
An Efficient Multi-relational Naïve Bayesian Classifier
Based on Semantic Relationship Graph

Hongyan Liu*

Department of Management Science
and Engineering

Tsinghua University
Beijing, China, 100084

hyanliu@uiuc.edu

Xiaoxin Yin
Department of Computer Science

University of Illinois at Urbana-
Champaign

Urbana, Illinois 61801

Xyin1@uiuc.edu

Jiawei Han
Department of Computer Science

University of Illinois at Urbana-
Champaign

Urbana, Illinois 61801

hanj@uiuc.edu

ABSTRACT
Classification is one of the most popular data mining tasks with a
wide range of applications, and lots of algorithms have been
proposed to build accurate and scalable classifiers. Most of these
algorithms only take a single table as input, whereas in the real
world most data are stored in multiple tables and managed by
relational database systems. As transferring data from multiple
tables into a single one usually causes many problems,
development of multi-relational classification algorithms becomes
important and attracts many researchers’ interests. Existing
works about extending Naïve Bayes to deal with multi-relational
data either have to transform data stored in tables to main-
memory Prolog facts, or limit the search space to only a small
subset of real world applications. In this work, we aim at solving
these problems and building an efficient, accurate Naïve Bayesian
classifier to deal with data in multiple tables directly. We propose
an algorithm named Graph-NB, which upgrades Naïve Bayesian
classifier to deal with multiple tables directly. In order to take
advantage of linkage relationships among tables, and treat
different tables linked to the target table differently, a semantic
relationship graph is developed to describe the relationship and to
avoid unnecessary joins. Furthermore, to improve accuracy, a
pruning strategy is given to simplify the graph to avoid examining
too many weakly linked tables. Experimental study on both real-
world and synthetic databases shows its high efficiency and good
accuracy.

Categories and Subject Descriptors
H.2.8 [Database Application]: Data Mining

General Terms
Algorithm, Management, Performance, Design, Experimentation.

Keywords
Classification, Naïve Bayes, Data Mining

1. INTRODUCTION
Most real-world structured data are stored in multiple relations.
Multi-relational data mining aims at discovering interesting
knowledge directly from multiple tables without joining data of
multiple tables into a single table explicitly. It has attracted the
interests of many researchers, and has been successfully applied
in many application areas, such as marketing, sales, finance, fraud
detection, and natural sciences.

Classification is one of most popular tasks in data mining, and
therefore one has witnessed numerous studies targeting on solving
multi-relational classification problems. Generally, there are
basically two major directions. One is to use conventional
classification algorithms to deal with multi-relational data. In
order to do that, various methods are proposed to convert multiple
relations into one by flattening and feature construction, which is
known as propositionalization. Most of the propositionalization
methods are heuristic, and the representation change is
incomplete. So information is lost in the process [1]. The other
direction is to update existing classification algorithms to deal
with multi-relational data directly [2, 3, 4, 5, 6, 7, 8, 15, 9, 23].
Most approaches of this direction are either inductive logic
programming (ILP) approaches or probabilistic relational learning
approaches. The above approaches have shown their high
classification accuracy in multi-relational environments.
Unfortunately, due to the complex structure of multi-relational
data, it is a time-consuming task to explore the hypothesis space
in relational databases for useful attributes or relational structural
neighbors, which makes these algorithms quite expensive in terms
of runtime.

Naïve Bayesian [16, 17, 18] is a good classification method. It is
simple to train, easy to understand, and performs pretty well for
real applications. In this paper, we extend Naïve Bayes
classification to deal with multi-relational data directly. There are
already some works [19, 12, 13, 23, 7] about it. We have the
following observations about them. First, most of such works use
the ILP-based method. They are usually two-step based methods.
In the first step, a set of first-order features or rules are extracted,
and then in the second step, these features or rules are combined
to compute probabilities according to Naïve Bayesian formula.
Although these methods can deal with multi-relational data, most
of them cannot do it directly. They usually work on a set of
main-memory Prolog facts, while in real application data are

This paper appears in the Proceedings of the Fourth
International Workshop on Multi-Relational Data Mining
(MRDM-2005), August 21, 2005, Chicago. The proceedings
were edited by Saso Dzeroski and Hendrik Blockeel. The paper
is published here with the permission of the authors, who retain
the copyright of this material.
* This work was done while the author was visiting University
of Illinois at Urbana-Champaign

stored in tables in database. Transforming tuples in tables to
ground facts has many disadvantages [23]. Second, some
methods can deal with data in tables directly, but they limit the
search space by only allowing one type of join paths. For
example, while linking tables to target table, only tables along
primary-key to foreign-key path are considered [23]. Tables in a
foreign-key to primary-key path or foreign-key and primary-key
mixed path are neglected. This constraint limits their application
to real world situation. Third, most of these methods consider all
tables linked to the target table equally important. In real
applications, databases usually have complicated schemas. A
database may contain many tables, some of which may be almost
irrelevant to the classification task, and could not improve the
classification accuracy. Therefore, how to deal with data in tables
directly, how to describe the relationship between tables, how to
treat tables differently are some major challenges to make a good
multi-relational classifier.

In order to solve these problems, we propose an algorithm called
Graph_NB to build an accurate classifier efficiently. We make the
following contributions in this paper.

• We upgrade conventional Naïve Bayes method to deal with
multi-relational classification task. We call this method multi-
relational Naïve Bayes. With this method, data stored in
multiple tables can be mined directly, and no transformation is
needed.

• In order to guide the search within the hypothesis space (called
relation space) in relational database, we define a semantic
relationship graph (SRG) to describe relationship between
tables, and also to avoid unnecessary joins between tables. We
will give the formal definition of this graph in the next section.
SRG not only offers a method to navigate among all tables, but
also provides a way to express the semantic relationship
between tables. Also, it makes capable to treat the tables
linked to target table differently according to the relationship
presented in the graph.

• In order to ignore those weakly linked tables, instead of
controlling the rule length by user-defined parameters, we
propose a pruning strategy named “cutting off” strategy to
optimize the semantic relationship graph so that we can stop
further futile mining to prevent introducing weakly linked
tables. Experimental results show that this pruning strategy is
effective for improving accuracy.

• We implement algorithm Graph_NB for training multi-
relations and algorithm Classify_NB for classifying unseen
objects. Comprehensive experimental study shows that it
achieves good accuracy and high efficiency.

The rest of the paper is organized as follows. Section 2 presents
the definition and case study of semantic relationship graph.
Section 3 describes how to extend Naïve Bayes to deal with
multiple relations directly. The algorithm and pruning strategy
are introduced in section 4, and experiments results are presented
in section 5. Finally, related work is discussed in section 6 and
we conclude this study in section 7.

2. SEMANTIC RELATIONSHIP GRAPH
For a classification task in a multi-relational database, there is
usually one table containing the class label attribute. We call this

table as target table, and call the class label attribute as target
attribute. Apart from the target table, there are usually many
other tables linked to the target table directly or indirectly through
arbitrarily long chains of joins. In order to represent this kind of
relationship between tables, we propose to use a graph, which is
called a semantic relationship graph.

Definition 2.1 (Semantic Relationship Graph) Semantic
Relationship Graph is a directed acyclic graph SRG (V, E, W),
where V is a set of vertices, each of which corresponding to a
table in the database. E is a set of directed edges, and an edge (v,
w) means table w can be linked to table v by directly joining these
two tables. W is a set of attributes, each of which links two
tables. We call this kind of attribute link attribute.

Each edge of the semantic relationship graph represents one of the
following two relationships between table v and table w:

(1) Primary-key to foreign-key relationship, indicating that table
w contains foreign-key referring to primary-key in table v.

(2) Foreign-key to primary-key relationship, indicating that table
v contains foreign-key referring to primary-key in table w.

The reason we define a directed graph instead of undirected graph
is that we need to start from the target table and link other tables
with the target table step by step. Suppose table t is the target
table, and there is an edge pointing to v from t and an edge
pointing to w from v. After joining table v with t, and join w with
v, usually we do not need to join w and v by same link attribute in
the same path again. For example, suppose table student contains
information of each student, table professor contains information
of each professor. Between these two tables, there is a semantic
relationship by meaning of supervision, and assume there is no
other relations between them in the context of the application. In
this case, we can join table professor with table student. If they
are only involved in one path, then this kind of join only needs to
be done once. If they are involved in more than one path but with
the same semantic relationship, then this join could be done many
times. With directed graph, we can prevent unnecessary iteration
for one specific relationship in one path.

When there are more than one relationship between two tables or
there is a relationship between tuples of one table (i,e, there is a
self-join on that table), there might be a cycle in the relationship
graph. In this case, to prevent the iteration to go on too deep, we
can limit the number of iterations, and transform the cyclic graph
into acyclic graph. We argue that this kind of links become
weaker as more iterations are done. Taking table student and
professor as example, suppose there is another relationship
between them by meaning of friend, which means that a student is
linked to a professor if the student is a friend of the professor.
Now there is a cycle between these two tables. If two is the
maximum number of iterations, then we can make two additional
tables named student1 and professor1 to duplicate these two
tables, and link them by directed edge.

We can also relax the constraints of semantic relationship graph
by allowing the existence of cycle. If so, in order to avoid the
iteration doing too many times, we can also set a parameter to
control the iteration times. In the following sections, we only
regard SRG as an acyclic graph.

Semantic relationship graph is similar to ER diagram, which is
usually used to model data during conceptual design of database
[9]. Some commercial database systems also provide graphic
interface to define the foreign-key and primary-key relationships
between tables. Semantic relationship graph can be automatically
generated from these diagrams. Following are two cases about
semantic relationship graph.

2.1 Case Study: Financial Database
Figure 1 shows the foreign-key primary-key relationship diagram
of a financial database from PKDD CUP99. Among these tables,
table loan is the target table, and attribute status is the target
attribute. Basically, each edge between these tables is a primary
key and foreign key relationship. For example, attribute
account_id is the primary key of table Account, and it is a foreign
key of target table loan. By this kind of relationship, we can
easily join them together. Based on this relationship diagram,
each edge can lead to many iterative join operations, which is
usually not very meaningful in semantics. So we believe
semantic relationship graph could be a better choice to guide the
join operations between tables. Figure 2 shows a Semantic
Relationship Graph of this database.

In Figure 2, each vertex is a table. Tables are linked together by
directed edges, and the attribute names used to join the two tables
are neglected for simplicity. For example, attribute account_id
can be used to join table Account with table Loan. Here we
assume these two tables use the same attribute name to represent
the link attribute. In real life applications, sometimes attributes
having the same semantic meaning may have different names in

different tables. This problem can be easily solved by doing some
mappings.

Note that between two tables, there may be several edges, each of
them having a different link attribute with different semantic
meaning. Also, for a specific application, one could create
several different semantic relationship graphs. By doing this, one
can easily put one’s domain knowledge into the graph. For
example, if according to the domain knowledge, table Client
should be linked to target table by table Disposition other than
District, one can link Client to Disposition instead of linking
District to Client.

2.2 Case Study: Mutagenesis Database
Figure 3 shows the foreign-key primary-key relationship diagram
of a Mutagenesis database, which is a frequently used ILP
benchmark. There are four tables in this database. Table Mole is
the target table, and attribute label is the target attribute.

 One can see from Figure 3 that there is a cycle between table
Atom and Bond. In order to create a semantic relationship graph
for this database, we can do decyclization by making duplications
for table Atom and Bond. In Figure 4, it is done by duplication of
Atom once. However, several times of duplication is also allowed.
This kind of duplication can be done virtually and automatically
by doing some mapping. As mentioned earlier, this kind of cycle
can also be dealt with by using a parameter to limit the times of
iteration.

3. Multi-relational Naïve Bayes
Naïve Bayes is a statistical classification method. It is simple but
usually performs well even compared with many complicated
methods. Originally it only deals with the data in one single
table. We extend it to make it capable of dealing with multiple
tables directly.

For a single table learning task, given an object x which can be
described by a set of attribute values: x = (x1, x2, …, xn), we assign
it the most probable class label ci∈C as follows:

∏=

=

=
∈

∈

…
n

j
n21iC

CMAP

), x, , x|xP(ci

i

c

c P

1

i

argmax

 x)| (cargmax c
 (1)

Fig. 1. Relationship of the financial DB from PKDD CUP 99

Fig. 3. Relationship of Mutagenesis database

Molatm

mid
aid

Atom

aid
elem
atype
charge

Bond

aid1
aid2
btype

Mole

mid
ind1
inda
lumo
logp
label

Mole Molatm Atom Bond

Fig. ase

Atom1

4. Semantic Relationship Graph for Mutagenesis Datab

Fig. 2. Semantic Relationship Graph for financial database

Loan Account

Order

Transaction

Disposition Card

District Client

According to Bayes rule and the assumption that the values of
different attributes are independent given the class label, we can
get the following Naïve Bayesian formula:

)P(c) |cP(x i

n

ijC

iiCMAP

i

i

c

c cP cP

∏=

…=

=
∈

∈

1j

n21

argmax

)() | x, , x,(xargmax c
 (2)

For a multi-relational learning task, in order to deal with multiple
tables by Naïve Bayes, there are two types of methods. One is
converting multiple tables into one table, and the other is dealing
with each table separately. In this paper, we prefer the latter. For
the former method, a simple method is to join all tables together,
which will be shown in Example 1. Now we need to extend the
formula 2 to deal with multiple tables.

Suppose t is the target table, and s is another table that can be
joined with table t. Table t has n attributes and table s has m
attributes. For a tuple x in table t: x=(x1, x2, …, xn), there are l
tuples in table s which can be joined with x. These l tuples are
(yk1, yk2, .ykl), where each tuple yki is represented by m values: yki =
(yki1,yki2, …, ykim). Then, the class label of tuple x can be assigned
according to the following formula:

∏=

=

=
∈

∈

…
n

j
mk1kmk1kn1iC

CMAP

),..., y, ..., y,...,y, y, x, |xP(c ll11i

i

c

c P

1

i

argmax

 x)| (cargmax c
(3)

Besides the original assumption about the independence of
attribute values of different attributes, we further assume that
given the class label, each tuple (yk1,yk2, …, ykm) from table s that
can join with t is independent. Then, formula (3) becomes formula
(4).

)P(c) |cP(y) |cP(x i

m

iqj

kl

kq

n

j
ijCi

CMAP

c

c PPi

∏∏∏=

…=

===
∈

∈

1j11

iikk

argmax

)(c) c | y , ,y (x,argmax c l1

 (4)

∑
∈

===

===

∏∏∏

∏∏∏

Cci
i

m

iqj

kl

kq

n

j

ij

i

m

iqj

kl

kq

n

j

ij

cP |cyP |cxP

cP |cyP |cxP

)()()(

)()()(

1j11

1j11 (5)

Note that in formula (4), although each computation result
(

kqj === 1j11
) corresponding to each class

label C
)P(c) |cP(y) |cP(x i

m

iqj

kln

ij ∏∏∏
i is not the probability of Ci, and they do not sum to one,

by comparing them we can know which class label is more likely
for current tuple x. We also can make them sum to 1 by
normalizing them using formula (5). Although the number of
tuples linked to each target tuple is not fixed, whenever there is a
tuple linked to it, the probability of each attribute value of this
tuple with respect to each class label will be considered. In the
end, we use the ratio of likelihood of different classes to decide
the class label of each target tuple. Thus it does matter if different
target tuples are joinable with different numbers of tuples in other
relations. When the number of linked tuple becomes big, the ratio

may become very small, and this can be easily solved by doing
logarithm conversion or by multiplying a positive number.

Example 1 (Naïve Bayes and Multi-relational Naïve Bayes)
Tables 1, 2 and 3 are three tables named Researcher, University
and Paper respectively, among which Researcher is the target
table. Attribute status in Researcher is the target attribute. The
primary key and foreign key relationship is clear in this context.
Table 4 is the universal relation obtained by joining these three
tables together.

Table 1. Researcher

R# sex age U# status

r1 F 48 u1 Y

r2 M 51 u2 N

r3 M 62 u3 Y

r4 F 36 u4 N

Table 2. University

U# rank history

u1 2 ≥100

u2 2 ≥100

u3 1 <100

u4 2 <100

Table 3. Paper

P# type level R#

p1 conference 1 r1

p2 conference 2 r2

p3 conference 3 r3

p4 journal 1 r1

p5 journal 1 r4

p6 journal 2 r2

p7 conference 2

Table 4. Universal Relation

R# sex age P# type level U# rank history status

r1 F 48 p1 conference 1 u1 2 ≥100 Y

r2 M 51 p2 conference 2 u2 2 ≥100 N

r3 M 62 p3 conference 3 u3 1 <100 Y

r1 F 48 p4 journal 1 u1 2 ≥100 Y

r4 F 36 p5 journal 1 u4 2 <100 N

r2 M 51 p6 journal 2 u2 2 ≥100 N

Now suppose there is an unseen example u = (r5, F, 30, u2, p7),
we can classify it by two methods. The first is taking Table 4 as
training table, then, we can compute probabilities with respect to
P(Y|u) and P(N|u) as follows:

6
3

4
2

3
2

3
2

3
2

3
2

3
2)()()(

1j11
××××××=∏∏∏

===
YP |YyP |YxP

m

qj

kl

kq

n

j
j

6
3

2
1

3
2

3
2

3
3

3
1

3
1)()()(

1j11
××××××∏∏∏ =

===
NP |NyP |NxP

m

qj

kl

kq

n

j
j

Note that in the above computation, the first six figures are
probabilities regarding to six attributes, sex, age, rank, history,
type and level. As the first one is greater than the second, its class
label will be assigned Y.

The second method is to take Tables 1, 2 and 3 as training data
individually, and compute the probabilities according to formula
(4) as follows.

4
2

4
2

3
2

2
1

2
1

2
1

2
1)()()(

1j11
××××××∏∏∏ =

===
YP |YyP |YxP

m

qj

kl

kq

n

j
j

4
2

4
2

3
2

2
1

2
2

2
1

2
1)()()(××××××∏∏∏ =NP |NyP |NxP

m

qj

kln

j
1j11 === kqj

The class label information of these tables can be obtained by
tuple ID propogation [14]. In this case u should be classified as
class label N. Now a question arises about which of the two
different answers is correct. In the first method, tuples in table
Researcher and University are blown up after joining with table
Paper. Originally there are only four researchers in table
Researcher. But putting all of tables together, there seems to have
six different researchers. As a result, the probability of each
attribute value of tables Researcher and University cannot reflect
the real statistical information. Because skewed information is
used to compute the final probability of an example belonging to
a class label, we believe that the answer could not be as correct as
the second method.

In sum, from the above example one can see that simply joining
all tables together could distort semantics in classification, and
thus lead to wrong classification result.

4. Algorithms
With the help of semantic relationship graph and the extended
Naïve Bayesian formula shown in formula (4), we can implement
the multi-relational Naïve Bayes algorithm easily. In order to
speed up the join operation, we adopt tuple ID propagation
method [14] to do virtual join along each path of the semantic
relationship graph. However, is it necessary to take all tables in
the semantic graph into account? Our experimental results
indicate that only part of these tables contribute to the
improvement of classification accuracy. Therefore, we need to
decide which part of the semantic relationship graph needs to be
considered in order to achieve better classification accuracy. To
do that, we design a pruning strategy that is called “cutting off”.

Just as the meaning of the phrase “cutting off”, we want to cut the
semantic relationship graph into two parts just like cutting it by a
knife. The part that contains the target table will be the optimized
semantic relationship graph, and will be used to classify test
dataset or unseen objects. The other part will be discarded. The

challenge is that how to cut it. Our method is simple. Since we
want to get the best classification accuracy, we can use training
dataset to help make the decision. While navigating within the
semantic relationship graph, whenever a table is linked to the
target table directly or indirectly, we could classify each training
tuple of the target table using the probability information of each
attribute value for each class label in each table corresponding to
each vertex currently already processed, and get an accuracy
result.

For example, in Figure 2, after we collect information for each
attribute value in table Loan, we can classify every tuple in Loan
by this probability information, and get a classification accuracy
result, say accuracy1. Then after joining table Account with Loan,
we can use the probability information of both table Account and
Loan to classify each tuple in Loan, and get another accuracy
result, say accuracy2. In the end, we could choose the most
accurate result among all of accuracy results, and cut off the
graph at that point. For example, if accuracy2is the best one, then
only table Account and Loan and the edge between them will
remain in the graph, and other tables and edges will be discarded.

Integrated with the “cutting off” pruning strategy, a multi-
relational Naïve Bayes training algorithm called Graph-NB is
designed and outlined in Figure 5.

Algorithm Graph-NB
Input: A training target table tt, a set T of other tables, and

the semantic relationship graph G
Output: An optimized semantic relationship graph OG, and a

set P of attribute value probabilities corresponding to
each class label.

Method:
1. maxAccuracy= CollectAndClassify(tt)
2. Initialize edgeNo=0, maxEdgeNo=0;
3. for each out edge of target table tt do

edgeNo++;
NextEdge(tt)

4. Cut off all of edges with number≥maxEdgeNo, and
output remaining part of G as OG.

Subroutine NextEdge(parentTable pt)
Method:

1. let t=table pointed to by edge with number edgeNo;
2. propagate(pt, t);
3. accuracy=CollectAndClassify(t);
4. if (accuray> maxAccuracy) then

maxAccuracy=accuracy;
maxEdgeNo=edgeNo;

5. for each out edge of current table t do
edgeNo++;
NextEdge(t);

Fig. 5. Training algorithm Graph-NB

Figure 5 shows the main processing steps of algorithm Graph-NB.
First of all, Function collectandClassify is called to scan target
table tt, collect attribute value count information for each class
label, and use this information to classify each tuple of target

table tt. The overall classification accuracy is returned to variable
maxAccuracy. Then in step 2, global variable edgeNo and
maxEdgeNo are initialized, where edgeNo is a number used to
record the processing order of all of the edges in graph G, and
maxEdgeNo is one of these numbers with the maximum
classification accuracy. After that, table pointed to by each out
edge of target table tt is processed by calling the main subroutine
NextEdge. Finally, with best accuracy among all the edges in the
graph, we can cut off all of edges with number greater than
maxEdgeNo, and the remaining part of the graph will be used to
classify test or unseen objects. In the mean time, probability of
attribute value in every table pointed to by each edge included in
the SRG will also be returned.

In subroutine NextEdge, for the table t pointed to by current edge
with number edgeNo, function propogate is called to propagate
tuple ID from parent table pt to table t. Then Function
collectandClassify is used to collect probability information and
classify each tuple of target table. If the current accuracy is better
than the existing best one, value of maxAccuracy and maxEdgeNo
are changed to reflect this. After that, in step 5, each out edge of
current table t is dealt with by recursive call of NextEdge.

Based on the optimized semantic relationship graph, and the
probability information returned by the training algorithm Graph-
NB, any tuple of the test table or unseen object can be classified
by algorithm Classify-NB, which is illustrated in Figure 6. The
main procedure of this algorithm is similar to Graph-NB, so we
will not explain it in detail.

5. Experimental Study
We conduct comprehensive experiments on both real and
synthetic databases to compare the performance of multi-
relational Naïve Bayes with those of other multi-relational
classifiers: CrossMine[14], FOIL[10], 1BC[12], 1BC2[13], and
Mr-SBC[19]. For CrossMine, We use CrossMine with sampling

[25] and set the same values for parameters as in [14], that is,
MIN FOIL GAIN = 2.5. MAX RULE LENGTH = 6. NEG POS
RATIO = 1. MAX NUM NEGATIVE =600.

All experiments were performed on an IBM R40 laptop with
Pentium 4 2.2Ghz CPU and 512MB RAM, running windows
2000 Professional. All runtimes for algorithm Graph-NB and
FOIL include both computation time and I/O time, and runtimes
for CrossMine only include computation time.

For both real world databases and synthetic databases, each table
is stored in file to simulate the table in database. These files do
not need to reside in memory. In the following subsections, we
study the accuracy, efficiency and scalability of these algorithms.
Besides, we also show the effectiveness of the “cutting off”
pruning strategy.

5.1 Real World Databases
As illustrated in the case study in Section 2, we performed the
first part of experiments on two real world databases. Accuracy is
the result of ten-fold cross-validation.

5.1.1 Mutagenesis Database
This database is widely used in the area of ILP. It contains 4
tables and totals to 15218 tuples. The target table contains 188
elements of Mutagenesis. SRG showed in Figure 4 is used for
this database. In order to compare the performance of Graph-NB
with other methods for which experimental results are available in
the literature, we use three levels of background knowledge of
this dataset. Table 5 shows these three sets of background
knowledge used in our experiments.

Table 5. Background knowledge for Mutagenesis databases

Background Description

BK0

For each compound, it obtains atoms,
bonds, bond types, atom types, and
partial charges on atoms.

BK1
Consists of definitions in BK0 plus
attributes indl and inda in the mole table.

BK2
Attributes logp and lumo are added to the
mole table used in BK1.

Table 6. Performance on BK0

Algorithm Accuracy Runtime
(second)

Graph-NB with pruning 77% 1.2

Graph-NB without pruning 77.5% 1.1

CrossMine 68.8% 2.5

FOIL 61% 4950

TILDE 75% 41

1BC 80.3% ---

1BC2 72.9% ---

Mr-SBC 76.5% 36

 Algorithm Classify-NB
Input: a test target table st, a set T of other tables, and

the optimized semantic relationship graph OG
Output: class label for each tuple of table st
Method:

1. computeProb(st);
2. for each table t pointed to by each out edge

of target table st do
 Classify(st,t)

3. output class label of each tuple in table st.

Subroutine Classify(parentTable pt, currentTable t)
Method:

1. propagate(pt, t);
2. computeProb(t);
3. for each table ct pointed to by each out edge

of table t do
 Classify(t, ct)

Fig. 6. Test algorithm Classify-NB

Table 7. Performance on BK1

Algorithm Accuracy Runtime
(second)

Graph-NB with pruning 84.1% 1.1

Graph-NB without pruning 77% 1.1

CrossMine 88.2% 1.6

FOIL 61% 9138

TILDE 79% 170

1BC --- ---

1BC2 --- ---

Mr-SBC 81% 42

Table 8. Performance on BK2

Algorithm Accuracy Runtime
(second)

Graph-NB with pruning 86.2% 1.1

Graph-NB without pruning 78.1% 1.1

CrossMine 88.8% 1.4

FOIL 61% 0.5

TILDE 85% 142

1BC 87.2% ---

1BC2 72.9% ---

Mr-SBC 89.9% 48

The performances of the three algorithms for these two databases
are shown in Tables 6, 7 and 8. In these tables, results for FOIL,
TILDE are taken from [11]. Results for 1BC are taken from [24].
Results for 1BC2 are taken from [13]. Results for Mr-SBC are
taken from [23]. The average accuracy for these three datasets is
shown in Table 9.

Tables 6 to 8 show that Graph-NB has the best performance in
terms of runtime. Since this database is rather small, the
difference of runtime for some algorithms is not very big. As
shown in following experiments, the difference becomes large as
the database become large.

Table 9. Average accuracy for Mutagenesis databases

Algorithm Accuracy

Graph-NB with pruning 82.3%

Graph-NB without pruning 77.5%

CrossMine 81.9%

FOIL 68.3%

TILDE 79.7%

Mr-SBC 82.4%

As for the accuracy, Tables 6 to 8 indicate that Graph-NB
achieves comparable accuracy with existing algorithms. For the
average accuracy shown in Table 9, the accuracy of Graph-NB is
only 0.1% lower than the highest accuracy among the five

algorithms. The accuracy results also show the effectiveness of
the “cutting off” strategy. It is effective for two of three datasets,
and it increases the average accuracy by almost 5%.

Table 10. Performance on Financial database

Algorithm Accuracy Runtime
(second)

Graph-NB with pruning 85.25% 1.9

Graph-NB without pruning 79.25% 1.9

CrossMine 87.25% 13.4

FOIL 71.5% 3479.3

TILDE 81.3% 2429

5.1.2 Financial Database
This database is the financial database used in PKDD CUP 1999.
We did the same modification as that in [14]. In addition, we
discretize the continuous attributes into 10 intervals for each
attribute. Finally, this database has eight tables and 75982 tuples
totally. The target table Loan contains 324 positive tuples and 76
negative tuples. We use the SRG showed in Figure 2 for this
database.

In Table 10, the results for TILDE are taken from [14].

The performances of four algorithms for this database are shown
in Table 10. Accuracy is the result of ten-fold cross-validation.

From Table 10 we can see that Graph-NB is about one order of
magnitude faster than CrossMine, and several orders of
magnitude faster than FOIL and TILDE. This is because Graph-
NB usually does not need to scan each table as many times as
CrossMine, FOIL and TILDE. Each table in each path of the
semantic relationship graph only needs to be processed once,
which takes much less time than searching every table for best
predicates over and over. For accuracy, Graph-NB achieves
better accuracy than FOIL and TILDE, and slightly lower
accuracy than CrossMine.

From Tables 6 to 10, it is easy to see that the “cutting off” pruning
strategy is effective in terms of accuracy improvement.
Therefore, we will only report the result of Graph-NB with
pruning in the following experimental study.

5.2 Synthetic Databases
In order to further test the efficiency of Graph-NB, we use
synthetic database. The database is generated by a generator [14],
which takes parameters shown in Table 11.

Keeping other parameters constant, we vary three parameters
when generating each database, which are the number of
relations, the expected number of tuples in each relation, and the
expected number of foreign keys in each relation. We use
Rx.Ty.Fz to represent a database with x relations, y expected
tuples in each relation, and z expected foreign keys in each
relation. For each database generated, we take the first 90% of
tuples of target table as training data, and the remaining 10% of
tuples of target table as test data. Accuracy is obtained on the test
data.

Table 11. Parameters of Database Generator

Name Description Def.
|R| # relations x
Tmin Min # tuples in each relation 50
T Expected # tuples in each relation y
Amin Min # attributes in each relation 2
A Expected # attributes in each relation 5
Vmin Min # values in each relation 2
V Expected # values in each relation 10
Fmin Min # foreign-keys in each relation 2
F Expected # foreign-keys in each relation z
|r| # rules 10
Lmin Min # complex predicates in each rule 2
Lmax Max # complex predicates in each rule 6
fA Prob. of a predicate on active relation 0.25

In each of the following experiments, the runtime and accuracy of
Graph-NB and CrossMine are compared. For FOIL, it usually
takes about ten hours per database to train, which means that it is
almost five orders of magnitude slower than Graph-NB.
Therefore, we do not report the results of Foil here.

To evaluate the scalability with respect to the number of relations,
we generate three databases with 10, 15 and 20 relations
respectively. For all of these databases, the expected number of
tuples in each relation is 1000 and the expected number of foreign
keys in each relation is 1. The runtime and accuracy are shown in
Figures 7 and 8 respectively. The runtime in these and following
figures is in logarithmic scale.

0. 1

1

10

100

1000

10 15 20

Number of Relations

ru
nt

im
e

(s
)

Gra ph-NB
CrossMine

Fig. 7. Runtime on R*.T1000.F1

Figure 7 indicates that Graph-NB is much faster than CrossMine,
and Figure 8 shows that the accuracy of Graph-NB is sometimes
equal to CrossMine and sometimes a bit lower than CrossMine.

To evaluate the scalability of these algorithms with respect to the
number of tuples per relation, we generate four databases with
1000, 3000, 6000 and 10000 expected tuples per relation
respectively. For all of these databases, the number of relations is
10 and the expected number of foreign keys per relation is 1. The
runtime and accuracy are shown in Figures 9 and 10 respectively.

0

10

20

30

40

50

60

70

80

90

100

10 15 20

Number of Relations

A
cc

ur
ac

y
(%

)

Graph-NB

CrossMine

Fig. 8. Accuracy on R*.T1000.F1

0. 1

1

10

100

1000

1000 3000 6000 1000

Number of Tuples

ru
nt

im
e

(s
)

Graph-NB

CrossMine

Fig. 9. Rutime on R10.T*.F1

0

20

40

60

80

100

120

1000 3000 6000 10000

Number of Tuples

A
cc

ur
ac

y
(%

)

Graph-NB
Cro s s Mine

Fig. 10. Accuracy on R10.T*.F1

To evaluate the scalability of these algorithms with respect to the
number of tuples per relation, we generate four databases with
1000, 3000, 6000 and 10000 expected tuples per relation
respectively. For all of these databases, the number of relations is
10 and the expected number of foreign keys per relation is 1. The
runtime and accuracy are shown in Figure 9 and 10 respectively.

Figure 9 indicates that Graph-NB is much faster than CrossMine
for most databases. It also shows that as the number of tuples
increases the runtime also increases for algorithms Graph-NB.
Figure 10 shows that the accuracy of Graph-NB is sometimes a
bit higher than CrossMine and sometimes a bit lower.

0. 1

1

10

100

1000

1 2 3

Number of foreign keys

ru
nt

im
e

(s
)

Graph-NB

CrossMine

Fig. 11. Runtime on R10.T1000.F*

0

10

20

30

40

50

60

70

80

90

1 2 3

Number of foreign keys

A
cc

ur
ac

y
(%

)

Graph-NB
Cro s s Mine

Fig. 12. Accuracy on R10.T1000.F*

To evaluate the scalability of these algorithms with respect to the
number of foreign keys per relation, three databases with 1, 2, and
3 expected foreign keys per relation respectively are generated.
For all of these databases, the number of relations is 10 and the
expected number of tuples is 1000 per relation. The runtime and
accuracy are shown in Figure 11 and 12 respectively.

We can see from Figure 11 that Graph-NB is about one order of
magnitude faster than CrossMine. It also shows that as the
number of foreign key increases the runtime also increases. This
is because as number of foreign keys increases the number of
edges increases, so more time needed to deal with them. Figure
12 shows that the accuracy of Graph-NB is generally a bit greater
than CrossMine.

In general, these above experimental results tell us that algorithms
Graph-NB is highly efficient, and also has comparable accuracy
compared with CrossMine.

6. Related Work
We have seen a lot of work on multi-relational classification,
especially in the community of Inductive Logic Programming
(ILP). But few of them focus on both classification accuracy and
efficiency. CrossMine [14] is an algorithm proposed to enhance
the efficiency of multi-relational classification. It uses the idea of
tuple ID propagation to do join operation virtually between tables.
By avoiding the cost of physical joins, CrossMine achieves better

scalability and accuracy compared to ILP algorithm FOIL (first-
order inductive learner) and decision tree based algorithms TILDE
[11]. In our work, we also adopt this method to link non-target
tables with target table efficiently. Multi-relational Naïve Bayes
classifier is first studied in the ILP area. Pompe and Kononenko
[19] proposed a two-step method. In the first step the ILP-R
system [20] is used to learn a set of first-order rules. And then in
the second step, rules are analyzed. When classifying an unseen
example, these rules are combined according to Naïve Bayesian
formula. 1BC is also a first-order Bayesian classifier for multi-
relational data [12]. It mainly focuses on decomposing related
tuples with a target tuple into set of items and attribute values.
This is done by first finding a set of first-order conditions, and
then using these conditions as attributes in a classical Naïve
Bayesian classifier. 1BC is implemented in the context of the
first-order descriptive learner Tertius [21]. 1BC2 [13] follows
1BC’s work and uses complex list and set-valued estimators to
model lists and sets of attribute values. All of these three first-
order naïve Bayesian classifiers take ground fact, which is a
flattened and function-free Prolog representation, as input. As
there are disadvantages to work on a set of Prolog facts, a system
named Mr-SBC [23] is proposed to extend naïve Bayes
classification method to multi-relation setting. Mr-SBC
implements a new algorithm based on integrating first-order
classification rules with naïve Bayesian classification so that the
computation of probabilities of shared literals can be separated
from the computation of probabilities for the remaining literals.
However, while searching first-order rules, only tables in a
foreign key path which is defined in [23] can be considered, and
other join paths are neglected. In real applications, there are
several other link paths between tables. Taking only foreign key
paths into account limits its applications to real world situations
very much. Another recent work is Relation Bayesian Classifier
[7], which studies the performance of four estimators to estimate
the conditional probability of a set of attribute values. It also
studies the effects of common characteristics of relational data
such as concentrated linkage on bias and variance. However, this
work deals with multi-relational data by decomposing related
objects down to attribute level, and each target object is
considered as a subgraph with the target object in the center
surrounded by all related non-target objects. These non-target
objects are treated equally in classification. In our work, we use
semantic relationship graph to describe different relationships
between tables, and use “cutting off” pruning strategy to treat
tables differently. In addition, our work deals with tables instead
of Prolog facts directly.

7. Conclusions
It has been shown that considering not only information in the
target table but also that in other related tables can improve
classification accuracy. But there are several challenges for
developing an efficient and accurate multi-relational classification
algorithm. One is how to define the relationship between all
tables in a database so that both semantic relationship and existing
domain knowledge can be easily exploited, and in the meantime,
unnecessary joins could be avoided. Another challenge is that
how far we should go into the relationship between these tables so
that weakly linked tables will not be considered. In this paper, we
propose an algorithm named Graph-NB to tackle these problems.
First, traditional Naïve Bayes is extended to deal with data stored

in tables directly. Second, a directed acyclic graph named
semantic relationship graph is defined to describe the relationship
between tables. Third, a pruning strategy is proposed to simplify
the semantic relationship graph so that weakly linked tables will
be ignored. Comprehensive experimental study on both real
world databases and synthetic databases shows that it is scalable
with respect to the number of relations, the expected number of
tuples and the expected number of foreign keys. In the meantime,
it also achieves good accuracy in general.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China under Grant No. 70471006 and 70321001,
and by the U.S. National Science Foundation NSF IIS-02-09199
and IIS-03-08215.

9. REFERENCES
[1] Kramer, S., N. Lavrac and P. Flach. Propositionalization

approaches to relational data mining. In S. Dzeroski and N.
Lavrac, eds. Relational Data Mining. pp 262-291, Springer-
Verlag, 2001.

[2] Lavrac N. and Dzeroski S. Inductive Logic Programming:
Techniques and Applications. Ellis Horwood, 1994.

[3] Muggleton S. Inductive Logic Programming. Academic
Press, New York, NY, 1992.

[4] Friedman N., Getoor L., Koller D., and Pfeffer A. Learning
Probabilistic Relational Models. In Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI), 1999.

[5] Taskar B., Segal E., and Koller D. Probabilistic
Classification and Clustering in Relational Data. In 17th
International Joint Conference on Artificial Intelligence,
pages 870–878, 2001.

[6] Emde W. and Wettschereck D. Relational Instance-Based
Learning. In L. Saitta, editor, Proceedings 13th International
Conference on Machine Learning, pages 122–130. Morgan
Kaufmann, 1996.

[7] Neville J., Jensen D., Gallagher B., and Fairgrieve R. Simple
Estimators for Relational Bayesian Classifiers. Int. Conf. on
Data Mining (ICDM'03), Melbourne, FL, Nov. 2003.

[8] Neville J., Jensen D., Friedland L., and Hay M.. Learning
Relational Probability Trees. Technical Report 02-55,
Department of Computer Science, University of
Massachusetts Amherst, 2002. Revised version February
2003.

[9] Garcia-Molina H., J. Ullman D., and Widom J. Database
Systems: The Complete Book. Prentice Hall, 2002.

[10] Quinlan J. R. and Cameron-Jones R. M. FOIL: A midterm
report. In Proc. 1993 European Conf. Machine Learning,
Vienna, Austria, 1993.

[11] Blockeel H., De Raedt L., and Ramon J. Top-down induction
of logical decision trees. In Proc. 1998 Int. Conf. Machine
Learning (ICML'98), Madison, WI, Aug. 1998.

[12] Flach, P. and N. Lachiche. 1BC: A first-order Bayesian
classifier. Proceedings of the 9th International Workshop on
Inductive Logic Programming, pp. 92--103, 1999.

[13] Lachiche, N. and P. Flach. 1BC2: a true first-order Bayesian
Classifier. Proceedings of the 12th International Conference
on Inductive Logic Programming, 2002.

[14] Yin X., Han J., Yang J., and Yu P. S. “CrossMine: Efficient
Classification across Multiple Database Relations”, Proc.
2004 Int. Conf. on Data Engineering (ICDE'04), Boston,
MA, March 2004.

[15] Macskassy S. and Provost F. A Simple Relational Classifier.
The Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2nd workshop on
Multi-relational Data Mining. Washington, DC, 2003.

[16] Duda R. and Hart P. Pattern Classification and Scene
Analysis. New York: John Wiley & Sons, 1973.

[17] Join G. H. Enhancements to the Data Mining Process. Ph.D.
Thesis, computer Science Dept, Stanford University, 1997.

[18] Domingos P. and Pazzani M. Beyond Independence:
Conditions for the Optmality of the Simple Bayesian
Classifier. In Proc. 13th Intl. Conf. Machine Learning, p105-
112, 1996.

[19] Pompe U. and Kononenko I. Naive Bayesian classifier
within ILP-R. In L. De Raedt, editor, Proc. of the 5th Int.
Workshop on Inductive Logic Programming, pages 417--436.
Dept. of Computer Science, Katholieke Universiteit Leuven,
1995.

[20] Pompe U., Kononenko I. Linear space induction in first order
logic with relief. In R. Kruse, R. Viertl. & G. Della Riccia
(Eds.), CISM Lecture Notes. Udine Italy, 1994.

[21] Flach P.A. and Lachiche N. A First-order approach to
unsupervised learning. Submitted, 1999.

[22] Srinivasan, A., King, R. D., and Muggleton, S. The role of
background knowledge: using a problem from chemistry to
examine the performance of an ILP program. Technical
Report PRG-TR-08-99, Oxford University
ComputingLaboratory, Oxford, 1999.

[23] Ceci M., Appice A., and Malerba D. Mr-SBC: a Multi-
Relational Naive Bayes Classifier, in N. Lavrac, D.
Gamberger, L. Todorovski & H. Blockeel (Eds.), Knowledge
Discovery in Databases PKDD 2003, Lecture Notes in
Artificial Intelligence, 2838, 95-106, Springer, Berlin,
Germany.

[24] Flach P. and Lachiche N. First-order Bayesian Classification
with 1BC. Submitted. Downloadable from http://hydria.u-
strasbg.fr/~lachiche/1BC.ps.gz

[25] Yin X. CrossMine software. Downloadable from
http://www-sal.cs.uiuc.edu/~hanj/pubs/software.htm.

	page381: 39
	Copyright: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
MRDM’05, August 21, 2005, Chicago, Illinois, USA
Copyright 2005 ACM 1-59593-212-7/05/0008 ...$5.00.
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48

