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Abstract. In this paper we present AntHocNet, a new algorithm for
routing in mobile ad hoc networks. Due to the ever changing topology
and limited bandwidth it is very hard to establish and maintain good
routes in such networks. Especially reliability and efficiency are impor-
tant concerns. AntHocNet is based on ideas from Ant Colony Optimiza-
tion. It consists of both reactive and proactive components. In a reactive
path setup phase, multiple paths are set up between the source and des-
tination of a data session, and during the course of the communication
session, ants proactively test existing paths and explore new ones. In
simulation tests we show that AntHocNet can outperform AODV, one
of the most important current state-of-the-art algorithms, both in terms
of end-to-end delay and packet delivery ratio.

1 Introduction

In recent years there has been an increasing interest in Mobile Ad Hoc Networks
(MANETs) [13]. In this kind of networks, all nodes are mobile, and they commu-
nicate with each other via wireless connections. There is no fixed infrastructure.
All nodes are equal and there is no centralized control or overview. There are
no designated routers: all nodes can serve as routers for each other, and data
packets are forwarded from node to node in a multi-hop fashion.

Routing is the task of directing data flow from source to destination maxi-
mizing network performance. This is particularly difficult in MANETs. Due to
the mobility of the nodes, the topology of the network changes constantly, and
paths which were initially efficient can quickly become inefficient or even infea-
sible. This means that routing information should be updated more regularly
than in wired networks, so that in principle more routing control packets are
needed. However, this is a problem in MANETs, since the bandwidth of the
wireless medium is very limited, and the medium is shared: nodes can only send
or receive data if no other node is sending in their neighborhood. The access
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to the shared channel is controlled by protocols at the Medium Access Control
layer (MAC), such as ANSI/IEEE 802.11 DCF [7] (the most commonly used in
MANETs), which in their turn create extra overhead.

In this work we propose AntHocNet, a new MANET routing algorithm based
on ideas from ant-based routing. For wired networks, a number of successful
ant-based routing algorithms exist (eg. ABC [14] and AntNet [3]). They are
based on the pheromone trail laying-following behavior of real ants and the
related framework of ant colony optimization (ACO) [4]. The main idea is to
continuously sample possible paths with ant-like agents, and to indicate the
quality of paths by means of artificial pheromone variables. Multiple paths are
made available this way, and data packets are stochastically spread over them
following the pheromone values. Ant-based routing algorithms exhibit a number
of desirable properties for MANET routing: they work in a distributed way, are
highly adaptive, are robust, and provide automatic load balancing.

In this paper, we aim to propose an algorithm which can work efficiently in
MANETs, while still maintaining those properties which make ant-based algo-
rithms so appealing. The rest of this paper is organized as follows. In section 2
we describe related work in MANET and ant-based routing. Section 3 contains
the description of our algorithm and in section 4 we present simulation results.

2 Related work: MANET routing and ant-based routing

The specific challenges and possible applications of MANETs have made this a
very popular research area, and a lot of routing algorithms have been proposed.
People traditionally classify these algorithms as either proactive or reactive. In
purely proactive protocols (e.g., DSDV [11]) nodes try to maintain at all times
routes to all other nodes. This means that they need to keep track of all topology
changes, which can become difficult if there are a lot of nodes or if they are very
mobile. Therefore, reactive protocols (e.g., AODV [12] or DSR [8]) are in general
more scalable (see [2]). In these protocols, nodes only gather routing information
on demand: only when they have data for a certain destination they construct
a path, and only when the path becomes infeasible they search a new path.
In this way they greatly reduce the routing overhead, but they can suffer from
oscillations in performance since they are never prepared for disruptive events.
Hybrid algorithms like ZRP [6] have both a proactive and a reactive component,
in order to try to combine the best of both worlds.

Most of the algorithms are single path: at any time, they use only one path
between source and destination. Multipath routing (see [10] for an overview)
offers an interesting alternative in terms of link failure robustness and load bal-
ancing. Some algorithms create multiple paths at path setup time, and use the
best of these until it fails, after which they switch to the second best and so
on (e.g., AODV-BR [9]). A problem with this way of working is that alternative
paths are often infeasible by the time they need to be used. Moreover, when only
the best path is used, one looses the opportunity to spread data packets over
the different paths, a practice which can improve the network throughput.
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The first ant-based routing algorithms were ABC [14] and AntNet [3]. Both
algorithms follow a similar general strategy. Nodes send ant agents out at reg-
ular intervals to randomly chosen destinations. The main aim of the ants is to
sample the paths, assign a quality to them, and use this information to update
the routing tables in the nodes they pass. These routing tables contain an en-
try for each destination and each neighbor, indicating the goodness of going
over this neighbor on the way to the destination. This goodness value is called
pheromone. This pheromone information is used for the routing of both ants
and data packets: all packets are routed stochastically, choosing with a higher
probability those links with higher pheromone values. If enough ants are sent
to the different destinations, nodes keep up-to-date information about the best
paths, and automatically adapt their data load spreading to this.

Ant-based routing algorithms have a number of properties which are de-
sirable in MANETs: they are highly adaptive to network changes, use active
path sampling, are robust to agent failures, provide multipath routing, and take
care of data load spreading. However, the fact that they crucially rely on re-
peated path sampling can cause significant overhead if not dealt with carefully.
There have been a number of attempts to design ant-based routing algorithms
for MANETs. Examples are ARA [5] and PERA [1]. However, these algorithms
loose much of the proactive sampling and exploratory behavior of the original
ant-based algorithms in their attempt to limit the overhead caused by the ants.

3 AntHocNet

AntHocNet is a hybrid multipath algorithm. When a data session is started at
node s with destination d, s checks whether it has up-to-date routing information
for d. If not, it reactively sends out ant-like agents, called reactive forward ants,
to look for paths to d. These ants gather information about the quality of the
path they followed, and at their arrival in d they become backward ants which
trace back the path and update routing tables. The routing table T i in node i
contains for each destination d and each possible next hop n a value T i

nd ∈ IR. T i
nd

is an estimate of the goodness of the path over n to d, which we call pheromone.
In this way, pheromone tables in different nodes indicate multiple paths between
s and d, and data packets can be routed from node to node as datagrams. They
are stochastically spread over the paths: in each node they select the next hop
with a probability proportional to its pheromone value. Once paths are set up
and the data session is running, s starts to send proactive forward ants to d.
These ants follow the pheromone values similarly to data packets. In this way
they can monitor the quality of the paths in use. Moreover, they have a small
probability of being broadcasted, so that they can also explore new paths. In
case of link failures, nodes either try to locally repair paths, or send a warning
to their neighbors such that these can update their routing tables. In the rest of
this section we describe each of these functions in detail.
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3.1 Reactive path setup

Reactive forward ants looking for a destination d are either broadcasted or uni-
casted, according to whether or not the node they are currently in has routing
information for d. Due to the broadcasting, ants can proliferate quickly over the
network, following different paths to the destination. When a node receives sev-
eral ants of the same generation (i.e., they started as the same original forward
ant at the source), it will compare the path travelled by the ant to that of the
previously received ants of this generation: only if its number of hops and travel
time are both within a certain factor (a parameter which we empirically set to
1.5) of that of the best ant of the generation, it will forward the ant. Using this
policy, overhead is limited by removing ants which follow bad paths, while the
possibility to find multiple good paths is not hindered.

The main task of the reactive forward ant is to find a path connecting s and
d. It keeps a list P of the nodes [1, . . . , n] it has visited. Upon arrival at the
destination d, the forward ant is converted into a backward ant, which travels
back to the source retracing P. The backward ant incrementally computes an
estimate T̂P of the time it would take a data packet to travel over P towards
the destination, which is used to update routing tables. T̂P is the sum of local
estimates T̂i→i+1 in each node i ∈ P of the time to reach the next hop i + 1:
T̂P =

∑n−1

i=1
T̂i→i+1. The value of T̂i→i+1 is defined as (Qi

mac + 1)T̂ i
mac: the

product of the estimate of the average time to send one packet, T̂ i
mac, times the

current number of packets in queue (plus one) to be sent at the MAC layer,
Qi

mac. T̂ i
mac is calculated as a running average of the time elapsed between the

arrival of a packet at the MAC layer and the end of a successful transmission.
So if timac is the time it took to send a packet from node i, then node i updates
its estimate as follows: T̂ i

mac = αT̂ i
mac + (1 − α)timac with α ∈ [0, 1]. Since T̂ i

mac

is calculated at the MAC layer it includes channel access activities, so it takes
into account local congestion of the shared medium. Forward ants calculate a
similar time estimate, which is used for filtering the ants, as mentioned above.

At each intermediate node i ∈ P, the backward ant virtually sets up a path
towards the destination d, creating or updating routing table entries T i

nd. Upon
arrival in a node i from its neighbor n, the ant creates an entry in the routing
table T i, indicating n as next hop to take from this node in order to reach d.
The entry will contain a pheromone value T i

nd, which is an indication of the
goodness of the path going to destination d over next hop n. The pheromone
value represents an average of the inverse of the cost, in terms of both estimated
time and number of hops, to travel to d through n. If T̂i→d is the travelling
time estimated by the ant, and h is the number of hops, the pheromone value is

defined as: τid =
(

(T̂s→d + hThop)/2
)−1

, where Thop is a fixed value representing
the time of taking one hop in unloaded conditions. Taking this average is a way
to avoid possibly large oscillations in the time estimates gathered by the ants
(e.g., due to local bursts of traffic) and to take into account both end-to-end
delay and number of hops. If there was already an entry T i

nd in T i, its value is
updated using a weighted average: T i

nd = γT i
nd + (1 − γ)τid, γ ∈ [0, 1] (γ and α

were set to 0.7 in the experiments).
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3.2 Stochastic data routing

The path setup phase described above creates a number of good paths between
source and destination, indicated in the routing tables of the nodes. Data can
then be forwarded between nodes according to the values of the pheromone
entries. Nodes in AntHocNet forward data stochastically. When a node has mul-
tiple next hops for the destination d of the data, it will randomly select one of
them, with the probability Pnd of a next hop n assigned as the square of its

pheromone: Pnd =
T

2

nd
∑

i∈Nd
T 2

id

. We take the square in order to be more greedy

with respect to the better paths. According to this strategy, we do not have
to choose a priori how many paths to use: their number will be automatically
selected in function of their quality.

The probabilistic routing strategy leads to data load spreading with conse-
quent automatic load balancing. When a path is clearly worse than others, it will
be avoided, and its congestion will be relieved. Other paths will get more traffic,
leading to higher congestion, which will make their end-to-end delay increase.
By continuously adapting the data traffic, the nodes try to spread the data load
evenly over the network. This is quite important in MANETs, because the band-
width of the wireless channel is very limited. Of course, to do this properly, it is
important to frequently monitor the quality of the different paths. To this end
we use the proactive ants.

3.3 Proactive path maintenance and exploration

While a data session is running, the source node sends out proactive forward ants
according to the data sending rate (one ant every nth data packet). They follow
the pheromone values in the same way as the data (although the pheromone
values are not squared, so that they sample the paths more evenly), but have a
small probability at each node of being broadcasted. In this way they serve two
purposes. If a forward ant reaches the destination without a single broadcast
it simply samples an existing path. It gathers up-to-date quality estimates of
this path, and updates the pheromone values along the path from source to
destination. A backward ant does the same for the direction from the destination
back to the source. If on the other hand the ant got broadcasted at any point,
it will leave the currently known pheromone trails, and explore new paths.

After a broadcast the ant will arrive in all the neighbors of the broadcasting
node. It is possible that in this neighbor it does not find pheromone pointing
towards the destination, so that it will need to be broadcasted again. The ant will
then quickly proliferate and flood the network, like a reactive forward ant does.
In order to avoid this, we limit the number of broadcasts to two. If the proactive
ant does not find routing information within two hops, it will be deleted. The
effect of this mechanism is that the search for new paths is concentrated around
the current paths, so that we are looking for path improvements and variations.
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In order to guide the forward ants a bit better, we use hello messages1:
using these messages, nodes know about their immediate neighbors and have
pheromone information about them in their routing table. So when an ant ar-
rives in a neighbor of the destination, it can go straight to its goal. Looking
back at the ant colony inspiration of our model, this can be seen as pheromone
diffusion: pheromone deposited on the ground diffuses, and can be detected also
by ants further away. In future work we will extend this concept, to give better
guidance to the exploration by the proactive ants. Hello messages also serve an-
other purpose: they allow to detect broken links. This allow nodes to clean up
stale pheromone entries from their routing tables.

3.4 Link failures

Nodes can detect link failures (e.g., a neighbor has moved far away) when unicast
transmissions (of data packets or ants) fail, or when expected hello messages
were not received. When a link fails, a node might loose a path to one or more
destinations. If the node has other next hop alternatives to the same destination,
or if the lost destination was not used regularly by data, this loss is not so
important, and the node will just update its routing table and send a notification
of the update to its neighbors. On the other hand, if the destination was regularly
used for data traffic, and it was the node’s only alternative for this destination,
the loss is important and the node should try to repair the path. This is the
strategy followed in AntHocNet, with the restriction that a node only repairs
the path if the link loss was discovered with a failed data packet transmission.

After the link failure, the node broadcasts a route repair ant that travels to
the involved destination like a reactive forward ant: it follows available routing
information when it can, and is broadcasted otherwise. One important difference
is that it has a maximum number of broadcasts (which we set to 2 in our ex-
periments), so that its proliferation is limited. The node waits for a certain time
(empirically set to 5 times the estimated end-to-end of the lost path), and if no
backward repair ant is received, it concludes that it was not possible to find an
alternative path to the destination which is removed from the routing table.

In the case the node still has other entries for the destination(s) involved in a
link failure, but the lost next hop was its best alternative for the destination, or
if the link failure was due to an ant packet, the node will only send a notification

to its neighbors. Also in the case of a failed path repair it will send a similar
notification. The notification contains a list of the destinations it lost a path
to, and the new best estimated end-to-end delay and number of hops to this
destination (if it still has entries for the destination). All its neighbors receive
the notification and update their pheromone table using the new estimates. If

1 Hello messages are short messages broadcasted every thello seconds (e.g., thello =
1sec) by the nodes. If a node receives a hello message from a new node n, it will add
n as a new destination in its routing table. After that it expects to receive a hello
from n every thello seconds. After missing a certain number of expected hello’s (2 in
our case), n will be removed.
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they in turn lost their best or their only path to a destination due to the failure,
they will broadcast the notification further, until all nodes along the different
paths are notified of the new situation.

4 Simulation Experiments

We evaluate our algorithm in a number of simulation tests. We compare its
performance with AODV [12] (with route repair), a state-of-the-art MANET
routing algorithm and a de facto standard. In 4.1 we describe the simulation
environment and the test scenarios, and in 4.2 we show and discuss the results.

4.1 Simulation Environment

As simulation software we used Qualnet, a discrete-event simulator developed by
Scalable Networks as a follow-up of GloMoSim, which was designed by UCLA.
Qualnet is specifically optimized to simulate large-scale MANETs, and comes
with correct implementations of the most important routing protocols.

All our simulation scenarios are derived from the base scenario used in [2],
which is an important reference. In this base scenario 50 nodes are randomly
placed in an area of 1500 × 300 m2. The area is rectangular in order to have
more long paths. Within this area, the nodes move according to the random
waypoint model [8]: each node randomly chooses a destination point and a speed,
and moves to this point with the chosen speed. After that it stops for a certain
pause time and then chooses a new destination and speed. The maximum speed
in the scenario is 20m/s and the pause time is 30 seconds. The total length of
the simulation is 900 seconds. Data traffic is generated by 20 constant bit rate
(CBR) sources sending one 64-byte packet per second. Each source starts sending
at a random time between 0 and 180 seconds after the start of the simulation,
and keeps sending until the end. At the physical layer we use a two-ray signal
propagation model. The transmission range is 300 meters, and the data rate is
2Mbit/s. At the MAC layer we use the popular 802.11 DCF protocol.

The different test scenarios used below were derived from the base scenario
by changing some of the parameters. In particular, we varied the pause time,
the area dimensions and the number of nodes. For each new scenario, 5 different
problems were created, by choosing different initial placements of the nodes and
different movement patterns. The reported results are averaged over 5 different
runs (to account for stochastic elements, both in the algorithms and in the
physical and MAC layers) on each of the 5 problems.

4.2 Simulation Results

In a first set of experiments we progressively extended the long side of the sim-
ulation area. This has a double effect: paths become longer and the network
becomes sparser. The results are shown in figure 1. In the base scenario, An-
tHocNet has a better delivery ratio than AODV, but a higher average delay.
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For the longer areas, the difference in delivery ratio becomes bigger, and AODV
also looses its advantage in delay. If we take a look at the 99th percentile of the
delay, we can see that the decrease in performance of AODV is mainly due to a
small number of packets with very high delay. This means that AODV delivers
packets with a very high delay jitter, a crucial problem in terms of quality of
service (QoS). The jitter could be reduced by removing these packets with very
high delay, but that would mean an even worse delivery ratio for AODV. Next
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Fig. 1. On the left the delivery ratio (the fraction of sent packets which actually arrives
at their destination) and on the right the average and the 99th percentile of the delay
per packet. On x-axis the long edge of the area: starting from the base scenario of
1500 × 300 m

2, and ending at 2500 × 300 m
2.

we changed the mobility of the nodes, varying the pause time between 0 seconds
(all nodes move constantly) and 900 seconds (all nodes are static). The area
dimensions were kept on 2500 × 300 m2, like at the end of the previous exper-
iment (results for 1500 × 300 m2 were similar but less pronounced). In figure
2 we can see a similar trend as in the previous experiment. For easy situations
(long pause times, hardly any mobility), AntHocNet has a higher delivery ratio,
while AODV has lower delay. As the environment becomes more difficult (high
mobility), the difference in delivery ratio becomes bigger, while the average delay
of AntHocNet becomes better than that of AODV. Again, the 99th percentile of
AODV shows that this algorithm delivers some packets with a very high delay.
Also AntHocNet has some packets with a high delay (since the average is above
the 99th percentile), but this number is less than 1% of the packets. In a last
experiment we increased the scale of the problem. Starting from 50 nodes in a
1500 × 500 m2 area, we multiply both terrain edges by a scaling factor and the
number of nodes by the square of this factor, up to 200 nodes in a 3000×1000 m2

area. The results, presented in figure 3, show again the same trend: as the prob-
lem gets more difficult, the advantage of AntHocNet in terms of delivery ratio
increases, while the advantage of AODV in terms of average delay becomes a
disadvantage. Again this is due to a number of packets with a very high delay.

The experiments described above show that AntHocNet has some clear ad-
vantages over AODV. First of all, AntHocNet gave a better delivery ratio than
AODV in all scenarios. The construction of multiple paths at route setup, and
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Fig. 2. On the left the delivery ratio and on the right the average and 99th percentile
of the delay. On the x-axis the node pause time in seconds.
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Fig. 3. On the left the delivery ratio and on the right the average and 99th percentile
of the delay. On the x-axis the scaling factor for the problem.

the continuous search for new paths with proactive ants ensures that there are
often alternative paths available in case of route failures, resulting in less packet
loss. Second, AntHocNet has a higher average delay than AODV for the simpler
scenarios, but a lower average delay for the more difficult ones. The average
delay of AODV increases sharply in each of the difficult scenarios, and the 99th

percentile figures indicate that this is mainly due to a fraction of packets which
is delivered with an abnormally high delay. Moreover, the 95th percentile (not
shown in the figures) is usually lower for AODV than for AntHocNet, indicating
that AODV still delivers most of its packets faster than AntHocNet. This is in
line with the multipath nature of AntHocNet: since it uses different paths si-
multaneously, not all packets are sent over the shortest path, and so the average
delay will be slightly higher. On the other hand, since AODV relies on just one
path, delays can become very bad when this path becomes inefficient or invalid.
This is especially likely to happen in difficult scenarios, with longer paths, lower
node density or higher mobility, rather than in the dense and relatively easy base
scenario. Delivering packets with low variability and low maximum delay is an
important factor in QoS routing.
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5 Conclusions and future work

We have presented AntHocNet, a new ant-based algorithm for routing in MANETs.
It is a hybrid algorithm, combining reactive route setup with proactive route
probing and exploration. In simulation experiments we show that AntHocNet
can outperform AODV in terms of delivery ratio and average delay, especially in
difficult scenarios. Also in terms of delay jitter, AntHocNet shows better results.

In future work we want to improve the exploratory working of proactive
ants. By extending the concept of pheromone diffusion, more information about
possible path improvements will be available in the nodes, and this information
can guide proactive ants. This should lead to better results with less overhead.
Also, we would like to try out a virtual circuit based approach. This could result
in better control over paths, so that data delivery can be made more reliable.
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