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Abstract
Speech and spoken language cues offer a valuable means to
measure and model human behavior. Computational models
of speech behavior have the potential to support health care
through assistive technologies, informed intervention, and effi-
cient long-term monitoring. The Interspeech 2013 Autism Sub-
Challenge addresses two developmental disorders that manifest
in speech: autism spectrum disorders and specific language im-
pairment. We present classification results with an analysis on
the development set including a discussion of potential con-
founds in the data such as recording condition differences. We
hence propose study of features within these domains that may
inform realistic separability between groups as well as have the
potential to be used for behavioral intervention and monitoring.
We investigate template-based prosodic and formant modeling
as well as goodness of pronunciation modeling, reporting above
chance classification accuracies.
Index Terms: autism spectrum disorders, intonation, specific
language impairment, goodness of pronunciation

1. Introduction
Observational analysis of speech and spoken language is a cen-
tral facet of diagnostics and intervention in the behavior sci-
ences. Behavioral signal processing (BSP) aims to use compu-
tational methods to inform the assessment of human behavior,
with techniques potentially being applied to inform interven-
tions and to advanced human-machine interfaces. The three
components of BSP are: (1) acquisition of ecologically-valid
behavioral signal data; (2) analysis to create behavioral descrip-
tors; and (3) modeling of the mapping between behavioral de-
scriptors and behavioral constructs [1].

Autism spectrum disorders (ASD), also known as autism
spectrum conditions (ASC), are developmental disorders that
result in impaired social communication and reciprocity, as
well as restricted, repetitive, and/or stereotyped behavioral pat-
terns [2]. Social-affective impairments in ASD often present
in the form of impaired receptive and expressive prosody [3].
Specific language impairment, or SLI (historically also referred
to as developmental dyphasia or developmental aphasia), is a
developmental language disorder that occurs in the absensce of
co-morbid conditions such as hearing loss, neurological trauma,
or low non-verbal IQ [4]. SLI diagnosis is conducted using stan-
dardized language tests that index phonology, vocabulary, and
syntax. Links between ASD and SLI have been proposed, with
a population lying in the spectrum between the traditional defi-
nitions of the two disorders [5].

Signal processing and machine learning afford potential ad-
vances in supporting characterization and treatment of develop-
mental disorders like ASD and SLI. In autism, qualitative de-
scriptions of atypical prosody are widespread [6], but preva-

lence estimates of subjective prosodic abnormalities as well
as established objective measures are lacking. In SLI, speech
prosody has been understudied due to a view that intonation is
unlikely to be afffected by developmental speech and language
impairment. However, others have suggested that short-term
memory deficits in SLI will lead to prosodic difficulties; ad-
ditionally, some evidence does suggest impaired reception and
production of prosody in SLI [7].

The Autism Sub-Challenge of the Interspeech 2013 Com-
putational Paralinguistic Challenge asks participants to deter-
mine the type of pathology of a speaker (autistic, pervasive de-
velopmental disorder-not otherwise specified, SLI, or typically
developing) from the audio recordings and a suited classifica-
tion algorithm [8]. The data are from French-speaking partici-
pants completing an intonation imitation task, attempting to ac-
curately reproduce perceived lexical and prosodic information.
The prompts consist of various types of intonation. Computa-
tional tools that have been developed to automatically recognize
intonation [9] have also been used to study differential language
markers of pathology within this database [10]. The challenge
presents an opportunity to discern how separable these patholo-
gies may be along various dimensions such as intonation and
rate imitation (which involve both perception and production),
rhythm, voice quality, and pronunciation.

The first step in behavioral signal processing is to acquire
behavioral signals, while attempting to remit noise sources and
maintain ecological validity. It is particularly important to con-
sider and account for other factors of variability in audio, be-
yond the condition of interest, such as due to recording en-
vironment and channel conditions. Recording variations are
common in the study of developmental disorders due to aus-
tere constraints placed by ecological validity and the difficul-
ties of working with children; the data for the present investiga-
tion come from different environments: elementary/high school
classrooms (typically developing children) and two different
clinics (language impaired populations) [9]. Hence, it is im-
portant to account for known sources of variability when con-
ducting further steps in BSP, such as Ringeval et al. (2011) have
done by concentrating their study to intonation contours [9].

In this work, we propose a two-fold examination to inform
behavioral studies of language impaired children. The first goal
is to determine at what level the groups are divisible by this in-
tonation imitation task while considering only features, per the
posed challenge task, which are expected to be robust to the
particular acoustic variabilities between locations. In particular,
we propose the study of prosodic contours and pronunciation
quality. Second, we aim to achieve improved classification ac-
curacy using text-independent spectral features which should
capture both channel characteristics and voice quality cues.
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2. Methodology and Approach
2.1. ASR
We trained an ASR system for phone recognition using Sphinx-
3 [11] on the challenge training data set. Speech was parame-
terized by 13-dimensional MFCCs (plus ∆ and ∆∆). We use
context dependent models with a maximum 32 Gaussians per
state in the triphone models. A trigram back-off language model
(LM) was trained over French phones using SRILM [12]. The
phone error rate (PER) of the development set after Viterbi de-
coding was 36%. We then perform forced alignment of tran-
scriptions, which are needed for further modeling.

2.2. Prosodic and Formant Templates
The challenge consists of data from children performing a sen-
tence imitation task in which the intonation and modality dif-
fer. The children hear a recorded sentence, and reproduce it as
closely to what they perceive as they can– therefore, this is both
a receptive and expressive task. There are four types of into-
nation (descending, falling, floating, rising) and four types of
modalities (declarative, exclamatory, interogative, imperative).
The utterance was replayed if necessary. The recorded data
were post-processed to remove false-starts, repetitions, noises
from the environment, or speech not related to the task [9].

Both expressive and receptive prosodic impairments have
been indicated for children with ASD [13]; thus there is po-
tential to capture atypical prosodic imitation for children with
ASD in this task. Accurate recreation of the target statement
requires precise use of grammatical and pragmatic prosodic
cues. Researchers hypothesize that prosodic deficits attributed
to ASD are predominantly pragmatic (e.g., intonation) and af-
fective [14]. Additionally, a previous study on this data sug-
gested that children with ASD were less able to produce the
‘rising’ contours [10]. It is unclear whether such perceptual and
production difficulties exist for children with SLI, but this data
offers an opportunity to investigate potential abnormalities.

In order to quantify accurate prosodic imitation, we com-
pute prosodic templates for pitch, intensity, and duration across
phones (using forced-alignments), then compare feature con-
tours of each utterance to those templates. Prosodic contour
models have been successfully employed for first language
learning [15] and ASD research [16]. We also include formant
contour templates, since formants have been proposed for mod-
eling dysarthric speaker intelligibility [17]. We assume tem-
plates generated using the typically-developing (TD) speakers’
recordings in the training data represent optimal reproduction.

To illustrate and further motivate our approach, we generate
zero-crossing pitch templates for all four speaker groups for a
particular sentence (listed in the caption). The intonation-type
in Figure 1 is descending, where the stressed syllable son should
be more emphasized than the stressed syllable pa. We note an
ascent for the ‘Autism’ group in the pitch of the stressed sylla-
bles and that son is not stressed; the ’PDD-NOS’ group exhibits
equal emphasis; and the ‘SLI’ and ‘TD’ groups exhibit descend-
ing emphasis. Here, the ‘Autism’ intonation is least like ‘TD’.
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Figure 1: Normalized log-pitch zero-crossing contours of four
groups for the sentence ‘Cette maison ne me plait pas du tout.’.

Contours are constructed across phones (each consecutive
phone represents a point in time) with features computed within
the boundaries of the corresponding phones. Contours for log-
pitch, formants (F1-F3), and intensity are composed of second-
order polymial coefficients (curvature, slope, and zero-crossing)
fit to each phone; therefore we have three contours for each
listed feature. The duration contour is simply the duration of
each phone. In our experiments, templates are computed per-
sentence as the median feature value for each phone across all
considered utterances; only utterances from the TD speakers
in the train set are used. We compute two features between
template and contour: (1) correlation, as suggested by Duong et
al. [15]; and (2) mean absolute difference, or the L1-norm.

2.3. Pronunciation Quality
Articulatory difficulties may exist more so in certain language-
impaired groups than others, and thus we investigate pronun-
ciation quality. The hypothesis of apraxia of speech in ASD
has been disputed [18], and the prevalence of articulatory dif-
ficulties in SLI is not well-researched. However, we have ini-
tially observed a poorer pronunciation quality for children in
the language-impaired groups (see Section 2.4), and thus ex-
pect some divisibility to be observed through classification.
We consider variations of the goodness of pronunciation algo-
rithm [19], which is a standard for interactive education systems
because it offers a veritable measure of speech fluency.

The goodness of pronunciation (GOP) score [19] computes
the following average log-posterior probability of each refer-
ence phone p from the output of an ASR system:

GOP (p) = | logP (p|op)|/NF (p) (1)
where op is the acoustic observation sequence for phone p and
NF (p) are the corresponding number of frames. We com-
pute the exact posterior probability P (p|op) using the forward-
backward algorithm. We generated phone lattices using our
ASR system and then used lattice-tool from SRILM [12] to
do the forward-backward computation. lattice-tool generates
a confusion network consisting of a sequence of sets of com-
peting phones with their posterior probabilities, also known as
confusion bins. We then computed the GOP score using the
reference phone sequence; the GOP score sequence is used to
perform classification per sentence.

2.4. Spectral Energy and Smoothness Features
Some prior literature on speech style and quality in ASD [20,
21, 22] and our own observations implicate spectral cues to
offer important distinguishing cues across the various sub-
populations of interest. TD children seemed to utter sentences
more clearly, while some subjects with language-impairments
seemed to mumble and pronounce words with smaller into-
national variation (emphasis). In particular, we found that
recordings of typically developing children tend to have signif-
icantly higher mean utterance intensity values than those of the
language-impaired children (p < 0.01). Furthermore, we ob-
served that some children with language-impairments showed
irregularities in speech fluency resulting in noticeable discon-
tinuities in the spectrogram. However, it should be noted that
spectral characteristics may be also influenced by factors other
than the health conditions of interest of this challenge, such as
environmental and recording conditions.

To explore this further we selected a candidate set of spec-
tral features for a sub-study. Specifically, we chose to use mul-
tiresolution, long term spectral features that reflect dynamic
variations inspired by our previous studies on speech activity
detection. We extracted 360 features that capture spectrogram
energy levels and variations. Our features contain total signal
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energy, mean and relative energy changes over multiple time
scales and frequency bands, and the frequencies with the major-
ity of energy content. We used different energy representations
such as intensity and voicing probability. First-order derivatives
were calculated in order to account for the temporal dynamics of
the utterance and capture possible non-smooth transitions of the
spectrogram. We computed long-term functionals of these fea-
tures including: mean, median, upper and lower quantiles, and
differences from the quantile values, producing of functional-
value time-series. We included MFCC and RASTA-PLP [23]
features for a total of 386 features.

2.5. Experimental Setup
We performed classification using prosodic-template and good-
ness of pronunciation features with a support vector machine
(SVM) classifier [24]. Since the classification metric is un-
weighted average recall (UAR), the cost-function for each class
was weighted by the inverse posterior of the class in order to
optimize directly for UAR. Since these methods require the ut-
terance to be known, utterance recognition is developed on the
development set as an potential preliminary step to pathology
classification, achieving 85% accuracy (chance = 4%).

Our experimental setup for frame-level spectral energy fea-
tures consisted of a forward feature selection (FFS) approach
and a k-nearest neighbor (k-NN) classifier. Class priors were
tuned for UAR, and feature selection was optimized on the de-
velopment set. The per-frame class posteriors were cubed, then
averaged over all frames to obtain the utterance-level decision.
The cubical probability transformation was empirically found
to give better results, suggesting that more salient frames should
be given more weight in the final decision.

3. Results
Results on the development set are presented in Table 1 for the
2-class and 4-class tasks. The development set baseline results,
which are achieved using 6,373 global functionals from openS-
MILE [25], SVM, and synthetic sampling to balance classes,
are well above chance, especially for the 2-class task (92.8%).

The global prosodic functionals are those features com-
puted without phone-boundary information. Per-sentence
classification using total utterance duration achieves 2-class
unweighted-average-recall (UAR) of 61.4% and 4-class UAR
of 29.6%. Performance decreases with the number of phones in
a sentence (rs,4way=−0.51, p<0.01).

The template-based models incorporate knowledge of the
phone-boundaries from forced-alignment. Although features
are generated per-sentence, we pool features from all sentences
for classification. Performance with pitch-based templates is
significantly above chance. We obtain higher UAR with du-
ration templates than pitch templates or total duration classi-
fiers. Contrary to the trend reported for total duration, UAR
for duration templates increases with the number of phones in
a sentence (rs,4way=0.42, p<0.05). This suggests that hav-
ing longer utterances provides more information from which to
perform classification. Fused pitch and duration template-based
features obtained 70% 2-class UAR and 40% 4-class UAR, well
above chance, but also well below the baseline results.

Energy-based template models are examined, although po-
tential effects due to channel conditions are unknown. Formant
templates, which may relate to intelligibility, show performance
similar to that for pitch templates. Although intensity templates
obtain UAR only beaten by the duration template models, fu-
sion with the other templates models indicates that intensity
templates contain complementary information.

Our goodness of pronunciation features performed above

Table 1: Unweighted average recalls (%) with the proposed features.
2-class 4-class

Chance 50 25
Development Set Baseline 92.8 51.7
Total Duration (Per-Sentence) 61.4 29.6
Pitch Template (P) 64.1 32.0
Duration Template (D); P+D 69.9; 73.4 39.5; 38.0
Formants Template (F); P+D+F 62.4; 74.3 34.4; 33.7
Intensity Template (I); P+D+F+I 70.2; 79.7 34.9; 38.2
Goodness of Pron. (Per-Sentence) 68.1 29.9
Spectral Energy and Smoothness 92.7 62.4

chance in both tasks, suggesting we are capturing disparities in
pronunciation quality between groups. However, differences in
recording conditions may be captured in the acoustic models.

Results for the spectral energy features case study indi-
cate they indeed offer useful discrimination for the classification
problem as posed in the challenge, matching or exceeding the
baseline result. It should be noted that these features mostly re-
semble the baseline features, and that feature selection was per-
formed to optimize performance on the development set. How-
ever, this performance is reached with only five features for the
2-class task and seven features for the 4-class task, suggesting
the features are very informative. Nevertheless, it is unclear still
if, and how much, these spectral variations actually are due to
the differences in the health conditions (of interest) as against
other influencing factors, and as such these results should be
viewed with care. This raises a methodological red flag, and we
revisit this potential confound in further detail in Section 4.

Setting aside our investigation of template and pronuncia-
tion features, we competed in the challenge. We combined five
subsystems: (i) two based on linear-kernel SVMs with baseline
features; (ii) two using deep neural networks with baseline fea-
tures; and (iii) one based on our spectral energy features with
k-NN classification. We utilized SMOTE [26] upsampling and
a hiearchical classification structure: (i) Typ. vs. Atyp.; (ii)
ASD vs. SLI; and (iii) PDD-NOS vs. Autism. Late-fusion led
to 60.1% UAR on the test-set; further performing unsupervised
speaker-clustering as in [27] pushed accuracy to 60.2% UAR.

4. Variability in Acoustic Environments:
Effect on Signal Features

Empirical evidence of environmental and recording conditions
differences can indicate appropriate algorithmic choices and as-
sist in interpreting results. We observed, through informal lis-
tening, a common, distinct reverberation in the typically devel-
oping (TD) data compared to the language impaired (LI) data
recordings. Blind reverberation estimation is a non-trivial task,
and we were unsuccessful at directly quantifying this aspect of
room acoustics. Instead, we find differences in the long-term
average spectrum (LTAS) of the recordings.

The mean normalized LTAS of all sub-populations are plot-
ted over the frequencies 0-1600 Hz in Figure 2. Differences
between groups appear below 600 Hz, more so below 400 Hz.
All spectra have spikes of varying height near 100 Hz, possibly
an electric hum harmonic. The energy in the LI groups’ audio
recording spectra below 400 Hz is higher on average, and more
diverse than the mean TD LTAS. Furthermore, the typical pop-
ulation has noticeable, smoothed peaks around 230 Hz and 460
Hz, which do no appear in the other spectra. The differences are
further evidenced through a classification task. A single gaus-
sian was trained on the LTAS of audio recordings from each
group, using only the training set. Then, maximum-likelihood
decisions were made for each utterance in the development set.

Firstly, targeting the normalized energy bins of 0-400 Hz,
79.7% 2-way (below baseline) and 51.4% 4-way (ties base-
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Figure 2: Mean normalized LTAS of recordings of each group.

line) unweighted average recall (UAR) were obtained. ‘Autism’
and ‘PDD-NOS’ LTAS were very similar, and this may have
degraded UAR. In particular, binary classification between
‘Autism’ and ‘PDD-NOS’ groups was below chance, 44%,
whereas classification between ‘SLI’ and ‘Autism’ or ‘SLI’ and
‘PDD-NOS’ was above chance at 78% and 68%, respectively.
We also performed 4-way classification on the LTAS regions
below 400Hz using the audio determined to be silence by the
forced-alignment, reaching 41% UAR; however, many factors
relating to acoustic modeling and data post-processing may
contribute to this performance. Secondly, classification using
the bins of 400-8000 Hz was 34% 4-way UAR, below perfor-
mance with the low-frequency energy.

Since all groups spoke the same utterances, long-term spec-
tral characteristics could reflect room acoustics and voice qual-
ity characteristics, as opposed to lexical content. Given that
audio file length is short, ranging from 170 ms to 7.2 s (mean
= 1.4 s), accurate voice quality features should be difficult to
obtain reliably with a global method like LTAS. Additionally
considering the classification performance using low-frequency
energies and detected silence regions, we argue that the LTAS
are mainly reflective of room acoustics.

Another indication of potential channel effects comes from
the baseline classification system. Six of the 10 features from
the training and development sets most correlated with typi-
cal vs. atypical labels overlap– this is astounding given the
large, inter-correlated feature set. The six features comprise
four flatness functionals on spectral energy-based features (en-
ergy, delta-energy, loudness, spectral flux) and two first quar-
tiles of spectral energy-based features (loudness, spectral flux).
It is clear that these features will be affected by differences in
recording conditions. Although the precise cause and scope
of channel effects is unknown, we suggest that variations in
recording environments do exist and will influence the results,
and hence adjust interpretation of our study in accordance.

5. Discussion of Results
One of the most important questions to consider is, “What kind
of performance is expected based on prior literature and experi-
mentation?”. Prosodic difficulties are prevalent in children with
autism spectrum disorders (ASD), but there has been no such
finding in children with specific language impairment (SLI).
There is also much debate as to whether children with ASD have
articulatory issues. While there is some support for voice qual-
ity differences in ASD [20, 21], accurate measurement of atyp-
ical voice quality from a single, short utterance is challenging–
especially when considering the potential population prevalence
of atypical voice quality. Therefore, it is reasonable to expect
overall classification accuracy to be well below perfect.

The spectral-energy and smoothness features match the de-
velopment set baseline in 2-class accuracy (UAR), but exceed it
in 4-class accuracy. Given the high performance of these spec-
tral energy features that likely have prominent channel effects
due to multiple recording locations (Section 4), we suspect that

both our spectral-energy and smoothness features and the base-
line features are corrupted by channel effects.

Under the hypothesis of channel effects, we should consider
which features are most reliable. However, it is important to
note that we are uncertain of the extent of recording artifacts.
For example, if there are non-linear channel effects, the signals
may be affected in both time and frequency.

Most promising, we find that pitch and duration template
models combine for accuracies well above chance. Pitch-
tracking and forced-alignment can be affected by channel con-
ditions, but we propose that these features are the most robust
to channel effects. While the performance is well below perfect
classification (Table 1), it is uncertain how close these numbers
are to optimal separability in this task design.

We expected the energy-based template models (i.e., for-
mants and intensity) to potentially have significant channel ef-
fects. Formant tracking may have been effected by different
acoustic conditions, while intensity is an energy-based feature
with many potential confounds described in Section 4. The per-
formance of formant contours suggest there is not major chan-
nel effects, indicating we may be capturing some intelligibility
factor between groups. In the particular case of intensity con-
tours we found the L1 distance to be discriminative while the
correlation feature was not, suggesting that variance in intensity
contours was most informative. Therefore, we are uncertain if
the variance was due to group differences or feature corruption.

Our implementation of goodness of pronunciation achieved
above chance accuracies, indicating some disparities in pronun-
ciation quality are captured between groups. We are uncertain
of the potential effects in the acoustic models, especially con-
sidering some of the data had a reverberant quality.

We also proposed that by investigating features that may be
robust to channel effects, this study may inform future research
in speech of children with pervasive developmental disorders.
We observed that pitch and duration template models achieved
UAR well above chance, indicating that some differences exist
between the sub-populations in this imitation task. The confu-
sion matrix for these features tentatively indicates that TD and
SLI were most differentiable from other groups, however such
conclusions from classification confusion matrices are prone to
many influencing factors. We do not see the trends to indicate
the Autism group is generally as different from the TD group
as shown in Figure 1. Therefore, the performance differences
between populations are unclear from our study.

6. Conclusion and Future Work
We presented classification results on the development set using
a variety of methods motivated by the task design. We achieved
above chance accuracies by using prosodic template modeling
and pronunciation quality modeling. The highest accuracy was
obtained using spectral amplitude features, matching or exceed-
ing the development set baseline. Investigation of the chan-
nel recording conditions suggested differences in recordings be-
tween groups recorded at different locations. Coupled with the
surprisingly high classification accuracy of the spectral-energy
methods, we propose that energy-based methods are not (di-
rectly) suitable for this challenge data set.

We hence propose study of features within these domains
that may inform realistic separability between groups as well
as have the potential to be used for behavioral intervention and
monitoring. Further study will investigate which sentences pro-
vide the highest distinction between groups.
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