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Abstract

In this paper we focus on the problem in optical networks inciselfish or non-cooperative users can
configure their communications so as to minimize the costl pai the service. Such a cost depends on the
personal configuration and on the one of the other usersnBuariseries of time steps, at each of which only one
user can move to a better configuration, a Nash equilibriurvéntually reached, that is a situation in which no
user can select an improved solution and thus is interestégther modifications. In such a setting, the network
provider must determine suitable payment functions cogethe network costs that induce Nash equilibria with
the best possible global performances. We first presenlttsaaithe classical scenario in which we are interested
in optimizing the optical spectrum, that is in minimizingetkotal number of used wavelengths. We then outline
possible settings in which the approach can be eventuafilieabto minimize the cost of optical routing due to
specific hardware components such as ADMs or filters, thatygieal examples of expensive elements whose
price can be shared among different lightpaths under spexmifistraints.

I. INTRODUCTION

All-optical networks are widely considered to be the futaf¢he state of the art communication networks due
to the possibility of managing thousand of users, coveriidpvareas and providing a bandwidth which is orders
of magnitude faster than traditional networks. Such higtiggmances elect optical as the leading technology in
many applications such as video conferencing, scientifigalization and high-speed distributed computing. The
key to high speeds in optical networks is to maintain the aigm optical form, thereby avoiding the prohibitive
overhead of conversion to and from the electrical form atitiermediate nodes. The high bandwidth provided
by optical networks can be partitioned by means of Wevelength-division multiplexin@VDM) [6] in order
to obtain a large number of parallel high speed channelgyadosame optical fiber (see [2], [12] for a survey
of the main related results).

We study routing problems in optical networks from a nongmrative point of view, i.e. analyzing a game
in which selfish agents want to maximize their benefit. Inipalar, we are interested in Nash equilibria, i.e.
solutions of the games in which no agent gains unilaterdignging its strategy, and, given a social function
measuring the social goodness of a solution, in boundingtioe of anarchyor coordination ratio[17], [18],
[22], i.e. the ratio between the social cost of the worst Nehilibrium and the social optimum. Several games
have been investigated in the literature [9], [10], [19]4][2nd shown to possess pure Nash equilibria or to
converge to a pure Nash equilibrium independently fromrth&irting state.

In this paper, we first present results concerning the seewcansidered in [4] and [3], in which a service
provider has to satisfy a given set of point-to-point comination requests, charging each of them a cost
depending on its wavelength and on the wavelengths of ther edguests met along its path in the network.
Each request is issued by a non-cooperative agent who ieatéel only in the minimization of his own cost.
Under this assumption any request is willing to be reroutshdime it may be served by a cheaper path in the
network and the evolution of the network can be modelled asiléi-player game. A routing solution, that is an
assignment of paths and colors to the requests, in which aueest can lower its cost by choosing a different
strategy is a Nash equilibrium.

We then outline other possible settings in which we are @sied in the minimization of the network hardware
cost due to routing elements. More precisely, we addressytpes of expensive hardware components: the Add-
Drop-Multiplexer ADMs), needed at the endpoints of optical communication pathd,the pass-banfilters,
capable of directingvaveband®r intervals of contiguous wavelengths. The cost of suclkilare components
is equally shared among the agents using them, and a Naslibequi is a solution in which no agent can
decrease its payment by adopting a different routing giyate

The paper is organized as follows. In the next section we thigebasic definitions and notation. In Section IlI
we show the above mentioned results concerning the scanawioich the objective is to minimize the number of
used wavelengths. In Section 1V we present the other abowvgioned settings coping with the minimization of
hardware components. Finally, in Section V, we give somelmive remarks and discuss some open questions.
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Il. THE MODEL

We model an optical network as an undirected gréaph= (V, E) where nodes inV/ represent sites and
undirected edges ifv bidirectional optical fiber links between the sites.

Given any two nodest,y € V, we denote a communication request betweemand y as {z,y}. A
communication instance i is a multiset of request$ eventually containing multiple requests between the
same pairs of nodes. A path systénhfor an instancd in G is a set of paths containing a distinguished simple
connecting path irG for each request id. A solutionR(G, I) for an instancel in G, R for short, is a pair
(Pr,cr) in which Py is a path system fof andcy : I — W (with W = IN*' being the set of wavelengths)
is a function associating a wavelength or color to each rgiguel. A point-to-point communication requires
to establish a uniquely colored path between the two nodesevholor is different from the colors of all the
other paths sharing one of its edges.

Let wg (G, I) be the number of colors used by the routiRgfor I in G andw(G, I) = ming wg(G,I) be
the minimum number of colors that can be used by any routing fo

In order to model our non-cooperative environment, we asstivat each communication requést y} € I
is issued and handled by an agenthat for the sake of simplicity we consider as coincidentwiite request,
that isa = {x,y}. A payment functiorpricer : I — IR" is a function associating to each agent I the
price he has to pay to the network provider in order to obth& dsked service if the routing is adopted.
Let price denote the collection of the functiopsicer for all the possible routing®. In the first considered
scenario the payment function is properly chosen by the orétywrovider with the purpose of optimizing the
optical spectrum, while in the other ones (minimization leé hnumber of hardware components) it is given by
equally sharing the costs of the used ADMs or filters.

A routing R is at Nash equilibrium if and only if for any agentand routingR’ differing from R only for
the path and/or the color associatedntoit holds pricer (o) < pricer: ().

A gameg = (G, I, price) among thgI| agents belonging td on the networkG induced by the collection of
pricing functionsprice hasP, x W as the set of strategies for each agentvhereP, is the set of connecting
paths for agentv. Denoted asV the set of the routings at Nash equilibrium, the coordimatiatio or price
of anarchyp of the gameg is defined as the ratio between the social cost of the worsh Kgsilibrium and
the social optimum. For instance, in the classical scenanghich the social function measures the number of
used wavelengthsy(G) = supren f((GGI?.

A gameg is said to be convergent if, starting from a generic confijona and letting at each stage an
agent to move to a better configuration, a Nash equilibriurmhigays reached. Notice that, conversely, a non
convergent game might admit a Nash equilibrium.

IIl. OPTICAL SPECTRUMMINIMIZATION

In order to represent the increasing cost incurred by thearé&tprovider to implement a routing using up to
a given wavelength and to give to our payment functions adriglegree of generality, we assume the existence
of a non-decreasing functiofi: W — IR" associating a (positive) cost to every color.

Let the functionor : E — 2" associating to every edgec E the set of the wavelengths currently used
alonge be the edge state of the netwdrkinduced by a routingR for 1. We first propose suitable cost functions
defined on the edges that will be used as building blocks ferdfinition of the agents’ payment functions:

e col(e,a) = f(c(«)): the amount charged ta on the edge: is the cost, according tg@, of the color he

uses.

e maz(e,a) = Maxyeqr () f(k): the amount charged ta on the edge: is the cost of the highest color

used along: (considering also the other agents).

o sum(e, ) = 3 e, f(K): the amount charged ta on the edge is the sum of the costs of all the

colors used along.

e avmaz(e,®) = MaAXpecor (e) : the amount charged @ on the edge is the cost of the highest color

used along:, averaged or shared among all the agents travegsing

o avsum(e,a) =3 o (o) Tor(ol L) &+ the amount charged ta on the edge: is the sum of the costs of all

the colors used along, averaged on all the agents traversing

Starting from any edge cost functianst, it is possible to define the following payment functions:

e mar — cost(a) = max.cp(q) cost(e,a): the price asked tav is the maximum cost, according test, of
an edge used by.
o sum—cost(a) = ¢, cost(e,a): the price asked te is the sum of the costs of the edges usedby



The combination of the introduced edge cost functions withdbove two strategies, that is maximization or
summation, gives rise to ten possible payment functionalllthe cases, since the functigns non decreasing,
agents have an incentive to choose small colors so as tobpossinimize the overall number of used colors.

Unfortunately, the results of [4], [3] show that these papininctions either are not convergent or yield
the worst possible price of anarchy, i.e. they converge te@uilibrium in which each agent uses a different
wavelength. More precisely, it is possible to prove thedwihg theorem.

Theorem 1:The functionsmaz — col, max — mazx, sum — col andmax — sum are convergent, but induce
gamesG = (G, I,price) with price of anarchyp = % the functionsum — sum is in general non
convergent, even if the existence of Nash equilibria in teasponding games is an open question. Finally, no
Nash equilibria exist for the games induced by the paymemttfons

1) sum — max when the pricing functiory is unbounded;

2) max — avmaz and sum — avmaz When f is such thatik : f(k) > 2f(1);

3) max — avsum and sum — avsum when thef is such thaBk : f(k) > f(1), that is f is non constant.

Since the results obtained for generic networks are noy &alisfactory, it is worth considering networks
having specific topologies, like chains (nodes connectedgah line), rings (cycles of nodes) and trees.

Let us first consider the payment functipnice(«) = ¢(«); it induces a game in which a routirfg at Nash
equilibrium can be seen as a solution of the clasdtirat-Fit algorithm for the all-optical routing problem that
assigns to each request the smallest available color. ticplar, such a solution is the one returnedHisst-Fit
when requests are considered in non decreasing order af ioof®, which uses at most5.72w (G, I) colors
in chains [16] andD((log |I|)w(G, I)) ones in trees [1]. Concerning rings, by properly inducing digents not
to use a distinguished chosen edge, the First-Fit arguncantbe applied on the resulting induced chain. Thus,
is possible to prove the following theorem.

Theorem 2:There exist payment functions inducing converging games i price of anarchy5.72 in
chains,51.44 in rings andO(log |I|) in trees, all converging iz (G, I)? steps from any initial routingR.

Finally, it is possible to improve the above results for erand chains by forcing the agents to simulate the
behavior of the online algorithm proposed by Slusarek [B8]particular, the following theorem holds.

Theorem 3:There exists payment functions inducing a converging gamagsg price of anarchg in rings
and3 in chains.

IV. HARDWARE COMPONENTSMINIMIZATION

When the various parameters comprising the switching neshmin optical networks became clearer, the
focus of studies shifted, and today a large portion of reteaoncentrates with the total hardware cost. In this
section we present two scenarios according to the spedbffiadtressed hardware components.

A. ADMs Components

Add-Drop-Multiplexers (ADMs) [13], [8], [7] are costly heware components that convert the signal from
optical to electronic form and viceversa. The key point hisréhat each lightpath uses two ADMs, one at each
endpoint. If two adjacent (having a common endpoint) ligliy are assigned the same wavelength, then they
can use the same ADM. An ADM may be shared by at most two lightpa

In studying the ADMs cost, the issue gfooming[14] became central. This problem stems from the fact
that the network usually supports traffic that is at ratesciidre lower than the full wavelength capacity, and
therefore the network operator has to be able to put togéthgroom) low-capacity demands into the high
capacity fibers. In graph-theoretical terms, this can vibag assigning colors to the lightpaths so that at most
g of them (g being thegrooming factoy can share one edge. Each lightpath still uses two ADMs, oraeh
endpoint, butg lightpaths with the same wavelength terminating at a givedenthrough the same incoming
edge can all use the same ADM (thus saving 1 ADMs). Moreover, all the same colored paths ending at the
node through two given incident edges can share the same ADM.

In the game induced by this scenario, each agent has to palggf@kDMs it uses, eventually equally sharing
their cost if they are also used by other agents. The socsilisaiven by the total number of ADMs used in
the network.

B. Filters Components

Filters [11], [21] are costly hardware components that aeated in the sites of the network in order to
allow or not allow the forwarding of a signal with a particulaavelength through one of the other fiber link
connected to the site.



In each site of the network there is one set of filters at eacbniing fiber. Each filter has an interval of
wavelengths or colorsMaveband and adestination edgeassociated to it. Since filters are lodnd-pasgype,
when a filter is reached by a signal, it forwards the signatubh its destination edge if and only if the color
of the signal is inside the interval of colors associatechilite filter.

Similarly to the precedent scenario, in the induced ganth agent has to pay for the filters it uses, eventually
equally sharing their cost if they are also used by other ®gdie social cost is given by the total number of
filters used in the network.

V. CONCLUSION AND OPEN PROBLEMS

We have described different scenarios for game theorasisaes in optical networks. For the optical spectrum
minimization scenario we have presented results about dineecgence to Nash equilibria and the price of
anarchy. For the hardware cost minimization scenarios, ave loutlined worth investigating issues which are
current object of our research.

Moreover, observe that payments must be computed by agewntslér to establish their costs in a strongly
distributed non-cooperative environment. Thus, a clitissue is the one of determining the achievable price
of anarchy according to the level information they have altloe network, that is to the pricing functions they
can evaluate. In fact, the knowledge about the current sthtbe network can be limited by technological
constraints as well as privacy policies carried out by theise provider or simply enforced by the law, so that
not all pricing mechanisms might be feasible.

Finally, recent works [20], [15], [5] focused on the speedtofivergence to Nash equilibria and on the social
cost obtained after a limited number of selfish moves, noessary yielding a Nash equilibrium. It would be
interesting to pursue this research direction also witlpeesto the optical scenarios presented in this paper.
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