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ABSTRACT

An overview is given of the role of the sparseness constraint in
signal processing problems. It is shown that this is a fundamen-
tal problem deserving of attention. This is illustrated by describ-
ing several applications where sparseness of solution is desired.
Lastly, a review is given of the algorithms that are currently avail-
able for computing sparse solutions.

1. INTRODUCTION

In many signal processing applications, algorithms based on the`2
norm criteria have found wide spread use. Least squares problem
wherein thè 2 norm of the residual error,kAx�bk22, is minimized
are common place. In rank deficient least-squares it is popular to
choose the smallest 2-norm solution of all feasible solutions. In
signal representation and linear inverse problems involving under-
determined system of equations, the non-uniqueness is often re-
solved by choosing the minimum 2-norm solution. The`2 norm
results in a optimization framework that is attractive both theoret-
ically and computationally. Consequently, this has been a topic
of much academic interest with many signal processing curricula
including a detailed treatment of this subject.

In this paper, we discuss an alternate paradigm for develop-
ing algorithms which also has wide application potential. This
is the incorporation of the sparseness constraint on signal pro-
cessing algorithm development. Sparseness constraint refers to
the requirement that the vector being sought or optimized must
have as few non-zero entries as possible. Depending on the appli-
cation, sparseness constraint can be imposed on the residual be-
ing minimized, or on the solution being computed. Sparseness
constraint on the residual has been explored in many applications
e.g. seismic deconvolution [1], speech modeling [2], etc. This
is often achieved by using an optimization function such as the
`p norm, (1 � p � 2), or by using statistical characterization
of the residue that is compatible with the sparseness assumption.
The under-determined problem has received much attention re-
cently because of its application to the signal representation prob-
lem [3, 4, 5, 6, 7, 8, 9, 10, 11], and to linear inverse problems
[12, 13, 14, 15, 16, 17]. In this context, the goal is to find a solu-
tion x with the least number of non-zero entries. We concentrate
on this latter problem in this paper. However, some of these ideas
do have relevance to the problem of computing a sparse residual.

Though the paper is written with a view towards providing an
overview, the presentation is clearly biased by our experiences and
work. Fortunately, there are several other papers on this topic in

this session. We are hopeful that collectively they will paint a more
complete picture.

2. PROBLEM FORMULATION

Linear Inverse problems or the problem of signal representation
can be formulated as a problem of finding a solution to an under-
determined system of equations [15, 7, 10],

Ax = b: (1)

A is anm�nmatrix withm < n, and it is assumed that rank(A) =
m. In linear inverse problems, the columns ofA are formed from
the forward model usually determined based on the physics of the
problem. For signal representation, the columns ofA are formed
using basis vectors chosen from a over-complete dictionary.b is
them � 1 measurement vector or the given signal to be repre-
sented. The goal is to solve forx, an � 1 vector. A requirement
on the solution vectorx is that it be sparse, i.e. many of its entries
be zero. This requirement on the vectorx naturally arises out of
the application requirements as discussed in section 3.

The under-determined system of equations (1) has many solu-
tions. Any solution can be expressed as

x = xmn + v;

wherexmn is the minimum 2-norm solution (i.e. solution with
the smallest̀ 2 norm defined askxk22 =

Pn

i=1
x[i]2) and is given

by xmn = A+b, whereA+ denotes the Moore-Penrose pseudo-
inverse. The vectorv is any vector that lies inN (A), the null space
of A. In this caseA has a nontrivial null-space of dimension(n�
m). In many situations, a popular approach has been to setv = 0
and to selectxmn as the desired solution. However, the minimum
2-norm criteria favors solutions with many small nonzero entries,
a property that is contrary to the goal of sparsity/concentration [7,
15, 13]. Consequently there is a need to develop approaches that
lead to sparse solutions.

3. APPLICATIONS

3.1. Signal Representation

In this application,A is formed from the basis vectors used in the
expansion. Often,A is square and an orthogonal matrix, making it
easy to transition between the signalb and its transformx.



Recently, there has been a great deal of interest in finding ef-
ficient representations of signals using an over-complete dictio-
nary [3, 4, 5, 6, 7]. The motivation for such an approach is that
a minimal spanning set of basis vectors is usually only adequate
to efficiently represent a small class of signals, while forming an
over-complete dictionary using a carefully chosen set of redundant
basis vectors can represent a larger class of signals compactly. The
problem is commonly referred to as basis selection. Finding a suc-
cinct representation requires that most of the coefficients of the
representation are zero. Developing algorithms for optimal basis
selection is a subject of current research.

Though the optimal basis selection problem makes the require-
ment of sparsity evident, similar situations arise in routine opera-
tions and often go unnoticed. An example is the common practice
of zero padding and using the FFT to densely sample the Fourier
transform of a sequence. If we have a sequence ofy[l] of duration
m, and we use an point FFT (n � m), then

y[l] =
1

n

n�1X
k=0

Y [k]ej
2�
n
kl
; 0 � l � (m� 1):

The problem of computingY [k] can be readily expressed as solv-
ing an under-determined system of equations. The signal vector
b is formed from the given sequencey[l]. TheA matrix is the
DFT matrix, i.e. thekth column is1

n
[1; ej!kej2!k :::ej(m�1)!k ]T ;

where!k = (k�1) 2�
n

. The solution vectorx contains the Fourier
coefficientsY [k]. The expansion coefficientsY [k] are computed
as

Y [k] =

n�1X
l=0

y[l]e�j
2�
n
kl =

m�1X
l=0

y[l]e�j
2�
n
kl
; 0 � k � (n� 1):

The second equality exploits the fact that the sequence is zero
padded. In matrix form, the solution vector obtained via the FFT
is,

xfft = nAHb = A+b:

The pseudo-inverse is equal to the Hermitian transpose scaled by
n because of the orthogonality of the rows ofA. In summary, zero
padding and computing the FFT corresponds to choosing a repre-
sentation with thesmallest 2-normsolution from among many pos-
sible choices. This may be adequate for most purposes. However,
being aware of alternative solutions, and methods for computing
them, is beneficial. An example to demonstrate the usefulness of
the sparseness constraint is now given.

Consider a sequencey[l] which consists of a single complex

exponential, i.e. y[l] = ej
2�
n
k0l; 0 � l � (m � 1); where

n = 128, m = 64, and the frequency of the exponential is
k0 = 33: The magnitude of the Fourier transform computed us-
ing a64 point FFT and a128 point FFT are shown in figure 4.3.
The second figure corresponds to frequency domain interpolation.
When a128 point FFT is computed, one of the basis vectors in the
set, the34th column ofA, has the same frequency as the data itself.
Under such conditions, a desirable and intuitive solution would be
one that has all zero entries except for the one coefficient corre-
sponding to column number34. Unfortunately, it is evident that
the FFT solution, which is the minimum 2-norm solution, does not
possess representational simplicity. However, algorithms that em-
ploy the sparseness constraint can be used to obtain high resolution
nonparametric spectrum estimates [15, 26, 16, 7].

3.2. Neuromagnetic Imaging

Linear inverse problems with the sparsity requirement on the so-
lution arise naturally in Magnetoencephalography (MEG) [18, 19,
20, 21, 14]. In MEG, one is interested in solving the neuromag-
netic inverse problem which is to estimate the cerebral current
sources underlying a measured distribution of the magnetic field.
Measurement of the external magnetic field is made with an array
of super-conducting quantum interference device (SQUID) detec-
tors. The current field is solved by inversion of the Biot-Savart law
which relates the continuous vector current field and the induced
magnetic field. According to the Biot-Savart law, the current den-
sity ~J as a function of position~r

0

relates to the magnetic induction
~B at a given point of observation~r as

~B(~r) = k

Z
~J(~r

0

)�
~r � ~r

0

j~r � ~r
0 j3

d~r
0

; (2)

where k is a constant if magnetic permeability assumed constant
throughout the volume. For numerical purposes, discretization of
the equation is carried out to get a linear equation. During the
discretization process, the reconstruction volume is divided intoN
voxels (VOlume ELements) and the putative continuous current is
approximated in each voxel by a point dipoleQ(~rn),

~B(~rm) = k

NX
n=1

Q(~rn)�
~rm � ~rn

j~rm � ~rnj3
: (3)

This leads to a linear inverse problem which requires solving an
under-determined system of equations as the number of voxels
N is larger than the number of measurements. However,a pri-
ori (from physiological evidence) it is known that the currents are
limited in spatial extent. This suggests the use of the sparseness
constraint for solving the linear inverse problem.

3.3. Speech Coding

Considerable work on sparsity has been done in the area of speech
coding, particularly in the computation of the excitation sequence
[22, 23, 24]. In speech coding, analysis by synthesis (ABS) are
popular approaches for coding with the multi-pulse excited linear
predictive coder (MPELPC) being most relevant one for exposing
the sparseness aspect. The overall approach in MPELPC coders
can be divided into finding a vocal tract model and the appropri-
ate excitation sequence. The vocal tract model is an all-pole fil-
ter whose parameters are estimated using linear prediction meth-
ods. They are usually computed over segments/frames of speech,
typically, 20 msec long. The excitation is computed for each sub-
frame with the excitation consisting of a few non zero pulses strate-
gically placed. Typically there are four sub-frames per frame.
Finding the location of the pulses, and their amplitude, results in
solving a linear inverse problem with the sparseness constraint.

3.4. Other Applications

The linear inverse problems with the sparseness constraint arises in
many other applications, and researchers in several areas have in-
dependently attempted to solve this problem. Applications include
band-limited extrapolation and spectral estimation [25, 26], direc-
tion of arrival estimation [15], functional approximation [27, 28,
29], failure diagnosis [30], sparse coding [31], and pattern recogni-
tion for medical diagnosis [32]. It is clear that an effective solution
to this problem has wide ranging consequences.



4. ALGORITHMS

Algorithms for computing sparse solutions are discussed in the
framework of signal representation/ basis selection. Without loss
of generality, it is assumed that the vectors in set/dictionaryfakg

n
k=1

are of unit norm. The basis selection can be stated as follows.
Given a signal vectorb 2 Rm; and a preset error tolerance,�, find
the most compact representation ofb to within the given tolerance
using the basis vectorsfakgnk=1. This involves determining the
numberr (thesparsity index) and the set of vectorsfakig

r
i=1 that

best modelb.

Finding an solution with optimal sparsity indexr is NP hard
and requires an combinatorial search [28, 7]. For example, if we
were interested in selectingp vectors that best represented the data,
this would require searching over the

�
n
p

�
possible ways in which

the basis sets can be chosen to find the best solution. Though
there exist efficient techniques for such a search, the cost of such
searches is prohibitive for even moderate size problems making
finding an optimal solution using an exhaustive search infeasible.
Suboptimal methods have been developed to deal with this prob-
lem and some of them are discussed next.

4.1. Sequential Basis Selection Methods

The methods described in this section select the basis vectors se-
quentially, i.e. the basis set is built up one vector at a time.

Basic Matching Pursuit (BMP): This method was suggested in [3]
and independently for speech coding [22, 23]. In this basis selec-
tion method, in thepth iteration the vector most closely aligned
with the residualbp�1 is chosen, wherebp�1 denotes the residual
vector after the(p� 1) th iteration. The computation involved for
the selection is

kp = argmax
l
jaHl bp�1j: (4)

The new residual vector is then computed as

bp = P
?
akp

bp�1 = bp�1 � (aHkpbp�1)akp : (5)

Equations (4) and (5) give the Basic Matching Pursuit (BMP) algo-
rithm. The procedure terminates when eitherp = r (for specified
sparsity indexr) or kbpk � � (for specified�).

Order Recursive Matching Pursuit (ORMP): This method was
developed in [24, 27, 28]. In this method, the pursuit of the match-
ingpth basis vector conceptually involves solving(n�p+1) order
recursive least squares problems of the typeminy k[Sp�1; al]y �
bk, and selecting the vectoral that reduces the residual the most.
Sp�1 =

�
ak1 ; ak2 ; :::; akp�1

�
, and is the matrix formed with the

basis vectors chosen in the previous iterations. With the notation
Sp;l = [Sp�1; al]; the index of the next basis vector is given by

kp = argmin
l
kP?Sp;lbk : (6)

The residual is then updated, i.e.bk = P?Spb, whereSp = [Sp�1; akp ].
Note that the projection operatorPSp;l can be recursively updated,
and efficient computational algorithms developed [27, 10]

Compared to the BMP, the ORMP is computationally more de-
manding. However, it has been found to yield more compact repre-
sentations. A modification to the BMP, called the Modified Match-
ing Pursuit (MMP), was recently suggested to overcome some of
its limitations [10].

4.2. Parallel Basis Selection

In these methods,all the vectors of the dictionary are initially se-
lected, and processed and vectors are asymptotically eliminated
until a requisite number remain.

`1 norm minimization [7, 12]: In this method, instead of finding
a minimum 2-norm solution to (1), a solution is found that mini-
mizes thel1 norm

Pn

k=1
jx[k]j. The attractiveness of this solution

stems from the fact that it leads to sparse solutions, and efficient
linear programming techniques can be utilized to compute the so-
lution [7].

FOCUSS: The algorithm FOCUSS, forFOCal Underdetermined
SystemSolver, was recently developed [15, 25, 26, 21]. The itera-
tions of the algorithm are as follows [15]:

xk+1 = Wk+1 (AWk+1)
+
b; whereWk+1 = diag(jxk[i]j

1�
p

2 ):

Intuitively, the algorithm can be explained by noting that there is
competition between the columns ofA to representb. In each
iteration, certain columns get emphasized while others are deem-
phasized. In the end a few columns survive to representb. Studies
have shown that FOCUSS computes sparse solutions [15].

Recently, it has been shown that the method can be derived
within a unified framework based on majorization theory, starting
from diversity measures, functionals which measure the lack of
concentration/sparsity, and minimizing them to obtain sparse so-
lutions [17, 33]. The diversity measure minimized by FOCUSS is
the`(p�1) diversity measure given by

E
(p)(x) = sgn(p)

nX
i=1

jx[i]jp; p � 1: (7)

The diversity measuresE(p)(x) for 0 � p � 1 are the general
family of entropy-like measures defined in [5, 6], and also dis-
cussed in [12, 13], for computing sparse solutions. Other diversity
measures, and generalization of the methodology can be found in
[17, 33].

4.3. Other Algorithms

Alternate algorithms exist for computing sparse solutions based
on statistical approaches [8, 9], concave cost function minimiza-
tion [13], efficient search methods that exploit structure [4, 5], etc.
Similar computational needs arise in the neural network pruning
problem which can be considered a generalization of this problem
to nonlinear mappings. Relevant algorithms can be found in the
pruning literature of neural networks [34].

The above list of methods is only partial. Unfortunately, many
signal processing algorithms with the sparseness constraint have
been explored in application specific contexts and so are not read-
ily accessible. There is a pressing need for the documentation of
the state of the art in algorithms for computing sparse solutions.
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