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Abstract—An Energy Management System (EMS) is
a monitoring tool that tracks buildings energy con-
sumption with the purpose of enhancing energy effi-
ciency, by identifying savings opportunities and misuse
situations. To achieve this, EMSs collect data flows—
data streams—from a network of energy meters and
sensors, which are then combined into useful informa-
tion. Data must be processed in real-time, to support a
timely decision making process. Traditionally EMSs use
Database Management Systems (DBMSs) to process
data, introducing a persistence step that leads to an
unacceptable latency on data evaluation and do not
properly support many types of time-series queries.
This work explores the feasibility of Data Stream Man-
agement Systems (DSMSs) to support EnergyManage-
ment applications, pointing out how to implement an
EMS capable of real-time data processing.

Index Terms—Real-Time Data Stream Processing,
Real-Time Querying of Energy Data, Energy Manage-
ment Systems.

I. Introduction
Buildings account for 40% of energy consumption, ahead

of other sectors, such as industry or transportation [1].
Therefore, small improvements on building energy con-
sumption translate to major savings. Among other ways,
energy efficiency in buildings can be achieved through
Intelligent Energy Management [2]. This topic refers to
monitoring energy consumption, and the careful tracing of
energy usage enabling building managers to identify saving
opportunities. EMSs continuously monitor the energy con-
sumed in buildings. Consumption related data is evaluated
according to several variables such as time, areas and
their occupation, equipment state, expected consumption,
among others, which determines the building energy usage
patterns, providing required information to determine the
adjustments towards improving energy usage [3].

One fundamental aspect of energy management is time-
liness: faster decisions translate to less waste and larger
savings. In other words, timely information greatly im-
proves the decision making process [4] since building
managers are able to immediately diagnose and promptly
respond to anomalous situations. EMSs are real-time de-
cision making applications that require (near) real-time
integration of huge quantities of data, wherein each record
relates to a very short period [5], thus leading to Big Data
challenges: (i) achieve low latency on queries evaluation,

even in massive workload periods, in order to maximize
the throughput, (ii) be able to identify complex event
patterns to extract meaningful information from data
streams, and also correlate several data streams that come
from different sensors, and (iii) the EMS concept may be
extended to monitor an entire city—smart cities—which
would exponentially increase the volume of gathered data
that needs to be timely evaluated.

Existing EMSs are not, however, prepared to provide
information in real-time (see Section II), neither their
functionalities or software architecture are conceived to
be a truly real-time data processing system. Indeed, their
persistent data model, which arises from the usage of a
DBMS, is not suited to extract relevant information from
collected data in a timely fashion. Let us consider the
following queries:
Q1 Which periods, in the past 8 hours, had energy con-

sumption 20% higher than the average consumption
of those respective 8 hours.

Q2 State the cost of consumed energy in the last 12 hours
per zone/equipment.

Q3 List the zones that are consuming more than last year.
Q4 List the equipments that are consuming inefficiently.
Q5 List the zones which are having an unexpected con-

sumption against its occupation.
Q6 List the spaces where CO2 has increased after energy

consumption has decreased.
The evaluation of queries such as those presented above
raise a number of requirements that are not easily ad-
dressed by DBMSs. For example, in query Q1 (see Fig. 1):
(i) the last 8 hours to now are always changing, therefore
the query must be continuously evaluated, (ii) input data
assumes the form of a potentially unbounded data stream,
which means that AVG operator cannot block, and must
be evaluated online, (iii) whenever AVG changes the set
of periods must be recalculated, meaning that the last
8 hours of data must stay in memory—to reduce the
latency of fetching data. Traditional DBMSs, typically
used to handle EMSs data, are not conceived to properly
handle these classes of queries. On a traditional DBMS
all data have first to be persisted on the database, and
only then the offline query can be fully evaluated, violating
(i) and (ii). This intermediate step of persistence imposes
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Fig. 1: Q1 ilustrative scenario evaluation. The evaluation
process has to: 1) consider the data points of the past 8 hours,
2) calculate the average value of those points, 3) identify the
periods for which the values are 20% greater than the average.

an unacceptable latency for many data streaming applica-
tions, violating (iii). DBMSs are designed to run one-time
queries against a fixed and finite dataset, definitely not
being optimized to run the same query continuously over
a time-varying and possible unbound data stream, that
should be processed continuously through online queries.
Fig. 2 illustrates how a DBMS based solution processes a
data stream.

There are some monitoring applications that by using
a DSMS achieve better results, such as monitoring of
stock market transactions [5], network traffic [6], [7], [8],
and health sensor data [9], [10], which suggests that an
EMS based on a DSMS performs better than one based
on a DBMS. DSMSs are continuously processing arriving
data without having to persist them, this speeds up the
data evaluation process, achieving more timely results.
Moreover, DSMSs query languages are more expressive
due their better suitability to the real-time data processing
domain, which simplifies the development of data stream
applications.

The identification of patterns on a event stream is
also an important feature that many DSMSs can provide
through the Complex Event Processing (CEP) capabilities
of their languages. For instance, Q6 allows to compare how
energy savings affects the quality of the HVAC ventilation.

Fig. 3 illustrates this paradigm shift on the data process-
ing infrastructure [11], [12], [13], where DSMSs run online
queries against continuous and unbounded data streams,
highly reducing data processing latency.

This work aims to present and support the hypothesis
that, for an EMS, a DSMS is a more effective data
processing infrastructure than a DBMS.

II. Energy Management Systems
To understand how an EMS should be modified in order

to monitor buildings energy consumption in real-time, we
point out a general architecture (see Fig. 4) based on the
system goals and functionalities [14]. Due the architectural
layers, we identify three dimensions which may increase
the latency between data gathering and the presentation
of the produced information.
Data Presentation. Dashboards are an a effective tool
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Fig. 2: Data stream processing using a DBMS. Data streams
produced by sources are first persisted into a database, and only
then processed by the DBMS. For the data stream application
this introduced delay is unacceptable.

for monitoring applications display their information, be-
ing their refresh rate a very important issue. Some of them
can refresh as the same rate as their data sources, that is,
their displays are dynamically updated as soon as new
information becomes available. Other ones only refresh
periodically, i.e. they poll their data sources regularly to
fetch updated data [15].
Data Processing. Data processing comprises the inte-
gration and evaluation of collected data. The integration
process may have to consider both static and dynamic
data. Static data rarely undergoes changes, not having to
be processed on a regular basis, and is related to building
characteristics (room areas, equipments by room, energy
tariffs, etc.). Dynamic data is constantly being updated
from several sources and EMSs have to retrieve and pro-
cess those updates. This greatly increases the overhead
of the data processing step and makes real-time results
harder to achieve.
Data Acquisition. There are three different types of
data sources: energy meters, environmental and equipment
status sensors. Depending on the device, the gathering of
data may be based on a Pooling or Event driven approach.
In the first case, the EMS pulls the data from the sensors
by querying them periodically. Typically, EMSs allow the
adjustment of this time period. Since an EMS has to
explicitly check all devices (one by one), the total elapsed
time may be too large so that the system can respond in
real-time. In Event driven based approaches, devices are
responsible to send data to the EMS, whenever a new value
is measured. By avoiding the pooling time, the second
approach may achieve better results than the first one on
collecting data in a timely manner.

In an EMS with real-time monitoring capabilities, the
three dimensions stated above must be taken in account.
Table I states, for each dimension, the deadlines (in min-
utes) that must be met for each level of real-time [16],
[17], [3]. The 15 minutes deadline is the least demanding
requirement that must be met, in order to consider that
each of those dimensions is responding in real-time. Note
that the scope of our work lies on Data Processing and
Presentation Layer, being the Real-Time Data Acquisition
beyond the intentions of our research.
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Fig. 3: Data stream processing using a DSMS. Data streams
generated from several sources are directly processed by the
DSMS, highly decreasing the latency of data processing. Data
streams may be persisted (for computation that require past
data), without affecting ongoing continuous queries evaluation.

We also evaluate a representative sample of existing
EMS solutions, to identify their features and their ability
to respond in real-time, correlating this with their data
processing infrastructure. Given that many of existing so-
lutions are proprietary, this kind of survey is often limited
by both license restrictions and available documentation.
Even more when, in several cases, such documentation
omits many technical details and states real-time capabil-
ities without clarifying the time scale of their timeliness.
Hence, from the several studied solutions, we consider only
those that, at least, give minimal insights about details
discussed above.

In Table II, we identify the general features of four
analysed solutions: EEMSuite [18], EnergyWitness [19],
EnerwiseEM [20], and OpenEIS [21]. Among these, only
EnergyWitness can update the results of some of their
functions in a timely enough manner to be considered
real-time (as defined in Table I). We note however that,
for some functions, it can only produce new results with
periods up to fifteen minutes, hence our classification as
near real-time. The remaining three solutions update their
results hourly, therefore we do not consider them truly
real-time.

All four solutions rely on a DBMS. Moreover, all liter-
ature reviewed by us [14], [16], [17] point out the usage
of a DBMS as the standard way to manage, process, and
query collected data in EMSs. Therefore, at the best of
our knowledge, there is no EMS solution based on a DSMS
approach.

III. Data Stream Management Systems
There is a huge number of stream-based applications

that have to process high-volumes of data in a timely
manner, pushing to the limit the capabilities of the current
data processing systems. EMSs are one of those appli-
cations. To cope with those requirements, stream based
systems should be prepared to [11]:
Real-time response. Process high-volumes of data under
real-time requirements, only possible on a system designed
and optimized for this specific purpose. Those systems
should be able to timely process data on demand.

Data Presentation Layer 

Data Processing Layer 

Data Acquisition Layer 

Real-Time 
Monitoring 

Historical Data 
Analysis 

Hybrid 
View 

Data 
Integration 

Data 
Evaluation Database 

Energy  
meters 

Environmental  
sensors 

Equipment status 
sensors 

Fig. 4: General EMS software architecture. Organized ac-
cording to three layers: (i) data presentation, responsible to
present the information derived from the collected data; (ii)
data processing, responsible to integrate and evaluate collected
data; (iii) data acquisition, responsible for retrieve data from
sensors and meters.

High-level language. Support a language able to effec-
tively express queries over data streams, and capable to
report complex relationships on data stream tuples.
Scalability. Spread the workload, transparently and au-
tomatically, across available resources.
Tolerant to faulty streams. Deal with delayed, lost, or
malformed tuples. Among other things, this is essential to
properly evaluate blocking operators.
Deterministic response. Result soundness for equiv-
alent inputs, essential for fault tolerance and recovery
capabilities.
Integration. Integrate stored data with live data streams,
using an uniform language and without the need of human
manual intervention.
Availability. Preserve integrity of data, being strongly
resilient to failures.

A. Database Management Systems Approaches
It is widely recognized the inability of DBMSs to fulfil

previous requirements and support data stream applica-
tions [11], [22]. DBMSs only process data after they have
been stored and indexed, and this introduces an unaccept-
able penalty on data processing latency. To mitigate this
issue, some DBMS based alternatives have emerged, albeit
in vain:
Main Memory Database Systems. [23] Since they
store information in main memory instead of using sec-
ondary storage, they are far more efficient than traditional
DBMSs, yet, they continue to use the same basic model—
process-after-store—that, by nature, is incompatible with
the timeliness requirement imposed by data stream appli-
cations.

Traditional DBMSs are also completely passive, they
only present data when explicitly requested by a user or
application—Human-Active, Database-Passive (HADP).
The HADP model does not allow the system to sponta-
neously run a notification whenever any predefined condi-
tion is fulfilled [22].
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Real-Time
Levels Data Acquisition Data Processing Data Presentation

Event Driven Stream †

< 5 min. < 5 min.
Pull Batch Periodic

≤ 15 min. ≤ 15 min. ≤ 15 min.
Pull Batch Periodic

> 15 min. > 15 min. > 15 min

Dimensions

Real-Time

Near Real-Time

No Real-Time

Dynamically †

TABLE I: Real-time dimensions and corresponding dead-
lines [16], [17], [3]. Each dimension may be classified by their
real-time capabilities. (†) Captures the scope of this work.

Active Database systems. [24], [25] Attempt to solve
preceding issue through a mechanism of rules triggered by
events. However, those triggers are poorly scalable, leading
to a large impact on systems performance [26].

Another issue with DBMSs is related to the query
language, SQL is not prepared to operate on potentially
unbounded time-series. DBMSs one-time query model is
unsuitable to support the class of queries related to stream
based applications. In particular, blocking operators face
serious problems to produce an answer in the presence
of an unbounded data stream, and present a lack of
expressibility to specify complex and interesting time re-
lated conditions [27], [28]. A query language specifically
designed for data stream applications is urging.

B. Stream Processing Engine Approaches
Taking into account requirements imposed by stream

based applications, a new class of systems have emerged:
Stream Processing Engines (SPE) [11], [29], [30]. Although
these systems share a common target, they differ greatly:
different architectures, data model, processing mechanisms
and query languages [31]. Among many proposed systems
two major approaches emerge [22]:
Data Stream Management Systems. [29] DSMSs are
a type of SPE targeted to process several input data
streams, from a wide range of sources, and produce as a
result new output streams. DSMSs can be seen as a DBMS
evolution to properly support data stream processing,
with many DSMSs (TelegraphCQ [32], NiagaraCQ [33],
and Cougar [34]) being developed from already existing
DBMSs [35].
Complex Event Processing Systems. [29] CEPSs aim
to process streams of events (facts that happened), in order
to draw conclusions from them, i.e. to identify patterns on
the sequence of events and produce more complex ones
(events with an higher semantic level), which indicate
more complicated circumstances. The main goal of those
systems is to recognize more meaningful situations, from
less complex ones, and respond to them as soon as possible.

These two classes of systems are also distinguishable by
their different language models. DSMSs use a declarative
(e.g. CQL [36]) or imperative (e.g. SQuAL [37]) language
model, whereas CEPSs use a pattern-based model (e.g.
CEL [38]). Declarative languages (like SQL) specify ex-
pected results for the query evaluation, while imperative

EEMSuite EnergyWitness EnerwiseEM OpenEIS

Real-Time Monitoring ○   ●† ○ ○
Historical Data ● ● ● ●
Data Processing
Integrate data from different sources ● ● ○ —
Performance Indicators ● ● ● ●
Normalization — — ○ ○
Benchmarking ● — ● —
Forecasting ● ● ○ ○
Fault Detection and Diagnostic ● — ● ●
Statistical Analysis — — — —
Load Shape ● ● ● ●
Financial Analysis ● ● ● ●

Energy Meters ● ● ● ●
Equipment Status ○ ● — ○
Environmental Sensors ● ● — —

Data Presentation

Data Acquisition

Features Systems

TABLE II: General features of an EMS. •: supported. ◦:
not supported. �: unknown information. (†) system responds
in near real-time.

languages explicitly determine the sequence of transfor-
mations to be applied on data streams. Pattern-based
languages are known to be defined as a set of rules, where
each of these rules is composed by a pre-condition that,
when satisfied by a data stream pattern, triggers a specific
action.

Understanding the differences between DSMSs and
CEPSs is crucial as: (i) each system is designed to properly
process just one type of streams, data or event streams,
a characteristic relevant to identify the first generation
SPEs, (ii) there are misunderstandings1 in what concerns
SPEs concepts, hindering required cooperation among
community to advance state of the art, (iii) an ideally
SPE should be able to process both stream types, and
(iv) the main difference between SPEs of first and second
generation is the capacity of last ones to process both
data and event streams, which demonstrates the actual
maturity of these systems.

C. Survey of existing DSMSs

Table III lists DSMS solutions that we are considering
in our work. Language model expressibility is our most
critical concern. The relation between language expressive-
ness and operators is not linear, where some operators can
be built by combining other operators [22]. However, for
the sake of simplicity on rules implementation, we only
consider that a given system provides a given operator
semantics if it implements the operator explicitly, or if
the semantic can be trivially mimicked by provided opera-
tors. The deployment model—distributed or centralized—
is tightly related with system scalability, reflecting how the
performance is affected under massive workload scenarios.
The ability to integrate the system into new applications,
or extend their functionalities and APIs, is reflected on
Open Source column.

1http://epthinking.blogspot.pt/2007/09/
event-processing-and-babylon-tower.html
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STREAM ● ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ● ○ ● ● ● ● ● ● ● ● ○ C Yes
NiagaraCQ ● ● ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ● — ● ○ ○ ● ○ ● C Yes
Borealis ● ● ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ● ● ○ ● ● ○ ○ ○ ● ● ○ ● C Yes
TelegraphCQ ● ● ● — ○ ○ ○ ○ ○ ○ ● ● ● ● ● ● ● ● ● ● ● ● ● — D Yes
COUGAR ● ● ● ● — — — — — — ○ ○ ● ○ ○ ● ● — ● — ○ ● — ● D Yes
CEDR ● ● ● ● ● ● ○ ● ● ○ ○ ○ ○ ○ ○ ● ● ● ● ○ ○ ● ○ ● C Yes
Cayuga ● ● ● ○ ● ● ○ ○ ● ● ○ ○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○ C Yes
SASE/SASE+ ● ○ ○ ● ● ● ○ ● ● ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ C Yes
Esper ● ● ● ● ● ● ● ● ● ● ○ ○ ● ● ● ● ● ○ ○ ○ ○ ● ● ●   C† Yes
Twitter Storm ● ● ● ● ● ● — — ● ● ● — ● — — ● ● — — — ● ● ● ● D Yes
Apache S4 ● ● ● ● ● ● — — ● ● — — ● — — ● — — — — — ● — ● D Yes

WindowsSingle Tuple
Language Model

Logic Flow Management

TABLE III: Summary of general features provided by DSMS solutions. •: supported. ◦: not supported. C: centralized.
D: distributed. �: unknown information. (†) EsperHA, is a Esper’s paid extension that supports a distributed deployment.

D. Discussion

State of the art stream processing systems, such as
Esper, Storm, and S4, are conceived to process both data
streams and complex events. Furthermore they can be
deployed as part of cloud based solutions, fully distributed,
allowing the construction of highly scalable systems. As
we discussed, both time model and language model
have a strong impact on operators implementation, and
consequently on their semantic, as well as on systems
ability to detect and identify patterns on streams. Let us
now focus on some other relevant details related to our
work.

Load Shedding is the systems capability to, in sit-
uations of overload, drop some tuples in order to fulfil
the requirement of timely data processing. Each dropped
tuple implies a degradation on the quality of the pro-
duced results. Purely event stream processing systems do
not support any Load Shedding technique, while some
of the analysed data stream systems support it such
as STREAM, NiagaraCQ, Borealis, and TelegraphCQ.
Systems oriented towards pattern matching rules don’t
tolerate approximated answers. Note in particular that the
drop of the “wrong” tuple may invalidate the detection of
a whole pattern [13, Chapter 7].

For most recent systems is also relevant to understand
how their programming model may influence our work.
Storm lies on an imperative programming style, in the
sense that is the user that explicitly implements the graph
of transformations to be applied on the data stream. Hence
Storm is not a pure query engine, there is no query opti-
mizer to automatically produce an optimal transformation
graph. S4 programming model is somewhat different from
the Storm model, however there is also the absence of an
optimizer to generate an optimal sequence of transforma-
tions. On other hand, Esper provides a declarative query
language, that allows the user to specify which transfor-
mations should be made on data, instead of specifying how

the data must be transformed. Note that we usually rely on
a graph of transformations that the stream will flood and
traverse. Each graph node represents a step on a pipeline
of transformations that will process the data stream in
order to extract desired information. Due to our claim for
real-time data processing, it is of utmost importance to
formulate optimal transformations sequences. In Esper,
the graph of transformations is not explicitly defined
by the user, instead it is automatically produced and
optimized by the engine compiler, providing a transparent
decoupling between logical level (query specification) and
physical level (query execution). This gives Esper a major
advantage when compared to Storm or S4, where the
difficulty of implement and optimize a graph rapidly grows
with queries complexity. Although Esper hides the graph
complexity from the user, it does not impede the explicit
specification of a graph—this can be done with a pipeline
of continuous queries—it just promotes the declarative
implementation of the node (query) functionality.

IV. Position Statement
Our envisioned solution aims at creating a data pro-

cessing architecture able to integrate energy related data
in real-time. Existing architectures, often used to prepare
data to populate a given data warehouse, process data
through a sequence of transformations in a batch manner,
which impedes a timely data processing [39], [40], [41], [42],
[43]. The proposed solution adapts these pipeline of data
transformations concept to process data continuously—
in stream—with the lowest possible latency, enabling
freshness of data to be measured in minutes or seconds.
Therefore, we believe that a real-time data processing
architecture blueprint supported by a DSMS, (see Fig. 5)
is the adequate choice for processing data in an EMS.

A. Architecture Overview
An DSMS should process continuous queries to integrate

streaming energy related data with the benefits of in-
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Fig. 5: Proposed Architecture. From left to right: Data Acquisition Tier composed of the data streaming sources. Data Processing
Tier responsible for the integration, validation, normalization of gathered data, and, if necessary, persists them for future reference.
Data Presentation Tier where produced results will be passed to the stream application.

memory processing, eliminating the latency and overhead
penalties typical in traditional batch processing. A de-
tailed explanation of a possible solution architecture is as
follows.

Data Processing Tier is the core component of the
solution. Conceptually, it works like a pipeline of data
transformations, where data is manipulated according to
data stream application requirements. The data transfor-
mation flow is structured in stages using the types of
components detailed below.

Adapter mediates the introduction of data extracted
from several sources into the data transformation process.
The adapter understands the source delivery model—push
or pull based—and, in order to speed up data propagation,
pushing data into remaining components. The adapter also
handles bursts of data produced by each source, by holding
data and delivering into the system in a more steady way.
Adapters additionally perform a set of data validation
and transformation steps. The quality of gathered data
is assessed in order to identify and discard faulty tuples
that may hamper the process. This is necessary to tolerate
faulty streams generated by faulty equipment or problems
in the transmission process. This step normalizes, into a
common schema, distinct data stream schemes that come
from different sensors. For instance, energy meters pro-
vided by distinct suppliers may rely on different schemes
to provide equivalent data. When a data source is a
database, the adapter ensures the required connection and
communication, converting the retrieved set of tuples to
a stream of tuples. The adapters role is critical to the
effectiveness of all data transformation process: they have
to be finely tuned, bringing to the “pipeline” only strictly
necessary data, pre-processed in the most convenient way
for the remaining transformations [40].

Data Integration represents the core functionality of
the data transformation process, which consists of Data
Integration and Cleaning steps. The main purpose is to
combine several data streams, in order to formulate a new
set of data streams, following well defined and suitable
schemas, that better fit the problem domain. Such inte-
grated schemes will be used as input for domain queries.
However, the integration of several streams are far from
being a trivial process, raising several data quality issues.
For instance, some data cleaning may be required in order
to ensure data consolidation and consistency. To solve such
issues, this component must be able to merge data from
multiple sources (e.g. sensor networks and databases),
transform data under different schemes, recalculate and
synthesize attributes, specify default values, calculate new
attributes, etc. For scalability purposes, each Integrated
Scheme must be independent, so that each one can be
deployed in a single cluster node when deployed on a
distributed setting.

Data Evaluation component supports the evaluation
of application queries including those that represent en-
ergy monitoring use-case scenarios. Those queries should
be evaluated on previous integrated data streams, that
represent available data sources for application queries.
From the evaluation of those queries will result essen-
tial Key Performance Indicators (KPIs) that support the
decision making process. Their ease and timely evalua-
tion are dependent on how suitable is the data source
scheme produced on the Data Integration component,
and naturally the decision making process effectiveness
is highly dependent on the set of KPIs produced by use
case queries. Therefore, these queries are the foundations
of the data stream application. It is worth noting that use
case queries should be evaluated independently, being the
data stream sources duplicated whenever a query needs to
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... 
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SELECT spaces.floor,  AVG(consumption) 
FROM  energyConsumption.win:Time(2h), 
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WHERE energyConsumption.roomID   
              = spaces.roomID 
GROUPBY spaces.floor 
              
              Compiler, 

Optimizer Physical level 
Logical Level 

Query specification through Esper’s declarative language 

(a)                                                                (b) 

Fig. 6: Data processing as a graph of Continuous Queries
(CQs). (a) The data tranformation components (e.g. Data
Integration) are implemented through a composition of CQs.
(b) Each CQ works as a data transformation step (in a pipeline
of transformations), and is specified through Esper’s declarative
language, to then be transparently compiled to an optimal
query execution plan.

access them. This evaluation decoupling enables adding
and removing queries without side effects, also allowing
queries evaluation to be deployed across several nodes, in
order to achieve better scalability.

Application Adapter converts queries results to a
format perceptible by the application (e.g. XML or JSON).
For instance, the adapter should produce an output per-
ceived by the dashboard.

Data Queues serve to hold on excess of data when the
arrival rate of data stream tuples becomes higher than the
processing capability of the receiver component. Queues
will be added between most critical components (e.g. Data
Integration and Data Evaluation), the ones that due their
different data transformation complexity may yield data at
different rates. Besides their major purpose, queues may
also, if necessary, perform some additional computation,
for instance to impose some priority order on the delivery
of tuples.

The loosely coupling of architectural components, allows
to deploy them on cloud computing environments (in
a fully distributed way), highly improving the systems
scalability on huge workloads.

B. Implementation
As discussed before, taking into account the state

of the art, we propose that a solution implementation
should lie on Esper [44], a DSMS able to process Con-
tinuous Queries (CQs) over unbounded data streams.
The architectural data transformation components—
Adapters, Data Integration and Evaluation, and Applica-
tion Adapter—should be implemented as a composition of
CQs, to form a graph of data transformations, see Fig. 6
(a). Those CQs are expressed through a declaratively
language, and transparently compiled in an optimal query
execution plan, see Fig. 6 (b). So, Esper would be used as a
key building component of Data Processing Tier. The EMS
Data Presentation Tier also should be adapted in order
to present data in a real-time manner, for this purpose,
Graphite2, a real-time graphing tool that render graphs

2http://graphite.wikidot.com

from data time-series, may be used to build a real-time
energy dashboard.

Queries (Q1-Q6) should guide the design of the inte-
grated schemes in the Data Integration component. Those
queries should derive from a class of building energy
management methods, such as: Load Profile, Peak Load
Analysis, Model Baseline, and Equipment Efficiency, that
should be timely evaluated to better support the decision
making process [3].

V. Conclusion
EMSs are used to support the decision making process

of energy building managers, helping them to actuate in
order to use energy in a more efficient way. To achieve this,
those systems monitor buildings energy consumption in
order to identify potential problems and assess how taken
actions affect energy efficiency.

Effective problem solving requires early interventions,
only possible with an early detection of problems. Typ-
ically, a problem takes days or weeks to be detected,
reducing this time to hours, or even minutes, would be a
major contribution. However, to achieve this EMSs should
be able to detect volatile and ephemeral situations, which,
in a real scenario, requires the continuously gathering
of energy related data, that also must be continuously
evaluated in a timely manner. EMSs should be able to
evaluate huge amounts of data in real-time, collected from
several buildings or even from large urban areas.

Since as we discuss, DBMSs are not the best solution to
timely process data of an EMS, we propose the hypothesis
that an EMS based on a DSMS performs better than
common solutions based on a DBMS.

As future work, we intend to validate our hypothesis
by implementing the solution proposed above, under the
“Smart Campus Energy Monitor”3 project, which is a
EMS developed at Instituto Superior Técnico, that mon-
itors campus energy consumption, through a network of
energy meters and other related sensors. The current im-
plementation is based on a DBMS, and our objective is to
consider the data processing tier of Fig. 5 as a replacement
for current data processing infrastructure. To assess which
architecture performs better we plan to run a benchmark
evaluation to determine which solution presents a lower
latency on data evaluation and a more suitable query
language for supporting the decision making process. The
work will also evaluate how Esper, a non-parallel DSMS,
performs under the challenges brought by Big Data related
applications, to understand which features should be taken
in account for a future parallel DSMSs evaluation.
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[1] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on build-
ings energy consumption information,” Energy and Buildings,
vol. 40, no. 3, pp. 394–398, Jan. 2008.

[2] D. Chwieduk, “Towards sustainable-energy buildings,” Applied
Energy, vol. 76, no. 1-3, pp. 211–217, Sep. 2003.

[3] J. Granderson, M. Piette, B. Rosenblum, and et al. L. Hu, En-
ergy Information Handbook: Applications for Energy-Efficient
Building Operations. Lawrence Berkeley National Laboratory,
LBNL-5272E., 2011.

[4] L. Copin, H. Rey, X. Vasques, A. Laurent, and M. Teisseire,
“Intelligent Energy Data Warehouse: What Challenges?” 2010
22nd IEEE International Conference on Tools with Artificial
Intelligence, pp. 337–342, Oct. 2010.

[5] B. Chandramouli, M. Ali, J. Goldstein, B. Sezgin, and B. S.
Raman, “Data Stream Management Systems for Computational
Finance,” Computer, vol. 43, no. 12, pp. 45–52, Dec. 2010.

[6] N. Akhtar and F. H. Siddiqui, “UDP packet monitoring with
stanford data stream manager,” in 2011 International Confer-
ence on Recent Trends in Information Technology (ICRTIT).
Ieee, Jun. 2011, pp. 533–537.

[7] C. Cranor, T. Johnson, and O. Spataschek, “Gigascope : A
Stream Database for Network Applications,” in Proceedings of
the 2003 ACM SIGMOD International Conference on Manage-
ment of Data. ACM, 2003, pp. 647–651.

[8] M. Sullivan and A. Heybey, “Tribeca : A System for Managing
Large Databases of Network Traffic,” in In USENIX, 1998,
no. 98, pp. 13–24.

[9] X. Jiang and A. O. Architecture, “DSMS in Ubiquitous-
Healthcare : A Borealis-based Heart Rate Variability Monitor,”
in Biomedical Engineering and Informatics (BMEI), 2011 4th
International Conference on, 2011, pp. 2144–2147.

[10] Q. Zhang, C. Pang, S. Mcbride, D. Hansen, C. Cheungt, and
M. Steynt, “Towards Health Data Stream Analytics,” in Com-
plex Medical Engineering (CME), 2010 IEEE/ICME Interna-
tional Conference on, 2010, vol. 00, no. c, pp. 282–287.
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