [13]. Results for Mr-SBC are 
taken from [23]. The average accuracy for these three datasets is 
shown in Table 9. 

Tables 6 to 8 show that Graph-NB has the best performance in 
terms of runtime. Since this database is rather small, the 
difference of runtime for some algorithms is not very big. As 
shown in following experiments, the difference becomes large as 
the database become large.  

Table 9. Average accuracy for Mutagenesis databases 

Algorithm Accuracy 

Graph-NB with pruning 82.3% 

Graph-NB without pruning 77.5% 

CrossMine 81.9% 

FOIL 68.3% 

TILDE 79.7% 

Mr-SBC 82.4% 
 
As for the accuracy, Tables 6 to 8 indicate that Graph-NB 
achieves comparable accuracy with existing algorithms.  For the 
average accuracy shown in Table 9, the accuracy of Graph-NB is 
only 0.1% lower than the highest accuracy among the five 

algorithms. The accuracy results also show the effectiveness of 
the “cutting off” strategy.  It is effective for two of three datasets, 
and it increases the average accuracy by almost 5%. 

Table 10. Performance on Financial database 

Algorithm Accuracy Runtime 
(second) 

Graph-NB with pruning 85.25% 1.9 

Graph-NB without pruning 79.25% 1.9 

CrossMine  87.25% 13.4 

FOIL 71.5% 3479.3 

TILDE 81.3% 2429 

5.1.2 Financial Database 
This database is the financial database used in PKDD CUP 1999. 
We did the same modification as that in [14].  In addition, we 
discretize the continuous attributes into 10 intervals for each 
attribute.  Finally, this database has eight tables and 75982 tuples 
totally.  The target table Loan contains 324 positive tuples and 76 
negative tuples. We use the SRG showed in Figure 2 for this 
database. 

In Table 10, the results for TILDE are taken from [14]. 

The performances of four algorithms for this database are shown 
in Table 10. Accuracy is the result of ten-fold cross-validation. 

From Table 10 we can see that Graph-NB is about one order of 
magnitude faster than CrossMine, and several orders of 
magnitude faster than FOIL and TILDE.  This is because Graph-
NB usually does not need to scan each table as many times as 
CrossMine, FOIL and TILDE. Each table in each path of the 
semantic relationship graph only needs to be processed once, 
which takes much less time than searching every table for best 
predicates over and over.  For accuracy, Graph-NB achieves 
better accuracy than FOIL and TILDE, and slightly lower 
accuracy than CrossMine.  

From Tables 6 to 10, it is easy to see that the “cutting off” pruning 
strategy is effective in terms of accuracy improvement.  
Therefore, we will only report the result of Graph-NB with 
pruning in the following experimental study. 

5.2 Synthetic Databases 
In order to further test the efficiency of Graph-NB, we use 
synthetic database. The database is generated by a generator [14], 
which takes parameters shown in Table 11. 

Keeping other parameters constant, we vary three parameters 
when generating each database, which are the number of 
relations, the expected number of tuples in each relation, and the 
expected number of foreign keys in each relation.  We use 
Rx.Ty.Fz to represent a database with x relations, y expected 
tuples in each relation, and z expected foreign keys in each 
relation.  For each database generated, we take the first 90% of 
tuples of target table as training data, and the remaining 10% of 
tuples of target table as test data.  Accuracy is obtained on the test 
data. 



 

 

Table 11. Parameters of Database Generator 

Name Description Def. 
|R| # relations x 
Tmin Min # tuples in each relation 50 
T Expected # tuples in each relation y 
Amin Min # attributes in each relation 2 
A Expected # attributes in each relation 5 
Vmin Min # values in each relation 2 
V Expected # values in each relation 10 
Fmin Min # foreign-keys in each relation 2 
F Expected # foreign-keys in each relation z 
|r| # rules 10 
Lmin Min # complex predicates in each rule 2 
Lmax Max # complex predicates in each rule 6 
fA Prob. of a predicate on active relation 0.25 

 
In each of the following experiments, the runtime and accuracy of 
Graph-NB and CrossMine are compared. For FOIL, it usually 
takes about ten hours per database to train, which means that it is 
almost five orders of magnitude slower than Graph-NB. 
Therefore, we do not report the results of Foil here. 

To evaluate the scalability with respect to the number of relations, 
we generate three databases with 10, 15 and 20 relations 
respectively.  For all of these databases, the expected number of 
tuples in each relation is 1000 and the expected number of foreign 
keys in each relation is 1.  The runtime and accuracy are shown in 
Figures 7 and 8 respectively.  The runtime in these and following 
figures is in logarithmic scale. 
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Fig. 7. Runtime on R*.T1000.F1 

Figure 7 indicates that Graph-NB is much faster than CrossMine, 
and Figure 8 shows that the accuracy of Graph-NB is sometimes 
equal to CrossMine and sometimes a bit lower than CrossMine. 

To evaluate the scalability of these algorithms with respect to the 
number of tuples per relation, we generate four databases with 
1000, 3000, 6000 and 10000 expected tuples per relation 
respectively.  For all of these databases, the number of relations is 
10 and the expected number of foreign keys per relation is 1.  The 
runtime and accuracy are shown in Figures 9 and 10 respectively. 
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Fig. 8. Accuracy on R*.T1000.F1 
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Fig. 9. Rutime on R10.T*.F1 
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Fig. 10. Accuracy on R10.T*.F1 

To evaluate the scalability of these algorithms with respect to the 
number of tuples per relation, we generate four databases with 
1000, 3000, 6000 and 10000 expected tuples per relation 
respectively.  For all of these databases, the number of relations is 
10 and the expected number of foreign keys per relation is 1.  The 
runtime and accuracy are shown in Figure 9 and 10 respectively. 

Figure 9 indicates that Graph-NB is much faster than CrossMine 
for most databases.  It also shows that as the number of tuples 
increases the runtime also increases for algorithms Graph-NB. 
Figure 10 shows that the accuracy of Graph-NB is sometimes a 
bit higher than CrossMine and sometimes a bit lower.  
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Fig. 11. Runtime on R10.T1000.F* 
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Fig. 12. Accuracy on R10.T1000.F* 

 

To evaluate the scalability of these algorithms with respect to the 
number of foreign keys per relation, three databases with 1, 2, and 
3 expected foreign keys per relation respectively are generated. 
For all of these databases, the number of relations is 10 and the 
expected number of tuples is 1000 per relation. The runtime and 
accuracy are shown in Figure 11 and 12 respectively. 

We can see from Figure 11 that Graph-NB is about one order of 
magnitude faster than CrossMine.  It also shows that as the 
number of foreign key increases the runtime also increases.  This 
is because as number of foreign keys increases the number of 
edges increases, so more time needed to deal with them.  Figure 
12 shows that the accuracy of Graph-NB is generally a bit greater 
than CrossMine.  

In general, these above experimental results tell us that algorithms 
Graph-NB is highly efficient, and also has comparable accuracy 
compared with CrossMine.  

6. Related Work 
We have seen a lot of work on multi-relational classification, 
especially in the community of Inductive Logic Programming 
(ILP).  But few of them focus on both classification accuracy and 
efficiency.  CrossMine [14] is an algorithm proposed to enhance 
the efficiency of multi-relational classification.  It uses the idea of 
tuple ID propagation to do join operation virtually between tables. 
By avoiding the cost of physical joins, CrossMine achieves better 

scalability and accuracy compared to ILP algorithm FOIL (first-
order inductive learner) and decision tree based algorithms TILDE 
[11].  In our work, we also adopt this method to link non-target 
tables with target table efficiently.  Multi-relational Naïve Bayes 
classifier is first studied in the ILP area.  Pompe and Kononenko 
[19] proposed a two-step method.  In the first step the ILP-R 
system [20] is used to learn a set of first-order rules.  And then in 
the second step, rules are analyzed.  When classifying an unseen 
example, these rules are combined according to Naïve Bayesian 
formula. 1BC is also a first-order Bayesian classifier for multi-
relational data [12]. It mainly focuses on decomposing related 
tuples with a target tuple into set of items and attribute values. 
This is done by first finding a set of first-order conditions, and 
then using these conditions as attributes in a classical Naïve 
Bayesian classifier. 1BC is implemented in the context of the 
first-order descriptive learner Tertius [21]. 1BC2 [13] follows 
1BC’s work and uses complex list and set-valued estimators to 
model lists and sets of attribute values.  All of these three first-
order naïve Bayesian classifiers take ground fact, which is a 
flattened and function-free Prolog representation, as input.  As 
there are disadvantages to work on a set of Prolog facts, a system 
named Mr-SBC [23] is proposed to extend naïve Bayes 
classification method to multi-relation setting. Mr-SBC 
implements a new algorithm based on integrating first-order 
classification rules with naïve Bayesian classification so that the 
computation of probabilities of shared literals can be separated 
from the computation of probabilities for the remaining literals. 
However, while searching first-order rules, only tables in a 
foreign key path which is defined in [23] can be considered, and 
other join paths are neglected. In real applications, there are 
several other link paths between tables. Taking only foreign key 
paths into account limits its applications to real world situations 
very much. Another recent work is Relation Bayesian Classifier 
[7], which studies the performance of four estimators to estimate 
the conditional probability of a set of attribute values.  It also 
studies the effects of common characteristics of relational data 
such as concentrated linkage on bias and variance. However, this 
work deals with multi-relational data by decomposing related 
objects down to attribute level, and each target object is 
considered as a subgraph with the target object in the center 
surrounded by all related non-target objects. These non-target 
objects are treated equally in classification.  In our work, we use 
semantic relationship graph to describe different relationships 
between tables, and use “cutting off” pruning strategy to treat 
tables differently.  In addition, our work deals with tables instead 
of Prolog facts directly. 

7. Conclusions 
It has been shown that considering not only information in the 
target table but also that in other related tables can improve 
classification accuracy. But there are several challenges for 
developing an efficient and accurate multi-relational classification 
algorithm.  One is how to define the relationship between all 
tables in a database so that both semantic relationship and existing 
domain knowledge can be easily exploited, and in the meantime, 
unnecessary joins could be avoided.  Another challenge is that 
how far we should go into the relationship between these tables so 
that weakly linked tables will not be considered.  In this paper, we 
propose an algorithm named Graph-NB to tackle these problems. 
First, traditional Naïve Bayes is extended to deal with data stored 



in tables directly. Second, a directed acyclic graph named 
semantic relationship graph is defined to describe the relationship 
between tables. Third, a pruning strategy is proposed to simplify 
the semantic relationship graph so that weakly linked tables will 
be ignored.  Comprehensive experimental study on both real 
world databases and synthetic databases shows that it is scalable 
with respect to the number of relations, the expected number of 
tuples and the expected number of foreign keys.  In the meantime, 
it also achieves good accuracy in general. 
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