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Abstract

In this paper we focus on the problem in optical networks in which selfish or non-cooperative users can
configure their communications so as to minimize the cost paid for the service. Such a cost depends on the
personal configuration and on the one of the other users. During a series of time steps, at each of which only one
user can move to a better configuration, a Nash equilibrium iseventually reached, that is a situation in which no
user can select an improved solution and thus is interested in further modifications. In such a setting, the network
provider must determine suitable payment functions covering the network costs that induce Nash equilibria with
the best possible global performances. We first present results in the classical scenario in which we are interested
in optimizing the optical spectrum, that is in minimizing the total number of used wavelengths. We then outline
possible settings in which the approach can be eventually applied to minimize the cost of optical routing due to
specific hardware components such as ADMs or filters, that aretypical examples of expensive elements whose
price can be shared among different lightpaths under specific constraints.

I. I NTRODUCTION

All-optical networks are widely considered to be the futureof the state of the art communication networks due
to the possibility of managing thousand of users, covering wide areas and providing a bandwidth which is orders
of magnitude faster than traditional networks. Such high performances elect optical as the leading technology in
many applications such as video conferencing, scientific visualization and high-speed distributed computing. The
key to high speeds in optical networks is to maintain the signal in optical form, thereby avoiding the prohibitive
overhead of conversion to and from the electrical form at theintermediate nodes. The high bandwidth provided
by optical networks can be partitioned by means of thewavelength-division multiplexing(WDM) [6] in order
to obtain a large number of parallel high speed channels along a same optical fiber (see [2], [12] for a survey
of the main related results).

We study routing problems in optical networks from a non-cooperative point of view, i.e. analyzing a game
in which selfish agents want to maximize their benefit. In particular, we are interested in Nash equilibria, i.e.
solutions of the games in which no agent gains unilaterally changing its strategy, and, given a social function
measuring the social goodness of a solution, in bounding theprice of anarchyor coordination ratio[17], [18],
[22], i.e. the ratio between the social cost of the worst Nashequilibrium and the social optimum. Several games
have been investigated in the literature [9], [10], [19], [24] and shown to possess pure Nash equilibria or to
converge to a pure Nash equilibrium independently from their starting state.

In this paper, we first present results concerning the scenario considered in [4] and [3], in which a service
provider has to satisfy a given set of point-to-point communication requests, charging each of them a cost
depending on its wavelength and on the wavelengths of the other requests met along its path in the network.
Each request is issued by a non-cooperative agent who is interested only in the minimization of his own cost.
Under this assumption any request is willing to be rerouted each time it may be served by a cheaper path in the
network and the evolution of the network can be modelled as a multi-player game. A routing solution, that is an
assignment of paths and colors to the requests, in which no request can lower its cost by choosing a different
strategy is a Nash equilibrium.

We then outline other possible settings in which we are interested in the minimization of the network hardware
cost due to routing elements. More precisely, we address twotypes of expensive hardware components: the Add-
Drop-Multiplexer (ADMs), needed at the endpoints of optical communication paths, and the pass-bandfilters,
capable of directingwavebandsor intervals of contiguous wavelengths. The cost of such hardware components
is equally shared among the agents using them, and a Nash equilibrium is a solution in which no agent can
decrease its payment by adopting a different routing strategy.

The paper is organized as follows. In the next section we givethe basic definitions and notation. In Section III
we show the above mentioned results concerning the scenarioin which the objective is to minimize the number of
used wavelengths. In Section IV we present the other above mentioned settings coping with the minimization of
hardware components. Finally, in Section V, we give some conclusive remarks and discuss some open questions.
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II. T HE MODEL

We model an optical network as an undirected graphG = (V, E) where nodes inV represent sites and
undirected edges inE bidirectional optical fiber links between the sites.

Given any two nodesx, y ∈ V , we denote a communication request betweenx and y as {x, y}. A
communication instance inG is a multiset of requestsI eventually containing multiple requests between the
same pairs of nodes. A path systemP for an instanceI in G is a set of paths containing a distinguished simple
connecting path inG for each request inI. A solutionR(G, I) for an instanceI in G, R for short, is a pair
(PR, cR) in which PR is a path system forI andcR : I → W (with W = IN+ being the set of wavelengths)
is a function associating a wavelength or color to each request in I. A point-to-point communication requires
to establish a uniquely colored path between the two nodes whose color is different from the colors of all the
other paths sharing one of its edges.

Let ωR(G, I) be the number of colors used by the routingR for I in G andω(G, I) = minR ωR(G, I) be
the minimum number of colors that can be used by any routing for I.

In order to model our non-cooperative environment, we assume that each communication request{x, y} ∈ I

is issued and handled by an agentα that for the sake of simplicity we consider as coincident with the request,
that is α = {x, y}. A payment functionpriceR : I → IR+ is a function associating to each agentα ∈ I the
price he has to pay to the network provider in order to obtain the asked service if the routingR is adopted.
Let price denote the collection of the functionspriceR for all the possible routingsR. In the first considered
scenario the payment function is properly chosen by the network provider with the purpose of optimizing the
optical spectrum, while in the other ones (minimization of the number of hardware components) it is given by
equally sharing the costs of the used ADMs or filters.

A routing R is at Nash equilibrium if and only if for any agentα and routingR′ differing from R only for
the path and/or the color associated toα, it holdspriceR(α) ≤ priceR′(α).

A gameG = (G, I, price) among the|I| agents belonging toI on the networkG induced by the collection of
pricing functionsprice hasPα ×W as the set of strategies for each agentα, wherePα is the set of connecting
paths for agentα. Denoted asN the set of the routings at Nash equilibrium, the coordination ratio or price
of anarchyρ of the gameG is defined as the ratio between the social cost of the worst Nash equilibrium and
the social optimum. For instance, in the classical scenarioin which the social function measures the number of
used wavelengths,ρ(G) = supR∈N

ωR(G,I)
ω(G,I) .

A gameG is said to be convergent if, starting from a generic configuration, and letting at each stage an
agent to move to a better configuration, a Nash equilibrium isalways reached. Notice that, conversely, a non
convergent game might admit a Nash equilibrium.

III. O PTICAL SPECTRUM M INIMIZATION

In order to represent the increasing cost incurred by the network provider to implement a routing using up to
a given wavelength and to give to our payment functions a higher degree of generality, we assume the existence
of a non-decreasing functionf : W → IR+ associating a (positive) cost to every color.

Let the functionσR : E → 2W associating to every edgee ∈ E the set of the wavelengths currently used
alonge be the edge state of the networkG induced by a routingR for I. We first propose suitable cost functions
defined on the edges that will be used as building blocks for the definition of the agents’ payment functions:

• col(e, α) = f(c(α)): the amount charged toα on the edgee is the cost, according tof , of the color he
uses.

• max(e, α) = maxk∈σR(e) f(k): the amount charged toα on the edgee is the cost of the highest color
used alonge (considering also the other agents).

• sum(e, α) =
∑

k∈σR(e) f(k): the amount charged toα on the edgee is the sum of the costs of all the
colors used alonge.

• avmax(e, α) = maxk∈σR(e)
f(k)

|σR(e)| : the amount charged toα on the edgee is the cost of the highest color
used alonge, averaged or shared among all the agents traversinge.

• avsum(e, α) =
∑

k∈σR(e)
f(k)

|σR(e)| : the amount charged toα on the edgee is the sum of the costs of all
the colors used alonge, averaged on all the agents traversinge.

Starting from any edge cost functioncost, it is possible to define the following payment functions:

• max − cost(α) = maxe∈p(α) cost(e, α): the price asked toα is the maximum cost, according tocost, of
an edge used byα.

• sum− cost(α) =
∑

e∈p(α) cost(e, α): the price asked toα is the sum of the costs of the edges used byα.



3

The combination of the introduced edge cost functions with the above two strategies, that is maximization or
summation, gives rise to ten possible payment functions. Inall the cases, since the functionf is non decreasing,
agents have an incentive to choose small colors so as to possibly minimize the overall number of used colors.

Unfortunately, the results of [4], [3] show that these payment functions either are not convergent or yield
the worst possible price of anarchy, i.e. they converge to anequilibrium in which each agent uses a different
wavelength. More precisely, it is possible to prove the following theorem.

Theorem 1:The functionsmax− col, max−max, sum− col andmax− sum are convergent, but induce
gamesG = (G, I, price) with price of anarchyρ = |I|

w(G,I) ; the functionsum − sum is in general non
convergent, even if the existence of Nash equilibria in the corresponding games is an open question. Finally, no
Nash equilibria exist for the games induced by the payment functions

1) sum − max when the pricing functionf is unbounded;
2) max − avmax andsum − avmax whenf is such that∃k : f(k) > 2f(1);
3) max − avsum andsum − avsum when thef is such that∃k : f(k) > f(1), that isf is non constant.
Since the results obtained for generic networks are not fully satisfactory, it is worth considering networks

having specific topologies, like chains (nodes connected along a line), rings (cycles of nodes) and trees.
Let us first consider the payment functionprice(α) = c(α); it induces a game in which a routingR at Nash

equilibrium can be seen as a solution of the classicalFirst-Fit algorithm for the all-optical routing problem that
assigns to each request the smallest available color. In particular, such a solution is the one returned byFirst-Fit
when requests are considered in non decreasing order of color in R, which uses at most25.72ω(G, I) colors
in chains [16] andO((log |I|)ω(G, I)) ones in trees [1]. Concerning rings, by properly inducing the agents not
to use a distinguished chosen edge, the First-Fit argumentscan be applied on the resulting induced chain. Thus,
is possible to prove the following theorem.

Theorem 2:There exist payment functions inducing converging games with a price of anarchy25.72 in
chains,51.44 in rings andO(log |I|) in trees, all converging inωR(G, I)2 steps from any initial routingR.

Finally, it is possible to improve the above results for rings and chains by forcing the agents to simulate the
behavior of the online algorithm proposed by Slusarek [23].In particular, the following theorem holds.

Theorem 3:There exists payment functions inducing a converging gameshaving price of anarchy6 in rings
and3 in chains.

IV. H ARDWARE COMPONENTSM INIMIZATION

When the various parameters comprising the switching mechanism in optical networks became clearer, the
focus of studies shifted, and today a large portion of research concentrates with the total hardware cost. In this
section we present two scenarios according to the specifically addressed hardware components.

A. ADMs Components

Add-Drop-Multiplexers (ADMs) [13], [8], [7] are costly hardware components that convert the signal from
optical to electronic form and viceversa. The key point hereis that each lightpath uses two ADMs, one at each
endpoint. If two adjacent (having a common endpoint) lightpaths are assigned the same wavelength, then they
can use the same ADM. An ADM may be shared by at most two lightpaths.

In studying the ADMs cost, the issue ofgrooming [14] became central. This problem stems from the fact
that the network usually supports traffic that is at rates which are lower than the full wavelength capacity, and
therefore the network operator has to be able to put together(= groom) low-capacity demands into the high
capacity fibers. In graph-theoretical terms, this can viewed as assigning colors to the lightpaths so that at most
g of them (g being thegrooming factor) can share one edge. Each lightpath still uses two ADMs, one at each
endpoint, butg lightpaths with the same wavelength terminating at a given node through the same incoming
edge can all use the same ADM (thus savingg− 1 ADMs). Moreover, all the same colored paths ending at the
node through two given incident edges can share the same ADM.

In the game induced by this scenario, each agent has to pay forthe ADMs it uses, eventually equally sharing
their cost if they are also used by other agents. The social cost is given by the total number of ADMs used in
the network.

B. Filters Components

Filters [11], [21] are costly hardware components that are located in the sites of the network in order to
allow or not allow the forwarding of a signal with a particular wavelength through one of the other fiber link
connected to the site.
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In each site of the network there is one set of filters at each incoming fiber. Each filter has an interval of
wavelengths or colors (waveband) and adestination edgeassociated to it. Since filters are ofband-passtype,
when a filter is reached by a signal, it forwards the signal through its destination edge if and only if the color
of the signal is inside the interval of colors associated with the filter.

Similarly to the precedent scenario, in the induced game, each agent has to pay for the filters it uses, eventually
equally sharing their cost if they are also used by other agents. The social cost is given by the total number of
filters used in the network.

V. CONCLUSION AND OPEN PROBLEMS

We have described different scenarios for game theoreticalissues in optical networks. For the optical spectrum
minimization scenario we have presented results about the convergence to Nash equilibria and the price of
anarchy. For the hardware cost minimization scenarios, we have outlined worth investigating issues which are
current object of our research.

Moreover, observe that payments must be computed by agents in order to establish their costs in a strongly
distributed non-cooperative environment. Thus, a critical issue is the one of determining the achievable price
of anarchy according to the level information they have about the network, that is to the pricing functions they
can evaluate. In fact, the knowledge about the current stateof the network can be limited by technological
constraints as well as privacy policies carried out by the service provider or simply enforced by the law, so that
not all pricing mechanisms might be feasible.

Finally, recent works [20], [15], [5] focused on the speed ofconvergence to Nash equilibria and on the social
cost obtained after a limited number of selfish moves, not necessary yielding a Nash equilibrium. It would be
interesting to pursue this research direction also with respect to the optical scenarios presented in this paper.
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[7] G. Călinescu, Ophir Frieder, and Peng-Jun Wan. Minimizing electronic line terminals for automatic ring protection in general wdm
optical networks.IEEE Journal of Selected Area on Communications, 20(1):183–189, Jan 2002.

[8] L. Epstein and A. Levin. Better bounds for minimizing sonet adms. In2nd Workshop on Approximation and Online Algorithms,
Bergen, Norway, September 2004.

[9] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou,and S. Shenker. On a network creation game. InProceedings of the 22nd
ACM Symposium on Principles of Distributed Computing (PODC), pages 347–351, 2003.

[10] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure equilibria. InProceedings of the 36th ACM Symposium
on Theory of Computing (STOC), pages 604–612. ACM Press, 2004.

[11] M. Flammini, A. Navarra, and A. Proskurowski. On routing of wavebands for all-to-all communications in all-optical paths and cycles.
Theor. Comput. Sci., 333(3):401–413, 2005.

[12] L. Gargano and U. Vaccaro.“Routing in All–Optical Networks: Algorithmic and Graph–Theoretic Problems”in: Numbers, Information
and Complexity. Kluwer Academic, 2000.

[13] O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a wdm ring to minimize cost of embedded sonet rings. InINFOCOM’98,
Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies, pages 69–77, 1998.

[14] O. Gerstel, R. Ramaswami, and G. Sasaki. Cost effectivetraffic grooming in wdm rings. InINFOCOM’98, Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies, 1998.

[15] M. X. Goemans, V. S. Mirrokni, and A. Vetta. Sink equilibria and convergence. InFOCS, pages 142–154. IEEE Computer Society,
2005.

[16] H.A. Kierstead and J. Qin. Coloring interval graphs with first-fit. Discrete Mathematics, 144:47–57, 1995.
[17] E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th Annual Symposium on Theoretical Aspects

of Computer Science (STACS), volume 1563 ofLNCS, pages 387–396, 1999.
[18] M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proceedings of the 33rd Annual ACM Symposium on the Theory of

Computing (STOC), pages 510–519, 2001.
[19] I. Milchtaich. Congestion games with player-specific payoff functions.Games and Economic Behavior, 13:111–124, 1996.
[20] V. S. Mirrokni and A. Vetta. Convergence issues in competitive games. InAPPROX-RANDOM, volume 3122 ofLecture Notes in

Computer Science, pages 183–194. Springer, 2004.
[21] R. Ramaswami. Multi-wavelength lightwave networks for computer communication.IEEE Communications Magazine, 31(2):78–88,

1993.
[22] T. Roughgarden and E. Tardos. How bad is selfish routing?Journal of ACM, 49(2):236–259, 2002.
[23] M. Slusarek. Optimal on-line coloring of circular arc graphs. Informatique Théorique et Applications, 29(5):423–429, 1995.
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