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Abstract

These notes present an introduction into the spectrum of the category of
modules over a ring. We discuss the general theory of pure-injective modules and
concentrate on the isomorphism classes of indecomposable pure-injective modules
which form the underlying set of this spectrum. The interplay between the spec-
trum and the category of finitely presented modules provides new insight into the
geometrical and homological properties of the category of finitely presented mod-
ules. Various applications from representation theory of finite dimensional algebras
are included.
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CHAPTER 0

Introduction

Lady S: And what have you been writing

about this morning, Mr. K?

K: On the usual subject, Lady S. On Purity.

Lady S: That must be such a very, very inter-

esting thing to write about.

K: It is the one subject of really national im-

portance, nowadays, Lady S.

Oscar Wilde, from: A woman of no importance.

Let R be a ring (associative with identity) and denote by ModR the category
of (right) R-modules. The aim of these notes is to present an introduction into the
spectrum of the category ModR and the machinery which is related to it.

The motivation for this work comes from the representation theory of finite
dimensional algebras. If R is a finite dimensional algebra, then one is usually inter-
ested in geometrical and homological properties of the category modR of finitely
generated R-modules. However, in recent years several mathematicians found natu-
ral interpretations of concepts from modern representation theory like “representa-
tion type” [17] or “complexity and varieties” [10, 69], using explicitly non-finitely
generated modules. This process of passing from modR to the category ModR of
all R-modules (a change of paradigm [56]) inevitably involves new concepts and
techniques, and it is one of our principal aims to present some of them.

Most important for the applications in representation theory is the concept
of “purity” because the pure-injective modules play a prominent role among the
non-finitely generated modules. Recall that a module M over some k-algebra R
(k a commutative field) is pure-injective if and only if the canonical R-linear map
M → M∗∗ splits (M∗ = Homk(M,k) denotes the usual k-dual). Although the
language of R-modules suffices to give this definition we shall adopt the following
more abstract approach. There exists an abelian Grothendieck category D(R)
and a fully faithful functor ModR → D(R) which identifies the pure-injective R-
modules with the injective objects in D(R). Using this embedding we can derive
various results about pure-injective modules from the existing theory for injective
objects in Grothendieck categories. The isomorphism classes of indecomposable
pure-injective R-modules are of particular interest. They form the underlying set,
denoted by IndR, of the spectrum of ModR. We shall consider two topologies on
IndR: the Ziegler topology which Ziegler introduced in model-theoretic terms [80],
and the Zariski topology which reflects the geometric nature of this spectrum [26].

1



2 0. INTRODUCTION

To exhibit the interplay between the spectrum IndR and the category modR
of finitely generated modules is the main theme of this work. In order to illustrate
these ideas let us explain one of our results. Viewing the category modR as a
ring with several objects, we introduce a new class of ideals in modR which we
call fp-idempotent. It is well-known that any ideal I in modR is idempotent if
and only if the additive functors modR → Ab into the category of abelian groups
which vanish on I are closed under forming extensions. Therefore we call an ideal
I fp-idempotent if the finitely presented functors modR → Ab vanishing on I are
closed under forming extensions, and we establish an inclusion preserving bijection
between these ideals and the Ziegler-closed subsets of IndR. From this we deduce
a new characterization of algebras having tame representation type. In fact, we
prove that a finite dimensional algebra over some algebraically closed field has
tame representation type if and only if for every n ∈ N there are only finitely
many fp-idempotent and nilpotent ideals in modR which are contained in the ideal
generated by the identity maps of the indecomposable R-modules of dimension n.
Recall that an algebra R is of tame representation type if for every n ∈ N the
indecomposable R-modules of dimension n belong to a finite number of continuous
1-parameter families. Note that our characterization of tameness involves only
finitely generated R-modules; it provides therefore an answer to a question raised
by Ringel [72, p.144]. The proof of this result uses the machinery which is related
to the spectrum IndR, and we hope to convince the reader that once one accepts
the idea of introducing infinitely generated modules, one obtains new insight into
the structure of the category of finitely generated modules.

Modern representation theory of finite dimensional algebras is based to a large
extent on the functorial approach of Auslander and Reiten. In these notes we
keep the functorial point of view which Auslander and Reiten initiated into rep-
resentation theory, but we do not restrict ourselves to the finite level of classical
Auslander-Reiten theory which we now explain. To this end denote by rad the
Jacobson radical of the category modR of finitely generated R-modules. The prob-
lem of classifying the (indecomposable) objects in modR is essentially the problem
of understanding the semi-simple quotient modR/rad. The most popular concepts
from classical Auslander-Reiten theory are the almost split sequences in modR and
the Auslander-Reiten quiver of R. These concepts are defined in terms of maps
which belong to rad1 \ rad2. Therefore classical Auslander-Reiten theory covers the
“finite part” of modR, i.e. the quotient modR/radω where radω =

⋂
n∈N

radn. The
algebra R is of finite representation type if and only if radω = 0, and therefore it
seems to be important to study also the maps which belong to radω.

On the functorial level the finiteness condition in the work of Auslander and
Reiten can be explained as follows. Consider the Yoneda embedding

modR −→ ((modR)op,Ab), M 7→ HomR(−,M)

of modR into the category of contravariant additive functors modR → Ab where
Ab denotes the category of abelian groups. Every right almost split map M → N
gives rise to a presentation HomR(−,M) → HomR(−, N) → SN → 0 of a simple
functor in ((modR)op,Ab), and it is the crucial observation of Auslander and Reiten
that all simple objects in ((modR)op,Ab) arise in this way. Therefore classical
Auslander-Reiten theory is mainly concerned with the objects of finite length in the
functor category ((modR)op,Ab). However, there are finitely presented functors
of infinite length if the algebra R has infinite representation type. In fact, radω is
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precisely the ideal of maps in modR which are annihilated by all functors modR→
Ab of finite length, and we observe in this context the importance of studying the
functors in ((modR)op,Ab) which are of infinite length.

In contrast to the classical approach of Auslander and Reiten, we exhibit in
this work several phenomena which occur only in the “infinite part” of modR. In
particular, we investigate the structure of radω and study functors on modR which
are not of finite length. We refer to Lenzing’s Trondheim lectures for an outline of
this program [58].

We end this discussion of the Auslander-Reiten approach with another point
which seems to be crucial. The work of Auslander and Reiten is based on the
Yoneda embedding modR→ ((modR)op,Ab) whereas in this work we mainly use
the embedding

modR −→ (modRop,Ab), M 7→M ⊗R −

via the tensor functors. The Yoneda embedding identifies the finitely generated
modules with projective objects in the functor category ((modR)op,Ab), and there-
fore many results about modR can be derived from results about projective covers
and minimal projective presentations in ((modR)op,Ab). However, there exists a
projective cover for every object in ((modR)op,Ab) if and only if the algebra R is
of finite representation type. On the other hand, injective envelopes always exist
in (modRop,Ab). Note that (modRop,Ab) and ((modR)op,Ab) are equivalent
categories since modRop and (modR)op are equivalent, but we prefer to identify
R-modules with injective objects in (modRop,Ab) via the tensor embedding since
the existence of injective envelopes can be used without any assumptions. Let us
mention that the embedding M 7→ M ⊗R − already occurs in Auslander’s work.
In fact, in his Temple notes [5] he devotes a few pages to studying pure-injective
modules, but 20 years ago this point of view did not receive much attention.

These notes are divided into 15 chapters, each of which is subdivided into
sections. We describe now the basic notions and results of this work chapter by
chapter. We fix a ring R, denote by ModR the category of all R-modules, and
modR denotes the full subcategory of finitely presented R-modules.

In Chapter 1 we recall the basic facts about the Grothendieck category D(R)
of additive functors modRop → Ab from the category of finitely presented Rop-
modules to the category of abelian groups. In particular we discuss the embedding
ModR → D(R) which sends an R-module M to the tensor functor M ⊗R −. The
finitely presented functors in D(R) play a prominent role. They form an abelian
category which is denoted by C(R); it is the free abelian category over R (viewed
as a category with a single object).

Chapter 2 is devoted to the fundamental concept of a definable subcategory

of ModR. This notion has its origin in model theory of modules; in this context a
definable subcategory corresponds to a complete theory of modules [61, 80]. How-
ever, definable subcategories were introduced formally by Crawley-Boevey when
their relevance became apparent in representation theory [19]. Given a collec-
tion Φ of maps in ModR we say that an R-module M is Φ-injective if every map
φ : X → Y in Φ induces a surjection HomR(Y,M) → HomR(X,M). We denote
by (ModR)Φ the full subcategory of Φ-injective R-modules. A subcategory X of
ModR is called definable if X = (ModR)Φ for some collection Φ of maps between
finitely presentedR-modules. Such categories are automatically closed under taking
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direct limits, products, and pure submodules in ModR. Using some model-theoretic
arguments it has been shown by Crawley-Boevey that these properties characterize
the definable subcategories of ModR. We give a new proof of this fact, using the
localization theory for locally coherent Grothendieck categories which is explained
in Appendix A. Next we exhibit the Ziegler spectrum of R. This is, by definition,
the set IndR of isomorphism classes of indecomposable pure-injective R-modules,
together with a topology which Ziegler introduced in model-theoretic terms [80].
The closed subsets are precisely those of the form UΦ = IndR∩(ModR)Φ for some
Φ in modR, and we prove that each definable subcategory is completely determined
by the corresponding Ziegler-closed set.

Theorem. An R-module M belongs to a definable subcategory (ModR)Φ if
and only if M is isomorphic to a pure submodule of some product of modules in
UΦ.

There is also the concept of a definable quotient category of ModR which is
defined with respect to a definable subcategory [52, 49]. We discuss the basic
properties of a definable quotient category and conclude this chapter with a long
list of examples.

In Chapter 3 we discuss two types of left approximations. The first type are
the left almost split maps which have been introduced by Auslander and Reiten
[6]. This concept is one of the most successful in modern algebra representation
theory. Here we give a new characterization of the existence of a left almost split
map starting in a pure-injective R-module, using only the modules in IndR.

Theorem. There exists a left almost split map M → M ′ starting in a pure-
injective R-module M if and only if for every product N =

∏
i∈I Ni of modules in

IndR such that M is isomorphic to a direct summand of N there exists i ∈ I such
that M ≃ Ni.

Also we discuss the connection between left almost split maps in modR and
ModR. The second type of left approximations is defined with respect to a class
C of R-modules. Following [7], C is said to be covariantly finite if for every
R-module M there exists a left C-approximation M → N , i.e. N belongs to C
and the induced map HomR(N,C) → HomR(M,C) is surjective for all C in C.
We prove that every definable subcategory of ModR is covariantly finite and give
criteria for the existence of minimal left approximations. Recall that a map
φ : M → N is left minimal if every endomorphism ψ of N satisfying ψ ◦φ = φ is an
automorphism. For example, there exists always a minimal left C-approximation
for M if there exists a left C-approximation M → N with pure-injective N . In this
way we generalize the concept of a (pure) injective envelope of a module M .

While there is no general duality between ModR and ModRop there exists
nevertheless a relation between certain classes of right and left R-modules. Some
of these facts are collected in Chapter 4. The basic tool is the duality C(R) →
C(Rop) between the abelian categories of finitely presented functors in D(R) and
D(Rop). For example, we obtain a bijective correspondence between the definable
subcategories of ModR and ModRop since any definable subcategory of ModR is
determined by a Serre subcategory of C(R). Moreover, we introduce a class Ref R
of R-modules which we call pure-reflexive, and construct bijections M 7→ M∨

between Ref R and Ref Rop satisfying M∨∨ = M for all M . For example, if R is
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an algebra over a commutative field k, then M∨ = M∗ for every finite dimensional
R-module M , whereas M∨ is a direct summand of M∗ if M is of infinite dimension
(M∗ = Homk(M,k) denotes the usual k-dual). The construction of the map M 7→
M∨ provides a new interpretation of Herzog’s elementary duality [39]. In fact, our
approach leads to an axiomatic description of the map M 7→ M∨ which is based
on the following simple conditions: (M

∐
N)∨ = M∨

∐
N∨; M∨∨ = M ; and M∨

is a direct summand of M∗.

In Chapter 5 we introduce a new class of ideals which we call fp-idempotent.
Viewing the category modR as a ring with several objects, it is well-known that any
ideal I in modR is idempotent if and only if the additive functors modR → Ab
vanishing on I are closed under forming extensions. We say therefore that I is
fp-idempotent provided that the finitely presented functors modR→ Ab vanishing
on I are closed under forming extensions. An fp-idempotent ideal I is usually not
idempotent, but it can be shown that I = J ∩modR for some idempotent ideal J

in ModR. More precisely, we denote for every additive subcategory X of ModR
by [X ] the ideal of all maps in modR which factor through some module in X .

Theorem. Let R be an artin algebra. The assignments

X 7→ [X ] and I 7→ (ModR)ann−1 I

give mutually inverse and inclusion preserving bijections between the definable sub-
categories of ModR and the fp-idempotent ideals in modR.

Here, we denote for every ideal I in modR by ann−1 I the collection of maps
φ : X → Y in modR such that every map X → Z in I factors through φ. We
obtain also an inclusion preserving bijection between the Ziegler-closed subsets of
IndR and the fp-idempotent ideals of modR by sending a Ziegler-closed subset U

to the ideal of all maps in modR which factor through a product of modules in U.

Endofinite modules are the main subject of Chapter 6. Recall that the en-
dolength of an R-module M is the length of M when regarded in the natural way as
module over S = EndR(M)op. The modules of finite endolength are called endofi-
nite. For example, if R is a finite dimensional algebra, then every finite dimensional
R-module is endofinite. However, there are usually also indecomposable endofinite
modules which are infinite dimensional, and it has been shown by Crawley-Boevey
that these modules control the representation type of R, i.e. the complexity of
the category of finite dimensional R-modules [17]. Here we give some categorical
characterizations of endofiniteness. For instance we assign to every R-module M
its endocategory EM . This is an exact abelian subcategory of ModS, and we
show that M is endofinite if and only if every object in EM is of finite length. Also
we prove that M is indecomposable and endofinite if and only if the coproducts
of copies of M form a definable subcategory of ModR. This result motivates the
following definition. We call a module M product-complete if every product of
copies of M is a direct summand of a coproduct of copies of M .

Theorem. A module M is endofinite if and only if every direct summand of
M is product-complete.

Endofinite modules are pure-injective and therefore we can study the indecom-
posable ones as points of the Ziegler spectrum. Finally we assign to every ideal in
modR a length and show that for an artin algebra R the fp-idempotent ideals of
length n correspond to the endofinite modules of endolength n.
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In Chapter 7 we assign to a ring R its Krull-Gabriel dimension KGdimR.
This dimension is defined in terms of a filtration

0 = C(R)−1 ⊆ C(R)0 ⊆ C(R)1 ⊆ . . .

of the abelian category C(R); it is therefore a finitely presented version of the Krull
dimension of the Grothendieck category D(R) which Gabriel [26] introduced in
terms of a filtration

0 = D(R)−1 ⊆ D(R)0 ⊆ D(R)1 ⊆ . . .

of D(R). There is a also a local variant KGdimM for every R-module M which is
automatically bounded by KGdimR. For example, KGdimR = 0 if and only if R
is of finite representation type, i.e. R is right artinian and there are only finitely
many isomorphism classes of indecomposable R-modules. Also, KGdimM = 0
if and only if M is endofinite. The Krull-Gabriel dimension of R measures the
complexity of the category ModR, and KGdimR < ∞ seems to be a reasonable
finiteness condition if one is interested in classification results similar to those for
rings of finite representation type. For example, we show that every pure-injective
module M with KGdimM < ∞ is the pure-injective envelope of a coproduct of
modules in IndR. From this follows that, for every ordinal α, the duality map
M 7→ M∨ induces a bijection between the isomorphism classes of right and left
R-modules which are pure-injective and have Krull-Gabriel dimension α.

The filtration

modR = rad0 ⊇ rad1 ⊇ rad2 ⊇ . . .

of the Jacobson radical rad = rad(modR) of modR plays an important role in the
representation theory of finite dimensional algebras because almost split sequences
in modR and the Aulander-Reiten quiver of R are defined in terms of maps which
belong to rad1 \ rad2. In Chapter 8 we study two filtrations of the Jacobson radical
rad which extend the usual filtration (radn)n∈N. Our first aim is to extend the class
of preinjective modules. In their study of the representation theory of finite-
dimensional tensor algebras Dlab and Ringel described certain modules which they
called preprojective and preinjective modules [23]. Later Auslander and Smalø
defined these concepts for arbitrary artin algebras [7]. We define a new radical

series (radα)α of the category modR which is indexed by the ordinals. Using
this radical series, we assign to every finitely presented module M a preinjective
dimension pidimM . This dimension is finite if and only if the module is preinjective
in the sense of Auslander and Smalø, and we prove also that for every ordinal α the
Krull-Gabriel dimension of R is bounded by α if and only if pidimM < ω(α+1) for
every M in modR. Then we compare for every ordinal α the ideal radα of modR
with the power radα of the Jacobson radical of modR which Prest introduced [64].

Theorem. Let R be an artin algebra of Krull-Gabriel dimension α. Then
radωα+n = 0 for some n ∈ N.

Functors from a different module category ModS to ModR play an important
role in our analysis of the spectrum of ModR. There is a natural class of functors
ModS → ModR which we call coherent since their composition with the forgetful
functor ModR → Ab arises as the cokernel of a map HomS(Y,−)→ HomS(X,−)
where X and Y belong to modS. In fact, we may think of such a functor as
a representation of R in the abelian category C(Sop). In Chapter 9 we present
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various characterizations and some of the basic properties of coherent functors. For
example, it is shown that they are precisely those functors which commute with
direct limits and products. Another characterization can be used to prove that a
coherent functor preserves endofiniteness and the Ziegler topology.

A finite dimensional algebra R over some algebraically closed field is said to
have tame representation type if for every n ∈ N the indecomposable R-modules
of dimension n belong to a finite number of continuous 1-parameter families. Our
aim in Chapter 10 is to present two new definitions of tameness. Both definitions
seem to be more natural. The first one is formulated in terms of endofinite modules
and behaves well with respect to functors between module categories. The second
definition uses fp-idempotent ideals and is therefore entirely formulated in terms
of the category of finitely presented modules. The main results of this chapter
are as follows. Let indnR denote the isomorphism classes of finitely presented
indecomposable R-modules of endolength n.

Theorem. Let R be a finite dimensional algebra over some algebraically closed
field. Then the following are equivalent:

(1) The algebra R is of tame representation type.
(2) For every n ∈ N the Ziegler closure of indnR contains only finitely many

modules which do not belong to indn R.
(3) For every n ∈ N there are only finitely many fp-idempotent and nilpotent

ideals in modR which are contained in the ideal which is generated by the
identity maps of the modules in indnR.

Using previous results about endofinite modules, fp-idempotent ideals, and
coherent functors, the proof that any tame algebra has both properties is fairly
elementary. Applying similar techniques, one shows that any algebra of wild rep-
resentation type cannot have these properties. We obtain therefore our characteri-
zation of tameness if we apply the Tame and Wild Theorem which asserts that an
algebra is either tame or wild but not both [24, 14, 17]. The essential concept for
this discussion is that of a generic module. These are indecomposable endofinite
modules which are not finitely presented [17, 51]. We end this chapter with an ex-
plicit description of the relation between generic modules and 1-parameter families
of finite dimensional modules.

In Chapter 11 we assign to every collection Φ of maps in modR a ring homo-
morphism fΦ : R→ RΦ which is called the ring of definable scalars for Φ. This
is an invariant of the definable subcategory (ModR)Φ which was first introduced by
Prest [63]. We use a universal property to define the ring of definable scalars but
present various alternative constructions for R → RΦ. More precisely, the restric-
tion functor corresponding to fΦ induces an equivalence (ModRΦ)Ψ → (ModR)Φ
for some collection Ψ in modRΦ, and every homomorphism f : R→ S having this
property induces a homomorphism g : S → RΦ such that fΦ = g ◦ f . The first
construction of fΦ uses the free abelian category C(R) over R so that fΦ is induced
by the quotient functor with respect to a Serre subcategory of C(R); the second
construction uses a calculus of left fractions, and our third approach yields RΦ

as the biendomorphism ring of MΦ = (NΦ)κ where NΦ is the product of all
Φ-injective modules in IndR and κ = cardNΦ.

Theorem. Let S = EndR(MΦ)op. Then the canonical map R → EndS(MΦ)
is the ring of definable scalars for Φ.
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We include a discussion of epimorphisms in the category of rings because
every epimorphism f : R→ S is the ring of definable scalars for the collection Φ of
maps φ in modR such that φ⊗RS has a left inverse in modS. In this case restriction
via fΦ induces an equivalence ModRΦ → (ModR)Φ. In fact, this observation shows
that any epimorphism f : R → S is obtained by adjoining universally left inverses
to a collection of maps in modR. In particular, every element in S is of the form
f(x)−f(r) for some elements r,x ∈ Rn and a left inverse f(x)− ∈ Sn for f(x).

Chapter 12 is devoted to studying the definable subcategories of ModR having
the additional property that the inclusion functor has a left adjoint. We present
various characterizations of such subcategories and study their basic properties. Ex-
amples are the full subcategories of Φ-continuous modules for a collection Φ of
maps in modR. Recall from [29] that an R-module M is φ-continuous with respect
to a map φ : X → Y in ModR if the induced map HomR(Y,M) → HomR(X,M)
is bijective. We study also the rings of definable scalars for such definable subcat-
egories and interpret them as localizations for suitable collections Φ in modR. We
consider for R two types of localizations: the definable localization is obtained
by adjoining universally left inverses for every element in Φ, and the universal lo-

calization is obtained by adjoining universally two-sided inverses for every element
in Φ. This generalizes the classical localization concept for a ring because inverting
an element r ∈ R is the same as inverting the map R → R, x 7→ rx, in modR.
Our discussion of definable and universal localization is motivated by Schofield’s
universal localization [11, 75] which has been widely used in representation theory,
in particular in connection with the formation of perpendicular categories [76, 33].

In the past several attempts have been made to define non-commutative affine
schemes in order to develop some framework for non-commutative algebraic geome-
try. In Chapter 13 we exhibit the geometrical properties of the spectrum IndR and
obtain in this way a fairly general approach towards non-commutative geometry
which covers some classical cases. A structure sheaf OR on IndR and a functor

ModR→ ModOR, M 7→ M̃ , form the main ingredients of our approach. This con-
struction can be described as follows. First we introduce for every pair of objects
M,N in a locally coherent Grothendieck category A a presheaf HomX(M,N) of

local morphisms on the Gabriel spectrum SpA of isomorphism classes of indecom-
posable injective objects in A. For example, if A is the category of quasi-coherent
sheaves on a noetherian scheme, then our definition of HomX(M,N) yields the
usual sheaf of local morphisms between two sheaves M and N because SpA can be
identified with the underlying space of the noetherian scheme [26]. Given a Ziegler
closed subset X of IndR we associate to X a localizing subcategory T of D(R) and
obtain a functor ModR→ D(R)/T , M 7→ TM , which identifies X with the Gabriel
spectrum of the locally coherent category D(R)/T . This identification yields a new
topology on X which we call Zariski topology and which is usually different from
the Ziegler topology. In this way we obtain a presheaf RX = EndX(TR) of rings
on X = Sp(D(R)/T ). Following Prest [63], we call RX the presheaf of defin-

able scalars because there is an alternative construction which uses the rings of
definable scalars. More precisely, if U is a Zariski-open subset of X = UΦ, then

Γ(U, RX) ≃ lim←−UΦ∪φ⊆URΦ∪φ

where φ runs through all maps φ in modR. Analogously, we associate to every R-
module M the presheaf MX = HomX(TR, TM ). Having constructed the presheaves
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RX and MX one obtains automatically an associated sheaf of rings OX and a sheaf

of abelian groups M̃X for every R-module M . The sheaf OX is determined by its
stalks which are rings of definable scalars.

Theorem. The stalk of OX at P ∈ X is the ring of definable scalars RΦP for
ΦP = {φ ∈ modR |P is φ-injective }.

We discuss some basic properties of the structure sheaf OX and the functor

ModR → ModOX, M 7→ M̃X, but for the applications we have in mind it is
important to make the appropriate choice for the Ziegler-closed subset X of IndR.
This is the contents of the following two chapters.

In Chapter 14 we investigate the sheaf of definable scalars for a tame hered-

itary artin algebra R. Restricting to an appropriate Ziegler-closed subset X of
IndR it is shown that the sheaf OX yields a curve which parametrizes the finitely
generated indecomposable R-modules. This curve has been studied by Baer, Geigle,
and Lenzing [57, 9], and its centre by Crawley-Boevey [16]. The reinterpretation of
this parametrizing curve via rings of definable scalars was suggested by Prest [65].
Our main result is that the presheaf of definable scalars is actually a sheaf. To be
precise let I ⊆ IndR be the set of finitely generated preinjective indecomposables,
and denote by X = I\I the Ziegler-closed set of all non-finitely generated indecom-
posables belonging to the Ziegler closure of I. We consider the Zariski topology on
X.

Theorem. The presheaf of definable scalars RX is a sheaf, i.e. RX = OX.
The ring of global sections Γ(X,OX) is precisely R and the underlying space X

has dimension 1 and contains a unique generic point which is precisely the unique
generic R-module.

For our proof it is not essential that R is hereditary. In fact, the crucial property
for this result is the fact that R has Krull-Gabriel dimension 2.

The Gabriel spectrum X = SpR of a right coherent ring R is another
example of a Ziegler-closed subset of IndR which we study in Chapter 15. The
points of SpR are the isomorphism classes of indecomposable injective R-modules,
and the collection of subsets UX = {M ∈ SpR | HomR(X,M) = 0}, X ∈ modR,
forms a basis of open subsets for the Zariski topology on SpR. For example, if
R is commutative noetherian, then X can be identified with the prime spectrum
of R and the structure sheaf OX is isomorphic to the classical structure sheaf
which is defined on the prime spectrum. Moreover, the functor ModR→ ModOX,

M 7→ M̃X, induces the usual equivalence between ModR and the category QcohX

of quasi-coherent sheaves on (X,OX); in particular Γ(X, M̃X) ≃ M for every R-
module M . However, if R is non-commutative, then the global section functor

M 7→ Γ(X, M̃X) has some interesting properties which we discuss in the final part
of this chapter.

In these notes we present various aspects of the spectrum of a module category.
Some topics are completely independent from each other, but there are also parts
which depend on the linear order of our exposition. The material of Chapter 1 and
2 is fundamental; it is needed in each of the subsequent chapters. Chapter 3, 4,
5, 6, 9 are devoted to various topics which are fairly independent from each other.
The Chapters 7 and 8 on dimensions form a unit. The discussion of tame algebras
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in Chapter 10 depends on Chapter 5, 6, 9. The rings of definable scalars from
Chapter 11 are needed in Chapter 12 and 13. The Chapters 13, 14, 15 on sheaves
form another unit, but Chapter 14 and 15 are independent from each other.

Our treatment of a module category and its spectrum is rather categorical. In
fact, we assume that the reader is familiar with the language of abelian Grothendieck
categories and its localization theory. An excellent reference is Gabriel’s thèse [26]
or Stenstrøm’s book [79]. Some extra material is collected in the appendix. Various
concepts which arise in this work have their origin in model theory of modules. The
standard references are Ziegler’s exposition [80] and Prest’s book [61]; an alterna-
tive approach can be found in the book of Jensen and Lenzing [43]. For the basic
facts from representation theory of artin algebras we refer to the textbook of Aus-
lander, Reiten, and Smalø [8]. A useful reference for concepts from representation
theory of tame algebras is Ringel’s book [71].

These notes are almost identical with the Habilitationsschrift which I submitted
in January 1998 at the University of Bielefeld. There are a number of people I
should like to thank for their encouragement and constant interest in my work on
the Ziegler spectrum. The first person I should like to mention is Claus Ringel.
In fact, I enjoyed very much discussions on the topic of this thesis in the Bielefeld
representation theory seminar, and, besides Claus Ringel, various members of this
seminar contributed with critics and comments. In particular I should like to thank
Peter Dräxler, Lutz Hille, Steffen König, and Jan Schröer. Many thanks also to
Helmut Lenzing for stimulating discussions and constant support. My own interest
in the functorial approach towards representation theory started when I visited
Maurice Auslander at Brandeis in 1991/92; I am grateful to him for his generous
contribution of ideas and insight. I should also like to thank Ivo Herzog and Mike
Prest for explaining to me the model-theoretic point of view. Parts of this work
were done during visits at the universities of Trondheim and Leeds. Many thanks
to Idun Reiten and Bill Crawley-Boevey for their hospitality and for stimulating
and helpful discussions concerning this material.



CHAPTER 1

The functor category

1.1. Preliminaries

We introduce some terminology. Throughout we are working in a fixed universe
U containing an infinite set (e.g. see [35, Numéro 0]). All categories C are assumed
to be U-categories in the sense that for each pair of objects X,Y ∈ C the set
Hom(X,Y ) is small, i.e. bijective with a set in U. A category C is skeletally small
provided that the isomorphism classes of objects in C form a small set.

Fix a category A. We call the colimit lim−→ i∈IXi of a functor X : I → A,
i 7→ Xi, a direct limit if I is a small directed set. If the category A has direct
limits, then the finitely presented objects of A play an important role. Recall that
an object X in A is finitely presented provided that for every direct limit lim−→Yi
in A the natural morphism lim−→Hom(X,Yi) → Hom(X, lim−→Yi) is an isomorphism.
The full subcategory of finitely presented objects of A is denoted by fpA. Given a
subcategory C of A we denote by lim−→C the full subcategory of A which consists of
direct limits lim−→Xi with Xi ∈ C for all i. The following lemma will be useful.

Lemma 1.1. Let f : A → B be a functor between categories with direct limits.
Suppose there exists a right adjoint which commutes with direct limits. If X is a
finitely presented object in A, then f(X) is finitely presented.

Proof. Let lim−→Yi ∈ B. We have the following sequence of isomorphisms

lim−→Hom(f(X), Yi) ≃ lim−→Hom(X, g(Yi)) ≃ Hom(X, lim−→ g(Yi))

≃ Hom(X, g(lim−→Yi)) ≃ Hom(f(X), lim−→Yi)

since f and g is a pair of adjoint functors and g commutes with direct limits. The
assertion follows.

Throughout the paper all functors between preadditive categories are assumed
to be additive. Given two preadditive categories C and D, the class of functors
F : C → D is denoted by (C,D) and Hom(F,G) denotes the class of natural trans-
formations between two functors F and G in (C,D). If C is skeletally small, then
(C,D) forms actually a category since the Hom sets are small. The category of
abelian groups is denoted by Ab. Given any category C, one defines limits, colimits
etc. in (C,Ab) pointwise and they coincide with the categorical notions if (C,Ab)
is a category. If C is additive, then we denote by

C −→ (C,Ab), X 7→ HX = Hom(X,−)

the Yoneda embedding. A functor F : C → Ab is said to be finitely presented if
there is an exact sequence

Hom(Y,−) −→ Hom(X,−) −→ F −→ 0,

11
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equivalently if F = CokerHφ for some map φ : X → Y . We denote by fp(C,Ab)
the category of finitely presented functors, and observe that for skeletally small C
a functor F : C → Ab is finitely presented if and only if Hom(F,−) preserves direct
limits in (C,Ab).

1.2. Purity

The concept of purity plays an important role in our analysis of a module
category. It goes back to Cohn [13] and has been further developed by various
mathematicians. In this section we collect the basic facts using the embedding of
a module category into a bigger functor category.

Let R be an associative ring with identity. Denote by ModR the category of
(right) R-modules and by modR the full subcategory of all finitely presented R-
modules. Let D(R) = (modRop,Ab) be the category of covariant additive functors
from the category modRop of finitely presented Rop-modules into the category Ab
of abelian groups. We assign to each R-module M the following three functors:

HM : ModR −→ Ab, X 7→ HomR(M,X)

TM : ModRop −→ Ab, X 7→M ⊗R X

EM : D(R) −→ Ab, X 7→ HomD(R)(X,TM )

Of course, these assignments are functorial, i.e. each map M → N between R-
modules gives rise to natural transformations HN → HM , TM → TN , and EM →
EN . We shall often consider restrictions of these functors. However, our notation
will not distinguish between the original functor and its restriction if the context is
clear.

The fully faithful functor

ModR −→ D(R), M 7→ TM = M ⊗R −

will play an important role in our considerations. We recall briefly the basic facts
about D(R) and refer the reader for a detailed exposition to [38]. A sequence (finite
or infinite) of R-module maps

· · · −→Mn−1 −→Mn −→Mn+1 −→ · · ·

is said to be pure-exact if its image under the functor M 7→ TM

· · · −→ TMn−1 −→ TMn
−→ TMn+1 −→ · · ·

is exact in D(R). In particular, a map M → N is a pure monomorphism if
TM → TN is a monomorphism. An R-module M is called pure-injective if ev-
ery pure monomorphism M → N splits. We shall also use the full subcategory
C(R) = fp(modRop,Ab) of finitely presented functors in D(R). Recall that a
functor in D(R) is finitely presented if there is an exact sequence HomRop(Y,−)→
HomRop(X,−)→ F → 0 with X and Y in modRop. Observe that C(R) is an exact
abelian subcategory, equivalently that finitely generated subfunctors of finitely pre-
sented functors again are finitely presented. This follows from the fact that modRop

is a category having cokernels. Viewing the ring R as a category with one object,
the isomorphism R ≃ End(TR) amounts to a fully faithful functor i : R → C(R).
The next lemma expresses the fact that C(R) is the free abelian category over R,
see [36].
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Lemma 1.2. Any additive functor f : R → A into an abelian category A ex-
tends, up to isomorphism, uniquely to an exact functor f ′ : C(R) → A with f =
f ′ ◦ i.

Proof. First one extends f to a contravariant additive functor f1 : projRop →
A on the category of finitely generated projective Rop-modules. This extends to a
left exact functor f2 : modRop → A by f2(X) = Ker f1(φ) for X = Cokerφ with φ
a map in projRop. Finally, one extends f2 to an exact functor f ′ : C(R) → A by
f ′(F ) = Coker f2(ψ) for F = Coker HomRop(ψ,−) with ψ a map in modRop.

Recall that an object M in any abelian category with direct limits is fp-injective
if Ext1(X,M) = 0 for every finitely presented object X . We shall use the following
characterization of fp-injective objects in D(R).

Lemma 1.3. The following are equivalent for a functor F in D(R):

(1) F is fp-injective, i.e. Ext1(−, F ) vanishes on C(R).
(2) Hom(−, F ) is an exact functor on C(R).
(3) F ≃ TM for some R-module M .

Proof. (1)⇒ (2) An exact sequence 0→ G′ → G→ G′′ → 0 in C(R) induces
an exact sequence 0→ Hom(G′′, F )→ Hom(G,F )→ Hom(G′, F )→ Ext1(G′′, F ).
Therefore Hom(−, F ) is exact provided that Ext1(−, F ) = 0.

(2) ⇒ (3) Suppose that Hom(−, F ) is exact of C(R) and let M = F (R) with
R acting on M via R ≃ EndRop(R). The isomorphism TM (R) ≃ F (R) extends
to an isomorphism TM (X) ≃ F (X) for every X in modRop. This follows from
Yoneda’s lemma and the fact that a presentation Rn → Rm → X → 0 induces an
exact sequence 0→ HomRop(X,−)→ HomRop(Rm,−)→ HomRop(Rn,−) in C(R).
Thus TM ≃ F .

(3) ⇒ (1) Let F ≃ TM and G ∈ C(R). There exists a projective presentation
0→ HomRop(Z,−)→ HomRop(Y,−)→ HomRop(X,−)→ G→ 0 which is induced
by an exact sequence X → Y → Z → 0 in modRop. The sequence remains exact
after applying Hom(−, F ) since TM is right exact. Therefore Ext1(G,F ) = 0.

EveryR-module can be viewed as a functor Rop → Ab, i.e. ModR = (Rop,Ab).
Combining this fact with the universal property of C(R) stated in Lemma 1.2 one
obtains the following reformulation of the preceding lemma.

Lemma 1.4. The functor ModR → Ex(C(R)op,Ab), M 7→ EM , is an equiva-
lence.

Here we denote for any abelian category C by Ex(C,Ab) the category of exact
functors C → Ab. Note that F 7→ F (TR) is an inverse for M 7→ EM where R acts
on F (TR) via the isomorphism R ≃ End(TR).

Having characterized the fp-injective objects in D(R) we can now prove that
the assignment M 7→ TM identifies the pure-injective R-modules with the injective
objects in D(R).

Lemma 1.5. The following are equivalent for a functor F in D(R):

(1) F is injective, i.e. Ext1(−, F ) vanishes on D(R).
(2) Hom(−, F ) is an exact functor on D(R).
(3) F ≃ TM for some pure-injective R-module M .
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Proof. (1) ⇔ (2) This is standard.
(1) ⇒ (3) Any injective object is fp-injective and therefore F ≃ TM for some

R-module M by Lemma 1.3. The module M is pure-injective since every monomor-
phism F → TN in D(R) splits.

(3) ⇒ (1) Choose a monomorphism F → G with G injective in D(R). This
maps splits since G ≃ TN for some R-module N and M is pure-injective. Therefore
F is injective.

We discuss now a duality between C(R) and C(Rop) which extends the duality
between R and Rop. Given a functor F ∈ D(R) we define F∨ : ModR → Ab by
F∨(X) = HomD(R)(F, TX). The same formula defines for every F ∈ D(Rop) a
functor F∨ : ModRop → Ab.

Lemma 1.6. The following holds:

(1) The assignment F 7→ F∨ induces mutually inverse equivalences between
C(R)op and C(Rop).

(2) (CokerHφ)∨ = KerTφ for every map φ in modR.
(3) F ∈ D(R) is finitely presented if and only if F = KerTφ for some map φ

in modR.

Proof. (1) The functor C(R) → D(Rop), F 7→ F∨, sends TR to HR = TRop

and is exact by Lemma 1.3. It is easily checked that F∨ ∈ C(Rop) for every
F ∈ C(R). For instance, (HX)∨ = TX for every X in modRop and a presentation

Rn
φ
→ Rm → X → 0 shows that TX = KerTφ is finitely presented since it is the

kernel of a map between finitely presented functors. It follows from Lemma 1.2 that
C(R)→ C(R), F 7→ F∨∨, is isomorphic to the identity functor. Thus ∨ induces a
duality between C(R) and C(Rop).

(2) (HX)∨ = TX for every X in modRop, and (CokerHφ)∨ = KerTφ follows
from the exactness of ∨.

(3) follows from (1) - (2).

A functor F : ModR → Ab defined on the category of all R-modules will be
called coherent if F = CokerHφ for some map φ between finitely presented R-
modules.



CHAPTER 2

Definable subcategories

This chapter is devoted to the fundamental concept of a definable subcategory
of ModR. This notion has its origin in model theory of modules; in this context
a definable subcategory corresponds to a complete theory of modules [61, 80].
Definable subcategories were introduced formally by Crawley-Boevey when their
relevance became apparent in representation theory [19].

2.1. Definable subcategories

Let φ : X → Y be a map of R-modules. An R-module M is called φ-injective
if the induced map HomR(Y,M)→ HomR(X,M) is surjective. If Φ is a collection
of maps, then M is Φ-injective if M is φ-injective for every φ in Φ, and we denote
by (ModR)Φ the full subcategory of Φ-injective R-modules. A full subcategory of
ModR formed by the Φ-injective modules for some collection Φ of maps in modR
is called definable.

We now formulate the main result of this section. It is due to Crawley-Boevey
[19], with the exception of part (4) which is crucial for the proof given here. Note
that Crawley-Boevey’s proof uses model-theoretic arguments, including some work
of Herzog [40] and Ziegler [80].

Theorem 2.1. For a full subcategory X of ModR the following are equivalent.

(1) X is definable.
(2) X is closed under taking direct limits, products and pure submodules in

ModR.
(3) There is a Serre subcategory S of C(R) such that an R-module M belongs

to X if and only if Hom(S, TM ) = 0.
(4) There is a hereditary torsion theory (T ,F) of finite type for D(R) such

that an R-module M belongs to X if and only if TM is in F .

Recall that a full subcategory S of C(R) is a Serre subcategory provided that
for every exact sequence 0 → F ′ → F → F ′′ → 0 in C(R) the object F belongs
to S if and only if F ′ and F ′′ belong to S. A torsion theory (T ,F) for D(R) is
hereditary if T is closed under subobjects and (T ,F) is said to be of finite type if
F is closed under direct limits. We shall use the fact that (T ,F) is hereditary of
finite type if and only if it is of the form (lim−→S,F) for some Serre subcategory S
of C(R), see Proposition A.4. Here, lim−→S denotes the full subcategory of objects
in D(R) which consists of direct limits lim−→Fi with Fi in S for all i.

The next lemma is a useful reformulation of the definition of φ-injectivity.

Lemma 2.2. The following are equivalent for a map φ ∈ modR and M ∈
ModR:

(1) M is φ-injective.

15
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(2) Hom(KerTφ, TM ) = 0.
(3) CokerHφ(M) = 0.

Proof. Clear.

Proof of Theorem 2.1. (1) ⇔ (3) We use the preceding lemma. Suppose
first that X is the category of Φ-injective modules for some collection Φ of maps
in modR. Denote by S the Serre subcategory of C(R) which is generated by the
collection of functors KerTφ with φ ∈ Φ. It follows from the fp-injectivity of each
TM that M ∈ X if and only if Hom(S, TM ) = 0. Conversely, suppose that (3) holds.
Let Φ be the collection of maps in modR with KerTφ ∈ S. Using the fact that
every functor in C(R) is of the form KerTφ for some map φ in modR, it follows
that M ∈ X if and only if M is Φ-injective. Therefore X is definable.

(1) ⇒ (2) We use again the preceding lemma. It is well-known that HX pre-
serves direct limits and products whenever X is a finitely presented module. There-
fore CokerHφ preserves direct limits and products for any map φ in modR. It
follows that X is closed under taking direct limits and products. To see that X is
closed under taking pure submodules one uses part (2) of the preceding lemma.

(2)⇒ (4) Consider the class F = {F ∈ D(R) | F ⊆ TM for some M ∈ X}. We
claim that F is the torsion-free class for some hereditary torsion theory of finite type
for D(R). We want to show that F is closed under taking direct limits, products
and subobjects. It is clear that F is closed under taking products and subobjects.
Therefore suppose that F = lim−→ i∈IFi is a direct limit of objects Fi in F and fix for
each i a monomorphism Fi → Gi with Gi = TMi

for some Mi ∈ X . For each i ∈ I
let Ji = {j ∈ I | i ≤ j}. The canonically defined monomorphisms Fi →

∏
j∈Ji

Gj ,

i ∈ I, induce a monomorphism lim−→ i∈IFi → lim−→ i∈I

∏
j∈Ji

Gj since direct limits in

D(R) are left exact. Defining M = lim−→ i∈I

∏
j∈Ji

Mj we have TM = lim−→ i∈I

∏
j∈Ji

Gj
since the functor N 7→ TN preserves direct limits and products. We obtain therefore
a monomorphism F → TM with M in X , and this shows that F is also closed under
direct limits. Now consider F as a full subcategory of D(R). The inclusion functor
F → D(R) has a left adjoint f : D(R) → F which is constructed as follows. For
F ∈ D(R) let Gi, i ∈ I, be the set of quotient objects of F which are in F . Define
f(F ) to be the image and t(F ) the kernel of the canonical morphism F →

∏
iGi.

Also define

T = {F ∈ D(R) | Hom(F,F) = 0}

= {F ∈ D(R) | Hom(F, TM ) = 0 for all M ∈ X}

and note that S = T ∩ C(R) is a Serre subcategory of C(R). We claim that
t(F ) ∈ lim−→S for F ∈ C(R). To this end write t(F ) = lim−→Gi as direct limit of
finitely generated subobjects. We need to show that Gi ∈ S for all i. Suppose that
G = Gi 6∈ S. Then there is a non-zero morphism φ : G→ TM for someM ∈ X and φ
extends to a morphism ψ : F → TM since Ext1(F/G, TM ) = 0. But the adjointness
property of f implies that ψ factors through F → f(F ). Therefore φ(G) = 0, a
contradiction to our assumption. Thus t(F ) ∈ lim−→S. Now let F = lim−→Fi be an
arbitrary object in D(R) written as direct limit of finitely presented objects. We
obtain an exact sequence 0→ lim−→ t(Fi)→ F → lim−→ f(Fi)→ 0 with lim−→ t(Fi) ∈ lim−→S
and lim−→ f(Fi) ∈ F since both lim−→S and F are closed under direct limits. We
conclude that (lim−→S,F) is a torsion theory for D(R) which is hereditary of finite
type.
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(4) ⇒ (3) Suppose we have X = {M ∈ ModR | TM ∈ F} for some hereditary
torsion theory (T ,F) of finite type for D(R). The assertion follows immediately
if we take S = T ∩ C(R) as defining subcategory for X since F = {F ∈ D(R) |
Hom(S, F ) = 0}.

Given a definable subcategory X = (ModR)Φ of ModR, we denote by TX or
TΦ the localizing subcategory of functors F in D(R) such that Hom(F, TM ) = 0
for all M in X . The Serre subcategory TX ∩ C(R) is denoted by SX or SΦ. The
following result is a consequence of the preceding theorem and its proof.

Corollary 2.3. The assignments

X 7→ SX = TX ∩C(R) and S 7→ {M ∈ModR | Hom(S, TM ) = 0}

give mutually inverse bijections between the definable subcategories of ModR and
the Serre subcategories of C(R).

The characterization of definable subcategories in Theorem 2.1 leads to further
characterizations. In fact, using the basic theory of localization in the locally co-
herent category D(R) which is formulated in the appendix, we obtain the following
consequence of Theorem 2.1.

Corollary 2.4. For a full subcategory X of ModR the following are equiva-
lent:

(1) X is a definable subcategory.
(2) There is a Serre subcategory S of C(R) such that the assignment M 7→ EM

induces an equivalence between X and the category Ex((C(R)/S)op,Ab) of
exact functors (C(R)/S)op → Ab.

(3) There is a localizing subcategory of finite type T of D(R) such that the
composition of the section functor D(R)/T → D(R) with D(R)→ ModR,
F 7→ F (R), induces an equivalence between the full subcategory of fp-
injective objects in D(R)/T and the category X .

Remark 2.5. If the conditions (1) - (3) in the preceding theorem are satisfied,
then S = SX and T = TX .

Proof. (1) ⇔ (2) We combine the characterization of a definable subcate-
gory in part (3) of Theorem 2.1 with the equivalence ModR → Ex(C(R)op,Ab)
from Lemma 1.4. The assertion follows from the fact that for any Serre subcate-
gory S of C(R) with quotient functor p : C(R) → C(R)/S, there exists a functor
F in Ex((C(R)/S)op,Ab) with EM = F ◦ p for any R-module M if and only if
Hom(S, TM ) = 0.

(1) ⇔ (3) Combine the characterization of a definable subcategory in part (4)
of Theorem 2.1 with Proposition A.7.

We have seen in Lemma 1.5 that the functor ModR→ D(R), M 7→ TM , induces
an equivalence between ModR and the full subcategory of fp-injective objects in
D(R). This is a special case of the following result which is fundamental for our
analysis of definable subcategories of ModR.

Corollary 2.6. Let X be a definable subcategory of ModR. Then the functor

ModR −→ D(R) −→ D(R)/TX , M 7→ TM

induces equivalences:
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(1) between X and the full subcategory of fp-injective objects in D(R)/TX ;
(2) between the full subcategory of pure-injective modules in X and the full

subcategory of injective objects in D(R)/TX .

Proof. The quotient functor q : D(R)→ D(R)/TX is an inverse for the section
functor s : D(R)/TX → D(R), i.e. q ◦ s ≃ id. Therefore the assertion of the corollary
follows from the description of X in part (4) of Theorem 2.1, in combination with
Proposition A.7 and Proposition A.8.

We give an application of the preceding result. To this end recall that a module
M is Σ-pure-injective if every coproduct of copies of M is pure-injective.

Corollary 2.7. The following are equivalent for a definable subcategory X of
ModR:

(1) Every module in X is pure-injective.
(2) Every module in X is Σ-pure-injective.
(3) Every module in X is a coproduct of indecomposable modules.

Proof. Using the description of a definable subcategory from the preceding
corollary, it follows from Proposition A.11 that each condition is equivalent to
D(R)/T being locally noetherian.

2.2. Saturation

Given a collection Φ of maps in modR, we now describe the maximal collection
Ψ such that (ModR)Φ = (ModR)Ψ. We begin with a definition. Let C be an
additive category with cokernels, so that fp(C,Ab) is abelian. A collection Φ of maps
in C will be called Serre saturated, or simply saturated, if the following conditions
hold:

(S1) Suppose there are maps αi, βi, φi (i = 1, 2) in C satisfying the identities
φ1 ◦α1 = β2 ◦φ2 and φ2 ◦α2 = β1 ◦φ1. Suppose also that id − α2 ◦α1

factors through φ2. Then φ1 ∈ Φ implies φ2 ∈ Φ.
(S2) Suppose there are maps φi : Xi → Yi (i = 1, 2) and ψ : X1 → Y2 such that

the composition X1
ψ
→ Y2 → Cokerφ2 is zero. Then φ1, φ2 ∈ Φ if and only

if
[ φ1 0
ψ φ2

]
∈ Φ.

The following lemma explains our definition of a saturated collection of maps.

Lemma 2.8. For a collection Φ of maps in C the following are equivalent:

(1) Φ is Serre saturated.
(2) {CokerHφ | φ ∈ Φ} is a Serre subcategory of fp(C, Ab).

Proof. We fix two maps φi : Xi → Yi (i = 1, 2). (S1) expresses the fact that
φ2 ∈ Φ provided that φ1 ∈ Φ and CokerHφ2 is a direct summand of CokerHφ1 .
There exists an exact sequence 0→ CokerHφ1 → F → CokerHφ2 → 0 if and only

if there is a map ψ : X1 → Y2 such that the composition X1
ψ
→ Y2 → Cokerφ2 is

zero and CokerHφ ≃ F for φ =
[ φ1 0
ψ φ2

]
, see Lemma C.5. Therefore, assuming (S1),

condition (S2) holds if and only if (2) holds.

Given any collection Φ of maps in C, we denote by Φ the smallest saturated
collection of maps containing Φ and call Φ the saturation of Φ. This definition makes
sense because any intersection

⋂
Φi of saturated collections Φi is again saturated.

Using the preceding lemma we obtain the following consequence of Corollary 2.3.
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Theorem 2.9. Let Φ be a collection of maps in modR. Then a map φ in
modR belongs to the saturation Φ if and only if M is φ-injective for every Φ-
injective R-module M . Therefore the assignment Ψ 7→ (ModR)Ψ gives a bijection
between the saturated collections of maps in modR and the definable subcategories
of ModR.

Proof. A map φ in modR belongs to Φ if and only if KerTφ ∈ SΦ. Therefore
the bijection between saturated collections of maps and definable subcategories is
a reformulation of Corollary 2.3.

Given any class C of R-modules we denote by ΦC the collection of maps φ : X →
Y in modR such that every map X → M with M in C factors through φ. Note
that ΦC is automatically saturated. Also, (ModR)ΦC

is the smallest definable
subcategory containing C; we call it therefore the definable subcategory generated
by C.

2.3. The Ziegler topology

The isomorphism classes of indecomposable pure-injective R-modules form a
set which we denote by IndR. In fact, the functor TM corresponding to an in-
decomposable pure-injective R-module M is the injective envelope of a quotient
TR/U if one takes U = KerTφ for some non-zero map φ : R→M . Therefore

card IndR ≤ 2ℵ0+cardR

since every subfunctor of TR is determined by a set of maps in modR. In [80]
Ziegler introduced a topology on the set IndR which can be described as follows.

Proposition 2.10. The subsets of the form

UΦ = {M ∈ IndR |M is Φ-injective }

(Φ a collection of maps in modR) form the closed sets of a topology on IndR. An
open subset IndR \UΦ is quasi compact if and only if UΦ = Uφ for some map φ
in modR; in particular IndR is quasi-compact.

We call a subset U of IndR Ziegler-closed if U = UΦ for some Φ in modR,
and the complement of a Ziegler-closed subset is called Ziegler-open. The set IndR,
equipped with the Ziegler topology, is called the Ziegler spectrum of R.

Proof of Proposition 2.10. We have IndR = U∅ and ∅ = Uφ for φ : R→
0. Now let (Φi)i∈I be a family of collections of maps in modR, and denote for
each i by Si = SΦi the Serre subcategory of C(R) corresponding to Φi. Clearly,⋂

UΦi = UΦ for Φ =
⋃

Φi. If I is finite, let Ψ = {φ ∈ modR | KerTφ ∈ S} where
S =

⋂
Si. It is not hard to check that

⋃
UΦi = UΨ, see [50, Lemma 4.1].

It remains to verify the characterization of the quasi-compact open subsets
V = IndR \UΦ. Suppose first that UΦ = Uφ for some φ, and let V =

⋃
i∈I Vi be

an open covering with Vi = IndR \UΦi for all i. We have Sφ =
⋃
i∈I Si and this

implies F = KerTφ ∈
⋃
i∈J Si for some finite J ⊆ I since F ∈

⋃
i∈I Si if and only

if there exists a finite chain

0 = F0 ⊆ F1 ⊆ . . . ⊆ Fn = F

in C(R) with elements ij ∈ I such that Fj+1/Fj ∈ Sij for all j. Thus Sφ =
⋃
i∈J Si

since Sφ is generated by F , and we conclude that V =
⋃
i∈J Vi. It follows that V

is quasi-compact. To prove the converse consider the open covering V =
⋃
ψ∈Φ Vψ
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with Vψ = IndR \Uψ. If there is a finite subset Ψ ⊆ Φ with V =
⋃
ψ∈Ψ Vψ , then

UΦ = Uφ for φ =
∐
ψ∈Ψψ.

We present now a remarkable property of the Ziegler-closed subset UΦ of IndR
which corresponds to a definable subcategory (ModR)Φ.

Theorem 2.11. An R-module M is Φ-injective if and only if M is isomorphic
to a pure submodule of some product

∏
i∈IMi with Mi ∈ UΦ for all i.

Proof. Let SΦ be the Serre subcategory corresponding to Φ. Then M is
Φ-injective if and only if Hom(SΦ, TM ) = 0, and therefore the assertion is a conse-
quence of Proposition A.9.

We obtain as a direct consequence a result which is due to Crawley-Boevey [19]
and implicit in Ziegler’s work [80].

Corollary 2.12. Two definable subcategories of ModR coincide if and only
if they contain the same indecomposable pure-injective modules.

Another consequence of Theorem 2.11 is obtained from the bijective correspon-
dence between definable subcategories of ModR and Serre subcategories of C(R).
This result is due to Herzog [40], and the first proof using functor categories appears
in [50].

Corollary 2.13. The assignments

U 7→ {F ∈ C(R) | Hom(F, TM ) = 0 for every M ∈ U} and

S 7→ {M ∈ IndR | Hom(S, TM ) = 0}

give mutually inverse bijections between the Ziegler-closed subsets of IndR and the
Serre subcategories of C(R).

There are various classes of rings where a complete description of the Ziegler
spectrum is known; we refer the reader to [80, 61, 66, 73].

2.4. Definable quotient categories

A discussion of definable subcategories would not be complete without at least
mentioning the corresponding concept of a definable quotient category which was
introduced in [52], see also [49]. In this section we recall briefly the definition
and some of the essential properties. Fix a definable subcategory X of ModR with
S = SX and T = TX . It was shown in Corollary 2.4 that X and Ex(C(X )op,Ab) are
equivalent via the functor M 7→ Hom(−, TM ) where C(X ) = C(R)/S. Therefore
we call Z = Ex(Sop,Ab) the definable quotient category of ModR with respect
to X , and q : ModR → Z, M 7→ Hom(−, TM )|S , is the corresponding quotient
functor. Note that q is an equivalence if and only if X = 0; we use therefore the
notation C(Z) = S. It is clear that Z is an additive category with direct limits
and products. There is also a notion of purity for Z which specializes to the usual
one if X = 0. A sequence of morphisms 0→ L→ M → N → 0 in Z is pure-exact
if 0 → L(X) → M(X) → N(X) → 0 is exact for all X in S. Of course, L is
pure-injective if every pure-exact sequence 0 → L → M → N → 0 splits. Given
any category C having a class of pure-injective sequences, we denote by Pinj C the
full subcategory of pure-injective objects and Ind C denotes the isomorphism classes
of indecomposable pure-injective objects in C.
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Theorem 2.14. Let X be a definable subcategory of ModR. The inclusion
i : X → ModR and the corresponding quotient functor q : ModR → Z have the
following properties:

(1) q(M) = 0 if and only if M lies in X .
(2) i and q preserve direct limits, products and pure-exact sequences.
(3) i induces a fully faithful functor PinjX → PinjR.
(4) q induces a full and dense functor PinjR→ PinjZ. If φ is a morphism in

PinjR, then q(φ) = 0 if and only if φ factors through an object in PinjX .
(5) q induces a bijection IndR \ IndX → IndZ.

Proof. We sketch the proof and refer the reader to [52] for details. Denote
for any abelian category C by Lex(C,Ab) the category of left exact functors C →

Ab. The sequence of exact functors C(Z)
j
→ C(R)

p
→ C(X ) in combination with

the equivalence D(R) → Lex(C(R)op,Ab), X 7→ Hom(−, X)|C(R), induces the
following commutative diagram of functors [50, Lemma 2.7]:

T −→ D(R)
qX
−→ D(R)/Ty≀

y≀
y≀

Lex(C(Z)op,Ab)
j∗

−→ Lex(C(R)op,Ab)
p∗

−→ Lex(C(X )op,Ab)

An analysis of the right half of the diagram provided the properties of the definable
subcategory X , and similar arguments can be used to prove the statements about
the quotient functor q : ModR→ Z.

We continue with an example which illustrates the relation between a definable
subcategory and its quotient category; it is taken from [52].

Let C be a full additive subcategory of modR and suppose that C has split
idempotents and is covariantly finite in modR. Denote by modC R the correspond-
ing stable category, i.e. modC R has the same objects as modR but HomC(X,Y )
is HomR(X,Y ) modulo the subgroup of morphisms which factor through an object
in C.

Proposition 2.15. The subcategory lim−→C is definable and the inclusion func-
tor lim−→C → ModR induces a commutative diagram of canonical functors

C −→ modR
p
−→ modC Ry

y
y

lim−→C −→ ModR
q
−→ Z

having the following properties:

(1) p is the additive quotient functor for C and q is the definable quotient func-
tor for lim−→C.

(2) Each vertical functor A → B induces an equivalence between A and fpB,
and each object in B is a direct limit of finitely presented objects.

(3) C(lim−→C) ≃ fp(C,Ab)op and C(Z) ≃ fp(modC R,Ab)op.

Proof. For the definition of a covariantly finite subcategory and the fact that
lim−→C is definable, see the discussion of left approximations. For the rest, see [52].
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Example 2.16. Let C = projR be the category of finitely generated projective
R-modules. Then modR = modC R is the stable category of finitely presented R-
modules. Using the results from Theorem 2.14 and Proposition 2.15, it has been
shown in [49] that two finite dimensional algebras have the same representation type
if their stable module categories are equivalent. More precisely, modR ≃ modS
implies that R has tame representation type if and only if S has tame representation
type.

2.5. Examples

We present a series of examples which illustrate the omnipresence of definable
subcategories.

(1) Let C be any class of R-modules and denote by Φ the collection of maps φ in
modR such that HomR(φ,M) is surjective for all M in C. Then the full subcategory
of Φ-injective R-modules is the smallest definable subcategory containing C.

(2) Let C be a class of finitely presented R-modules. Then the R-modules M
satisfying HomR(C,M) = 0 form a definable subcategory.

(3) Given a collection Φ of maps in ModR we denote by (ModR)Φ the full
subcategory of Φ-projective R-modules M , i.e. each map X → Y in Φ induces
a surjection HomR(M,X) → HomR(M,Y ). Suppose now that R is an artin k-
algebra. Then for each collection Φ of maps in modR there are collections Φ′ and
Φ′′ in modR such that (ModR)Φ = (ModR)Φ

′

and (ModR)Φ = (ModR)Φ′′ . This
follows from the functorial isomorphism HomR(M,X) ≃ (M ⊗RX∗)∗ for arbitrary
M and finitely presented X in ModR (N∗ = Homk(N, k) denotes the usual k-dual).

(4) Let C be a full additive subcategory of modR and denote by lim−→C the
full subcategory of R-modules which are direct limits of R-modules in C. Then
lim−→C is definable if and only if C is a covariantly finite subcategory of modR, see
Proposition 3.11.

(5) Let R = kG be the group algebra of a finite group G over a field k of prime
characteristic, and let V be a closed homogeneous subvariety of the maximal ideal
spectrum of the cohomology ring H∗(G, k). Denoting by CV the class of finitely
generated R-modules whose variety is contained in V , the CV -local modules form a
definable subcategory of ModR. Recall that a module M is CV -local if every map
X →M with X in CV factors through a projective module [69].

(6) Let R be a hereditary artin algebra. Recall from [70] that an R-module
M is called torsion-free (respectively, divisible) if HomR(X,M) = 0 (respectively,
Ext1R(X,M) = 0) for every regular R-module X . The torsion-free modules form
a definable subcategory which is of the form lim−→P (P the category of finitely pre-
sented preprojective modules). Also the divisble modules form a definable subcat-
egory.

(7) Suppose that M is an endofinite R-module, i.e. M is of finite length when
regarded as an EndR(M)op-module. Then AddM is a definable subcategory. Here
AddM denotes the full subcategory of R-modules which are direct summands of
coproducts of copies of M .

(8) Let R be a tame hereditary artin algebra. Then the torsion-free divisible
R-modules in the sense of [70] form a definable subcategory which is of the form
AddM for some endofinite R-module M .

(9) Let R be right coherent and denote by Φ the collection of all monos in
modR. Then an R-module M is Φ-injective if and only if M is fp-injective, i.e.



2.5. EXAMPLES 23

Ext1R(−,M) vanishes on every finitely presented module. Note that fp-injective
and injective R-modules coincide if and only if R is right noetherian, see Proposi-
tion A.11.

(10) Let R be left artinian. Then for each n ≥ 0 the full subcategory of R-
modules of projective dimension at most n is definable. In particular, the big fini-
tistic dimension of R is the supremum of the projective dimensions of the modules
in the Ziegler spectrum having finite projective dimension; it is finite if and only
if the full subcategory of R-modules having finite projective dimension is definable
[53].

(11) Let φ : X → Y be a left almost split map in ModR. Then an R-module
M is φ-injective if and only if M has no direct summand which is isomorphic to X .

(12) Let S be a subset of R. Then the S-divisible R-modules form a definable
subcategory. Recall that an R-module M is S-divisible if Ms = M for all s ∈ S.

(13) Let R be a semi-prime right noetherian ring. Then the torsion-free R-
modules form a definable subcategory. Recall that an R-module M is torsion-free
if m · r 6= 0 for every 0 6= m ∈M and every regular r ∈ R.



CHAPTER 3

Left approximations

In this chapter we discuss two types of left approximations. The first type are
the left almost split maps which have been introduced by Auslander and Reiten
[6]. This concept is one of the most successful in modern algebra representation
theory. The second type of left approximations is defined with respect to a class C
of R-modules. This concept has been introduced by Auslander and Smalø [7], and
independently by Enochs [25].

3.1. Left almost split maps

Recall from [6] that a map φ : M → N in some additive category C is left almost
split if φ is not a split mono and if every map M → L which is not a split mono
factors through φ. It is important to observe that the endomorphism ring of M is
local if there exists a left almost split map M → N . In this section we discuss left
almost split maps in modR and ModR; they are closely related to the injective
envelopes of simple objects in C(R) and D(R). We begin with a result which is
due to Crawley-Boevey.

Proposition 3.1. The following are equivalent for a pure-injective R-module
M :

(1) There is a left almost split map M → N in ModR.
(2) TM is the injective envelope of a simple object in D(R).

Proof. See [18, Theorem 2.3].

The description of the injective envelopes of the simples in D(R) has an imme-
diate consequence for the Ziegler spectrum.

Corollary 3.2. The set of modules M in IndR which admit a left almost
split map M → N in ModR form a dense subset of the Ziegler spectrum of R.

Proof. In view of Corollary 2.13 it suffices to show that for every non-zero
F ∈ C(R) there exists M ∈ IndR with a left almost split map M → N such that
Hom(F, TM ) 6= 0. To this end choose a maximal subobject G ⊆ F and let TM be
the injective envelope of F/G. Clearly, Hom(F, TM ) 6= 0.

It also possible to characterize the existence of a left almost split map using
only the modules in IndR. This generalizes a result of Auslander in [4] where it is
shown that every finitely presented indecomposable module over an artin algebra
satisfies condition (2) of the following theorem.

Theorem 3.3. The following are equivalent for a pure-injective R-module M :

(1) There is a left almost split map M →M ′ in ModR.

24
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(2) For every product N =
∏
i∈I Ni of indecomposable R-modules such that

M is isomorphic to a direct summand of N there exists i ∈ I such that
M ≃ Ni.

(3) For every product N =
∏
i∈I Ni of modules in IndR such that M is iso-

morphic to a direct summand of N there exists i ∈ I such that M ≃ Ni.

Proof. We shall work with the characterization of (1) from Proposition 3.1.
(1) ⇒ (2) Suppose that TM is the injective envelope of S in D(R). If M is

isomorphic to a direct summand of a product N =
∏
i∈I Ni of indecomposable

R-modules, then Hom(S, TN) 6= 0 and therefore Hom(S, TNi) 6= 0 for some i ∈ I.
Thus there is a non-zero morphism

S −→ TM −→ TN −→ TNi

and therefore TM → TNi is a monomorphism since TM is an injective envelope of
S. It follows that M ≃ Ni since M is pure-injective and Ni is indecomposable.

(2) ⇒ (3) Trivial.
(3) ⇒ (1) Suppose (3). Clearly, M needs to be indecomposable since every

module is a pure submodule of some product of modules in IndR, for instance by
Theorem 2.11. Consider for the set U of modules in IndR which are not isomorphic
to M the canonical map

φ : M −→
∏

N∈U

NHomR(M,N)

and let F = KerTφ. Assuming (3) we have F 6= 0 and find a finitely generated
subobject 0 6= G ⊆ F . Taking a maximal subobject H ⊆ G there exist an injective
envelope G/H → TL for some L ∈ IndR. The composition with G→ G/H extends
to a non-zero map Tψ : TM → TL and ψ does not factor through φ. Therefore
M ≃ L and there exist a left almost split map starting in M since TM is an
injective envelope of G/H .

We have the following analogue of Proposition 3.1 for left almost split maps in
modR.

Proposition 3.4. For a finitely presented R-module M the following are equiv-
alent:

(1) There is a left almost split map M → N in modR.
(2) TM is the injective envelope of a simple object in C(R).

Proof. We use the description of the injective objects in C(R) which follows
from Lemma 1.6.

(1)⇒ (2) Let φ : M → N be left almost split in modR and consider the kernel
F = KerTφ in C(R). We have F 6= 0 since M → N is not a split mono. Now if F
is not simple, say with proper non-zero subobject G, then TM/G can be embedded
in an injective object TL in C(R). The corresponding map M → L needs to factor
through φ, a contradiction. Thus F is simple. A similar argument shows that
F ⊆ G for every non-zero subobject G ⊆ TM . Thus TM is the injective envelope of
a simple object in C(R).

(2)⇒ (1) Let S be a simple subobject of TM and embed TM/S into an injective
object TN in C(R). It is easily checked that the corresponding map M → N is left
almost split in modR.
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The existence of a left almost split map M → N for M ∈ IndR is closely
related to the property of M to be isolated in the Ziegler spectrum. Let us call M
Ziegler-isolated if {M} is a Ziegler-open subset.

Proposition 3.5. Let M ∈ IndR.

(1) If M is Ziegler-isolated, then there exist a left almost split map M → N in
ModR, i.e. TM is the injective envelope of a simple object in D(R).

(2) If TM is the injective envelope of a finitely presented simple object in D(R),
then M is Ziegler-isolated.

Proof. (1) If M is Ziegler-isolated, then there exists 0 6= F ∈ C(R) such
that Hom(F, TN ) = 0 for all N ∈ IndR different from M . Choosing a maximal
subobject G ⊆ F it is clear that TM is the injective envelope of F/G.

(2) Suppose TM is the injective envelope of a finitely presented simple object
S. Clearly, Hom(S, TN ) = 0 for all N ∈ IndR different from M and therefore M is
Ziegler-isolated.

We combine now the existence of left almost split maps in modR and ModR
and obtain in this way another criterion for a module in the Ziegler spectrum to be
isolated.

Theorem 3.6. Let M ∈ ModR be the pure-injective envelope of N ∈ modR.
Then the following are equivalent:

(1) There exist a left almost split map M →M ′ in ModR.
(2) There exist a left almost split map N → N ′ in modR.

Moreover, in this case M is Ziegler-isolated in IndR.

Proof. Let N → M be the pure-injective envelope of N , i.e. the map TN →
TM is an injective envelope in D(R).

(1)⇒ (2) Assuming (1) it follows from Proposition 3.1 that TM is the injective
envelope of a simple object S in D(R) which needs to be finitely presented since it
is a finitely generated subobject of TN . Therefore TN is the injective envelope of
S in C(R) and the existence of a left almost split map N → N ′ now follows from
Proposition 3.4.

(2) ⇒ (1) We use again Proposition 3.1 and Proposition 3.4. Assuming (2) it
follows that TN is an injective envelope of a simple object S in C(R). Therefore
TM is injective envelope of S in D(R) since every non-zero subobject F of TM has a
finitely presented non-zero subobject G ⊆ F which is contained in TN and contains
therefore S. Thus there is a left almost split map M →M ′.

The fact that M is Ziegler-isolated is a consequence of Proposition 3.5.

Example 3.7. Let R be an artin algebra. Then a module M ∈ IndR is Ziegler-
isolated if and only if M is finitely presented if and only if there exists a left almost
split map M → N .

3.2. Left approximations

Let A be any category and C be any class of objects in A. Following [7],
a morphism M → N in A is called a left C-approximation of M provided that
N belongs to C and the induced map Hom(N,C) → Hom(M,C) is surjective for
every C in C. If every object in A has a left C-approximation, then C is said to
be covariantly finite in A. In this section we want to study left C-approximations
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of modules over a ring R where C is the class of modules belonging to a definable
subcategory of ModR.

We begin our discussion with a criterion for a class of modules to be covari-
antly finite. Suppose that C is a class of R-modules which is closed under direct
summands. It is easily seen that C needs to be closed under taking products if C
is covariantly finite in ModR. The converse is also true if C is closed under pure
submodules [68].

Lemma 3.8. Let C be any class of R-modules which is closed under pure sub-
modules. Then the following are equivalent:

(1) Every R-module has a left C-approximation.
(2) C is closed under taking products.

Proof. (1) ⇒ (2) Let M =
∏
i∈IMi be a product of modules in C and let

φ : M → N be a left C-approximation. Every projection M → Mi factors through
φ and therefore φ is a split monomorphism. It follows that M belongs to C since C
is closed under direct summands by assumption.

(2)⇒ (1) It is well-known that every submodule M of a module N is contained
in a pure submodule M ′ of N with cardM ′ ≤ sup(cardM, cardR,ℵ0), see [45].
Therefore consider for every R-module M the set CM of isomorphism classes of
modulesN in C with cardN ≤ sup(cardM, cardR,ℵ0). It follows that the canonical
map M →

∏
N∈CM

NHomR(M,N) is a left C-approximation.

We continue with two other lemmas.

Lemma 3.9. Let C be a full additive subcategory of modR. Then an R-module
M is a direct limit of objects in C if and only if every morphism X → M with
X ∈ modR factors through a module in C.

Proof. See [20, Lemma 4.1].

Lemma 3.10. Let C be a full additive subcategory of modR. Then lim−→C is
closed under pure submodules.

Proof. Let 0→ L→M → N → 0 be a pure-exact sequence with M ∈ lim−→C,
and let X → L be a map with X ∈ modR. We apply the criterion from Lemma 3.9.
The composition X → L→M factors through some Y in C and we obtain therefore
the following commutative diagram with exact rows

X −→ Y −→ Z −→ 0y
y

y
0 −→ L −→ M −→ N −→ 0

The map Z → N factors through M since L → M is pure, and therefore X → L
factors through Y . Thus L belongs to lim−→C.

We are now in a position to characterize the definable subcategories of ModR
which are of the form lim−→C for some additive subcategory C of modR.

Proposition 3.11. Let C be a full additive subcategory of modR. Then the
following are equivalent for X = lim−→C:

(1) X is definable.
(2) Every R-module has a left X -approximation.
(3) Every finitely presented R-module has a left X -approximation.
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(4) Every finitely presented R-module has a left C-approximation.

Proof. (1) ⇒ (2) X is closed under products and pure submodules by Theo-
rem 2.1 and therefore every R-module has a left X -approximation by Lemma 3.8.

(2) ⇒ (3) Trivial.
(3) ⇒ (4) Let X → M be a left X -approximation for X ∈ modR. The map

factors through some N ∈ C by Lemma 3.9. The corresponding map X → N is a
left C-approximation for X .

(4) ⇒ (1) X is closed under taking direct limits by construction and closed
under pure submodules by Lemma 3.10. In [20], it is shown that X is also closed
under taking products. In fact, let M =

∏
i∈IMi be a product of modules in

X and let φ : X → M be a map with X finitely presented. We choose a left C-
approximation ψ : X → N . Each component X → Mi of φ factors through some
module in C, by Lemma, and factors therefore also through ψ. It follows that φ
factors through ψ and therefore M belongs to lim−→C by Lemma 3.9. Now it follows
from Theorem 2.1 that X is definable.

The following result summarizes our discussion of left approximations for de-
finable subcategories.

Theorem 3.12. Let X be a definable subcategory of ModR. Then every R-
module has a left X -appropximation. Moreover, the following are equivalent:

(1) Every finitely presented R-module has a left X -approximation which is
finitely presented.

(2) There is a full additive subcategory C of modR such that X = lim−→C.

Proof. X is closed under taking products and pure submodules by Theo-
rem 2.1, and therefore every R-module has a left X -approximation by Lemma 3.8.

(1) ⇒ (2) Let C = X ∩ modR. We claim that X = lim−→C. One inclusion is
clear since X is closed under taking direct limits. Therefore let M ∈ X and choose
a map φ : X → M with X ∈ modR. Condition (1) implies that φ factors through
some module in C and therefore M ∈ lim−→C by Lemma 3.9. Thus X = lim−→C and (2)
follows.

(2) ⇒ (1) Let X be a finitely presented R-module and let φ : X →M be a left
X -approximation. If X = lim−→C, then φ factors through a map ψ : X → N with
N ∈ C by Lemma 3.9. Clearly, ψ is a left X -approximation.

3.3. Minimal left approximations

Recall that a morphism φ : M → N in any category is left minimal provided
that any endomorphism ψ of N satisfying ψ ◦φ = φ is an isomorphism. In this
section we shall discuss criteria for the existence of left approximations which are
left minimal. Our strategy is to reduce the problem of finding minimal left approx-
imations to the existence of injective envelopes in the category D(R).

Proposition 3.13. Let φ : M → N be a map in ModR and suppose that N is
pure-injective. Then there exists a decomposition

φ = (φ′, φ′′) : M −→ N ′
∐

N ′′ = N

such that φ′ is left minimal and φ′′ = 0.
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Proof. Let ψ = (ψ′, ψ′′) : ImTφ → TN ′

∐
TN ′′ = TN be a decomposition such

that ψ′ is an injective envelope of ImTφ and ψ′′ = 0. Clearly, this decomposition
induces a decomposition φ = (φ′, φ′′) : M → N ′

∐
N ′′ = N of φ. The map φ′ is left

minimal since ψ′ is an injective envelope, and φ′′ = 0 since ψ′′ = 0.

A decomposition φ = (φ′, φ′′) : M → N ′
∐
N ′′ = N of a map φ such that φ′

is left minimal and φ′′ = 0 is unique up to isomorphism. The map φ′ is some-
times called the minimal version of φ. Many existence results for minimal left
approximations can be derived from the following theorem.

Theorem 3.14. Let C be any class of modules which is closed under direct
summands. Let M be an R-module and suppose that M has a left C-approximation
which is pure-injective. Then M has a minimal left C-approximation.

Proof. Apply the preceding proposition.

We present various consequences of the preceding theorem.

Corollary 3.15. Let C be any class of pure-injective R-modules which is
closed under direct summands. Then the following are equivalent:

(1) Every R-module has a left C-approximation.
(2) Every R-module has a minimal left C-approximation.
(3) C is closed under taking products.

Proof. (1) ⇒ (2) Use Theorem 3.14.
(2) ⇒ (3) Use the argument in the proof of Lemma 3.8.
(3) ⇒ (1) Let D be the class of pure submodules of modules in C. Then every

R-module M has a left D-approximation M → N by Lemma 3.8. Suppose that N
is the pure submodule of N ′ ∈ C. It is clear that the composition M → N ′ is a left
C-approximation.

Example 3.16. (1) Let C be the class of all pure-injective R-modules. Then a
morphism φ : M → N is a minimal left C-approximation if and only if φ is a pure-
injective envelope of M (i.e. N is pure-injective and any map ψ : N → N ′ is a pure
monomorphism if and only if ψ ◦φ is a pure monomorphism). In deed, the canonical
map φM : M →M∗∗ (where M∗ = HomZ(M,Q/Z)) is a left C-approximation since
M∗∗ is pure-injective and φM is a pure monomorphism. Therefore a minimal left C-
approximation M → N is a pure monomorphism, hence a pure-injective envelope.
Conversely, if φ : M → N is a pure-injective envelope, then any endomorphism
ψ of N satisfying φ = ψ ◦φ needs to be a pure-monomorphism, hence a split
monomorphism, and therefore an isomorphism. The fact that every module has a
pure-injective envelope is a classical result of Kie lpiński [45].

(2) Let C be the class of all injective R-modules. Then a morphism φ : M → N
is a minimal left C-approximation if and only if φ is an injective envelope of M .

Corollary 3.17. Let X be a definable subcategory of ModR and denote by
PinjX the class of pure-injective modules in X . Then every R-module has a mini-
mal left PinjX -approximation.

Proof. PinjX is closed under taking products and direct summands. There-
fore the assertion follows from Corollary 3.15.
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Corollary 3.18. Let X be a definable subcategory of ModR which is gen-
erated by a Σ-pure-injective R-module. Then every R-module has a minimal left
X -approximation.

Proof. The assumption on X implies that every module in X is pure-injective.
This follows from Corollary 2.7; see also Lemma 6.5. The existence of minimal left
X -approximations is now a consequence of Corollary 3.15 since X is closed under
taking products.

Example 3.19. Let R be a left coherent and right perfect ring. Then the flat
R-modules form a definable subcategory consisting of Σ-pure-injective R-modules.
Therefore every R-module has a so-called flat envelope [25, 1].

Given a definable subcategory X of ModR it seems to be an open question
under which conditions every R-module possesses left X -approximation which is
minimal. A sufficent condition has been formulated in Corollary 3.18. Another
sufficent condition is the property of X that the inclusion functor X → ModR has
a left adjoint. We end this section with another class of examples.

Example 3.20. Let R = kG be the group algebra of a finite group G over a
commutative field k of prime characteristic. Let C be an épaisse subcategory of
the stable category modR, i.e. a full triangulated subcategory that is closed under
taking direct summands. Then the full subcategory C′ of R-modules M such that
HomR(C,M) = 0 is definable. It follows from Rickard’s work that every R-module
M has a minimal left C′-approximation M → FC(M), see [69]. If C is a tensor-ideal
subcategory, then the minimal left C′-approximation FC(k) of the trivial R-module
k is an idempotent module in the sense that FC(k)⊗k FC(k) ≃ FC(k) in the stable
category ModR. Moreover, FC(M) ≃ FC(k)⊗kM for every R-module M .



CHAPTER 4

Duality

The duality between C(R) and C(Rop) induces a relation between R-modules
and Rop-modules. The basic idea is to compare for two modules M ∈ ModR
and N ∈ ModRop the kernels of the corresponding exact functors EM : C(R) →
Ab and EN : C(Rop) → Ab. This approach leads to a duality map M 7→ M∨

between certain classes of right and left R-modules which extends, for example, the
usual k-duality between finite dimensional modules in case R is an algebra over a
commutative field k.

4.1. Purely equivalent and purely opposed modules

In this section we discuss briefly two relations which are defined on the modules
over R and its opposite Rop. This material is taken from [48]. We denote for every
R-module M by SM the Serre subcategory of C(R) consisting of all F in C(R)
such that Hom(F, TM ) = 0. Recall from Lemma 1.6 that there exists a canonical
duality between C(R) and C(Rop) which sends F = CokerHφ to F∨ = KerTφ for
every map φ in modR or modRop.

Lemma 4.1. Let M and N be two R-modules. Then the following are equiva-
lent:

(1) Any map φ in modR induces an epi HomR(φ,M) if and only if φ induces
an epi HomR(φ,N).

(2) Any map ψ in modRop induces a mono M ⊗R ψ if and only if ψ induces
a mono N ⊗R ψ.

(3) SM = SN .

Proof. Given any map φ in modR, there is ψ in modRop with CokerHφ =
KerTψ. Conversely, given any map ψ in modRop, there is φ in modR with
CokerHφ = KerTψ. This is a consequence of the duality between C(R) and C(Rop)
which sends CokerHφ to KerTφ. The assertion is an immediate consequence of this
fact.

Two R-modules M and N are called purely equivalent if they satisfy the equiv-
alent conditions (1) - (3) of the preceding lemma.

Lemma 4.2. Let M ∈ ModR and N ∈ ModRop. Then the following are equiv-
alent:

(1) Any map φ in modR induces an epi HomR(φ,M) if and only if φ induces
a mono φ⊗R N .

(2) Any map ψ in modRop induces an epi HomRop(ψ,N) if and only if ψ
induces a mono M ⊗R ψ.

(3) SN = (SM )∨.
(4) SM = (SN )∨.

31
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Proof. Use the same argument as in the proof of Lemma 4.1.

Two modules M ∈ ModR and N ∈ ModRop are called purely opposed if they
satisfy the equivalent conditions (1) - (4) of the preceding lemma.

Lemma 4.3. If M is an R-S-bimodule and E ∈ModS is an injective cogener-
ator, then the R-module M and the Rop-module HomS(M,E) are purely opposed.

Proof. If E is any injective S-module, then there is a well-known isomorphism

X ⊗R HomS(M,E) −→ HomS(HomR(X,M), E)

for all X ∈ modR which is functorial in X . Taking a map φ in modR it follows that
φ⊗R HomS(M,E) is a mono if and only if HomR(φ,M) is an epi provided that E
cogenerates ModS. Thus M and HomS(M,E) are purely opposed by Lemma 4.2.

Suppose that R is a k-algebra where k denotes any commutative ring, and let
E be an injective cogenerator for Mod k. For instance, one could take k = Z and
E = Q/Z. We obtain a functor

Modk −→ Mod k, M 7→M∗ = Homk(M,E)

which induces contravariant functors between ModR and ModRop.

Lemma 4.4. An R-module M is purely opposed to M∗ and purely equivalent to
M∗∗.

Proof. Use the preceding lemmas.

An advantage of passing from a module M to its dual M∗ is the fact that M∗

is always pure-injective. We formulate this well-known fact as follows.

Lemma 4.5. Let M be an R-S-bimodule. If E ∈ ModS is injective, then
HomS(M,E) is a pure injective Rop-module.

Proof. See [5, Proposition 10.1].

Our discussion of purely equivalent and purely opposed modules has an inter-
esting consequence.

Proposition 4.6. A module is purely equivalent to its pure-injective envelope.

Proof. It is well-known that the canonical map M →M∗∗ which sends x ∈M
to Homk(M,E)→ E, φ→ φ(x), is a pure mono. The module M∗∗ is pure-injective
by Lemma 4.5 and purely equivalent to M by Lemma 4.4. Given any composition
of pure monos M → N → M∗∗ it follows that M is purely equivalent to N . In
particular, the pure-injective envelope of M which is a direct summand of M∗∗

containing M is purely equivalent to M .

4.2. The dual of a definable subcategory

A definable subcategory X of ModR is determined by the corresponding Serre
subcategory SX of C(R). Using the duality ∨ : C(R)→ C(Rop), we define a defin-
able subcategory X∨ of ModRop by SX∨ = (SX )∨.

Theorem 4.7. The assignment X 7→ X∨ gives a bijection between the definable
subcategories of ModR and the definable subcategories of ModRop.
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Proof. Recall from Corollary 2.3 that the map X 7→ SX defines a bijection
between the definable subcategories of ModR and the Serre subcategories of C(R).
The map S 7→ S∨ defines a bijection between the Serre subcategories of C(R)
and the Serre subcategories of C(Rop). Combining these bijections the assertion
follows.

We include the following description of the dual X∨ of a definable subcategory
X .

Proposition 4.8. Let X be a definable subcategory of ModR. Then an Rop-
module M belongs to X∨ if and only if M is purely opposed to some module in
X .

Proof. The assertion is a formal consequence of the definitions which are
involved.

Example 4.9. Let Φ be the collection of all monos in modR and let X =
(ModR)Φ. Then X∨ is the definable subcategory of ModRop which is generated
by the finitely generated projective Rop-modules. If R is right coherent, then X is
the category of fp-injective R-modules and X∨ is the category of flat Rop-modules.

4.3. Pure-reflexive modules

Let R be a k-algebra over some commutative ring k. We fix an injective cogen-
erator E for Mod k and obtain a functor

Modk −→ Mod k, M 7→M∗ = Homk(M,E)

which induces contravariant functors between ModR and ModRop. In this section
we introduce a class of R-modules which we call pure-reflexive. We denote by
Ref R the isomorphism classes of pure-reflexive R-modules and establish a bijection
M 7→M∨ between Ref R and Ref Rop which has the following properties:

(D1) (M
∐
N)∨ = M∨

∐
N∨;

(D2) M∨∨ = M ;
(D3) M∨ is a direct summand of M∗.

This duality between right and left R-modules covers Herzog’s elementary duality
[39], Crawley-Boevey’s duality for endofinite modules [18], and the duality studied
in [48]. In fact, the approach presented here is based to a large extent on work in
[48].

We start our discussion with the definition of a pure-reflexive module. An
indecomposable pure-injective R-module M with S = EndR(M)op is said to be
pure-reflexive if there exists a map X → Y in modR such that the cokernel of the
induced map HomR(Y,M)→ HomR(X,M) is a simple S-module. An arbitrary R-
module M is called pure-reflexive if M is the pure-injective envelope of a coproduct∐
i∈IMi of pure-reflexive modules in IndR. We need a characterization of the

indecomposable pure-reflexive R-modules. To this end fix an indecomposable pure-
injective R-module M and let S = EndR(M)op. We consider the exact functor

EM : C(R) −→ ModS, F 7→ Hom(F, TM )

where S acts on EM (F ) via the isomorphism S ≃ End(TM )op, and we denote by
SM the kernel of EM which is a Serre subcategory of C(R).

Lemma 4.10. The following are equivalent:
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(1) M is pure-reflexive.
(2) The quotient category C(R)/SM contains a simple object.

For the proof of this lemma we need the following observation.

Lemma 4.11. Let N be the injective envelope of a simple object X in any
abelian category. Then Hom(X,N) is a simple End(N)op-module.

Proof. The inclusion X → N induces an epi Hom(N,N)→ Hom(X,N) and
its kernel is precisely the maximal ideal of all endomorphisms φ of N such that
φ(X) = 0.

Proof of Lemma 4.10. Let F = KerTφ be an object in C(R). We shall use
the S-linear isomorphism

Hom(F, TM ) ≃ Coker HomR(φ,M).

(1) ⇒ (2) If Coker HomR(φ,M) is a simple S-module, then Hom(F, TM ) is a
simple object in C(R)/SM since EM induces a functor C(R)/SM → ModS which
is faithful and exact.

(2) ⇒ (1) Let T = lim−→SM . It follows from Proposition A.5 and Lemma 6.1
that the quotient category D(R)/T is locally coherent with

fp(D(R)/T ) ≃ C(R)/SM .

If Hom(F, TM ) is a simple object in C(R)/SM , then F is also simple in D(R)/T . It
follows that any non-zero map F → TM becomes an injective envelope in D(R)/T ,
and HomD(R)/T (F, TM ) can be identified with the S-module Coker HomR(φ,M)
since TM is T -closed. We conclude from the preceding lemma that this S-module
is simple.

The following result is taken from [48].

Proposition 4.12. Let M ∈ IndR and suppose that M is pure-reflexive. Then
there exist a unique module in IndRop which is purely opposed to M . This module
is denoted by M∨; it is pure-reflexive and M∨∨ = M .

Proof. We use the canonical duality ∨ : C(R) → C(Rop). Let S = SM and
T = lim−→S be the corresponding localizing subcategory of D(R). Note that ∨

induces a duality C(R)/S → C(Rop)/S∨ and let T ∨ = lim−→S
∨. The assumption

on M says that the category C(R)/SM has a unique simple object S and therefore
C(Rop)/S∨ has also a unique simple object S∨. We view S as an object in D(R)/T ,
and the section functor D(R)/T → D(R) identifies the injective envelope of S
in D(R)/T with TM . Analogously, the section functor D(Rop)/T ∨ → D(Rop)
identifies the injective envelope of S∨ in D(Rop)/T ∨ with TN for someN ∈ IndRop.
We leave it to the reader to check that SN = S∨, and therefore N is purely opposed
to M . Moreover, N is unique since the injective envelope of S∨ is unique up to
isomorphism.

We proceed with some notation. Let Mi, i ∈ I, be a family of R-modules.

Then we denote by
∐̂
i∈IMi the pure-injective envelope of the coproduct

∐
i∈IMi.

We shall need the following property of
∐̂

.
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Lemma 4.13. Let Mi, i ∈ I, be a family of R-modules. If I =
⋃
j∈J Ij is a

disjoint union, then ∐̂

i∈I

Mi =
∐̂

j∈J

(
∐̂

i∈Ij

Mi).

Proof. A map φ : M → N is a pure-injective envelope if and only if TM →
TN is an injective envelope in D(R), i.e. TN is injective and Tφ is an essential
monomorphism. Any coproduct of essential monomorphism is again essential, and
therefore the map

∐

i∈I

Mi =
∐

j∈J

(
∐

i∈Ij

Mi) −→
∐

j∈J

(
∐̂

i∈Ij

Mi)

extends to an isomorphism between the pure-injective envelopes of
∐
i∈IMi and∐

j∈J (
∐̂
i∈Ij

Mi).

We now define the map M 7→M∨ on the class Ref R of isomorphism classes of

pure-reflexive R-modules. If M =
∐̂
i∈IMi is pure-reflexive with Mi ∈ IndR for all

i, then we define M∨ =
∐̂
i∈IM

∨
i where M∨

i is taken from Proposition 4.12. Note
that M∨ is well-defined up to isomorphism by the Krull-Remak-Schmidt Theo-
rem; see for instance [27]. We mention also that Ref R is closed under taking

direct summands, finite coproducts, and arbitrary coproducts of the form
∐̂

. The
pure-reflexive modules include all Σ-pure-injective modules. More generally, every
module M with KGdimM <∞ is pure-reflexive; see Corollary 7.10.

Theorem 4.14. The assignment M 7→ M∨ defines a bijection between Ref R
and Ref Rop which has the following properties:

(1) (
∐̂
i∈IMi)

∨ =
∐̂
i∈IM

∨
i for every family (Mi)i∈I in Ref R. In particular,

(M
∐
N)∨ = M∨

∐
N∨ for M,N ∈ Ref R.

(2) M∨∨ = M for every M ∈ Ref R.
(3) M∨ is a direct summand of M∗ for every M ∈ Ref R.

Moreover, any assignment between right and left R-modules satisfying (1) - (3)
sends a pure-reflexive module M to M∨.

Remark 4.15. An assignment between right and left R-modules which satisfies
(2) and (3) is only possible between pure-injective modules. This follows from
Lemma 4.5

We begin the proof of this theorem with an observation which is of interest in
itself.

Proposition 4.16. Every pure-reflexive module M is purely opposed to M∨.

Proof. The assertion follows from Proposition 4.12 if M is indecomposable.

Now let M =
∐̂
i∈IMi with Mi ∈ IndR for all i. Clearly,

∐
i∈IMi and

∐
i∈IM

∨
i

are purely opposed, and from this follows that M and M∨ are purely opposed since
every module is purely equivalent to its pure-injective envelope by Proposition 4.6.

Proof of Theorem 4.14. (1) follows from Lemma 4.13, and (2) is a con-
sequence of Proposition 4.12 in combination with (1). It remains to check (3).
Observe first that M∗ is purely opposed to M by Lemma 4.4 and therefore purely
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equivalent to M∨ by Proposition 4.16. If M is indecomposable, then the construc-
tion of M∨ given in Proposition 4.12 shows that M∨ is a direct summand of M∗

since both modules are purely-equivalent. Now assume that M =
∐̂
i∈IMi with

Mi ∈ IndR for all i. The pure monomorphism
∐
i∈IMi → M induces a split

epimorphism M∗ → (
∐
i∈IMi)

∗. We obtain a pure monomorphism
∐

i∈I

M∨
i −→

∏

i∈I

M∨
i −→

∏

i∈I

M∗
i

∼
−→ (

∐

i∈I

Mi)
∗ −→M∗

and therefore M∨ is a direct summand of M∗ since M∗ is pure-injective.
We prove now the last statement. Suppose there are classes X in ModR and

Y in ModRop which are closed under direct summands, and suppose there are
maps M 7→ M ′ between X and Y which satisfy (1) - (3). It follows from (2)
and (3) with Lemma 4.4 that M and M ′ are purely opposed, and Lemma 4.5
implies that every module in X and Y is pure-injective. Furthermore, (1) and (2)
imply that M ′ is indecomposable if M is indecomposable. Therefore M ′ = M∨

for every indecomposable M ∈ Ref R which lies in X by Proposition 4.12. Now let

M =
∐̂
i∈IMi be an arbitrary pure-reflexive R-module which lies in X . It follows

that Mi ∈ X for all i since X is closed under direct summands, and therefore

M ′ = (
∐̂

i∈I

Mi)
′ =

∐̂

i∈I

M ′
i =

∐̂

i∈I

M∨
i = M∨.

This completes the proof of the theorem.

We observe that the map M 7→M∨ is compatible with the Ziegler topology.

Proposition 4.17. Let U ⊆ IndR be a set of pure-reflexive modules. If M ∈
IndR is pure-reflexive, then M belongs to the Ziegler closure U if and only if
M∨ ∈ U∨.

Proof. Let SU be the Serre subcategory of all objects F in C(R) satisfying
Hom(F, TN ) = 0 for every N ∈ U. Then M ∈ U if and only if Hom(SU, TM ) = 0.
We have (SU)∨ = SU∨ and therefore M ∈ U if and only if M∨ ∈ U∨ since M and
M∨ are purely opposed.



CHAPTER 5

Ideals in the category of finitely presented modules

In this chapter we introduce a new class of ideals in the category modR of
finitely presented R-modules. These ideals are closely related to the definable sub-
categories of ModR.

5.1. Fp-idempotent ideals

Throughout this section R denotes an artin algebra over some fixed commuta-
tive artinian ring k. Our aim in this section is to establish an inclusion preserving
bijection between certain ideals in modR and the definable subcategories of ModR.

We begin with some definitions and refer to the appendix for some of the
basic facts about ideals in additive categories. Recall that an ideal I in modR
consists of subgroups I(X,Y ) in HomR(X,Y ) for every pair X,Y in modR such
that for all maps α : X ′ → X and β : Y → Y ′ in modR the composition β ◦φ ◦α
belongs to I(X ′, Y ′) for every φ ∈ I(X,Y ). Note that an ideal I in modR is
idempotent if and only if the class of functors in (modR,Ab) vanishing on I is closed
under extensions. Therefore we call I fp-idempotent if the class of finitely presented
functors in (modR,Ab) vanishing on I is closed under extensions. Observe that
any idempotent ideal is fp-idempotent; however the converse is usually not true. We
introduce some further terminology. Given a functor F : modR → Ab, we denote
by annF the ideal of maps φ in modR satisfying F (φ) = 0. Given a collection Φ
of maps and an ideal I in modR we define

ann Φ =
⋂

φ∈Φ

ann CokerHφ and ann−1 I = {φ ∈ modR | I ⊆ ann CokerHφ}.

Note that a map φ : X → Y belongs to ann−1 I if and only if every ψ : X → Z in
I factors through φ. Given an ideal I in modR the collection ann−1 I can be used
to characterize the fact that I is fp-idempotent.

Lemma 5.1. I is fp-idempotent if and only if φ′, φ′′ ∈ ann−1 I implies
[ φ′ 0
ψ φ′′

]
∈

ann−1 I for all ψ ∈ modR.

Proof. See Lemma C.10.

Fp-idempotent ideals are usually not idempotent. However, we will show that
each fp-idempotent ideal I is of the form I = J∩modR for some idempotent ideal
J of ModR. We now state the main result of this chapter. To this end denote for
any class C of R-modules by [C] the ideal of maps in modR which factor through
some finite coproduct of modules in C.

Theorem 5.2. Let R be an artin algebra. The assignments

X 7→ [X ] and I 7→ (ModR)ann−1 I

37
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give mutually inverse and inclusion preserving bijections between the definable sub-
categories of ModR and the fp-idempotent ideals in modR.

The proof of this result is given in two steps. In this section we discuss the basic
properties of fp-idempotent ideals using finitely presented functors modR → Ab.
We derive from these properties that the assignment I 7→ (ModR)ann−1 I induces a
bijection between the fp-idempotent ideals and the definable subcategories. In the
following section we discuss the connection between fp-idempotent ideals in modR
and idempotent ideals in ModR.

We begin with some notation. Denote by

Modk −→ Mod k, M 7→M∗ = Homk(M,E)

the functor given by an injective envelope E of k/radk. It is well-known that
this induces a duality mod k → mod k and therefore also a duality modR →
modRop. We denote by Dk(R) = (modRop,mod k) the category of k-linear func-
tors modRop → mod k. Given a functor F ∈ D(R) we define F ∗ : ModR → Ab
by F ∗(X) = F (X∗)∗. The same formula defines for every F ∈ D(Rop) a functor
F ∗ : ModRop → Ab.

Lemma 5.3. The following holds:

(1) The assignment F 7→ F ∗ induces mutually inverse equivalences between
Dk(R)op and Dk(Rop).

(2) There is a functorial isomorphism F ∗(X) ≃ F∨(X) for every F ∈ D(R)
and X ∈ modR.

Proof. (1) F ∗∗ ≃ F for every F ∈ Dk(R) since X∗∗ ≃ X for all X in mod k
and modR.

(2) The assignments F 7→ F ∗|modR and F 7→ F∨|modR induce two functors
D(R) −→ D(Rop). Both are exact and preserve coproducts, i.e.

(
∐

i∈I

Fi)
∗ ≃

∏

i∈I

F ∗
i and (

∐

i∈I

Fi)
∨ ≃

∏

i∈I

F∨
i

for every family (Fi)i∈I in D(R). For F = HomRop(Y,−) with Y ∈ modRop we
have

F ∗(X) ≃ X ⊗R Y ≃ F
∨(X).

It follows that F ∗ ≃ F∨ for arbitrary F ∈ D(R) since F is a colomit of representable
functors, i.e. there is an exact sequence

∐

j∈J

HomRop(Yj ,−) −→
∐

i∈I

HomRop(Xi,−) −→ F −→ 0

in D(R) with Xi, Yj ∈ modRop for all i and j.

Now let S be a Serre subcategory of C(Rop). Let I = annS and denote by
T = lim−→S the corresponding localizing subcategory of D(Rop). Given F in D(Rop)
we define

tF =
∑

G∈S

Im(G→ F ) and rF =
⋂

G∈S

Ker(F → G).

Analogously, we consider the Serre subcategory S′ = S∗ of C(R) together with

t′F =
∑

G∈S′

Im(G→ F ) and r′F =
⋂

G∈S′

Ker(F → G)

for every F in D(R).
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Lemma 5.4. The following holds:

(1) F 7→ tF assigns to each F in D(Rop) its unique maximal subobject con-
tained in T . Therefore t : D(Rop)→ T is the right adjoint of the inclusion
T → D(Rop).

(2) tF = (F ∗/r′F ∗)∗ and rF = (F ∗/t′F ∗)∗ for F ∈ Dk(Rop).
(3) I(X,Y ) = rHomR(X,−)(Y ) for all X, Y in modR.

Proof. (1) Follows from the fact that a finitely generated subobject F ′ ⊆ F
belongs to T if and only if there is a morphism φ : G→ F with Imφ = F ′ for some
G ∈ S.

(2) Use the fact that under the duality Dk(Rop) → Dk(R) the morphisms
G→ F with G ∈ S correspond to the morphisms F ∗ → H with H ∈ S′.

(3) By definition, a map φ : X → Y belongs to annS if and only if φ ∈
KerπY for every π : Hom(X,−) → F with F ∈ S. Thus φ ∈ I if and only if
φ ∈ rHomR(X,−)(Y ).

Lemma 5.5. The following are equivalent for F in C(Rop):

(1) F ∈ S.
(2) F (φ) = 0 for all φ ∈ I.
(3) rF = 0.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) Applying the preceding lemma we have that Dk(Rop) → Dk(Rop),

G 7→ G/rG, is right exact since G/rG = (t′G∗)∗ and t′ is left exact. We obtain
therefore the following commutative diagram with exact rows:

HomR(Y,−)
Hom(ψ,−)
−→ HomR(X,−)

π
−→ F −→ 0y

y
y

HomR(Y,−)/I(Y,−) −→ HomR(X,−)/I(X,−) −→ F/rF −→ 0

Now assume rF 6= 0 and choose α : X → Z with 0 6= πZ(α) ∈ rF (Z). Using the
commutativity of the diagram we find β : Y → Z with φ = α−β ◦ψ ∈ I(X,Z), but
F (φ) 6= 0 since F (α) 6= 0.

(3) ⇒ (1) If rF = 0, then t′F ∗ = F ∗ by the preceding lemma. Thus F ∗ ∈ S′

and therefore F ∈ S.

The preceding lemma can be reformulated as follows.

Lemma 5.6. We have Φ = ann−1(ann Φ) for every saturated collection Φ of
maps in modR.

Proof. Recall from Lemma 2.8 that the collection Φ is saturated if and only
if S = {CokerHφ | φ ∈ Φ} is a Serre subcategory of C(Rop). By definition, we
have Φ ⊆ ann−1(ann Φ). Conversely, if ann Φ ⊆ CokerHφ for some map φ, then
CokerHφ ∈ S by the preceding lemma, and therefore φ ∈ Φ.

Lemma 5.7. If I is an ideal in modR, then I = ann(ann−1 I).

Proof. Clearly, I ⊆ ann(ann−1 I). Now let φ : X → Y be a map not in
I. We need to find F ∈ C(Rop) with F (I) = 0 and F (φ) 6= 0. Take G =
Hom(X,−)/I(X,−). Then G∗(φ∗) 6= 0. This gives a map π : Hom(Y ∗,−) → G∗

with π ◦ Hom(φ∗,−) 6= 0. Take F = (Im π)∗. Then F (φ) 6= 0 but F (I) = 0 since F
is a quotient of G and G(I) = 0.
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Proposition 5.8. Let R be an artin algebra. The assignments Φ 7→ ann Φ
and I 7→ ann−1 I induce mutually inverse bijections between the set of saturated
collections of maps in modR and the set of fp-idempotent ideals in modR.

Proof. Combine Lemma 5.6 and Lemma 5.7.

The main result of this section is now an immediate consequence.

Corollary 5.9. The assignment I 7→ (ModR)ann−1 I induces an inclusion
preserving bijection between the fp-idempotent ideals in modR and the definable
subcategories of ModR.

Proof. Combine the bijection I 7→ ann−1 I from the preceding proposition
with the bijection Φ 7→ (ModR)Φ from Theorem 2.9.

Corollary 5.10. The assignments

S 7→
⋂

F∈S

annF and I 7→ {F ∈ C(Rop) | F (I) = 0}

induce mutually inverse bijections between the set of Serre subcategories of C(Rop)
and the set of fp-idempotent ideals in modR.

Proof. This is a consequence of Proposition 5.8.

Corollary 5.11. Let I be an ideal in modR. Then the set of fp-idempotent
ideals contained in I has a unique maximal element J. It satisfies

⋂
n∈N In ⊆ J ⊆ I.

Proof. Let S be the Serre subcategory of C(Rop) which is generated by all
functors vanishing on I. Then J = annS. The functors in C(Rop) vanishing on
In for some n ∈ N form a Serre subcategory T by Lemma C.8 which contains S.
Therefore ⋂

n∈N

In ⊆ annT ⊆ annS = J.

Example 5.12. Let I = rad(modR) be the Jacobson radical of modR, i.e. I is
the intersection of all maximal ideals in modR. The unique maximal fp-idempotent
ideal contained in I is Iω =

⋂
n∈N

In, see Theorem 8.12.

5.2. Ideals generated by idempotents

Throughout this section R denotes an artin algebra. We continue our discus-
sion of fp-idempotent ideals in modR. These ideals are usually not idempotent.
However, we will show that each fp-idempotent ideal is of the form I ∩modR for
some idempotent ideal I of ModR. In fact, we shall find idempotent maps in ModR
which generate the ideal I.

We begin with some notation. Let C be any class of R-modules. We denote
by [C] the ideal of maps in modR which factor through some finite coproduct of
modules in C. The full subcategory of direct summands of arbitrary products of
modules in C is denoted by ProdC.

Lemma 5.13. Let S be a collection of coherent functors ModR → Ab and
suppose that {F |modR | F ∈ S} is a Serre subcategory of C(Rop). Then there exists
for every R-module M , up to isomorphism, a unique map φ : M → N having the
following properties:
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(1) N is pure-injective and F (N) = 0 for all F in S.
(2) A map φ′ : M → N ′ into a pure-injective module N ′ factors through φ if

and only if F (φ′) = 0 for all F in S.
(3) φ is left minimal.

Proof. We have S = T ∨ for some Serre subcategory T of C(R) by Lemma 1.6.
Let lim−→T be the localizing subcategory of D(R) generated by T and denote by
tTM the maximal subobject of TM which belongs to lim−→T . Taking an injective
envelope TM/tTM → TN gives a map φ : M → N which has the desired properties.
To see this choose F ∈ S. We have F = G∨ for some G ∈ T and therefore
F (L) = Hom(G, TL) for every R-module L. Thus F (N) = 0. Now let φ′ : M → N ′

be any map with N ′ being pure-injective. Clearly, F (φ′) = 0 if φ′ factors through φ.
Conversely, F (φ′) = 0 implies tTM ⊆ K for K = KerTφ′ . The inclusion tTM → K
induces a map TM/tTM → TM/K and the composition with TM/K → TN ′ extends
to a map TN → TN ′ since N ′ is pure-injective. Thus φ′ factors through φ. Finally,
φ′ is left minimal since the injective envelope TM/tTM → TN is left minimal.

We can now prove that every fp-idempotent ideal is generated by idempotent
maps in ModR. In fact, we show that [X ] is the fp-idempotent ideal corresponding
to a definable subcategory X . This is precisely the contents of Theorem 5.2.

Proof of Theorem 5.2. We use the bijective correspondence between fp-
idempotent ideals and definable subcategories from Corollary 5.9. Fix an fp-
idempotent ideal I in modR and let X = (ModR)ann−1 I be the corresponding
definable subcategory of ModR. We need to show that I = [X ]. Let Φ = ann−1 I

and let S = {CokerHφ | φ ∈ Φ}. Note that an R-module M belongs to X if and
only if F (M) = 0 for all F in S. Now fix a map φ between finitely presented R-
modules. We have φ ∈ I if and only if F (φ) = 0 for all F in S by Proposition 5.8.
It follows from Lemma 5.13 that F (φ) = 0 for all F in S if and only if φ factors
through a (pure-injective) module in X . Therefore I = [X ].

We present now various consequences of Theorem 5.2.

Corollary 5.14. The assignment U 7→ [ProdU] induces an inclusion pre-
serving bijection between the Ziegler-closed subsets of IndR and the fp-idempotent
ideals in modR.

Proof. The argument given in the proof of Theorem 5.2 shows that [X ] =
[ProdU] since the pure-injective modules in X are precisely the direct summands
of modules in ProdU. The assignment U 7→ [ProdU] is therefore the composition
of the bijection between Ziegler-closed subsets and definable subcategories with the
bijection between definable subcategories and fp-idempotent ideals.

Corollary 5.15. Let X be a definable subcategory of ModR which is gener-
ated by a Σ-pure-injective R-module, and let U = X ∩ IndR. Then [X ] = [U] =
[ProdU].

Proof. The assumption on X implies that every module in X is a coproduct of
modules in U. This follows from Corollary 2.7; see also Lemma 6.5. The assertion
now follows since every map X →

∐
i∈IMi with X ∈ modR factors through∐

i∈JMi for some finite subset J ⊆ I.

Corollary 5.16. Let U ⊆ IndR be a set of finitely presented modules. Then
[U] is the fp-idempotent ideal corresponding to the Ziegler closure U.
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Proof. [U] is fp-idempotent and ΦU = ann−1[U].

Corollary 5.17. If R is of finite representation type, then every fp-idempotent
ideal of modR is idempotent.

Our discussion of generic modules over algebras of infinite representation type
will provide examples of fp-idempotent ideals which are nilpotent and therefore not
idempotent; see Theorem 6.28.



CHAPTER 6

Endofinite modules

Let M be an R-module. Then M can be regarded as an EndR(M)op-module,
and its length as an EndR(M)op-module is called the endolength of M which is
denoted by ℓend(M). Following Crawley-Boevey, the module M is said to be end-
ofinite if M is of finite endolength [17]. In this chapter we present various charac-
terizations of endofiniteness and study the endofinite modules in the Ziegler spec-
trum. Our discussion includes two other classes of pure-injective modules. First we
study Σ-pure-injective modules, and then we introduce a class of modules which
we call product-complete since a module M is product-complete if AddM is closed
under taking products. Every endofinite module is product-complete, and every
product-complete module is Σ-pure-injective. The basic tool for our analysis of
these finiteness conditions is the endocategory of a module.

6.1. The endocategory of a module

We fix an R-module M and let S = EndR(M)op. We assign to M an abelian
category EM which is a subcategory of ModS. This endocategory of M was first
introduced in [47] and the material in this section is taken from this paper. Consider
the exact functor

EM : C(R) −→ ModS, F 7→ Hom(F, TM )

where S acts on EM (F ) via the isomorphism S ≃ End(TM )op. We denote by SM
the kernel of EM which is a Serre subcategory of C(R). The endocategory EM of
M is, by definition, the image of the induced functor C(R)/SM → ModS and we
shall tacitly assume that this subcategory of ModS is closed under isomorphisms.
We need a further definition. Recall that an additve subgroup of M is of finite
definition if it arises as the kernel of a morphism M → M ⊗R X , m 7→ m ⊗ x,
for some finitely presented Rop-module X , and some element x ∈ X . Note that a
subgroup of finite definition is a S-submodule of M .

Lemma 6.1. The endocategory EM of M has the following properties:

(1) EM is abelian and the inclusion EM → ModS is exact.
(2) EM induces an equivalence (C(R)/SM )op → EM .
(3) The S-module M belongs to EM and the subobjects of M in EM are precisely

the subgroups of finite definition.
(4) Every object in EM is a subquotient of a finite coproduct of copies of M .

Proof. (1) and (2) follow immediately from the definition of EM .
(3) We observe first that M belongs to EM since M ≃ Hom(HomRop(R,−), TM )

by Yoneda’s lemma. A subgroup U ⊆ M belongs to EM if and only if there is
F ∈ C(R) having a presentation HomRop(X,−) → HomRop(R,−) → F → 0 such

43



44 6. ENDOFINITE MODULES

that U ≃ EM (F ). The latter condition is equivalent to U ≃ KerTφ for some
φ : R→ X . Therefore U ∈ EM if and only if U is a subgroup of finite definition.

(4) The assertion follows from the fact that every object in C(R) is a subquo-
tient of a finite coproduct of copies of HomRop(R,−).

We shall also consider the quotient category D(R)/TM where TM = lim−→SM
denotes the localizing subcategory of D(R) which is generated by SM .

Lemma 6.2. The functor ModR → D(R)/TM , X 7→ TX , induces an equiva-
lence between the definable subcategory generated by M and the full subcategory of
fp-injective objects in D(R)/TM . Moreover,

fp(D(R)/T ) ≃ C(R)/SM ≃ (EM )op.

Proof. The first assertion is a direct consequence of Corollary 2.6. The second
assertion follows from Lemma 6.1 in combination with Proposition A.5.

The definition of the endocategory implies immediately that two purely equiv-
alent modules M and N have equivalent endocategories, i.e. EM ≃ EN . Analo-
gously, two purely opposed modules M and N have anti-equivalent endocategories,
i.e. EM ≃ (EN )op. This has some interesting consequences. To formulate them we
denote for an R-module M by Latt(M) the lattice of subgroups of finite definition.
Also we define ∆(M) = EndR(M)/ rad EndR(M).

Proposition 6.3. Let M be an R-module.

(1) Let M and N ∈ ModR be purely equivalent. Then Latt(M) ≃ Latt(N).
(2) Let M and N ∈ ModRop be purely opposed. Then Latt(M) ≃ Latt(N)op.
(3) If M is indecomposable pure-reflexive, then ∆(M∨) ≃ ∆(M)op.

Proof. (1) and (2) follow from (3) in Lemma 6.1 since the endocategories of
M and N are (anti-)equivalent.

(3) It follows from the characterization in Lemma 4.10 that ∆(M) is isomorphic
to the endomorphism ring of the unique simple object in EM . The assertion now
follows since M and M∨ are purely opposed by Proposition 4.16.

6.2. Σ-pure-injective modules

A module M is called Σ-pure-injective if every coproduct of copies of M is
pure-injective. In this section we collect the basic properties of such modules. The
following characterization is well-known.

Proposition 6.4. The following are equivalent for a module M :

(1) M is Σ-pure-injective.
(2) M has the descending chain condition on subgroups of finite definition.
(3) There exists a cardinal κ such that every product of copies of M is a pure

submodule of a coproduct of modules having cardinality at most κ.

Proof. See [37, 84].

We shall work with the following characterization of a Σ-pure-injective module.

Lemma 6.5. M is Σ-pure-injective if and only if D(R)/TM is locally noether-
ian.
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Proof. We use the fact that the finitely presented objects in D(R)/TM form
a generating set of objects for D(R)/TM . Then it follows from the characteriza-
tion in part (2) of the preceding proposition in combination with Lemma 6.1 and
Lemma 6.2 that M is Σ-pure-injective if and only if D(R)/TM has a generating set
of noetherian objects.

The definable subcategory which is generated by a Σ-pure-injective module has
the following properties.

Proposition 6.6. Let M be a Σ-pure-injective module.

(1) The direct summands of products of copies of M form a definable subcate-
gory of ModR.

(2) Every direct summand of a product of copies of M is a coproduct of inde-
composable modules with local endomorphism ring.

Proof. We use the fact that D(R)/TM is locally noetherian.
(1) Every finitely generated object in D(R)/TM is finitely presented by Proposi-

tion A.11. It follows that TM is an injective cogenerator for D(R)/TM and therefore
every fp-injective object in D(R)/TM is a direct summand of a product of copies
of TM . The assertion now follows from Lemma 6.2.

(2) Use again Proposition A.11 and Lemma 6.2.

6.3. Product-complete modules

In this section we study a class of pure-injective modules which strictly contains
the endofinite modules. Given any R-module M we denote by AddM the full
subcategory of R-modules which are direct summands of coproducts of copies of
M . Note that AddM is the smallest full subcategory of ModR which contains M
and is closed under forming arbitrary coproducts and direct summands. Our main
result is a characterization of the fact that AddM is a definable subcategory.

Theorem 6.7. The following are equivalent for an R-module M :

(1) AddM is closed under taking products.
(2) Every product of copies of M is a direct summand of a coproduct of copies

of M .
(3) Every product of copies of M is a coproduct of (indecomposable) direct

summands of M .
(4) M is Σ-pure-injective and the indecomposable direct summands of M form

a Ziegler-closed subset of IndR.
(5) The coproducts of indecomposable direct summands of M form a definable

subcategory.
(6) AddM is a definable subcategory.

We call a module M product-complete if M satisfies the equivalent conditions
of the preceding theorem.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) M is Σ-pure-injective by Proposition 6.4. It follows from Propo-

sition 6.6 in combination with the Krull-Remak-Schmidt-Azumaya Theorem that
every direct summand of a coproduct of copies of M decomposes into indecompos-
able modules which are direct summands of M . Thus (2) implies (3).
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(3) ⇒ (4) M is Σ-pure-injective by Proposition 6.4. It follows from (3) and
Proposition 6.6 that every indecomposable module belonging to the definable sub-
category generated by M is a direct summand of M . Thus the indecomposable
direct summands of M form a Ziegler-closed subset of IndR.

(4) ⇒ (5) Use again Proposition 6.6.
(5) ⇒ (6) Clear.
(6) ⇒ (1) A definable subcategory is closed under taking products.

The following consequence is a joint result with Saoŕın [55].

Corollary 6.8. An R-module M is product-complete if and only if every R-
module has a (minimal) left AddM -approximation.

Proof. Combine the preceding theorem with Corollary 3.15.

We give an example of a Σ-pure-injective module which is not product-complete.

Example 6.9. Let R = Z and let M = Zp∞ be a Prüfer group. This module is
Σ-pure-injective but not product-complete. However M

∐
Q is product-complete.

We list some basic properties of product-complete modules.

(1) The class of product-complete modules is closed under finite coproducts.
(2) Let I be any non-empty set. Then a module M is product-complete if and

only if M (I) is product-complete.
(3) If M is product-complete, then M I is product-complete for every set I.
(4) A module M is Σ-pure-injective if and only if there exists a non-empty set

I such that M I is product-complete. In fact, if M is Σ-pure-injective, then one
chooses I big enough such that for any set J any indecomposable direct summand
of MJ already occurs as a direct summand of M I .

(5) If M is product complete, then every subgroup of finite definition of M is
a finitely generated module over EndR(M)op. In fact, a Σ-pure-injective module
M is product complete if and only if every subgroup of finite definition of M is a
finitely generated module over EndR(M)op, see [55].

6.4. Endofinite modules

In this section we present a number of characterizations of endofiniteness and
study the endofinite modules in the Ziegler spectrum. Note that every endofinite
module is automatically Σ-pure-injective; this follows from Proposition 6.4. In
fact, most properties of endofinite modules can be derived from properties of Σ-
pure-injective modules. Our first characterization of an endofinite module is based
on its endocategory.

Proposition 6.10. An R-module M is endofinite if and only if the endocate-
gory of M is a length category, i.e. each object is of finite length. Moreover, the
endolength of M is precisely the length of M in its endocategory.

Proof. M is endofinite if and only if the lattice of subgroups of finite definition
has the ascending and the descending chain condition. Moreover, in this case the
subgroups of finite definition are precisely the EndR(M)op-submodules of M [18,
Proposition 4.1]. Using Lemma 6.1, the assertion follows.

Remark 6.11. If M is endofinite with S = EndR(M)op, then the endocategory
of M is a full subcategory of ModS consisting of finite length modules.
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Given an R-moduleM , we keep the notation from the beginning of this chapter.
We denote by SM the Serre subcategory of all F in C(R) such that Hom(F, TM ) = 0,
and TM = lim−→SM denotes the corresponding localizing subcategory of D(R). We
continue with some technical lemmas which are needed for further characterizations
of endofiniteness.

Lemma 6.12. The endolength of an R-module M equals the length of the object
HomRop(R,−) in C(R)/SM .

Proof. Combine Proposition 6.10 with (2) in Lemma 6.1.

Lemma 6.13. M is endofinite if and only if D(R)/TM is locally finite.

Proof. It follows from Proposition 6.10 and Lemma 6.2 that M is endofinite
if and only if every object in fp(D(R)/TM ) ≃ (EM )op is of finite length. An equiv-
alent condition is that D(R)/TM has a generating set of finite length objects, i.e.
D(R)/TM is locally finite.

The next result, with the exception of part (2), is due to Gruson [36] and
Garavaglia [31].

Theorem 6.14. The following are equivalent for a non-zero R-module M :

(1) M is indecomposable and endofinite.
(2) The coproducts of copies of M form a definable subcategory.
(3) M is indecomposable and every product of copies of M is a coproduct of

copies of M .

Proof. (1)⇒ (2) The preceding lemma implies that D(R)/TM is locally noe-
therian. Therefore every fp-injective object in D(R)/TM is a coproduct of in-
decomposable injective objects by Proposition A.11. Moreover, every indecom-
posable injective object in D(R)/TM is the injective envelope of a simple object
since D(R)/TM is locally finite. It follows that TM is, up to isomorphism, the
unique indecomposable injective object in D(R)/TM since M is indecomposable
and Hom(S, TM ) 6= 0 for every simple object S in D(R)/TM . Therefore every
fp-injective object in D(R)/TM is a coproduct of copies of TM , and (2) follows.

(2)⇒ (3) Clear, since the definable subcategory generated by M is closed under
taking products.

(3) ⇒ (1) The module M is Σ-pure-injective by Proposition 6.4, and therefore
D(R)/TM is locally noetherian by Lemma 6.5. By construction, TM is an injective
cogenerator for D(R)/TM , and it follows from (3) that TM is, up to isomorphism,
the only indecomposable injective object in D(R)/TM . Thus D(R)/TM coincides
with its localizing subcategory generated by the finite length objects. It follows
that D(R)/TM is locally finite, and therefore M is endofinite by Lemma 6.13.

The following characterization is due to Crawley-Boevey [18].

Proposition 6.15. M is endofinite if and only if there are indecomposable

endofinite modules M1, . . . ,Mn and sets I1, . . . , In such that M ≃
∐n
i=1M

(Ii)
i .

Proof. We observe first that for every coproduct M =
∐n
i=1Mi of pair-

wise non-isomorphic modules with local endomorphism ring we have ℓend(M) =∑n
i=1 ℓend(Mi) since

EndR(M)/ rad EndR(M) ≃
n∏

i=1

EndR(Mi)/ rad EndR(Mi).
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Suppose now that M is endofinite. Then M is Σ-pure-injective and has therefore

a decomposition M =
∐
i∈IM

(Ii)
i for some subset {Mi | i ∈ I} of IndR by Propo-

sition 6.6. Our first observation then shows that I needs to be finite. Conversely,

if M ≃
∐n
i=1M

(Ii)
i , then ℓend(M) ≤

∑n
i=1 ℓend(Mi), and therefore M is endofinite

if each Mi is endofinite.

The next theorem generalizes the result of Gruson and Garavaglia; it is taken
from [55].

Theorem 6.16. A module M is endofinite if and only if every direct summand
of M is product-complete.

Proof. If M is indecomposable, then the assertion is precisely Theorem 6.14.
Now suppose that M is an arbitrary module. We use the preceding proposition. The
fact that every endofinite module is product-complete is then a consequence of the
basic properties of product-complete modules listed after Theorem 6.7, and the fact
that every indecomposable endofinite module is product-complete. Conversely, let
M be a module such that every direct summand is product-complete. It follows from
Theorem 6.7 that the indecomposable direct summands of M form a Ziegler-closed
subset U of IndR having the property that every subset V ⊆ U is also Ziegler-
closed. However, IndR is a quasi-compact space by Proposition 2.10, and therefore
U needs to be finite. Thus M is endofinite since each N ∈ U is endofinite and M
is a coproduct of modules in U by Theorem 6.7. This completes the proof.

Our next aim is to give some characterizations of endofinite modules which are
formulated in terms of the Ziegler spectrum.

Proposition 6.17. The following are equivalent for a module M in IndR:

(1) M is endofinite.
(2) {M} is Ziegler-closed and M is pure-reflexive.
(3) {M} is Ziegler-closed and every non-zero direct summand of a product of

copies of M has an indecomposable direct summand.

Proof. (1) ⇒ (2) The set {M} is Ziegler-closed by Theorem 6.14. The en-
docategory EM contains a simple object since EM is a length category by Proposi-
tion 6.10, and it follows from Lemma 4.10 that M is pure-reflexive.

(2) ⇒ (3) It follows from Lemma 4.10 that D(R)/TM contains a simple ob-
ject S since M is pure-reflexive. The fact that {M} is Ziegler-closed implies that
Hom(S, TN) 6= 0 for every non-zero module N belonging to the definable sub-
category generated by M . Therefore the injective envelope of S in D(R)/TM is
isomorphic to a direct summand of TN which is indecomposable. This implies (3).

(3)⇒ (1) Let TN be the injective envelope of a finitely presented object X 6= 0
in D(R)/TM . Assuming (3) it follows that N is a direct summand of a product of
copies of M and has therefore an indecomposable direct summand which needs to
be isomorphic to a module in {M}. The category D(R)/TM is locally coherent and
has therefore a simple object S which is unique since Hom(S, TM ) 6= 0. We may
assume that S is a subobject of TM and that TM is a direct summand of TN . By
construction X ∩ TM 6= 0 and therefore S is a finitely presented object since it is
a finitely generated subobject of X . The bijection between Ziegler-closed subsets
of IndR and Serre subcategories of C(R) shows that fp(D(R)/TM ) ≃ C(R)/SM
coincides with the Serre subcategory generated by S. Therefore fp(D(R)/TM ) is a
length category and M is endofinite by Lemma 6.13.
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Proposition 6.18. An R-module M is endofinite if and only if there is a (fi-
nite and Ziegler-closed) subset U ⊆ IndR such that the induced Ziegler topology on
U is discrete and every product of copies of M is a coproduct of modules in U.

Proof. One direction is an immediate consequence of Theorem 6.7 and The-
orem 6.16 if we take for U the indecomposable direct summands of M . Therefore
suppose that there exists a subset U ⊆ IndR such that the induced Ziegler topol-
ogy on U is discrete and every product of copies of M is a coproduct of modules
in U. It follows from Proposition 6.4 that M is Σ-pure-injective. We may assume
that each N ∈ U belongs to the definable subcategory generated by M . This im-
plies that U is Ziegler-closed by Proposition 6.6. Moreover, every direct summand
N of M is Σ-pure-injective and the indecomposable direct summands of N form
a Ziegler-closed set since U carries the discrete topology. Thus every direct sum-
mand of M is product-complete by Theorem 6.7, and therefore M is endofinite by
Theorem 6.16.

Recall that we have constructed a duality map Ref R → Ref Rop, M 7→ M∨,
between the pure-reflexive modules over R and Rop, respectively.

Corollary 6.19. The assignment M 7→M∨ induces for every n ∈ N a bijec-
tion between the isomorphism classes of endofinite R-modules of endolength n and
the isomorphism classes of endofinite Rop-modules of endolength n. Moreover, if
M =

∐
i∈IMi is endofinite, then M∨ =

∐
i∈IM

∨
i .

Using so-called characters, this bijection between the endofinite right and left
modules has been established by Crawley-Boevey [18]. Here, we use the bijection
M 7→M∨ between Ref R and Ref Rop.

Proof of Corollary 6.19. Every endofinite module is a coproduct of inde-
composable pure-reflexive modules; this follows from Proposition 6.15 and Theo-
rem 6.17. Therefore every endofinite module is pure-reflexive. Any pure-reflexive
module M is purely opposed to M∨ by Proposition 4.16, and therefore M and M∨

have the same endolength by Lemma 6.12. The assertion is now a consequence of
Theorem 4.14.

6.5. Generic modules

The indecomposable endofinite modules which are not finitely presented are of
particular interest; they are called generic [17, 51]. In this section we study some
basic propreties of generic modules. We have already seen that endofiniteness is
reflected by properties of the Ziegler spectrum, and we continue this dicussion with
a result which is due to Herzog [40].

Proposition 6.20. For every n ∈ N the modules of endolength at most n form
a Ziegler-closed subset of IndR.

We need some preparations for the proof. Let F = HomRop(R,−) and denote
a chain

0 = F0 ⊆ F1 ⊆ . . . ⊆ Fn = F

of subobjects in C(R) by (Fi)0≤i≤n.

Lemma 6.21. An R-module M is endofinite of endolength at most n if and only
if for every chain (Fi)0≤i≤n+1 there exists i ∈ {0, . . . , n} such that EM (Fi+1/Fi) =
0.
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Proof. Let S = EndR(M)op. We use the fact that all S-submodules of M
are of finite definition if M is endofinite [18, Proposition 4.1]. It follows from
Lemma 6.1 that EM : C(R) → ModS induces a surjective morphism from the
lattice of subobjects of F onto the lattice of subgroups of finite definition of M .
Combining these facts the assertion follows.

Proof of Proposition 6.20. Fix a chain c = (Fi)0≤i≤n+1 and choose for
every i a map φi in modR with Fi+1/Fi = KerTφi . We have M ∈ Uφi if and only
if EM (Fi+1/Fi) = 0 by Lemma 2.2, and Uc =

⋃n
i=0 Uφi is Ziegler-closed. Therefore

Un =
⋂
cUc is Ziegler-closed where c runs through all chains c = (Fi)0≤i≤n+1. It

follows from the preceding lemma that Un is precisely the set of all modules of
endolength at most n, and this finishes the proof.

The following result discusses endofinite modules over noetherian algebras.

Proposition 6.22. Let R be a noetherian algebra.

(1) If M ∈ IndR is endofinite, then M is finitely presented if and only if {M}
is Ziegler-open.

(2) Let U ⊆ IndR be an infinite set of finitely presented endofinite modules. If
there is n ∈ N such that the endolength of each module in U is bounded by
n, then the Ziegler closure of U contains a generic module.

Proof. (1) See [51, Theorem 4.7].
(2) We follow an idea of Herzog [40]. The Ziegler closure U is a quasi-compact

space by Proposition 2.10, consisting of endofinite modules by Proposition 6.20. It
follows that {M} is not open for some M ∈ U, and this module cannot be finitely
presented by (1).

We have the following description of generic modules in terms of Serre subcat-
egories of C(R).

Proposition 6.23. The assignment

M 7→ SM = {F ∈ C(R) | Hom(F, TM ) = 0}

induces a bijection between

(1) the isomorphism classes of indecomposable endofinite R-modules, and
(2) the maximal Serre subcategories S of C(R) such that C(R)/S contains a

simple object.

If R is a noetherian algebra, then M is generic if and only if SM contains all finite
length objects of C(R).

Proof. The first part of the assertion follows from the characterization of
indecomposable endofinite modules in Theorem 6.14 if we compose the assignment
M 7→ SM with the bijective correspondence between Serre subcategories of C(R)
and definable subcategories of ModR from Corollary 2.3.

An indecomposable endofinite module M over a noetherian algebra is finitely
presented if and only if Hom(S, TM ) 6= 0 for some simple object S in C(R); this
follows from Proposition 7.1 in [18]. We conclude that M is generic if and only if
SM contains all finite length objects of C(R).

The endofinite modules control the representation type of a ring. In order to
illustrate this fact we include a result which is a reformulation of a theorem of
Auslander. In its present form the result is stated in [61] and [83].
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Theorem 6.24. A ring R is of finite representation type, i.e. R is right ar-
tinian and has only finitely many isomorphism classes of finitely presented modules,
if and only if every R-module is endofinite.

Proof. A ring R is of finite representation type if and only if C(R) is a length
category [3]. In Proposition 6.10 it was shown that a module M is endofinite if and
only if its endocategory EM is a length category. Moreover, EM is by construction
a quotient category of C(R)op and is therefore a length category if C(R) has this
property. The assertion now follows since EM ≃ C(R)op if one takes for M the
product of all modules in IndR.

The existence of generic modules over artin algebras is closely related to the
second Brauer-Thrall conjecture, that an algebra of infinite representation type is
of strongly unbounded representation type. In fact, Crawley-Boevey has shown
that every algebra with a generic module is of strongly unbounded representation
type [18]. A general existence result for generic modules can be formulated as
follows. Recall from [51] that a family T = (Mi)i∈N of non-zero modules form a
generalized tube if there are maps Mi → Mi+1 and Mi+1 → Mi for every i ∈ N
which induce exact sequences 0 → Mi → Mi−1

∐
Mi+1 → Mi → 0 for every

i ∈ N where M0 = 0. We say that T belongs to the radical of modR if all maps
Mi →Mi+1 and Mi+1 →Mi belong to the Jacobson radical of modR. For example,
the modules belonging to a homogeneous tube of the Auslander-Reiten quiver of R
form a generalized tube in the radical of modR.

Theorem 6.25. Let R be an artin algebra and suppose there exists a general-
ized tube T in the radical of modR. Then there exists a generic R-module in the
definable subcategory which is generated by T .

Proof. See [51, Corollary 8.6].

For example, every finite dimensional algebra R over some algebraically closed
field admits a generalized tube in the radical of modR, see [14]. We end this
discussion of endofinite modules with another example.

Example 6.26. Let R be a tame hereditary artin algebra and denote by X the
full subcategory of torsion-free divisible R-modules M , i.e. HomR(X,M) = 0 and
Ext1R(X,M) = 0 for all regular R-modules X , see [70]. This subcategory is of the
form AddQ for some generic R-module Q, and therefore every R-module M has a
minimal left X -approximation M → QM . The module QM is a coproduct of copies
Q, and the rank of M in the sense of Ringel [70] is precisely the cardinal κ such
that QM = Q(κ).

6.6. Ideals of finite length

Throughout this section R denotes an artin algebra. It has been shown in Theo-
rem 5.2 that each definable subcategory of ModR corresponds to an fp-idempotent
ideal in modR. We wish to describe those ideals which correspond to a definable
subcategory consisting of endofinite modules. To this end we define the length of
an ideal in modR, and we establish a bijection between the fp-idempotent ideals
of finite length and the finite subsets of IndR consisting of endofinite modules.
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Let I be an ideal in modR. An I-sequence of length n is a sequence of maps

X0
φ1
−→ X1

φ2
−→ · · ·

φn−1
−→ Xn−1

φn
−→ Xnyψ1

yψ2

yψn
Y1 Y2 Yn

in modR such that each ψi belongs to I and does not factor through φi. The length
of I is the maximal length of an I-sequence with X0 = R (or ∞ if such a natural
number does not exist). The following lemma explains our definition.

Lemma 6.27. Let I be an fp-idempotent ideal in modR. Then the length of I

equals the length of HomR(R,−) in C(Rop)/S where S = {F ∈ C(Rop) | F (I) = 0}.

Proof. Let (φi, ψi) : Xi−1 → Xi

∐
Yi, 1 ≤ i ≤ n, be an I-sequence of length

n. Let F0 = HomR(X0,−) and Fi = Im HomR(φi ◦ . . . φ1,−) for 1 ≤ i ≤ n.
The condition on each ψi implies that (Fi−1/Fi)(I) 6= 0 for all i and therefore
HomR(X0,−) has at least length n in C(Rop)/S. Conversely, any chain Fn ⊆
. . . ⊆ F0 of subobjects in C(Rop) with Fi−1/Fi 6∈ S for all i gives an I-sequence
of length n. To this end choose epimorphisms HomR(Xi,−)→ Fi. The inclusions
Fi → Fi−1 induce maps φi : Xi−1 → Xi, and the assumption on each Fi−1/Fi
implies the existence of maps ψi : Xi−1 → Yi in I which do not factor through
φi.

Theorem 6.28. Let R be an artin algebra and suppose that M is an endofinite
R-module of endolength n. Then [M ] is the fp-idempotent ideal corresponding to the
definable subcategory of ModR which is generated by M . Moreover, the following
are equivalent:

(1) M has no finitely presented indecomposable direct summand.
(2) [M ] contains no invertible map.
(3) [M ] is nilpotent
(4) [M ]n+1 = 0.

Proof. The module M is product-complete by Theorem 6.16, and therefore
every module belonging to the definable subcategory X which is generated by M ,
is a direct summand of a coproduct of copies of M . Therefore [X ] = [M ] since
every map X → M (I) with X finitely presented factors through M (J) for some
finite subset J ⊆ I. It follows from Theorem 5.2 that [M ] is the fp-idempotent
ideal corresponding to X . The equivalence (1) ⇔ (2) is straightforward and (2) ⇔
(3)⇔ (4) follows from the fact that radn EndR(M) = 0 by Nakayama’s lemma.

Remark 6.29. Denote by rad = rad(modR) the Jacobson radical of modR
and let radω =

⋂
n∈N radn. If M is endofinite without finitely presented indecom-

posable direct summands, then [M ] ⊆ radω. This follows from Corollary 8.13.

We are now in a position to formulate the precise relation between endofinite
modules and fp-idempotent ideals of finite length.

Corollary 6.30. Let n ∈ N. Then the assignment U 7→ [U] induces a bijec-
tion between the subsets U of IndR with

∑
M∈U

ℓend(M) = n and the fp-idempotent
ideals in modR of length n.

Proof. We use the bijection U → [ProdU] between Ziegler-closed subsets
of IndR and fp-idempotent ideals in modR from Corollary 5.14. It follows from
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Lemma 6.27 in combination with the duality between C(Rop) and C(R) that the
length of [ProdU] is precisely the length of HomRop(R,−) in C(R)/S where S
denotes the Serre subcategory of C(R) corresponding to U. Lemma 6.12 implies
that this number equals the endolength of

∏
M∈U

M which is
∑
M∈U

ℓend(M).

Corollary 6.31. Let I be an fp-idempotent ideal in modR of length n. If I

is nilpotent, then In+1 = 0.



CHAPTER 7

Krull-Gabriel dimension

In his thèse [26], Gabriel introduced a dimension for every Grothendieck cate-
gory which he called Krull dimension. In this chapter we shall work with a finitely
presented version of Gabriel’s Krull dimension. There is also a local variant of that
dimension which is defined for any modular lattice and therefore also for the lattice
of subobjects of any object in an abelian category. We refer to the appendix for the
precise definitions of these dimensions; here they are used to study the complexity
of a module category or the complexity of a single module.

7.1. The Krull-Gabriel dimension of a ring

In [38], Gruson and Jensen assign to every skeletally small abelian category
C a dimension dim C. Our aim is to study some of the properties of a module
category ModR which are related to dimC(R). Following Geigle, we use the term
“Krull-Gabriel dimension” [32]. By abuse of terminology, we call dimC(R) the
Krull-Gabriel dimension of the ring R and denote it by KGdimR. In fact, KGdimR
is the finitely presented version of Gabriel’s Krull dimension of the Grothendieck
category D(R) = (Cop,Ab) where C = (modRop)op. Thus one should speak about
the Krull-Gabriel dimension of (modRop)op since the Krull dimension of the ring
R is the Krull dimension of the Grothendieck category ModR = (Rop,Ab).

First, we are interested in a method to compute the Krull-Gabriel dimension
of R. To this end we give a description of the lattice L(HomR(A,−)) of subobjects
in C(Rop) for every finitely presented R-module A.

Fix A in modR. We consider pairs x = (X,φ) consisting of a module X and a
map φ : A→ X in modR. Given a second pair y = (Y, ψ), we write y ≤ x if there is
a map α : X → Y with ψ = α ◦φ. We call x and y equivalent if x ≤ y and y ≤ x; we
shall not distinguish between a pair x and its equivalence class. We denote by LA
the set of equivalence classes of pairs x = (X,φ); they form a modular lattice with
a unique minimal element 0 = (0, 0) and a unique maximal element 1 = (A, id). In

fact, x ∨ y = (X
∐
Y,

[
φ
ψ

]
) and x ∧ y = (Z, ρ) where [σ τ ] : X

∐
Y → Z denotes the

cokernel of
[
φ
ψ

]
and ρ = σ ◦φ.

Lemma 7.1. LA → L(HomR(A,−)), (X,φ) 7→ Im HomR(φ,−), is an isomor-
phism.

Proof. Clear.

Now we can give an alternative description of the Krull-Gabriel dimension of
R.

Proposition 7.2. The following are equivalent for every ordinal α:

(1) KGdimR ≤ α.

54
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(2) dimLX ≤ α for every finitely presented R-module X.
(3) dimLR ≤ α.

If R is right artinian, then (1) - (3) are equivalent to:

(4) dimLS ≤ α for every simple R-module S.

Proof. Let F ∈ C(Rop). Choosing exact sequences HomR(X,−) → F → 0
and Rn → X → 0, it is immediately clear that F is a subquotient of HomR(R,−)n.
The assertion of the proposition is therefore a consequence of Lemma B.9 and
Lemma B.10.

We include a criterion for KGdimR =∞ which is due to Prest [64].

Proposition 7.3. Let R be right artinian. Suppose there exists a family of
maps (φij)i≤j (i, j ∈ [0, 1]∩Q) in the Jacobson radical of modR such that φjk ◦φij =
φik for all i ≤ j ≤ k and φ01 6= 0. Then KGdimR =∞.

Proof. Let φij : Xi → Xj (i, j ∈ [0, 1]∩Q) be the family of maps in modR and
choose ψ : R→ X0 with φ01 ◦ψ 6= 0. Then the pairs (Xi, φ0i ◦ψ), i ∈ [0, 1]∩Q, form
a chain in LR which is dense since the φij belong to the Jacobson radical of modR.
It follows from Proposition 7.2 and Lemma B.8 that KGdimR = dimLR =∞.

We give some examples.

Example 7.4. (1) KGdimR = 0 if and only if R is of finite representation
type, i.e. R is right artinian and there are only finitely many isomorphism classes
of finitely presented indecomposable R-modules [3].

(2) A ring R is right pure semi-simple, i.e. every pure-exact sequence in ModR
splits, if and only if D(R) is locally noetherian, c.f. Proposition A.11. In this case
KGdimR <∞.

(3) KGdimR = 1 is impossible for any artin algebra [51, 41].
(4) KGdimR = 2 holds for any tame hereditary artin algebra [32] or for any

Dedekind domain [43].
(5) If R is a finite dimensional algebra over a field, then several examples suggest

that KGdimR < ∞ is closely related to R being of tame domestic representation
type. An example of a tame algebra with KGdimR = ∞ is given in the proof of
Proposition 8.15.

(6) KGdimR =∞ for any finite dimensional algebra R which is of wild repre-
sentation type; see Proposition 8.15.

(7) Let R be right noetherian. Then the Krull dimension of R in the sense of
Gabriel [26], i.e. the Krull dimension of the category ModR, equals dim modR,
see Lemma B.5.

Given an epimorphism R → S we call S a quotient of R. It is well-known
that the quotient of a representation finite algebra is again representation finite,
see for instance [28]. This is a special case of the following result since R is of finite
representation type if and only if KGdimR = 0.

Proposition 7.5. Let R → S be an epimorphism. Then the Krull-Gabriel
dimension of S is bounded by the Krull-Gabriel dimension of R.

Proof. A homomorphism f : R → S induces an exact functor f ′ : C(R) →
C(S), and it can be shown that f ′ induces an equivalence C(R)/S → C(S) for
S = Ker f ′ if f is an epimorphism, see Proposition 11.17. The assertion now
follows from Lemma B.1.
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7.2. The Krull-Gabriel dimension of a module

Viewing the Krull-Gabriel dimension of a ring R as a global invariant of ModR
it is also posssible to define in a similar way for every R-module a local invariant.
Let M be an R-module and denote by Latt(M) the lattice of subgroups of finite
definition of M . We call dim Latt(M) the Krull-Gabriel dimension of the module
M and denote it by KGdimM . Note that the Krull-Gabriel dimension of the ring
R is usually different from the Krull-Gabriel dimension of the module R. We collect
some basic properties of this dimension.

Proposition 7.6. Let M be an R-module.

(1) KGdimM = dim EM where EM denotes the endocategory of M .
(2) KGdimM is bounded by the Krull-Gabriel dimension of the ring R.
(3) If 0 → M ′ → M → M ′′ → 0 is a pure-exact sequence, then KGdimM =

sup(KGdimM ′,KGdimM ′′).

Proof. (1) Combine Lemma 6.1 and Lemma B.9.
(2) The endocategory of M is equivalent to a quotient category of C(R)op.

Using (1) and Lemma B.1 we obtain KGdimR ≥ KGdimM .
(3) This is a consequence of the following lemma.

Given a map φ : R → X in modRop, we denote by Mφ the kernel of the map
M →M ⊗R X , m 7→ m⊗ φ(1).

Lemma 7.7. Let 0→M ′ →M →M ′′ → 0 be a pure-exact sequence. Then

Latt(M) −→ Latt(M ′)× Latt(M ′′), Mφ 7→ (M ′
φ,M

′′
φ )

is an injective lattice homomorphism.

Proof. For every map φ the induced sequence 0→ M ′
φ → Mφ → M ′′

φ → 0 is

exact. Therefore the map is well-defined since M ′
φ = M ′ ∩Mφ, and the injectivity

follows easily.

Example 7.8. (1) If M is a Σ-pure-injective module, then KGdimM <∞. A
non-zero module M is endofinite if and only if KGdimM = 0.

(2) Let M 6= 0 be a module over a noetherian algebra R such that KGdimM <
∞. If M has no finitely presented indecomposable direct summand, then there
exists a generic R-module [51, Theorem 5.6].

(3) Let R be right coherent, i.e. the category modR is abelian. Then the
dimension dim modR equals the Krull-Gabriel dimension of the Rop-module R.
Therefore the Krull dimension of the ring R in the sense of Gabriel [26] equals the
Krull-Gabriel dimension of the Rop-module R provided that R is right noetherian.

We devote the rest of this section to a discussion of pure-injective modules
having Krull-Gabriel dimension. The basic structure theorem goes as follows.

Theorem 7.9. Let M be a pure-injective R-module. Suppose that KGdimM <
∞. Then there is a family of modules (Ni)i∈I in IndR such that M is the pure-
injective envelope of

∐
i∈I Ni. Moreover, given a family (Lj)j∈J in IndR, then∐

i∈I Ni and
∐
j∈J Lj have the same pure-injective envelope if and only if there

exists a bijection π : I → J such that Lπ(i) = Ni for all i ∈ I.
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Proof. The assertion of this theorem is a direct consequence of a result from
[26] about injective objects in Grothendieck categories having Krull dimension.
Let SM = {F ∈ C(R) | Hom(F, TM ) = 0} and let TM = lim−→SM . Then the Krull-
dimension of D(R)/TM is bounded by KGdimM . This follows from Lemma B.5
and the fact that KGdimM = dimC(R)/SM . Therefore TM is an injective object
in a Grothendieck category having Krull dimension and the assertion can be derived
from [26, II, Théorème 1].

We are now in a position to apply the duality map Ref R→ Ref Rop, M 7→M∨,
between the pure-reflexive modules over R and Rop, respectively.

Corollary 7.10. The assignment M 7→ M∨ induces for every ordinal α a
bijection between the isomorphism classes of pure-injective R-modules M such that
KGdimM = α and the isomorphism classes of pure-injective Rop-modules N such
that KGdimN = α.

Proof. Let M be a pure-injective module with KGdimM < ∞. We need to
show that M is pure-reflexive. This follows from Lemma 4.10 if M is indecompos-
able, and the general case then follows with Theorem 7.9. Observe that M and M∨

are purely opposed by Proposition 4.16. This implies KGdimM = KGdimM∨,
and the assertion is therefore a consequence of Theorem 4.14.



CHAPTER 8

The infinite radical

In this chapter we introduce a new radical series of the category modR of
finitely presented R-modules. This radical series can be used to extend the prein-
jective partition of modR which Auslander and Smalø introduced in [7]. We discuss
also the relation between this new radical series and the powers of the Jacobson
radical of modR which have been studied by Prest [64].

8.1. The preinjective dimension of a module

In their study of the representation theory of finite-dimensional tensor algebras
Dlab and Ringel described certain modules which they called preprojective and
preinjective modules [23]. Later Auslander and Smalø defined these concepts for
arbitrary artin algebras [7]. Our aim is to extend the class of preinjective mod-
ules which Auslander and Smalø introduced. To this end we define a radical series
(radα)α of the category modR. Using this radical series, we assign to every finitely
presented module a preinjective dimension. For an artin algebra, it will be shown
that this dimension is finite if and only if the module is preinjective in the sense of
Auslander and Smalø. Also, we shall see that the preinjective dimension leads to a
refinement of the Krull-Gabriel dimension. We mention that our approach is differ-
ent from that of Zimmermann-Huisgen in her work on so-called strong preinjective
partitions [82].

Fix a ring R and recall that for every functor F in C(Rop) there is defined a
dimension dimF . We obtain a descending chain of ideals in modR if we define for
every ordinal α

radα =
⋂

dimF≤α

annF

where F runs through all F in C(Rop). Using this radical series (radα)α we define
for every finitely presented R-module M a socle series (socαM)α as follows:

socαM =
⋂

φ∈radα

Kerφ

where φ runs through all maps starting at M . The preinjective dimension pidimM
of a finitely presented non-zero module M is the least ordinal (or ∞ if such an
ordinal does not exist) such that socαM 6= 0. For M = 0 let pidimM = 0. We
collect some basic facts which are direct consequences of the definitions.

Lemma 8.1. The following holds:

(1) radα =
⋂
β<α radβ for every limit ordinal α.

(2) socαM =
⋃
β<α socβM for every limit ordinal α.

(3) If pidimM <∞, then pidimM is not a limit ordinal.
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Proof. (1) follows from the fact that dimF is not a limit ordinal for every
F ∈ C(Rop) provided that dimF < ∞. (2) follows from (1), and (3) follows from
(2).

Proposition 8.2. Let R be a ring of Krull-Gabriel dimension α. Then there
exists n ∈ N such that radωα+n = 0 and therefore pidimM ≤ ωα+ n for every M
in modR.

Proof. Let C = C(Rop). If KGdimR = α, then dim HomRop(R,−) = n in
C/Cα−1 for some n ∈ N, and therefore dimF ≤ ωα+n for all F ∈ C by Lemma B.10.
Thus radωα+n = 0 and pidimM ≤ ωα+ n for all M follows.

From now on we assume for the rest of this section that R is an artin algebra.
We collect some basic properties of the radical series (radα)α. To this end recall
that the Jacobson radical radC of a skeletally small preadditive category C is the
intersection of all maximal ideals in C. Given F ∈ (C,Ab), we denote by radF the

intersection of all maximal subobjects of F , and radn F = rad(radn−1 F ) for every
n ∈ N where rad0 F = F .

Lemma 8.3. Let F ∈ C(Rop) and n ∈ N0. Then the following are equivalent:

(1) dimF ≤ n.
(2) radn F = 0.
(3) There is an epimorphism HomR(X,−)/ radn HomR(X,−) → F for some

X in modR.

Proof. Use the fact that every simple functor in (modR,Ab) is finitely pre-
sented [6].

Proposition 8.4. The following holds:

(1) rad1 is the Jacobson radical of modR.
(2) radn(X,Y ) = radn Hom(X,−)(Y ) for all X,Y ∈ modR and n ∈ N0.

Proof. (1) Any ideal in modR is maximal if and only if it is of the form
annS for some simple functor S ∈ (modR,Ab). The simple functors are finitely
presented [6] and belong therefore to C(Rop).

(2) Use the preceding lemma.

We shall need the following lemma.

Lemma 8.5. The following are equivalent for M in modR and an ordinal α:

(1) pidimM < ω(α+ 1).
(2) There exists a subfunctor F ⊆ HomR(S,−) in C(Rop) for some simple

R-module S such that F (M) 6= 0 and dimF < ω(α+ 1).

Proof. (1) ⇒ (2) Choose a simple submodule S ⊆ socω(α+1)M and denote
by F the image of the induced map HomR(M,−)→ HomR(S,−). Using Yoneda’s
lemma it follows that F (φ) = 0 for all φ ∈ radω(α+1), and therefore F ∈ C(Rop)α
by Corollary 5.9 since radω(α+1) = annC(Rop)α. Clearly, F (M) 6= 0 and dimF <
ω(α+ 1) follows from Lemma B.3.

(2) ⇒ (1) A subobject F ⊆ HomR(S,−) with F (M) 6= 0 induces a non-zero
map S → M . If dimF ≤ ωα + n for some n ∈ N, then S ⊆ socωα+nM and
therefore pidimM < ω(α+ 1).
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We formulate now the main result of this section. It shows that the preinjective
dimension is a refinement of the Krull-Gabriel dimension.

Theorem 8.6. Let R be an artin algebra. Then the following are equivalent
for every ordinal α:

(1) KGdimR ≤ α.
(2) There exist n ∈ N such that radωα+n = 0.
(3) There exist n ∈ N such that pidimM ≤ ωα+ n for every M in modR.
(4) There exist n ∈ N such that pidimS ≤ ωα+n for every simple S in modR.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) are covered by Proposition 8.2. Therefore
assume (4). It follows from Lemma 8.5 that HomR(S,−) ∈ C(Rop)α for every
simple R-module S. Thus C(Rop)α = C(Rop) since C(Rop)α is a Serre subcategory
and C(Rop) is generated by the representable functors corresponding to the simple
R-modules. We conclude that KGdimR ≤ α.

We obtain the following relation between the preinjective dimension and the
concept introduced by Auslander and Smalø.

Proposition 8.7. A finitely presented indecomposable R-module M is prein-
jective in the sense of Auslander and Smalø if and only if pidimM is finite.

Proof. Combine the characterization in [7, Theorem 5.2] with Lemma 8.5.

Example 8.8. (1) If M is indecomposable injective with simple submodule S,
then soc1M = S.

(2) Let R be a tame hereditary artin algebra. It is well-known that the finitely
presented indecomposable R-modules fall into three classes: preinjective, regular,
and preprojective R-modules [22]. Let M be a finitely presented indecomposable
R-module. Then M is preinjective if and only if pidimM < ω; M is regular if and
only if ω < pidimM < ω2; M is preprojective if and only if ω2 < pidimM < ω3.

8.2. Transfinite powers of the Jacobson radical

Throughout this section R denotes an artin algebra. We denote by rad =
rad(modR) the Jacobson radical of modR, i.e. the intersection of all maximal
ideals in modR. There are various ways to define the power radα for every ordinal
α, and we shall follow Prest [64] who gave a definition which is similar to that of
Krause and Lenagan [46]. After discussing some basic properties of this radical
series (radα)α it will be shown that radα is closely related to radα. In particular,
radα = 0 for some ordinal α if the Krull-Gabriel dimension of R is an ordinal.

We begin with the definition of Iα for any ideal I and any ordinal α. If α
is a finite ordinal, then Iα = {

∑r
i=1 xi1 . . . xiα | xij ∈ I, r ∈ N}. If α is a limit

ordinal, let Iα =
⋂
γ<α Iγ , and if α is an infinite non-limit ordinal, so uniquely of

the form α = β + n for some limit ordinal β and some natural number n ≥ 1, let
Iα = (Iβ)n+1. Finally, we define I∞ =

⋂
α Iα where α runs through all ordinals.

The lattice of ideals in modR has the following interesting finiteness property.
This generalizes an important observation of Schröer [77].

Proposition 8.9. Suppose there are up to isomorphism n simple R-modules.
If (Ii)i∈I is a family of ideals in modR satisfying

⋂
i∈I Ii = 0, then there are

i1, . . . , in in I such that
⋂n
j=1 Iij = 0.
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Proof. Denote for every simple R-module S by φS the composition of the
projective cover P → S with the injective envelope S → I. The assertion follows
immediately from the fact that I 6= 0 for any ideal I if and only if φS ∈ I for some
simple S.

The following proposition collects some of the well-known properties of the
radical series (radα)α. The second property shows that the usual definition of radα

is not of interest if α > ω.

Proposition 8.10. The following holds:

(1) radn(X,Y ) = radn Hom(X,−)(Y ) for all X,Y ∈ modR and n ∈ N0.
(2) rad(radω) = radω = (radω)rad.
(3) rad∞ 6= 0 if and only if there exists a non-zero idempotent ideal in modR

which is contained in rad.
(4) If rad∞ = 0, then there exists an ordinal α such that radα 6= 0 and radα+1 =

0.

Proof. (1) We use induction on n. The assertion is clear for n = 0, 1. For

n > 1 choose a projective cover HomR(X ′,−)→ radn−1 HomR(X,−) which induces
a map ρ : X → X ′. We obtain the following commutative diagram with exact rows
and columns:

0 −→ rad HomR(X ′,−) −→ HomR(X ′,−) −→ F −→ 0y
y

∥∥∥
0 −→ radn HomR(X,−) −→ radn−1 HomR(X,−) −→ F −→ 0y

y
0 0

If φ ∈ radn(X,Y ), then we may assume that φ = φ′′ ◦φ′ with φ′ ∈ radn−1 and φ′′ ∈
rad. By assumption, φ′ = ψ ◦ ρ for some map ψ, and φ′′ ◦ψ ∈ rad HomR(X ′,−)(Y ).
The commutativity of the diagram implies φ ∈ radn HomR(X,−)(Y ). The proof
for radn Hom(X,−)(Y ) ⊆ radn(X,Y ) is analogous.

(2) We use the fact that for every pair X,Y ∈ modR there exists n ∈ N such
that radω(X,Y ) = radm(X,Y ) for every m ≥ n in N. Now assume, without loss
of generality, that Y is indecomposable. Choose a right almost split map Y ′ → Y
and suppose that radω(X,Y ′) = radn

′

(X,Y ′). For m = n+ n′ we obtain

radω(X,Y ) = radm(X,Y ) = rad(Y ′, Y )radm−1(X,Y ′) = rad(Y ′, Y )radω(X,Y ′).

Thus radω = rad(radω), and the proof of radω = (radω)rad is analogous.
(3) By definition, rad∞ is idempotent. If I2 = I ⊆ rad, then I ⊆ rad∞.
(4) Use Proposition 8.9.

Our next aim is to compare radα with radα. We need the following lemma.

Lemma 8.11. Let S be a Serre subcategory of C(Rop) containing all finite length
objects. Let F ∈ C(Rop) and suppose that dimF = n ∈ N in C(Rop)/S. Then
(annS)2n ⊆ annF .

Proof. We use the notation which was introduced before Lemma 5.4. Suppose
first that F is simple. We observe that F/tF is not finitely presented since every
finitely presented object has a simple subobject which belongs to S by assumption.
Now we claim that t′(F/tF )∗ = (F/tF )∗. To this end assume t′(F/tF )∗ 6= (F/tF )∗.
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Thus there exists a finitely presented subobject of (F/tF )∗ which does not belong to
S∗. Applying the duality we obtain a proper quotient object F ′′ of F/tF which does
not belong to S. If F ′′ = F/F ′, then F ′ properly contains tF but belongs to S since
F and therefore F ′′ are simple in C(Rop)/S. This contradiction proves t′(F/tF )∗ =
(F/tF )∗. Therefore annS annihilates tF and F/tF , and (annS)2 ⊆ annF follows
with Lemma C.8. Using induction on n = dimF , one obtains (annS)2n ⊆ annF .

We are now in a position to prove the following relation between radα and radα.

Theorem 8.12. Let α be any ordinal, written uniquely as α = ωβ + n with
n < ω. Then radα+n ⊆ radα. More precisely, the following holds:

(1) If α ≤ ω, then radα = radα.
(2) If n = 0, then radα ⊆ radα.

(3) If n > 0, then radα+(n−1) ⊆ radα.

Proof. (1) follows from Propositions 8.4 and 8.10. (2) and (3) follow by trans-

finite induction. For a non-limit ordinal α one observes that radα+(n−1) = (radωβ)2n

and uses Lemma 8.11. For a limit ordinal α one uses that radα =
⋂
γ<α radγ and

radα =
⋂
γ<α radγ .

We discuss some consequences. Recall that for any class C of R-modules we
denote by [C] the ideal of maps in modR which factor through a finite coprododuct
of modules in C.

Corollary 8.13. The following are equivalent for a class C of R-modules:

(1) There is no module in C having a finitely presented indecomposable direct
summand.

(2) [C] ⊆ rad.
(3) [C] ⊆ radω.

Moreover, if X denotes the definable subcategory of all R-modules having no finitely
presented indecomposable direct summand, then [X ] = radω.

Proof. The ideal radω is precisely the fp-idempotent ideal which corresponds
to the definable subcategory X of all R-modules which have no finitely presented
indecomposable direct summand. Thus [X ] = radω by Theorem 8.12. The equiva-
lence of the conditions (1) – (3) now follows since (1) holds if and only if C ⊆ X .

Corollary 8.14. If R has Krull-Gabriel dimension α, then radωα+n = 0 for
some n ∈ N.

Proof. Combine Proposition 8.2 and Theorem 8.12.

It is an open question whether radα = 0 for some ordinal α implies that
KGdimR < ∞. Notice that rad∞ 6= 0 and KGdimR = ∞ for any algebra R
which is of wild representation type. In particular, any algebra R such that radω

is nilpotent needs to be tame [44].

Proposition 8.15. Let R be a finite dimensional algebra over some field k and
suppose that R has wild representation type. Then rad∞ 6= 0 and KGdimR =∞.

Proof. Let S = k[X,Y ]/(XY,X2, Y 3). Note that this algebra is of tame
representation type. In fact, the classification of the finite dimensional indecom-
posable S-modules is well-known, and there exists also a convenient description of
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the morphism space between two indecomposables [15]. Using this knowledge, it
is not hard to find a family Mi, i ∈ I = {m · 2−n ∈ [0, 1] | m ∈ Z, n ∈ N}, of
indecomposables in modS and a family of non-zero maps φij : Mi → Mj for each
pair i ≤ j in I such that φik = φjk ◦φij and φij ∈ radS = rad(modS) for all
i ≤ j ≤ k. Now let I be the ideal in modS which is generated by the φij . Clearly,
I2 = I and therefore rad∞S 6= 0 by Proposition 8.10. Now let radR = rad(modR).
By definition, there exists a representation embedding f : modS → modR since R
is of wild representation type [14]. The definition of a representation embedding
implies that f is faithful with f(radS) ⊆ radR. Thus rad∞R 6= 0, and KGdimR =∞
then follows from Corollary 8.14.

We end this section with an example which is due to Schröer [77]. Recall that
an artin algebra R is domestic if there are, up to isomorphism, only finitely many
generic R-modules.

Example 8.16. Let α be an ordinal of the form α = ωβ + n with (1, 1) 6=
(β, n) ∈ N×N. Then there exists a domestic string algebra Rα such that radα = 0
and radα−1 6= 0 where rad = rad(modRα). Therefore there exists for every n ∈ N
a domestic algebra R with KGdimR ≥ n.



CHAPTER 9

Functors between module categories

Functors between module categories help to understand the properties of a
fixed module category. In this chapter we concentrate on a class of functors which
arises frequently and preserves a number of finiteness conditions.

9.1. Coherent functors

We characterize the functors which commute with direct limits and products,
and we present some of their basic properties. Most of this material is taken from
[54, 52].

Theorem 9.1. The following are equivalent for a functor f : ModS → ModR:

(1) The functor f commutes with direct limits and products.
(2) There is an exact functor f ′ : C(R)→ C(S) and a functorial isomorphism

Ef(M) ≃ EM ◦ f ′ for all M ∈ ModS.
(3) The composition F = HomR(R,−) ◦ f : ModS → Ab has a presentation

HomS(Y,−)→ HomS(X,−) → F → 0 with X,Y ∈ modS, and there is a
ring homomorphism α : R → End(F )op such that m · r = m · α(r) for all
m ∈ f(M) and r ∈ R.

A functor ModS → ModR between two module categories is said to be coherent
if it satisfies one of the equivalent conditions in the preceding theorem. We denote
by C(S,R) the category of coherent functors ModS → ModR and mention an
immediate consequence of the preceding theorem.

Corollary 9.2. C(S,R) is an abelian category which is equivalent to the func-
tor category (Rop, C(Sop)). Moreover, C(S,R)op ≃ C(Sop, Rop).

The following lemma is required for the proof of the theorem; it is due to Jensen
and Lenzing [43].

Lemma 9.3. A functor ModS → ModR commuting with coproducts and prod-
ucts sends pure-injectives to pure-injectives.

Proof. A module M is pure-injective if and only if for every set I the sum-
mation map M (I) → M factors through the canonical map M (I) → M I , see [43,
Proposition 7.1] or [52, Theorem 2.6]. The assertion immediately follows from this
characterization.

Proof of Theorem 9.1. (1) ⇒ (2) We extend f to a functor f∗ : D(S) →
D(R) as follows. Let X be an object in D(S). Write X as a direct limit of
finitely presented functors, i.e. X = lim−→KerTφi with φi ∈ modS for all i, and
define f∗(X) = lim−→KerTf(φi). It is not hard to check that f∗ is left exact and
commutes with direct limits and products; in particular f∗(TM ) = Tf(M) for all
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M ∈ ModS. The functor f∗ has a left adjoint f∗ : D(R) → D(S) by the Adjoint
Functor Theorem [59, Corollary V.3.2] which is exact since f∗ preserves injectives
by the preceding lemma. The functor f∗ induces an exact functor f ′ : C(R)→ C(S)
by Lemma 1.1 since f∗ commutes with direct limits. It is left to the reader to verify
that Ef(M) ≃ EM ◦ f ′ for all M ∈ ModS.

(2) ⇒ (3) Choose a map φ in modS such that f ′(TR) = KerTφ. It is not
hard to check that F = HomR(R,−) ◦ f = CokerHφ. The duality C(S)→ C(Sop)
sends KerTφ to CokerHφ, and therefore f ′ induces a ring homomorphism α : R→
End(F )op which gives the R-action on F (M).

(3) ⇒ (1) This follows from the well-known fact that a representable functor
HomS(X,−) commutes with direct limits and products if X is finitely presented.

Corollary 9.4. A functor f : ModR→ ModS is coherent if and only if there
exists a functor f∗ : D(S)→ D(R) having the following properties:

(1) f∗(TM ) = Tf(M) for all M ∈ModS.
(2) f∗ has a left adjoint which is exact and sends finitely presented objects to

finitely presented objects.

Example 9.5. (1) A functor f : ModR → Mod Z = Ab is coherent if and
only if there exists a presentation HomR(Y,−) → HomR(X,−) → f → 0 with
X,Y ∈ modR. Therefore C(Rop) ≃ C(R,Z).

(2) A tensor functor −⊗S B : ModS → ModR commutes with direct limits; it
commutes with products if and only if B is finitely presented over S. Therefore a
functor f : ModS → ModR is coherent and right exact if and only if f ≃ −⊗S B
for some bimodule B which is finitely presented over S.

Now suppose that f : ModS → ModR is coherent and choose for every map
φ ∈ modR a map φf ∈ modS such that f ′(KerTφ) = KerTφf . We write Φf =
{φf | φ ∈ Φ} for every Φ ⊆ modR. With this notation we obtain the following
consequence of the preceding theorem.

Corollary 9.6. Let f : ModS → ModR be a coherent functor and let Φ be
a collection of maps in modR. Then every S-module M is Φf -injective if and only
if f(M) is Φ-injective, and therefore f−1((ModR)Φ) = (ModS)Φf .

Proof. We use the pair of adjoint functors between D(R) and D(S) from the
preceding proof. We have for each φ ∈ modR and M ∈ ModS that f∗(KerTφ) =
KerTφf and f∗(TM ) = Tf(M). The assertion now follows from the adjointness
isomorphism Hom(KerTφf , TM ) ≃ Hom(KerTφ, Tf(M)) together with Lemma 2.2.

We mention some further properties of coherent functors. To this end denote
for any module M by ℓend(M) its endolength.

Corollary 9.7. A coherent functor f : ModS → ModR has the following
properties:

(1) If U ⊆ IndS is Ziegler-closed, then the indecomposable direct summands
of modules in f(U) form a Ziegler-closed subset of IndR.

(2) There is c ∈ N such that ℓend(f(M)) ≤ c · ℓend(M) for all M ∈ ModS.
(3) Let M ∈ ModS. Then the restriction via the homomorphism EndS(M)→

EndR(f(M)) induces a faithful and exact functor Ef(M) → EM between the
endocategories of M and f(M).
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(4) KGdim f(M) ≤ KGdimM for every S-module M .

Proof. (1) See [52, Theorem 7.8].
(2) Let HomS(Y,−) → HomS(X,−) → F → 0 be a presentation of F =

HomR(R,−) ◦ f and choose an epimorphism Sc → X in modS. Then c · ℓend(M)
bounds the length of the EndS(M)op-module F (M) and therefore also the en-
dolength of f(M) since the EndS(M)op-module structure on F (M) is induced by
that of EndR(f(M))op via the canonical homomorphism EndS(M)→ EndR(f(M)).

(3) We use the adjoint pair of functors f∗ and f∗ between D(R) and D(S) which
has been constructed in the proof of Theorem 9.1. The canonical ring homomor-
phism φ : EndS(M) → EndR(f(M)) induces the following commutative diagram
of exact functors:

C(R)
f∗

−→ C(S)yEf(M)

yEM
Mod EndR(f(M))op

φ∗

−→ Mod EndS(M)op

The assertion is now an immediate consequence of the definition of the endocategory
of M and f(M).

(4) Combining (3) with Proposition 7.6 and Lemma B.1 we obtain

KGdim f(M) = dim Ef(M) ≤ dim EM = KGdimM.

The preceding result motivates the following definition. Given a subset U ⊆
IndS, we call a map f : U→ ModR finite provided that the following holds:

(F1) If V ⊆ U is a Ziegler-closed subset of IndS, then the indecomposable direct
summands of modules in f(V) form a Ziegler-closed subset of IndR.

(F2) There is c ∈ N such that ℓend(f(M)) ≤ c · ℓend(M) for all M ∈ U.

Corollary 9.8. A coherent functor ModS → ModR induces a finite map
IndS → ModR.

The next result expresses the fact that coherent functors preserve the Ziegler
topology. This generalizes the main result in [62] where so-called representation
embeddings are discussed.

Corollary 9.9. A coherent functor ModS → ModR which sends pure-in-
jective indecomposables to indecomposables, induces a continuous and closed map
IndS → IndR between the Ziegler spectra of S and R.

We include another consequence of Theorem 9.1 which will be needed later.
Suppose that R and S are k-algebras over some commutative noetherian ring k.

Corollary 9.10. Let f : ModS → ModR be a coherent k-linear functor.
Then f(M) is finitely generated over k for every S-module M which is finitely
generated over k.

Proof. f(M) is a subquotient of Mn for some n ∈ N.

Our next aim is to show that a coherent functor ModS → ModR induces a
homomorphisms between the K-groups of modR and modS. We recall briefly the
relevant concepts. In [67], Quillen constructs for each exact category C and each
integer i ≥ 0 an abelian group KiC. We shall use these groups for two types of
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exact categories. If C is an abelian category, then we denote by KiC the K-groups
with respect to the class of all exact sequences. If C is an additive category, then
we denote by Ki(C, 0) the K-groups with respect to the class of all split exact
sequences.

Lemma 9.11. The functor modR→ C(R), X 7→ TX , induces an isomorphism
Ki(modR, 0)→ KiC(R) for all i ≥ 0.

Proof. The functor identifies modR with the full subcategory of injective
objects in C(R). Every object F in C(R) has a finite injective copresentation

0 −→ F −→ TX −→ TY −→ TZ −→ 0

The assertion now follows from a result in [67].

Corollary 9.12. A coherent functor ModS → ModR induces a homomor-
phism Ki(modR, 0)→ Ki(modS, 0) for all i ≥ 0.

Proof. The homomorphism Ki(modR, 0) → Ki(modS, 0) is induced by the
exact functor C(R)→ C(S).

Remark 9.13. Let f : ModS → ModR be a coherent functor which is left
exact (e.g. f is the restriction functor corresponding to a homomorphism R→ S).
Then f has a left adjoint which restricts to a functor modR→ modS by Lemma 1.1.
It induces a homomorphism Ki(modR, 0) → Ki(modS, 0) for all i ≥ 0 which
coincides with the homomorpism constructed in the preceding corollary.



CHAPTER 10

Tame algebras

Suppose that R is a finite dimensional algebra over some algebraically closed
field k. A one-parameter family of R-modules of dimension n is the set of R-modules

{k[T ]/(T − λ)⊗k[T ] B | λ ∈ k}

where B is a k[T ]-R-bimodule which is free of rank n over k[T ]. The algebra is said
to be of tame representation type provided that there is for every n ∈ N a finite
number of such one-parameter families such that every indecomposable R-module
of dimension n is isomorphic to a module in one of these families [24, 14].

The main aim of this chapter is to present two new definitions of tame represen-
tation type. Both definitions seem to be more natural. The first one is formulated
in terms of endofinite modules and behaves well with respect to functors between
module categories. The second definition uses fp-idempotent ideals and is therefore
entirely formulated in terms of the category of finitely presented modules.

10.1. Endofinitely tame algebras

The notion of tameness for finite dimensional algebras depends on the con-
cept of a one-parameter family of finite dimensional modules. An alternative ap-
proach was developed by Crawley-Boevey. He used certain endofinite modules,
so-called generic modules, and proved that a finite dimensional algebra over some
algebraically closed field has tame representation type if and only if it is generically
tame [17]. In this section we present a slight variation of Crawley-Boevey’s concept.

We begin with some definitions. A module is called generic if it is endofi-
nite indecomposable but not finitely presented [17, 51]. A noetherian algebra is
generically tame provided that for every n ∈ N there are only finitely many generic
modules of endolength n, see [17]. Recall that R is a noetherian algebra if the centre
Z(R) is noetherian and R is a finitely generated module over Z(R). Given n ∈ N,
we denote by indnR the set of modules in IndR which are finitely presented and
have endolength n. We call a noetherian algebra endofinitely tame provided that
for every n ∈ N the Ziegler closure of indnR contains only finitely many modules
which are not finitely presented. Let us mention some basic properties of generically
and endofinitely tame algebras.

Proposition 10.1. A noetherian algebra R is generically (endofinitely) tame
if and only if Rop is generically (endofinitely) tame.

Proof. Apply the bijection M 7→ M∨ between the endofinite modules over
R and Rop from Corollary 6.19. Note that this bijection sends generic modules to
generic modules; this follows from Proposition 6.23. Moreover, one uses that the
map M 7→M∨ is compatible with the Ziegler topology by Proposition 4.17.

Proposition 10.2. A generically tame noetherian algebra is endofinitely tame.
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Proof. Every module in the Ziegler closure of indnR is endofinite of en-
dolength at most n by Proposition 6.20.

The following results give characterizations of generically and endofinitely tame
algebras which are entirely formulated in terms of the category of finitely presented
modules.

Theorem 10.3. An artin algebra R is generically tame if and only if for every
n ∈ N there are only finitely many fp-idempotent and nilpotent ideals of length n in
modR.

Proof. We use the bijection between finite sets of generic modules and cer-
tain fp-idempotent ideals. More precisely, it follows from Theorem 6.28 and Corol-
lary 6.30 that an ideal I is fp-idempotent and nilpotent of length n if and only if I =
[U] for some subset U ⊆ IndR consisting of generic modules with

∑
M∈U

ℓend(M) =
n.

A noetherian algebra R is called domestic if there are, up to isomorphism, only
finitely many generic R-modules.

Corollary 10.4. An artin algebra R is domestic if and only if there exists
n ∈ N such that every fp-idempotent and nilpotent ideal in modR has length at
most n.

We give now a characterization of endofinitely tame algebras.

Theorem 10.5. Let R be an artin algebra and denote for every n ∈ N by
fpnilnR the set of non-zero fp-idempotent and nilpotent ideals of modR which are
contained in [indnR]. Then the map

indnR \ indnR −→ fpnilnR, M 7→ [M ]

induces a bijection between the generic modules in the Ziegler closure of indnR and
the minimal elements of fpnilnR. Moreover, R is endofinitely tame if and only if
fpnilnR is finite for all n ∈ N.

Proof. It follows from Corollary 5.14 and Corollary 5.16 that the Ziegler-
closed subsets of indnR correspond bijectively to the fp-idempotent ideals contained
in [indnR]. Every module M in indnR is endofinite and therefore [M ] is the ideal
corresponding to {M} by Theorem 6.28. The assertion now follows since M is
generic if and only if [M ] is nilpotent.

10.2. Functors preserving tameness

In this section we show that coherent functors between module categories pre-
serve tameness if certain density conditions are satisfied. This work is motivated by
the fact that the original definition of a one-parameter family of finite dimensional
modules over a k-algebra R amounts to a coherent functor Mod k[T ] → ModR
which is k-linear and exact.

The first result of this section shows that endofinite tameness is well behaved
with respect to functors between module categories. This follows from the fact that
every coherent functor ModS → ModR induces a finite map IndS → ModR. We
refer to [60] for a discussion of similar results. Note that de la Peña uses a geometric
approach; however the precise relation with the approach based on generic modules
is still not clear.
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Proposition 10.6. A noetherian algebra R is endofinitely tame if and only
if for every n ∈ N there is an endofinitely tame noetherian algebra S, a subset
V ⊆

⋃m
i=1 indi S for some m ∈ N, a finite map f : V → ModR, and some cofinite

subset U ⊆ indnR such that U ⊆ add f(V) ⊆ modR.

Proof. We fix n ∈ N and denote by V the Ziegler closure of V. By assumption
there are only finitely many generic modules in V, and we claim that also the
number of generic modules in add f(V) is finite. In fact each M ∈ V is endofinite
by Proposition 6.20, and therefore f(M) is endofinite since f is finite. Note also
that V \ V is finite since there are no finitely presented modules in V \ V by
Proposition 6.22. An endofinite module has only finitely many non-isomorphic
indecomposable direct summands, for instance by Theorem 6.19, and therefore our
first claim follows. Now suppose that indnR = U ∪ U′ for some finite set U′,
and observe that U ∪U′ is the Ziegler closure of indnR since U′ is Ziegler-closed
by Proposition 6.17. Using again that f is finite, we have U ⊆ add f(V) since
add f(V)∩ IndR is a Ziegler-closed subset which contains U by assumption. Thus
the Ziegler closure of indnR contains only finitely many modules which are not
finitely presented, and therefore R is endofinitely tame.

Remark 10.7. The requirement f(V) ⊆ modR is not automatically satisfied if
the finite map V→ ModR is induced by a coherent functor ModS → ModR. This
was pointed out by M. Prest. Take, for instance, the forgetful functor Mod Q →
Mod Z.

We obtain the following consequence of the preceding proposition.

Corollary 10.8. A noetherian algebra R is endofinitely tame if and only if
for every n ∈ N there is an endofinitely tame noetherian algebra S, some m ∈ N,
and a coherent functor f : ModS → ModR such that all but finitely many modules
in indnR occur as a direct summand of some finitely presented module f(M) with
M ∈

⋃m
i=1 indi S.

Proof. Combine Proposition 10.6 with Corollary 9.8.

From now on we assume that R is a finite dimensional algebra over some al-
gebraically closed field k. We want to show that R is endofinitely tame if R is of
tame representation type in the usual sense. To this end we need a reformulation
of the classical definition.

Lemma 10.9. The algebra R is of tame representation type if and only if for
every n ∈ N there is a coherent k-linear and exact functor f : ModS → ModR for
some finite product S = k[T ]× . . .× k[T ], such that indnR ⊆ f(ind1 S).

Proof. Observe that endolength and k-dimension coincide for every finite di-
mensional indecomposable module over a k-algebra since k is algebraically closed.
Using this fact the assertion follows from the next lemma.

Lemma 10.10. For a functor f : Mod k[T ] → ModR the following are equiva-
lent:

(1) f is coherent, k-linear, and exact.
(2) There is a k[T ]-R-bimodule B on which k acts centrally and which is free

of finite rank over k[T ], such that f ≃ −⊗k[T ] B.

Proof. Left to the reader.
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Theorem 10.11. Let R be a finite dimensional algebra over some algebraically
closed field. If R is of tame representation type, then R is endofinitely tame.

Proof. The unique generic module over k[T ] is the quotient field k(T ), and
therefore any finite product k[T ] × . . . × k[T ] is generically tame. Using the re-
formulation of the usual tameness definition in Lemma 10.9, the assertion is an
immediate consequence of Proposition 10.6 and Corollary 9.8.

10.3. Representation embeddings

We call a functor f : ModS → ModR a representation embedding if any
two indecomposable endofinite S-modules M and N are isomorphic if and only
if add f(M) ∩ add f(N) 6= 0.

Theorem 10.12. Let R be a noetherian algebra over some infinite field k, and
suppose there is a coherent k-linear representation embedding f : Mod k〈X,Y 〉 →
ModR. Then R is not endofinitely tame.

Proof. Consider for every pair α, β ∈ k the k〈X,Y 〉-module

Mα,β = k〈X,Y 〉/(X − α, Y − β)

and let Gα be the endofinite k〈X,Y 〉-module whose underlying space is k(T ) with
X acting by multiplication with α and Y acting by multiplication with T . It is
not hard to see that for each α ∈ k the Ziegler closure of Uα = {Mα,β | β ∈ k} is
Vα = Uα∪{Gα}, for instance by arguments given in [51]. Denote by U′

α the set of
indecomposable direct summands of modules in f(Uα). Analogously, V′

α is defined
which is a Ziegler-closed subset of IndR by Corollary 9.8 since Vα is Ziegler-closed.
Also, there is n ∈ N such that each module in V′

α has endolength at most n since
every module in Vα has endolength 1. Therefore U′

α ⊆ indnR for all α since f(M)
is finitely generated over k for all M in Uα by Corollary 9.9. We claim that the
Ziegler closure of indn R contains infinitely many generic modules. Using the fact
that f is a representation embedding, it follows that cardU′

α ≥ cardUα = cardk.
Thus the Ziegler closure of each U′

α contains a generic module by Proposition 6.22.
Also, V′

α ∩ V′
β = ∅ for α 6= β since Vα ∩ Vβ = ∅ and f is a representation

embedding. The assertion now follows since each V′
α contains the Ziegler closure

of U′
α.

From now on assume for the rest of this section that R is a finite dimensional
algebra over some algebraically closed field. If R is of tame representation type,
then we denote for every n ∈ N by µR(n) the minimal number of one-parameter
families which is needed to parametrize, up to isomorphism, all but finitely many
indecomposable R-modules of dimension n.

Theorem 10.13. The algebra R is of tame representation type if and only if
it is endofinitely tame. Moreover, in this case µR(n) = card(indnR \ indnR) for
every n ∈ N.

Proof. It has already been shown in Theorem 10.11 that a tame algebra is
endofinitely tame. Now suppose that R is not of tame representation type. Apply-
ing the Tame and Wild Theorem [24, 17], there exists a representation embedding
Mod〈X,Y 〉 → ModR. It follows from Theorem 10.12 that R is not endofinitely
tame.
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It remains to verify the assertion about µR(n). It has been shown in [51, Corol-

lary 9.7] that a generic module M belongs to indnR if and only if the endolength
of M divides n. There are precisely µR(n) generic modules with this property by
[17, Theorem 5.6], and we obtain therefore µR(n) = card(indnR \ indnR).

We are now in a position to give a characterization of tame algebras which is
entirely formulated in terms of the category of finitely presented modules.

Corollary 10.14. The algebra R is of tame representation type if and only if
for every n ∈ N there are only finitely many non-zero fp-idempotent and nilpotent
ideals in modR which are contained in [indnR]. Moreover, in this case µR(n)
equals the number of minimal elements in the set of these ideals.

10.4. One-parameter families and generic modules

In this section we describe explicitly the relation between one-parameter fam-
ilies and generic modules over algebras of tame representation type. The results
presented here are mainly due to Crawley-Boevey; those results which involve the
Ziegler spectrum are due to Krause. We do not give proofs but refer to Section 5
in [17] and Section 9 in [51]. Throughout this section R is a finite dimensional
algebra over some algebraically closed field.

Theorem 10.15. Let R be of tame representation type and let n ∈ N. Then
there are one-parameter families U1, . . . ,UµR(n) of n-dimensional indecomposable
R-modules having the following properties:

(1) indnR \ (U1 ∪ . . . ∪UµR(n)) is finite.

(2) The Ziegler closure Ui contains a unique generic R-module Gi for every i.
(3) Gi = Gj if and only if i = j.

(4) indnR \ indnR = {G1, . . . , GµR(n)}.
(5) A generic R-module belongs to {G1, . . . , GµR(n)} if and only if its en-

dolength divides n.

In [14], Crawley-Boevey has shown that over a tame algebra almost all in-
decomposable modules of a fixed dimension belong to homogeneous tubes of the
Auslander-Reiten quiver of R. Recall that a family T = (Mi)i∈N of R-modules
forms a homogeneous tube if there are maps Mi →Mi+1 and Mi+1 →Mi for every
i ∈ N which induce almost split sequences 0→Mi →Mi−1

∐
Mi+1 →Mi → 0 for

every i ∈ N where M0 = 0. We say that T is generic if the Ziegler closure of the
Mi is of the form T ∪ {lim−→Mi, lim←−Mi, G} for some generic module G.

Theorem 10.16. Let R be of tame representation type and let n ∈ N. Then
all but finitely many n-dimensional indecomposable R-modules belong to generic
homogeneous tubes.

The occurence of homogeneous tubes is a characteristic phenomenon for tame
algebras. This can be made precise as follows.

Theorem 10.17. An algebra R is of tame representation type if and only if
every generic R-module belongs to the Ziegler closure of a (generic) homogeneous
tube.



CHAPTER 11

Rings of definable scalars

In this chapter we assign to every collection Φ of maps in modR a ring ho-
momorphism fΦ : R → RΦ which is called the ring of definable scalars for Φ. The
homomorphism R → RΦ depends only on the saturation Φ of Φ and is therefore
an invariant of the definable subcategory (ModR)Φ. We use a universal property
to define the ring of definable scalars but present various alternative constructions
for R→ RΦ.

11.1. Rings of definable scalars

The following existence theorem describes the ring of definable scalars as an
invariant of a definable subcategory.

Theorem 11.1. Let X be a definable subcategory of ModR. Then there exists
a ring homomorphism f : R→ S and a definable subcategory Y of ModS satisfying
the following properties:

(1) Restriction via f induces an equivalence Y → X .
(2) Suppose there is a ring homomorphism f ′ : R → S′ and a definable sub-

category Y ′ of ModS′ such that restriction via f ′ induces an equivalence
Y ′ → X . Then there is a unique ring homomorphism g : S′ → S such that
f = g ◦ f ′ and restriction via g induces an equivalence Y → Y ′.

Moreover, the pair (f,Y) is unique up to isomorphism.

Given a collection Φ of maps in modR, we denote by fΦ : R → RΦ the ring
homomorphism R→ S satisfying the conditions (1) – (2) in the preceding theorem
for X = (ModR)Φ, and we denote by Φ◦ the saturated collection of maps in modRΦ

such that Y = (ModRΦ)Φ◦ . Following Prest, we call the ring homomorphism
fΦ : R → RΦ the ring of definable scalars for Φ. In [63], Prest introduced the
ring of definable scalars for a closed subset of the Ziegler spectrum of R in model-
theoretic terms but it can be shown that both concepts coincide. In fact, it is
often useful to consider the ring of definable scalars for a class C of R-modules. We
define fC : R→ RC to be the ring of definable scalars for ΦC where ΦC denotes the
collection of maps φ in modR such that CokerHφ(M) = 0 for all M in C.

We begin our discussion with some notation. Let f : R → S be a ring homo-
morphism. The assignment TM 7→ TM⊗RS for any R-module M induces an exact
functor f∗ : D(R)→ D(S). There is a right adjoint f∗ : D(S)→ D(R) which sends
for every S-module M the functor TM to TMf

where Mf denotes the restriction of
M via f .

Lemma 11.2. Let Φ ⊆ modR and Ψ ⊆ modS. Then the following are equiva-
lent:

(1) The restriction of every Ψ-injective S-module is Φ-injective.
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(2) f∗(F ) ∈ SΨ for all F ∈ SΦ.
(3) There is a (unique and exact) functor f∗

ΦΨ making the following diagram
of functors commutative.

C(R)
pΦ
−→ C(R)/SΦyf∗

yf∗

ΦΨ

C(S)
pΨ
−→ C(S)/SΨ

Moreover, restriction via f induces an equivalence (ModS)Ψ → (ModR)Φ if and
only if f∗

ΦΨ is an equivalence.

Proof. (1) ⇔ (2) It has been shown in Theorem 2.1 that an R-module M is
Φ-injective if and only if Hom(SΦ, TM ) = 0. Using this fact the assertion follows
from the adjointness isomorphism Hom(f∗(F ), TM ) ≃ Hom(F, TMf

) where M is
any S-module and Mf denotes its restriction via f .

(2) ⇔ (3) Condition (2) holds if and only if pΨ ◦ f∗(SΦ) = 0 and therefore the
universal property of pΦ implies the existence of f∗

ΦΨ whenever (2) holds.
The last statement follows with Corollary 2.4 where it is shown that (ModR)Φ

and the category of exact functors (C(R)/SΦ)op → Ab are canonically equivalent.

We shall need the following technical lemma.

Lemma 11.3. Let C
f
→ D

g
→ C/S be a sequence of exact functors between

abelian cateories, and suppose that the composition is the quotient functor cor-
responding to the Serre subcategory S. If T = Ker g, then g induces an equivalence
D/T → C/S.

Proof. Let q : D → D/T denote the quotient functor corresponding to T .
Clearly, the induced functor h : D/T → C/S is faithful and dense. To see that h
is full let α : X → Y be a morphism in C/S. By definition, there are subobjects
X ′ ⊆ X and Y ′ ⊆ Y such that g ◦ f(β) ≃ α for some morphism β : X ′ → Y/Y ′ in
C. Composing q ◦ f(β) with inverses of the inclusion q ◦ f(X ′) → q ◦ f(X) and the
projection q ◦ f(Y )→ q ◦ f(Y/Y ′) we obtain a morphism γ with h(γ) = α.

Proof of Theorem 11.1. Let X = (ModR)Φ be a definable subcategory.
We consider the quotient functor pΦ : C(R)→ C(R)/SΦ. Let S = EndC(R)/SΦ

(TR)
and let f : R→ S be the homomorphism induced by pΦ. The homomorphism f ex-
tends to an exact functor f∗ : C(R)→ C(S) and id : S → EndC(R)/SΦ

(TR) extends

to an exact functor id′ : C(S)→ C(R)/SΦ which satisfy pΦ = id′ ◦ f∗ by Lemma 1.2.
We define Ψ to be the collection of maps φ in modS such that id′(KerTφ) = 0 and
let Y = (ModS)Ψ. It follows that f∗(F ) ∈ SΨ for every F ∈ SΦ, and therefore
the restriction via f of every Ψ-injective S-module is Φ-injective by Lemma 11.2.
In fact, the induced functor Y → X is an equivalence since id′ : C(S) → C(R)/SΦ

induces an equivalence C(S)/SΨ → C(R)/SΦ by Lemma 11.3 which is an inverse of
f∗
ΦΨ. Having shown condition (1) it remains to verify (2). To this end suppose there

is a ring homomorphism g : R→ T and a definable subcategory Z = (ModT )Ω such
that restriction via g induces an equivalence Z → X . It follows from Lemma 11.2
that g∗ induces an equivalence g∗ΦΩ : C(R)/SΦ → C(T )/SΩ. Composing the homo-
morphism T → EndC(T )/SΩ

(TT ) induced by pΩ with the inverse of the isomorphism
S → EndC(T )/SΩ

(TT ) induced by g∗ΦΩ we obtain a homomorphism h : T → S with
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f = h ◦ g. The following commutative diagram of exact functors illustrates the
construction.

C(R)
g∗

−→ C(T )
h∗

−→ C(S)ypΦ
ypΩ

ypΨ
C(R)/SΦ

g∗ΦΩ−→ C(T )/SΩ
h∗

ΩΨ−→ C(S)/SΨ

Note that h∗ΩΨ is the composition of an inverse of g∗ΦΩ with f∗
ΦΨ. Therefore restric-

tion via h induces an equivalence Y → Z, and we leave it to the reader to deduce
the uniqueness of the homomorphism h from the commutative diagram.

Having shown the existence of the ring of definable scalars, we now continue
with a discussion of basic properties and alternative descriptions. Our first state-
ment is essentially a reformulation of the construction given in the preceding proof.

Corollary 11.4. For a ring homomorphism f : R → S the following are
equivalent:

(1) f is the ring of definable scalars for a collection of maps in modR.
(2) f is isomorphic to the ring homomorphism EndC(R)(TR)→ EndC(R)/S(TR)

which is induced by the quotient functor C(R) → C(R)/S for some Serre
subcategory S of C(R).

It is interesting to note that Morita equivalent rings have Morita equivalent
rings of definable scalars.

Corollary 11.5. Let R and S be Morita equivalent rings and fix an equiva-
lence f : modR → modS. If Φ is a collection of maps in modR, then RΦ and
Sf(Φ) are Morita equivalent.

Proof. The equivalence f extends to an equivalence f ′ : C(R) → C(S) via
TX 7→ Tf(X). It is clear that f ′ induces an equivalence C(R)/SΦ → C(S)/Sf(Φ).
Therefore RΦ = EndC(R)/SΦ

(TR) and Sf(Φ) = EndC(S)/Sf(Φ)
(TS) are Morita equiv-

alent.

11.2. Calculus of fractions

Let Φ be a saturated collection of maps in modR. A left fraction with respect
to Φ is a pair (α, φ) of maps α, φ : R → X in modR such that φ and c(c(φ) ◦α)
belong to Φ. Here, we denote for any map φ : X → Y by c(φ) the cokernel map
Y → Cokerφ. The collection of left fractions with respect to Φ is denoted by
R(Φ−). Given left fractions (α1, φ1) and (α2, φ2) we consider the following pushout
diagrams:

R
φ2
−→ X2yφ1

yγ2
X1

γ1
−→ Y

R
α2−→ X2yφ1

yδ2
X1

δ1−→ Z

We obtain an equivalence relation on R(Φ−) by defining (α1, φ1) ∼ (α2, φ2) if there
are maps βi : Xi → X such that (β1 ◦α1, β1 ◦φ1) and (β2 ◦α2, β2 ◦φ2) are equal
and belong to R(Φ−). The equivalence class of a left fraction (α, φ) is denoted by
[α, φ], and R[Φ−] denotes the set of all equivalence classes in R(Φ−). Addition and
multiplication in R[Φ−] are defined as follows:

[α1, φ1] + [α2, φ2] = [γ1 ◦α1 + γ2 ◦α2, γ1 ◦φ1]
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[α2, φ2] ◦[α1, φ1] = [δ1 ◦α1, δ2 ◦φ2]

Consider now the quotient functor p : C(R) → C(R)/SΦ with respect to the
Serre subcategory SΦ = {KerTφ | φ ∈ Φ} and recall that RΦ = EndC(R)/SΦ

(TR).
Given a left fraction (α, φ), the condition φ ∈ Φ implies that p(Tφ) is a monomor-
phism, i.e. p(Tφ) is the kernel of c(p(Tφ)). Furthermore, the condition c(c(φ) ◦α) ∈
Φ implies that c(p(Tφ)) ◦ p(Tα) = 0 since the functor X 7→ p(TX) on modR is
right exact. Therefore p(Tα) induces a unique morphism α : TR → TR such that
p(Tα) = p(Tφ) ◦α.

Theorem 11.6. Let Φ be a collection of maps in modR. Then the set R[Φ−]
of equivalence classes of left fractions with respect to the saturation Φ forms a ring.
The assignment [α, φ] 7→ α induces an isomorphism between R[Φ−] and the ring of
definable scalars RΦ.

Proof. Let A = TR = B. By definition

RΦ = HomC(R)/SΦ
(A,B) = lim−→HomC(R)(A

′, B/B′)

where A/A′, B′ ∈ SΦ. Therefore every element in RΦ is of the form π(ρ) for
some ρ : A′ → B/B′ where π = (πA′,B/B′) denotes the family of structural maps
πA′,B/B′ : HomC(R)(A

′, B/B′) → RΦ. Choosing a monomorphism σ : B/B′ → TX
for some X in modR, the composition σ ◦ ρ extends to a morphism A→ TX which
is of the form Tα for some map α : R → X . Also, the composition of B → B/B′

with σ is of the form Tφ for some map φ : R → X . It is easily checked that the

pair (α, φ) is a left fraction with respect to Φ, and π(ρ) = α holds by construction.
Therefore the map [α, φ] 7→ α is surjective and it remains to check the injectivity.
To this end suppose there are left fractions (α1, φ1) and (α2, φ2) with α1 = α2. We
claim that (α1, φ1) ∼ (α2, φ2). In fact, p(Tα) = 0 for α = γ1 ◦α1 − γ2 ◦α2 and
therefore ImTα ∈ SΦ. Choosing a monomorphism σ : TY / ImTα → TX for some X
in modR, the composition of TY → TY / ImTα with σ is of the form Tβ for some
map β : Y → X . We obtain

(β1 ◦α1, β1 ◦φ1) = (β2 ◦α2, β2 ◦φ2) ∈ R(Φ−)

for βi = β ◦ γi and therefore (α1, φ1) ∼ (α2, φ2).

11.3. Biendomorphism rings

Our next goal is the description of the ring of definable scalars as the biendo-
morphism ring of a certain module. This was done independently by Burke and
Prest [12]; however our proof is substantially different. The approach presented
here follows the exposition in the preprint version of [52]; it uses some localization
theory for the functor category D(R).

Let Φ be a collection of maps in modR. Let NΦ be a product of a representative
set of indecomposable pure-injective R-modules which are Φ-injective, and denote
by MΦ a product of κ copies of NΦ where κ = cardNΦ. Given an R-module M
with S = EndR(M)op, the functor HomR(−,M) : ModR → ModS sends R to M
and induces a canonical homomorphism

R = EndR(R) −→ EndS(M)op = BiendR(M)

Theorem 11.7. The canonical homomorphism R → BiendR(MΦ) is the ring
of definable scalars for Φ.
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Our proof depends on some general facts which we present now. Let A be
an abelian category with products and suppose that q : A → A/T is the quotient
functor corresponding to a localizing subcategory T . Let X and N be objects in A
such that

(1) N is injective and HomA(T , N) = 0;
(2) N cogenerates A/T ;

and define M = M I with S = EndA(M)op where I = HomA(X,N).

Lemma 11.8. Denote by f : EndA(X) → EndA/T (X) the homomorphism in-
duced by the quotient functor A → A/T . Then

h : EndA(X) −→ EndS(HomA(X,M))op, φ 7→ HomA(φ,M)

induces an isomorphism g : EndA/T (X) → EndS(HomA(X,M))op such that h =
g ◦ f .

Proof. The assumption HomA(T ,M) = 0 = Ext1(T ,M) on M implies that
q induces an isomorphism HomA(Y,M)→ HomA/T (Y,M) for all Y in A since M
is T -closed. Thus h factors through f . The following lemma then shows that the
induced map g is an isomorphism because HomA(X,M) is generated over S by
(αφ) : X →

∏
φ∈HomA(X,N)N with αφ = φ for all φ.

Lemma 11.9. Let X and M be objects in any abelian category. If M is an injec-
tive cogenerator and Hom(X,M) is finitely generated as an S = End(M)op-module,
then Hom(−,M) induces an isomorphism End(X)→ EndS(Hom(X,M))op.

Proof. The homomorphism is injective since M is a cogenerator. To show
that it is surjective one uses in addition the assumption that Hom(X,M) is finitely
generated over S so that X embeds into a finite product of copies of M .

Proof of Theorem 11.7. We apply Lemma 11.8 as follows. Let A = D(R),
T = TΦ, X = TR, and N = TNφ which implies M = TMφ

. The conditions (1) and
(2) are immediate consequences of Proposition A.9. Using the fully faithful functor
ModR→ D(R) we obtain the following commutative diagram from Lemma 11.8

R
fΦ
−→ RΦ −→ BiendR(M)y≀

∥∥∥
y≀

EndA(X)
f
−→ EndA/T (X)

g
−→ EndS(HomA(X,M))op

which establishes the isomorphism between RΦ and BiendR(MΦ).

An analysis of the preceding proof shows that in some cases the module MΦ

is far too big. We formulate therefore a variation of the preceding theorem which
covers the case that Φ corresponds to a definable subcategory of the form AddM
for some endofinite module M . To this end denote for an R-module M by ΦM the
collection of maps φ in modR such that M is φ-injective. Clearly, the definable
subcategory corresponding to ΦM is the smallest containing M . Recall that a
module M is Σ-pure-injective if every coproduct of copies of M is pure-injective.
For example, every endofinite module is Σ-pure-injective.

Corollary 11.10. Let M be a Σ-pure-injective R-module and suppose that
M is finitely generated over EndR(M)op. Then the canonical homomorphism R→
BiendR(M) is the ring of definable scalars for ΦM .
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Proof. Adapt the argument of the proof of Theorem 11.7, and use the fact
that TM is an injective cogenerator for D(R)/T since M is Σ-pure-injective.

Example 11.11. A product-complete module is Σ-pure-injective and finitely
generated over its endomorphism ring.

11.4. Basic properties

The kernel of the homomorphism R→ RΦ can be described as follows.

Proposition 11.12. The kernel of R → RΦ is the annihilator of the class of
Φ-injective R-modules.

Proof. Let x ∈ R = EndR(R). By definition of fΦ : R → RΦ, we have
fΦ(x) = 0 if and only if Hom(Tx, TM ) = 0 for each Φ-injective R-module M .
However, Hom(Tx, TM ) = 0 if and only if Mx = 0. The assertion now follows.

The next result reflects our functorial construction of the ring of definable
scalars.

Proposition 11.13. Let Φ and Ψ be collections of maps in modR and suppose
that every Ψ-injective R-module is Φ-injective. Then there is a unique homomor-
phism fΦΨ : RΦ → RΨ such that fΨ = fΦΨ ◦ fΦ and φ⊗RΦ RΨ ∈ Ψ◦ for all φ ∈ Φ◦.

Proof. The assumption on Φ and Ψ implies that id : R→ R induces an exact
functor id∗

ΦΨ : C(R)/SΦ → C(R)/SΨ in the sense of Lemma 11.2. We denote by
fΦΨ : RΦ → RΨ the homomorphism which id∗

ΦΨ induces between the endomorphism
rings of TR. It is clear that fΨ = fΦΨ ◦ fΦ and the second condition is included to
obtain the uniqueness of fΦΨ.

Corollary 11.14. Let Φ =
⋃
i∈I Φi be a directed union of collections of maps

in modR. Then the homomorphisms fΦiΦ : RΦi → RΦ induce an isomorphism
lim−→RΦi → RΦ.

Given a collection Φ of maps in modR, we are now interested in ring homo-
morphisms R→ S which factor through the ring of definable scalars RΦ. We shall
present a sufficient condition which in some sense is also necessary. The following
lemma is needed.

Lemma 11.15. Let f : R→ S be a ring homomorpism. Then the following are
equivalent for a map φ in modR:

(1) The restriction of every S-module is φ-injective.
(2) φ⊗R S is a split mono in ModS.
(3) KerTφ lies in the kernel of the exact functor C(R)→ C(S) extending f .

Proof. (1)⇔ (2) This follows directly from the isomorphism HomR(X,M) ≃
HomS(X ⊗R S,M) for X in ModR and M in ModS.

(2) ⇔ (3) Let φ ⊗R S = ψ : X → Y . The functor C(R) → C(S) sends Tφ to
Tψ and the assertion follows from the fact that Tψ is a monomorphism if and only
if Tψ is a split monomorphism since TX is fp-injective.

Theorem 11.16. Let Φ be a collection of maps in modR and f : R → S be a
ring homomorphism. Then the following conditions are equivalent:

(1) The restriction of every S-module is Φ-injective.
(2) φ⊗R S is a split mono in ModS for all φ ∈ Φ.
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(3) There is a (unique) homomorphism g : RΦ → S such that f = g ◦ fΦ and
the restriction via g of every S-module is Φ◦-injective.

Proof. (1) ⇔ (2) follows from the preceding lemma.
(1) ⇒ (3) Lemma 11.2 implies that f∗ induces a functor f∗

Φ∅ : C(R)/SΦ →
C(S) which is exact. It induces a homomorphism g : RΦ → S having the required
properties. The uniqueness of g is a consequence of the uniqueness of f∗

Φ∅ and the
fact that g∗ sends ModS into (ModRΦ)Φ◦ .

(3) ⇒ (1) follows from the fact that (fΦ)∗ sends (ModRΦ)Φ◦ into (ModR)Φ.

11.5. Epimorphisms of rings

It is well-known that every localization R → S of a ring R is an epimorphism
in the category of rings. This section is devoted to a discussion of various converses
of this statement. Our first result serves as the basis for all further results in this
direction. It shows that every epimorphism R → S induces a localization functor
D(R)→ D(S).

Proposition 11.17. The following are equivalent for a ring homomorphism
f : R→ S:

(1) f is an epimorphism.
(2) The exact functor f ′ : C(R) → C(S) extending f induces an equivalence

C(R)/S → C(S) for S = Ker f ′.
(3) The exact functor f∗ : D(R)→ D(S) extending M 7→ M ⊗R S induces an

equivalence D(R)/T → D(S) for T = Ker f∗.

The proof uses the well-known fact that f : R → S is an epimorphism if and
only if the restriction functor ModS → ModR is fully faithful. We shall also use
the following lemma.

Lemma 11.18. Let q : A → B be an exact functor between two Grothendieck
categories. Let C = Ker q and suppose there exists a right adjoint s : B → A. Then
the following are equivalent.

(1) q induces an equivalence A/C → B.
(2) s is fully faithful.
(3) s induces a fully faithful functor injB → injA between the full subcategories

of injective objects in B and A, respectively.

Proof. See [26].

Proof of Proposition 11.17. (1) ⇔ (3) The functor f∗ : D(R) → D(S)
has a right adjoint f∗ which extends the restriction functor ModS → ModR. Note
that f∗ sends injective objects to injective objects since f∗ is exact. However, the
injective objects in D(R) and D(S) correspond under the functor M 7→ TM , up
to isomorphism, precisely to the pure-injective modules. Therefore the assertion
follows from the preceding lemma.

(2)⇔ (3) Use the fact that S and T are related via T = lim−→S and S = T ∩C(R).
This follows from Proposition A.4.

Corollary 11.19. Let f : R→ S be an epimorphism. Then the functor −⊗R
S : modR→ modS induces a long exact sequence

. . . −→ K1(modS, 0) −→ K0 Ker f ′ −→ K0(modR, 0) −→ K0(modS, 0) −→ 0
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The kernel of K0(modR, 0) −→ K0(modS, 0) is generated by the elements [X ] −
[Y ] + [Cokerφ], one for each map φ : X → X in modR such that φ⊗R S is a split
mono.

Proof. Apply Lemma 9.11 and use the long exact sequence of K-groups [67]

which is induced by the sequence Ker f ′ → C(R)
f ′

→ C(S) where f ′ denotes the
exact functor which extends f . The description of the kernel in degree 0 follows
from Lemma 11.15.

To state our next result, recall that a morphism α : A → B is left minimal if
every endomorphism β : B → B satisfying α = β ◦α is an isomorphism.

Theorem 11.20. Let f : R → S be a ring homomorphism. Denote by Φ the
collection of maps φ in modR such that φ ⊗R S is a split mono in modS. Then
the following are equivalent:

(1) f is an epimorphism.
(2) f is the ring of definable scalars for Φ and f is left minimal.
(3) Restriction via f identifies ModS with (ModR)Φ.

Proof. (1)⇒ (2) Given a map φ in modR, it has been shown in Lemma 11.15
that φ⊗R S is a split mono if and only if KerTφ ∈ S where S denotes the kernel of
the exact functor C(R) → C(S) which extends f . Using this observation and the
construction of the ring of definable scalars in Theorem 11.1, the assertion follows
directly from the preceding proposition.

(2) ⇒ (3) Suppose that S = RΦ. Using Theorem 11.16 and the assumption
that φ⊗R S is a split mono for all φ ∈ Φ, we find a homomorphism g : S → S such
that f = g ◦ f and the restriction via g of every S-module is Φ◦-injective. But f
is left minimal so that g is an isomorphism. Thus ModS = (ModS)Φ◦ is identified
via restriction with the full subcategory of Φ-injective R-modules.

(3) ⇒ (1) Restriction ModS → ModR being full implies that f is an epimor-
phism.

Remark 11.21. Identifying epimorphisms R → S and R → S′ which coincide
up to an isomorphism S → S′, the epimorphisms starting in R form a set of
cardinality at most 2ℵ0+cardR. This well-known fact is an immediate consequence
of the preceding theorem.

We are now in a position to show that every epimorphism of rings is a local-
ization.

Corollary 11.22. A homomorphism f : R→ S is an epimorphism if and only
if there is a collection Φ of maps in modR satisfying:

(1) φ⊗R S is a split mono for all φ ∈ Φ.
(2) If f ′ : R → S′ is a homomorphism such that φ ⊗R S′ is a split mono for

all φ ∈ Φ, then there is a unique homomorphism g : S → S′ such that
f ′ = g ◦ f .

Proof. Combine Theorem 11.20 with Theorem 11.16.

We suppose now for the rest of this section that f : R→ S is an epimorphism.
We use the notation f∗ = − ⊗R S and denote by Φ the collection of maps φ in
modR such that f∗(φ) is a split mono in modS.
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Corollary 11.23. The ring R[Φ−] of left fractions with respect to Φ is iso-
morphic to S via the map

R[Φ−] −→ EndS(S) = S, [α, φ] 7→ f∗(φ)− ◦ f∗(α)

where f∗(φ)− denotes any left inverse of f∗(φ).

Proof. The assertion is an immediate consequence of Theorem 11.20 and the
description of RΦ in Theorem 11.6.

An analysis of the calculus of left fractions presented in Theorem 11.6 shows
that any map f∗(X)→ f∗(Y ) in modS can be expressed as a left fraction.

Proposition 11.24. For every map β : f∗(X) → f∗(Y ) in modS there are
maps α : X → Z and φ : Y → Z in modR such that f∗(φ) is a split mono and
β = f∗(φ)− ◦ f∗(α) for every left inverse f∗(φ)− of f∗(φ).

Proof. Adapt the proof of Theorem 11.6.

Given a matrix A = [aij ] with entries in R we define f(A) = [f(aij)].

Corollary 11.25. For every n × m matrix B over S there are matrices A
and F over R of appropriate size such that B = f(F )− ◦ f(A) for some left inverse
f(F )− of f(F ).

Proof. We view B as a map β : f∗(Rn) → f∗(Rm) and can apply the pre-
ceding proposition. Thus there are maps α : Rn → X and φ : Rm → X such that
β = f∗(φ)− ◦ f∗(α). Choosing an epi π : Rl → X we obtain maps α′ : Rn → Rl

and φ′ : Rm → Rl such that α = α′ ◦π and φ = φ′ ◦π. The matrices A and F
corresponding to α′ and φ′, respectively, have the appropriate property.

We are now in a position to show that the ring S is obtained fromR by adjoining
left inverses for elements of the form x = (x1, . . . , xn) ∈ Rn. Given x,y ∈ Rn we
use the notation xy =

∑n
i=1 xiyi and f(x) = (f(x1), . . . , f(xn)).

Corollary 11.26. Let s ∈ S. Then there exist r,x ∈ Rn and f(x)− ∈ Sn for
some n ∈ N such that 1 = f(x)−f(x) and s = f(x)−f(r).

Proof. Apply Corollary 11.25.

Corollary 11.27. Every finitely presented S-module is a direct summand of
X ⊗R S for some finitely presented R-module X.

Proof. Every finitely presented S-module arises as cokernel of a map β : Sn →
Sm which we can view as an n×mmatrix over S. The assertion is now a consequence
of Corollary 11.25.



CHAPTER 12

Reflective definable subcategories

This chapter is devoted to definable subcategories of ModR having the addi-
tional property that the inclusion functor has a left adjoint. We study also the
rings of definable scalars which arise from such definable subcategories.

12.1. Reflective definable subcategories

We have seen in Theorem 11.20 that every epimorphismR→ S identifies ModS
with a definable subcategory of ModR which is reflective since the tensor functor
−⊗R S is a left adjoint of the restriction functor ModS → ModR. In this section
we study reflective definable subcategories of ModR in more detail. Recall that
a full subcategory of any category is reflective provided that the inclusion functor
has a left adjoint. It is convenient to work within the framework of locally finitely
presented categories in the sense of [29]. We recall briefly the relevant definitions.

Let A be an additive category which is cocomplete, i.e. A has arbitrary co-
products and cokernels. The category A is called locally finitely presented provided
that the full subcategory fpA of finitely presented objects is skeletally small and
every object in A is a direct limit of finitely presented objects. Note that a locally
finitely presented category is also complete and that fpA is closed under cokernels.

Any locally finitely presented category A is equivalent to the category of left
exact functors (fpA)op → Ab via the functor

A −→ Lex((fpA)op,Ab), X 7→ Hom(−, X)|fpA.

Conversely, for any skeletally small additive category C with cokernels the cat-
egory A = Lex(Cop,Ab) is locally finitely presented, and the Yoneda functor
X 7→ Hom(−, X) induces an equivalence C → fpA, see [29].

Given locally finitely presented categories A and B and a right exact functor
f : fpA → fpB, the restriction functor Lex((fpB)op,Ab) → Lex((fpA)op,Ab),
X 7→ X ◦ f , induces a functor f∗ : B → A; it has a left adjoint f∗ : A → B which
extends f . For example, the Yoneda functor

h : fpA −→ C(A) = fp(fpA,Ab)op, X 7→ Hom(X,−)

extends to a fully faithful functor

dA : A ≃ Lex((fpA)op,Ab)
h∗

−→ Lex(C(A)op,Ab) = D(A)

which identifies A with the full subcategory Ex(C(A)op,Ab) of exact functors. This
is a general version of Lemma 1.4 where A = ModR.

The reflective subcategories which are closed under taking direct limits can be
characterized as follows.

82
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Proposition 12.1. Let A be a locally finitely presented category and suppose
that X is a full subcategory of A which is closed under taking direct limits. Then
the following are equivalent:

(1) The inclusion X → A has a left adjoint.
(2) X is locally finitely presented and there is a right exact functor f : fpA →

fpX such that f∗ : X → A is isomorphic to the inclusion.

Proof. (1)⇒ (2) The left adjoint, say l : A → X , induces a functor f : fpA →
fpX by Lemma 1.1; it is right exact since a left adjoint preserves cokernels. The
category X is cocomplete since a left adjoint preserves colimits. If an object X in
X is written as a direct limit lim−→Xi of objects in fpA, then X = l(X) ≃ lim−→ f(Xi)
since l preserves direct limits. Therefore X is locally finitely presented and we
obtain f∗ = l since both functors coincide on fpA.

(2) ⇒ (1) f∗ is the left adjoint for f∗.

Remark 12.2. A reflective subcategory of A is complete since A is complete.

We are now in a position to characterize the definable subcategories which are
reflective.

Theorem 12.3. Let X be a full subcategory of ModR which is closed under
taking direct limits. Then the following are equivalent:

(1) X is a definable subcategory which is reflective.
(2) X is reflective.
(3) X is locally finitely presented and closed under taking kernels and products.
(4) X is locally finitely presented. Moreover, there is a ring homomorphism

R → EndR(X) for some X ∈ fpX and a functorial isomorphism M ≃
HomR(X,M) for all M in X .

Proof. (1) ⇒ (2) Trivial.
(2) ⇒ (3) X is locally finitely presented by the preceding proposition. It is

closed under kernels and products since a right adjoint preserves limits.
(3) ⇒ (1) Using Freyd’s adjoint functor theorem one shows that the inclusion

has a left adjoint l : ModR → X , see [29]. The left adjoint restricts to a right
exact functor modR → fpX by Lemma 1.1 which extends to an exact functor
f : C(R) ≃ fp(modR,Ab)op → C(X ). We claim that Ker f = SX , i.e. X is the
full subcategory of R-modules M such that Hom(Ker f, TM ) = 0. Identifying X
with the image of dX : X → D(X ) and ModR with the image of ModR → D(R),
M 7→ TM , the functor f∗ extends l and the right adjoint f∗ extends the inclusion
X → ModR. Applying Lemma 11.18, f∗ induces an equivalence D(R)/Ker f∗ →
D(X ) and therefore the inclusion X → ModR identifies X with the full subcategory
of R-modules M satisfying Hom(Ker f∗, TM ) = 0. The last condition is equivalent
to Hom(Ker f, TM ) = 0 since Ker f∗ = lim−→Ker f , and therefore X is definable by
Theorem 2.1.

(2)⇔ (4) We need to show that the condition (4) is equivalent to condition (2)
in the preceding proposition. In fact, a right exact functor f : modR→ fpX with
X = f(R) is completely determined by the homomorphism R→ EndR(X) induced
by f , and f∗(M) = HomR(X,M) for all M in X .

We now describe the collection Φ of maps corresponding to a reflective definable
subcategory and we show that the homomorphism R → EndR(X) occuring in
condition (4) is precisely the ring of definable scalars for Φ.
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Corollary 12.4. Let X be a reflective definable subcategory of ModR. Denote
by l : ModR → X a left adjoint of the inclusion and let Φ be the collection of
maps φ in modR such that l(φ) is a split mono. Then X = (ModR)Φ, and the
homomorphism R→ EndR(l(R)) induced by l is the ring of definable scalars for Φ.

Proof. In part (3) ⇒ (1) of the preceding proof SX is computed. It is easily
checked that KerTφ ∈ SX if and only if l(φ) is a split mono. Therefore X =
(ModR)Φ. Identifying (ModR)Φ with the full subcategory of fp-injective objects in
D(R)/TΦ as in Corollary 2.4, we have qΦ(TM ) ≃ l(M) for every R-module M since
the quotient functor qΦ : D(R)→ D(R)/TΦ is a left adjoint of the section functor sΦ
which induces the inclusion (ModR)Φ → ModR. By definition, RΦ = End(qΦ(TR))
and the assertion follows.

Example 12.5. Let (T ,F) be a torsion theory for ModR. Then the torsion-
free modules form a reflective definable subcategory if and only if F is closed under
direct limits.

12.2. Φ-continuous modules

In this section we study a special class of definable subcategories of a mod-
ule category ModR. We begin with some definitions. Let φ : X → Y be a
map of R-modules. An R-module M is called φ-continuous if the induced map
HomR(Y,M) → HomR(X,M) is bijective. If Φ is a collection of maps, then M
is Φ-continuous if M is φ-continuous for every φ in Φ. Given a map φ : X → Y

of R-modules, we define φ̃ to be the map [φ 0] : X
∐

Cokerφ → Y and we write

Φ̃ = {φ̃ | φ ∈ Φ} for every collection Φ of maps. It is clear that any R-module is

φ-continuous if and only if it is φ̃-injective.
The concept of a Φ-continuous object makes sense for any category A and for

any collection of maps Φ in A. In fact, it is convenient to follow Gabriel and Ulmer
[29]. We shall discuss the properties of the full subcategory AΦ̃ formed by the
Φ-continuous objects under the assumption that A is a locally finitely presented
additive category. We begin with some calculus of fractions which is based on [30].

Proposition 12.6. Let C be an additive category with cokernels and let Φ be a
collection of maps in C. Then there exists an additive category C[Φ−1] with cokernels
and a right exact functor p : C → C[Φ−1] such that p(φ) is invertible for all φ ∈ Φ.
Furthermore:

(1) C and C[Φ−1] have the same objects and p acts on them as identity.
(2) If f : C → D is a right exact functor into an additive category with cokernels

such that f(φ) is invertible for all φ ∈ Φ, then there is a unique right exact
functor g : C[Φ−1]→ D such that f = g ◦ p.

The proof of this proposition depends on the following concept. We say that a
collection Φ of maps in C admits a calculus of left fractions if

(C1) idX ∈ Φ for all objects X in C;
(C2) if φ : X → Y and ψ : Y → Z are in Φ, then ψ ◦φ ∈ Φ;
(C3) if φ : X → Y is in Φ and

X −→ Zyφ
yψ

Y −→ P



12.2. Φ-CONTINUOUS MODULES 85

is a pushout diagram, then ψ ∈ Φ;
(C4) if φ ∈ Φ, then Cokerφ→ 0 is in Φ.

Note that the conditions (C1) – (C4) imply the conditions given in [30].

Proof of Proposition 12.6. Denote by Φ the smallest collection of maps

in C which admits a calculus of left fractions and contains Φ. Let C[Φ
−1

] be the
category of fractions which is obtained from C by formally adjoining inverses for each

map in Φ, see [30] and define, by abuse of notation, C[Φ−1] = C[Φ
−1

]. The category
C[Φ−1] is additive, has cokernels and there is a right exact functor p : C → C[Φ−1]
having the appropriate universal property, i.e. every functor f : C → D inverting Φ
induces a unique functor g : C[Φ−1]→ D such that f = g ◦ p, see [30]; in particular
(1) holds. In order to verify (2) observe that for any right exact functor f : C → D
the collection Ψ of maps in C which become invertible in D admits a calculus of left
fractions. Therefore Φ ⊆ Ψ if Φ ⊆ Ψ, and we conclude that the functor p has the
universal property which is stated in (2).

Theorem 12.7. Let A be a locally finitely presented category and let Φ be a
collection of maps in fpA. Then AΦ̃ is a locally finitely presented category and
the inclusion AΦ̃ → A has a left adjoint which induces an equivalence between

(fpA)[Φ−1] and fpAΦ̃.

Proof. We use the basic facts about locally finitely presented categories from
the preceding section. Consider C = fpA and the functor p : C → C[Φ−1] which
induces a fully faithful functor p∗ : Lex(C[Φ−1]op,Ab)→ Lex(Cop,Ab), X 7→ X ◦ p.
If we identify A = Lex(Cop,Ab), then p∗ induces an equivalence between the locally
finitely presented category Lex(C[Φ−1]op,Ab) and AΦ̃. Moreover, there is a unique

functor p∗ : Lex(Cop,Ab) → Lex(C[Φ−1]op,Ab) which preserves direct limits and
extends the functor Hom(−, X) 7→ Hom(−, p(x)) which is defined for every X in
C. It is not hard to see that p∗ is a left adjoint for p∗ and therefore the proof is
complete.

We now collect the basic properties of the category of Φ-continuous modules.

Corollary 12.8. Let Φ be a collection of maps in modR. Then the definable
subcategory X = (ModR)Φ̃ formed by the Φ-continuous R-modules has the following
properties:

(1) X has kernels, cokernels, products and coproducts.
(2) Every object in X is a direct limit of finitely presented objects.
(3) The inclusion X → ModR has a left adjoint and preserves kernels, products

and direct limits.
(4) The left adjoint of the inclusion functor restricts to a right exact functor

p : modR→ fpX .
(5) p induces an equivalence (modR)[Φ−1]→ fpX .

Proof. We can apply the preceding theorem since any module category is
locally finitely presented. In fact, the assertions hold in any locally finitely presented
category.

The ring of definable scalars RΦ̃ can be computed as follows. Suppose that
Φ admits a calculus of left fractions (if not, replace Φ by the smallest collection
of maps which contains Φ and admits a calculus of left fractions) and denote by
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R(Φ−1) the collection of pairs (α, φ) of maps α, φ : R → X in modR such that
φ ∈ Φ. Define an equivalence relation on R(Φ−1) as in Theorem 11.6 and denote
by R[Φ−1] the set of equivalence classes, endowed with addition and multiplication
as in Theorem 11.6. We denote by l : ModR → (ModR)Φ̃ the left adjoint of the
inclusion (ModR)Φ̃ → ModR.

Proposition 12.9. The assignment [α, φ] 7→ l(φ)−1 ◦ l(α) induces an isomor-
phism R[Φ−1]→ RΦ̃.

Proof. The map [α, φ] 7→ l(φ)−1 ◦ l(α) induces an iso between R[Φ−1] and
the endomorphism ring of l(R), see [30]. Identifying EndR(l(R)) with RΦ̃ as in
Corollary 12.4 the assertion follows.

We end this section with some examples of Φ-continuous modules.

Example 12.10. Let S be a class of R-modules and S be a subset of R.
(1) Let Φ = {X → 0 | X ∈ S}. Then an R-module M is Φ-continuous if and

only if M is Φ-injective if and only if HomR(S,M) = 0.

(2) Choose for each X in S an exact sequence 0→ ΩX
φX
→ PX → X → 0 with

PX projective and let Φ = {φX | X ∈ S}. Then the perpendicular category S⊥

of R-modules M satisfying HomR(S,M) = 0 = Ext1R(S,M) is precisely (ModR)Φ̃.
If each module in S is finitely presented and R is right coherent, then there is a
choice for Φ such that each map in Φ belongs to modR.

(3) Let Φ = {R
s
→ R | s ∈ S}. Then an R-module M is Φ-continuous if and

only if for every m ∈ M and s ∈ S there is a unique n ∈ M such that m = n · s.
The usual ring of fractions R[S−1] is precisely R[Φ−1], and the restriction functor
ModR[Φ−1]→ ModR identifies ModR[Φ−1] with (ModR)Φ̃.

12.3. Definable and universal localizations

Let Φ be a collection of maps in modR. We call a ring homomorphism f : R→
S the definable (respectively, universal) localization with respect to Φ if the following
conditions are satisfied:

(L1) φ⊗R S is a split mono (respectively, iso) in ModS for all φ ∈ Φ.
(L2) If f ′ : R → S′ is a ring homomorphism such that φ ⊗R S′ is a split mono

(respectively, iso) in ModS′ for all φ ∈ Φ, then there is a unique homo-
morphism g : S → S′ such that f ′ = g ◦ f .

It is clear that such a localization is unique up to an isomorphism if it exists.
Moreover, it is an epimorphism of rings. Given a definable (respectively, universal)
localization f : R→ S with respect to Φ, it follows immediately that the restriction
of every S-module via f becomes a Φ-injective (respectively, Φ-continuous) R-
module. We call the localization strong if in addition the following condition holds:

(L3) If M is Φ-injective (respectively, Φ-continuous), then M is the restriction
of an S-module.

Our definition is motivated by Schofield’s universal localization [75] and by
Corollary 11.22 which says that every epimorphism of rings is a strong definable
localization. We shall now discuss the existence of both localizations for fixed Φ.

Theorem 12.11. For a collection Φ of maps in modR the following conditions
are equivalent.

(1) The strong definable localization with respect to Φ exists.
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(2) fΦ : R→ RΦ is the strong definable localization with respect to Φ.
(3) Restriction via fΦ induces an equivalence ModRΦ → (ModR)Φ.
(4) The inclusion (ModR)Φ → ModR is right exact and has a left adjoint.
(5) φ⊗R RΦ is a split mono for all φ ∈ Φ and fΦ is left minimal.

Proof. (1) ⇒ (2) The strong definable localization with respect to Φ, say
R→ S, is an epimorphism which identifies via restriction ModS with the category
of Φ-injective R-modules because of condition (L3). Therefore the exact functor
C(R)→ C(S) factors through the quotient functor C(R)→ C(R)/SΦ and induces
an equivalence p : C(R)/SΦ → C(S) by Lemma 11.2. The functor p induces an
isomorphism RΦ → S.

(2) ⇒ (3) Restriction via fΦ induces a functor ModRΦ → (ModR)Φ which is
fully faithful since fΦ is an epimorphism. It is dense by condition (L3).

(3) ⇒ (4) Restriction via fΦ is right exact and has a left adjoint. Condition
(3) therefore implies (4).

(4) ⇒ (5) Suppose there is a left adjoint l : ModR → X = (ModR)Φ and let
S = EndR(l(R)). We claim that the homomorphism f : R→ S induced by l is the
ring of definable scalars for Φ. Observe first that X is an abelian category with an
exact inclusion. More precisely, we use that X is a full subcategory with kernels
and cokernels, and that the inclusion is left exact and right exact. This observation
implies that l(R) is a projective object in X since R is projective in ModR and
the right adjoint of l is exact. Furthermore, l(R) is finitely presented in X by
Lemma 1.1 since R is finitely presented in ModR and the right ajoint preserves
direct limits. Finally, l(R) is a generator for X and therefore X is equivalent to
ModS via M 7→ HomR(l(R),M). It follows that restriction via f induces an
equivalence ModS → X and the argument used in the proof of (1) ⇒ (2) shows
that f is the ring of definable scalars for Φ. Also, f is an epimorphism since the
restriction functor is full, and therefore f is left minimal. Finally, φ⊗R S is a split
mono for all φ by Lemma 11.15.

(5) ⇒ (1) We show that fΦ is the strong definable localization with respect to
Φ. (L2) follows from Theorem 11.16 and (L3) follows from the implication (2) ⇒
(3) in Theorem 11.20 (or its proof).

An easy observation shows that definable and universal localizations are closely
related.

Lemma 12.12. Let Φ be collection of maps in modR. A ring homomorphism
f : R→ S is the (strong) universal localization with respect to Φ if and only if f is

the (strong) definable localization with respect to Φ̃.

Proof. Clear.

Corollary 12.13. For a collection Φ of maps in modR the following condi-
tions are equivalent.

(1) The strong universal localization with respect to Φ exists.
(2) fΦ̃ : R→ RΦ̃ is the strong universal localization with respect to Φ.
(3) Restriction via fΦ̃ induces an equivalence ModRΦ̃ → (ModR)Φ̃.
(4) The inclusion (ModR)Φ̃ → ModR is right exact.
(5) φ⊗R RΦ̃ is an iso for all φ ∈ Φ and fΦ̃ is left minimal.

Corollary 12.14. Let R → RΦ̃ be the strong universal localization with re-
spect to Φ. Then the functor − ⊗R RΦ̃ : modR → modRΦ̃ induces an equivalence
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(modR)[Φ−1]→ modRΦ̃. In particular R[Φ−1] ≃ RΦ̃, and every finitely presented
RΦ̃-module is of the form X ⊗RΦ̃ for some finitely presented R-module X.

Proof. Use Corollary 12.8 and Proposition 12.9.

In [75], Schofield constructs the universal localization with respect to a collec-
tion of maps between finitely generated projective modules. We recover Schofield’s
localization and some of its properties discussed in [75] from the preceding corol-
laries.

Corollary 12.15. Let Φ be a collection of maps between finitely generated
projective R-modules. Then fΦ̃ : R → RΦ̃ is the strong universal localization with
respect to Φ.

Proof. It is clear that (ModR)Φ̃ is a subcategory of ModR which is closed
under taking cokernels. The assertion is therefore a consequence of Corollary 12.13.

With some extra assumptions, there is a convenient description of ModRΦ̃
using perpendicular categories. We present a result which is more or less explicitly
contained in [76, 33, 16].

Suppose there is given a collection Φ of maps in projR such that the projective
dimension of Cokerφ is bounded by 1 for all φ ∈ Φ. Then it is easily checked
that an R-module M is Φ-continuous if and only if M belongs to the perpendicular
category S⊥ of R-modules N satisfying HomR(S, N) = 0 = Ext1R(S, N) where
S = {Kerφ,Cokerφ | φ ∈ Φ}. This observation in combination with the preceding
result has the following consequence.

Theorem 12.16. For a full subcategory X of ModR the following are equiva-
lent:

(1) X = S⊥ for some collection S of objects in modR with pdS ≤ 1.
(2) X = (ModR)Φ̃ ≃ ModRΦ̃ for some collection Φ of maps in projR with

pd{Cokerφ | φ ∈ Φ} ≤ 1.

Proof. For any class C of R-modules we denote by pd C the supremum of
the projective dimensions of the modules in C. The proof uses the fact that for
any strong universal localization R→ RΦ̃ with respect to Φ the restriction functor
identifies ModRΦ̃ with the full subcategory of Φ-continuous R-modules.

(1)⇒ (2) Choose for eachX in S a mono φX lying in projR with CokerφX = X
and let Φ = {φX | X ∈ S}.

(2) ⇒ (1) Choose S = {Kerφ,Cokerφ | φ ∈ Φ}.

We give an application of the preceding theorem.

Corollary 12.17. Let R be a right hereditary and noetherian ring and sup-
pose that T is a localizing subcategory of ModR. Then there exists a universal
localization R → RΦ̃ with respect to some collection Φ of maps in projR such
that − ⊗R RΦ̃ : ModR → ModRΦ̃ induces an equivalence between ModR/T and
ModRΦ̃.

Proof. T = lim−→S for some Serre subcategory S of modR since R is right
noetherian, and pdS ≤ 1 since R is right hereditary. Thus the section functor
ModR/T → ModR induces an equivalence between ModR/T and S⊥ by Propo-
sition A.6, and the assertion now follows from Theorem 12.16.



CHAPTER 13

Sheaves

The aim in this chapter is to exhibit the geometric nature of the Ziegler spec-
trum. To this end we introduce sheafs of local morphisms for any locally coherent
category. Then we apply this construction to the locally coherent category D(R).
Using the Zariski topology on IndR we obtain from the ring of definable scalars a

sheaf of rings OR and assign to every R-module M a sheaf M̃ .

13.1. Sheaves on the Gabriel spectrum

Throughout this section we fix a locally coherent Grothendieck category A.
Recall that a Grothendieck category A is locally coherent if the full subcategory
C = fpA of finitely presented objects is abelian and every object in A is a direct
limit of finitely presented objects. Denote by X = SpA the Gabriel spectrum of A,
i.e. the set of isomorphism classes of indecomposable injective objects in A. Given
an object X in C, let UX = {P ∈ X | Hom(X,P ) = 0}. The collection of subsets
(UX)X∈C forms a basis of open subsets for the (Zariski) topology on SpA which is
closed under finite intersections since UX ∩UY = UX

∐
Y .

In this section we present a construction which assigns to each pair of objects

M,N in A a sheaf of abelian groups H̃omX(M,N) on X. We shall use freely the
localization theory for abelian categories and some additional facts about locally
coherent categories which can be found in the appendix. We refer the reader to
[34] for basic facts about sheaves. The category of (pre)sheaves of abelian groups
on X will be denoted by PreshX and Sh X, respectively.

We need some notation. Given an object X in C, we denote by SX the small-
est Serre subcategory of C containing X , and TX denotes the smallest localizing
subcategory of A containing X . Note that TX = lim−→SX .

Let us begin with some preliminary lemmas. Suppose that S is a Serre subcat-
egory of C and denote by T = lim−→S the full subcategory of A formed by the direct
limits of objects in S. Note that T is a localizing subcategory of A.

Lemma 13.1. Let S =
⋃
Si be the directed union of Serre subcategories of C.

If X and Y are objects in C, then lim−→HomC/Si(X,Y ) ≃ HomC/S(X,Y ).

Proof. Left to the reader.

Lemma 13.2. Let X be a finitely presented object in A.

(1) X is a finitely presented object in A/T , i.e. HomA/T (X,−) commutes with
direct limits.

(2) The inclusion C → A induces a fully faithful functor C/S → A/T .

Proof. See Proposition A.5.

89
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Lemma 13.3. Let M and N be objects in A and suppose that M is finitely
presented. Then

lim−→X∈S HomA/TX (M,N) ≃ HomA/T (M,N).

Proof. Write N = lim−→ i∈INi as a direct limit of finitely presented objects.
Using the preceding lemmas we obtain

lim−→X∈S HomA/TX (M,N) ≃ lim−→X∈S lim−→ i∈I HomA/TX (M,Ni)

≃ lim−→X∈S lim−→ i∈I HomC/SX (M,Ni)

≃ lim−→ i∈I HomC/S(M,Ni)

≃ HomA/T (M,N).

Now fix a pair M,N of objects in A. We define the presheaf of local morphisms
HomX(M,N) on X as follows. Let HomX(M,N)(UX) = HomA/TX (M,N) for
every basic open set UX . If UY ⊆ UX , then TX ⊆ TY by Proposition A.9, and the
quotient functor A/TX → A/TY induces the restriction morphism

ρUXUY
: HomX(M,N)(UX) −→ HomX(M,N)(UY ).

If U is an arbitrary open set, then we define

HomX(M,N)(U) = lim←−UX⊆U HomX(M,N)(UX).

For P ∈ X, the stalk HomX(M,N)P is the direct limit lim−→ P∈UX
HomX(M,N)(UX)

since the basis (UX)X∈C is closed under finite intersections. The stalk can be de-
scribed as follows. Let AP = A/T where T = lim−→S and S denotes the Serre
subcategory of all objects X in C with Hom(X,P ) = 0.

Lemma 13.4. There is a natural morphism HomX(M,N)P → HomAP (M,N)
which is an isomorphism if M is finitely presented.

Proof. The assertion follows from Lemma 13.3 since X ∈ S if and only if
P ∈ UX .

Lemma 13.5. The natural map HomX(M,N)(U) →
∏
P∈U

HomX(M,N)P is
injective.

Proof. We may assume that U = UX . The category A/TX is locally co-
herent and therefore UX = SpA/TX cogenerates A/TX , see Proposition A.9. It
follows that HomA/TX (φ, P ) 6= 0 for some P ∈ UX if 0 6= φ ∈ HomX(M,N)(UX).
The quotient functor A/TX → AP induces an isomorphism HomA/TX (L,P ) ≃
HomAP (L,P ) for every object L. Thus the image of φ under the composition
HomX(M,N)(U)→ HomX(M,N)P → HomAP (M,N) is non-zero.

We collect some basic properties of the presheaf HomX(M,N). To this end
recall that a presheaf F on X is seperated if the natural morphism F (U) →∏
i∈I F (Ui) is injective for every family (Ui)i∈I of open sets with U =

⋃
i∈I Ui.

Proposition 13.6. The functor HomX(−,−) : Aop × A −→ PreshX is left
exact in both arguments and every presheaf HomX(M,N) is seperated.
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Proof. HomX(−,−) is left exact on every basic open set by definition, and
therefore left exact on arbitrary open sets since taking inverse limits preserves left
exactness. The seperatedness follows from the preceding lemma.

We associate to a presheaf F on X a sheaf F̃ as follows. For any open set U let

F̃ (U) be the set of elements (sP ) ∈
∏
P∈U

FP such that for every P ∈ U there is an
open neighbourhood P ∈ V ⊆ U and t ∈ F (V) having the property ρV,Q(t) = sQ
for every Q ∈ V. Note that there is a functorial morphism F → F̃ of presheaves

which is a monomorphism if F is seperated; it induces an isomorphism FP ≃ F̃P
for every P in X. We denote for every pair M,N of objects in A by H̃omX(M,N)
the sheaf associated to HomX(M,N); it is the sheaf of local morphisms from M to
N . Some of the basic properties are as follows.

Proposition 13.7. The functor H̃omX(−,−) : Aop ×A −→ Sh X has the fol-
lowing properties:

(1) H̃omX(−,−) is left exact in both arguments.

(2) H̃omX(M,−) commutes with direct limits if M is finitely presented.

(3) H̃omX(M,−) is faithful if M is a generator for A.

Proof. (1) This follows from Proposition 13.6 since the sheafification functor
PreshX→ Sh X is exact.

(2) A morphism F → G of sheaves is an isomorphism if it induces isomorphisms
FP → GP for every P in X. Given a direct limit N = lim−→Ni we have an induced

isomorphism lim−→ H̃omX(M,Ni)P → H̃omX(M, lim−→Ni)P for every P by Lemma 13.4
since M is finitely presented. Thus the assertion follows.

(3) Let φ : L → N be a non-zero morphism in A. If M is a generator for
A, then we find morphisms α : M → L and β : N → P for some P ∈ X such
that β ◦φ ◦α 6= 0. We obtain the following commutative diagram of canonical
morphisms:

HomA(M,L)
Hom(M,φ)
−→ HomA(M,N)

Hom(M,β)
−→ HomA(M,P )y

y
y

H̃omX(M,L)P
H̃om(M,φ)P
−→ H̃omX(M,N)P

H̃om(M,β)P
−→ H̃omX(M,P )Py

y
y

HomAP (M,L)
Hom(M,φ)
−→ HomAP (M,N)

Hom(M,β)
−→ HomAP (M,P )

The right hand column is an isomorphism according to the definition of AP , and

the upper row is non-zero since β ◦φ ◦α 6= 0. Thus H̃omX(M,φ) 6= 0.

The following example motivates our definition of the sheaf H̃omX(M,N); it
is taken from [26, Chap. VI]. Let (X,OX) be a noetherian scheme and denote by
QcohX the category of quasi-coherent sheaves on X. This is a locally coherent
category and the coherent sheaves form the finitely presented objects in QcohX.

Example 13.8. The Gabriel spectrum of QcohX can be identified with X

and for every pair M,N in QcohX the sheaf of local morphisms M → N (which
sends an open subset U of X to Hom(M |U, N |U)) is isomorphic to the presheaf
HomX(M,N); in particular HomX(M,N) is a sheaf.
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The proof can be reduced to the affine case, i.e. (X,OX) = (SpecR,OR)
for some commutative noetherian ring R. This special case will be discussed in
Theorem 15.9 and Theorem 15.11.

It is often useful to consider a relative version of the presheaf HomX(M,N) for
two objects M,N in A. To this end we call a subset Y ⊆ X Ziegler-closed if it is of
the form Y = {P ∈ X | Hom(S, P ) = 0} for some Serre subcategory S of C. The
quotient category A/T for T = lim−→S is locally coherent and the section functor
identifies the Gabriel spectrum of A/T with Y, see Proposition A.8. Note that
(Y ∩UX)X∈C forms a basis of open subsets for Y. Given two objects M,N in A,
let HomY(M,N) be the presheaf of Hom-groups which is defined as above on the

Gabriel spectrum of A/T , and H̃omY(M,N) denotes the associated sheaf. Thus

HomY(M,N)(U) = lim←−Y∩UX⊆U HomA/(T ∪TX)(M,N)

for every open U ⊆ Y. Denoting by i : Y→ X the inclusion we obtain the following
commutative diagram of morphisms in PreshX

HomX(M,N) −→ i∗ HomY(M,N)y
y

H̃omX(M,N) −→ i∗ H̃omY(M,N)

where the upper morphism is induced by the collection of quotient functorsA/TX →
A/(T ∪ TX), X ∈ C. This diagram gives rise to an alternative description of

H̃omY(M,N).

Proposition 13.9. There is a natural map H̃omX(M,N)|Y → H̃omY(M,N)
which is an isomorphism if M is finitely presented.

Proof. Restriction Sh X → Sh Y, M 7→ M |Y, is left adjoint to i∗ : Sh Y →

Sh X. Thus H̃omX(M,N) → i∗ H̃omY(M,N) gives a map H̃omX(M,N)|Y →

H̃omY(M,N) which induces an isomorphism on each stalk by Lemma 13.4 whenever
M is finitely presented.

Our next aim is to show that certain functors between locally coherent Grothen-
dieck categories preserve the (pre)sheaves of local morphisms. Let f : A → B be
an exact functor between locally coherent categories which preserves coproducts
and sends finitely presented objects to finitely presented objects. We denote by
g : B → A a right adjoint of f and let X = SpA and Y = SpB.

Lemma 13.10. The assignment U 7→ Uf =
⋃

UX⊆U
Uf(X) induces an inclu-

sion preserving map between the collections of open subsets in X and Y.

Lemma 13.11. Suppose that g(M) is indecomposable for every M ∈ Y. Then
g induces a continuous map γ : Y → X. Moreover, γ−1(U) = Uf for every open
U ⊆ X.

Proof. Observe first that g(M) is injective for every injective object M in B
since f is exact. We obtain therefore a map Y → X if g(M) is indecomposable for
every M ∈ Y. The adjointness isomorphism HomA(X, g(M)) ≃ HomB(f(X),M)
shows that γ−1(UX) = Uf(X) for every finitely presented X in A. The assertion
now follows.

We denote for every presheaf F on Y by f∗F the presheaf on X which sends
U ⊆ X to F (Uf ).
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Proposition 13.12. Let f : A → B be an exact functor between locally coherent
categories which preserves coproducts and sends finitely presented objects to finitely
presented objects. Let M and N be objects in A.

(1) The functor f induces a morphism HomX(M,N)→ f∗ HomY(f(M), f(N))
of presheaves on X which is functorial in M and N .

(2) Suppose that the right adjoint of f induces a map γ : Y → X. Then f∗F =

γ∗F for every presheaf F on Y, and f induces a morphism H̃omX(M,N)→

γ∗ H̃omY(f(M), f(N)) of sheaves on X which is functorial in M and N .

Proof. (1) Let X be a finitely presented object in A. The functor f induces
an exact functor A/TX → B/Tf(X) which induces a map

HomA/TX (M,N) −→ HomB/Tf(X)
(f(M), f(N)).

By definition, we have

HomX(M,N)(UX) = HomA/TX (M,N)

and
HomY(f(M), f(N))(Uf(X)) = HomB/Tf(X)

(f(M), f(N)).

We obtain therefore a map

HomX(M,N)(U)→ f∗ HomY(f(M), f(N))(U)

for every basic open subset U of X, and this gives a morphism HomX(M,N) →
f∗ HomY(f(M), f(N)) of presheaves on X.

(2) Apply the preceding lemma and use part (1).

13.2. The Zariski topology

In this section we consider a topology on IndR which is usually different from
the Ziegler topology. We take the sets Uφ, φ a map in modR, as basic open sets
and call a subset U of IndR Zariski-open if U =

⋃
φ∈Φ Uφ for some collection Φ of

maps in modR.

Lemma 13.13. The Zariski-open sets of IndR form a topology on IndR. The
family (Uφ)φ∈modR is a basis of open sets which is closed under finite intersections.

It is possible to derive the Zariski topology from the Ziegler topology on IndR.

Proposition 13.14. Let U ⊆ IndR and M ∈ IndR. Then the following are
equivalent:

(1) M belongs to every Zariski-closed subset V ⊆ IndR containing U.
(2) M belongs to every Ziegler-open and quasi-compact subset V ⊆ IndR con-

taining U.

Proof. It has been shown in Proposition 2.10 that a subset V ⊆ IndR is
Ziegler-open and quasi-compact if and only if V = IndR\Uφ for some map φ. The
characterization of the Zariski closure of U follows from this fact.

Taking the Zariski topology on IndR, we obtain a homeomorphism

IndR
∼
−→ SpD(R), M 7→ TM

onto the Gabriel spectrum of the locally coherent category D(R). We will often
view this homeomorphism as an identification. Note that the homeomorphism
IndR → SpD(R) explains the term “Zariski topology” since the topology on the
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Gabriel spectrum of the locally coherent category D(R) generalizes the Zariski
topology [26, Chap. VI].

We have seen in Corollary 9.9 that a coherent functor f : ModS → ModR
induces a continuous map IndS → IndR with respect to the Ziegler topology
provided that f(M) is indecomposable for every M ∈ IndS. We have an analogous
result for the Zariski topology.

Theorem 13.15. Let f : ModS → ModR be a coherent functor. Suppose there
are subsets U ⊆ IndR and V ⊆ IndS such that f(M) ∈ U for all M ∈ V. Then
the map V → U, M 7→ f(M), is continuous with respect to the induced Zariski
topologies.

Proof. It follows from Corollary 9.6 that for every map φ in modR

{M ∈ V | f(M) ∈ Uφ} = V ∩Uψ

for some map ψ in modS. Thus the preimage under V → U of every basic open
subset of U is a basic open subset of V.

We shall frequently consider Ziegler-closed subsets X = UΦ of IndR together
with the Zariski topology which is induced from the Zariski topology on IndR.
Note that the family (UΦ∪φ)φ∈modR forms a basis of open sets for this topology on
X since UΦ∪φ = UΦ ∩Uφ.

Example 13.16. Let M be a finitely presented indecomposable module over
an artin algebra R. Then {M} is Zariski-closed and Zariski-open. To see this let
φ : M → N be an almost split map. Then Uφ = IndR \ {M} and therefore {M}
is Zariski-closed. The set {M} is Ziegler-closed by Proposition 6.17, and therefore
Ziegler-open and compact by Proposition 2.10. Thus {M} = Uψ for some map ψ
in modR by Proposition 2.10, and it follows that {M} is Zariski-open.

13.3. Structure sheaves

We fix a Ziegler-closed subset X = UΦ of IndR together with its Zariski topol-
ogy. Our aim in this section is to construct from the rings of definable scalars over
R a sheaf of rings OX on X. This sheaf was first introduced by Prest [63]; it will
be obtained from the presheaf of definable scalars RX which is defined as follows.
Let

RX(U) = lim←−UΦ∪φ⊆URΦ∪φ

for every open U ⊆ X, where the structural morphisms RΦ∪φ → RΦ∪ψ for every
inclusion UΦ∪ψ ⊆ UΦ∪φ are taken from Proposition 11.13. We obtain restriction
morphisms ρUV : RX(U)→ RX(V) for every inclusion V ⊆ U and have therefore
constructed a presheaf of rings. Observe that the notation RX for this presheaf is
also used to denote the ring of definable scalars for X; however, the meaning of
the symbol RX will always be clear from the context. We consider now the sheaf
of rings OX which is associated to RX. Some basic properties of OX follow from
our previous discussion in this chapter if we identify X with the corresponding
Ziegler-closed subset of the Gabriel spectrum of D(R). In order to state them
let us recall that for every R-module M the ring of definable scalars RΦM for
ΦM = {φ ∈ modR | M is φ-injective } is denoted by RM .

Proposition 13.17. The presheaf of definable scalars RX on X has the fol-
lowing properties:
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(1) RX = EndX(TR) and OX = ẼndX(TR).
(2) RX is a seperated presheaf of rings.
(3) The canonical homomorphism RΦ = Γ(X, RX) −→ Γ(X,OX) is injective.
(4) The stalk (RX)P is isomorphic to RP for every P ∈ X.

Proof. (1) The original construction of the ring of definable scalars implies
RΦ∪φ = EndX(TR)(UΦ∪φ) for every basic open subset UΦ∪φ ⊆ X. By definition,
this carries over to arbitrary open subsets.

(2) follows from Proposition 13.6 and (1).
(3) follows from (2).
(4) follows from Lemma 13.4.

Let us now specialize to the case X = IndR. Thus we obtain

RU = lim←−Uφ⊆URφ

for every Zariski-open subset U of IndR. The associated sheaf is denoted by OR.
It is interesting to observe that OY ≃ OR|Y for every Ziegler-closed subset Y of
IndR by Proposition 13.9. Let us now exhibit the functorial properties of the con-
struction. To this end fix a ring homomorphism f : R→ S and consider Y = IndS
with the Zariski topology. We denote by f∗ : ModS → ModR the corresponding
restriction functor, and Φ⊗R S = {φ⊗R S | φ ∈ Φ} for every collection Φ of maps
in modR.

Lemma 13.18. If Φ ⊆ Ψ are collections of maps in modR, then f induces the
following commutative diagram of ring homomorphisms:

RΦ −→ SΦ⊗RSy
y

RΨ −→ SΨ⊗RS

Proof. f extends to an exact functor f ′ : C(R) → C(S) which sends Tφ to
Tφ⊗RS for every map φ in modR. Therefore f ′ induces for every Φ in modR an
exact functor C(R)/SΦ → C(S)/SΦ⊗RS which induces the map RΦ → SΦ⊗RS .

The next proposition shows that the construction of the presheaf RX is in some
weak sense functorial.

Proposition 13.19. Let f : R→ S be a ring homomorphism.

(1) U 7→ Uf =
⋃

Uφ⊆U
Uφ⊗RS induces an inclusion preserving map between

the collections of Zariski-open sets in IndR and IndS.
(2) f induces ring homomorphism fU : RX(U) → SY(Uf ) for every Zariski-

open U ⊆ IndR which satisfy fV ◦ ρUV = ρUfVf ◦ fU for all V ⊆ U.
(3) f induces a ring homomorphism Rf∗(M) → SM for every S-module M .

Proof. Apply the preceding lemma.

By abuse of notation, we denote by f∗SY the presheaf on X which sends U ⊆ X

to SUf and reformulate the preceding proposition as follows.

Corollary 13.20. A ring homomorphism f : R → S induces a homomor-
phism RX → f∗SY of presheaves on X.

We obtain a better result if the restriction functor f∗ preserves the indecom-
posability of indecomposable pure-injectives.
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Corollary 13.21. Let f : R → S be a ring homomorphism. Suppose there
are Ziegler-closed subsets X ⊆ IndR and Y ⊆ IndS such that f∗(M) ∈ X for
every M ∈ Y, and consider the Zariski topologies on X and Y. Then f induces a
homomorphism (Y,OY)→ (X,OX) of ringed spaces.

Proof. f∗ induces a continuous map φ : Y → X by Theorem 13.15. We
obtain a homomorphism RX → f∗SY = φ∗SY of presheaves which extends to a
homomorphism OX → φ∗OY.

Replacing a ring S by the category projS of finitely generated projective S-
modules, we obtain from OR a sheaf OprojR of additive categories if we define
OprojR(U) = projOR(U). We call a sheaf of skeletally small additive categories an
additive space and it is clear how their morphisms are defined. This concept allows
us to extend the functorial properties of the sheaf OR.

Corollary 13.22. Let f : ModR → ModS be an exact functor which com-
mutes with products and coproducts. Suppose there are Ziegler-closed subsets X ⊆
IndR and Y ⊆ IndS such that f(M) ∈ X for every M ∈ Y, and consider the
Zariski topologies on X and Y. Then f induces a homomorphism (Y,OprojS |Y)→
(X,OprojR|X) of additive spaces.

Proof. f has a left adjoint which restricts to an additive functor g : projR→
projS. It is clear that f = g∗. Replacing ring homomorphisms R′ → S′ by additive
functors projR′ → projS′, the proof of Corollary 13.21 carries over to the present
situation.

Corollary 13.23. Let f : ModS → ModR be an exact functor which com-
mutes with products and coproducts. Suppose also that f(M) is indecomposable for
every M ∈ IndS. Then the functor f induces a homomorphism (IndS,OprojS)→
(IndR,OprojR) of additive spaces.

Corollary 13.24. The additive space (IndR,OprojR) is a Morita invariant
of the ring R.

It is easy to compute the ring of global sections for a ring of finite representation
type.

Proposition 13.25. Let R be a ring of finite representation type and let X =
IndR. Then Γ(X,OR) ≃

∏
M∈X

BiendR(M).

Proof. It follows from Theorem 6.24 that every M ∈ X is endofinite and
therefore X carries the discrete topology, for instance by Proposition 6.17. Thus
Γ(X,OR) is the product of the stalks (OR)M . It follows from Proposition 13.17 and
Corollary 11.10 that (OR)M ≃ BiendR(M) for every M ∈ X. Thus Γ(X,OR) ≃∏
M∈X

BiendR(M).

13.4. Associated sheaves of modules

We fix a Ziegler-closed subset X = UΦ of IndR together with its Zariski

topology, and we wish to assign to each module M a sheaf M̃X. To this end
let A = D(R)/TΦ and identify X = SpA. We shall apply the construction of the
(pre)sheaf of local morphisms from the beginning of this chapter. To each module
M we assign the presheaf MX = HomX(TR, TM ). Thus we have for every open
U ⊆ X

MX(U) = lim←−UΦ∪φ⊆U HomD(R)/TΦ∪φ
(TR, TM ).
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Proposition 13.26. MX is a seperated presheaf.

Proof. Follows from Proposition 13.6.

We denote by M̃X the sheaf associated to MX. If X = IndR, then we write

simply M̃ instead of M̃X. Note that for arbitrary X the sheaf M̃X can be obtained

from the globally defined sheaf M̃ .

Proposition 13.27. M̃X is the restriction of M̃ to X, i.e. M̃X = M̃ |X.

Proof. Follows from Proposition 13.9.

We state now some basic properties of the sheaf associated to an R-module.
To this end denote for every ringed space O by ModO the category of O-modules.

Proposition 13.28. The assignment M 7→ M̃X induces a functor ModR →
ModOX. This functor sends pure left exact sequences to left exact sequences and
preserves direct limits. It is faithful on the definable subcategory corresponding to
X. Moreover, it is faithful if X contains the indecomposable injective R-modules.

Proof. For every open U ⊆ X, the ring RX(U) acts on MX(U), and this
action is compatible with the restriction maps corresponding to inclusions V ⊆ U.

Therefore M̃X is an OX-module. The functor M 7→ M̃X is left exact on pure-exact
sequences and preserves direct limits by Proposition 13.7. Adapting the argument
in the proof of (3) in Proposition 13.7, one shows that the functor is faithful under
suitable assumptions.

Taking global sections induces for every R-module M a functorial morphism

γM : M ≃ HomD(R)(TR, TM )→ HomD(R)/TΦ
(TR, TM ) ≃ Γ(X,MX)→ Γ(X, M̃X).

The group Γ(X, M̃X) becomes an R-module via the ring homomorphism R →
Γ(X,OX), and it is easily checked that γM is R-linear.

Proposition 13.29. The map γM : M → Γ(X, M̃X) is injective if M belongs
to the definable subcategory corresponding to X, or if X contains the indecomposable
injective R-modules.

Proof. If M belongs to the definable subcategory corresponding to X, then
the map HomD(R)(TR, TM ) → HomD(R)/TΦ

(TR, TM ) is an isomorphism. Thus γM
is injective since MX is seperated. If X contains the injectives, then for every
0 6= m ∈ M there is P ∈ X and φ ∈ HomR(M,P ) whith φ(m) 6= 0. Using
Lemma 13.4 we obtain the following commutative diagram

M
∼
−→ HomD(R)(TR, TM )

Hom(TR,Tφ)
−→ HomD(R)(TR, TP )yα

y
y≀

(MX)P −→ HomD(R)P (TR, TM ) −→ HomD(R)P (TR, TP )

and φ(m) 6= 0 implies α(m) 6= 0. Therefore γM (m) 6= 0 since α is the composition

of γM with the canonical map Γ(X, M̃X)→ (MX)P .



CHAPTER 14

Tame hereditary algebras

In this chapter we investigate the sheaf of definable scalars for a tame hereditary
artin algebra R. Restricting to an appropriate Ziegler-closed subset X of IndR it is
shown that the sheaf OX yields a curve which parametrizes the finitely generated
indecomposable R-modules. This curve has been studied by Baer, Geigle, and
Lenzing [57, 9], and its centre by Crawley-Boevey [16]. The reinterpretation of
this parametrizing curve via rings of definable scalars was suggested by Prest [65].
In fact, the approach of Prest yields a different curve Y which admits an involution
δ (induced by the duality Homk(−, k) where k denotes the centre of R, leaving fixed
only the unique generic point of Y) such that X = Y/δ.

14.1. Preliminaries

In this section we study the functor ModR → D(R)/T , M 7→ TM , where
T denotes the finite type localizing subcategory corresponding to some Ziegler-
closed subset X of IndR. Throughout this section R denotes an artin k-algebra
over a commutative artinian ring k. The usual k-duality sends M ∈ Mod k to
M∗ = Homk(M,E) where E denotes an injective envelope of k/ radk. We begin
our discussion with some preliminary results. Let C ⊆ IndR be a set of finitely
generated indecomposables. We denote by X0 = C the Ziegler closure of C and X =
C\C denotes the Ziegler-closed subset of all non-finitely generated indecomposables
belonging to the Ziegler closure of C. Recall from Theorem that X determines a
localizing subcategory T of D(R); a functor F in D(R) belongs to T if and only if
Hom(F, TM ) = 0 for all M in X. We are interested in a description of the quotient
D(R)/T . To this end we denote by C = add C the full subcategory of modR which
is formed by all finite coproducts of modules in C.

Lemma 14.1. Suppose that C is contravariantly finite in modR. Consider the
functor

p : D(R) = (modRop,Ab) −→ (C∗,Ab) = A, F 7→ F |C∗

and the quotient functor q : A → A/A0 where A0 denotes the localizing subcategory
generated by all finite length objects in A.

(1) T0 = Ker p is the localizing subcategory corresponding to X0, and p induces
an equivalence between D(R)/T0 and A.

(2) T = Ker(q ◦ p) is the localizing subcategory corresponding to X, and q ◦ p
induces an equivalence between D(R)/T and A/A0.

Proof. (1) Denote by S0 the Serre subcategory of all functors in C(R) van-
ishing on C∗. It follows from the isomorphism M ⊗R X∗ ≃ HomR(M,X)∗ for M
and X in modR that for F in C(R) we have Hom(F, TM ) = 0 for every M ∈ C if
and only if F ∈ S0. Therefore lim−→S0 is the localizing subcategory corresponding to
X0 by Corollary 2.13. The assumption on C to be contravariantly finite in modR

98
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implies that lim−→S0 is the category of all functors in D(R) vanishing on C∗, i.e.
Kerp, by [54, Theorem 3.4].

(2) The assignment X 7→ SX = HomRop(X∗,−)/ rad HomRop(X∗,−) induces a
bijection between C and the simple objects inA. The injective envelope of SX is TX .
Given M ∈ X0, the quotient functor p induces an isomorphism HomD(R)(F, TM )→
HomA(F, TM ) since TM is T0-closed. It follows that every non-zero morphism SX →
TM induces a split monomorphism X → M . Thus Hom(A0, TM ) = 0 if and only
if M ∈ X, and therefore Ker(q ◦ p) is the localizing subcategory corresponding to
X.

We proceed with a discussion of the functor ModR → D(R)/T , M 7→ TM . If
we impose some additional conditions on C, then this functor is fully faithful on the
full subcategory of R-modules having no direct summand in C.

Proposition 14.2. Let C ⊆ IndR be a set of finitely generated indecompos-
ables and denote by T the localizing subcategory corresponding to C \C. Suppose
that C = addC has the following properties:

(1) C is contravariantly finite in modR and contains the injectives;
(2) C contains a right almost split map Y → X for every X ∈ C.

Then the functor ModR→ D(R)/T , M 7→ TM , induces an isomorphism

HomR(M,N) −→ HomD(R)/T (TM , TN)

provided that N has no direct summand in C. If 0 → L → M → N → 0 is an
exact sequence of R-modules with Ext1R(N, C) = 0, then 0→ TL → TM → TN → 0
is exact.

Proof. We keep the notation from the preceding lemma. In addition we use
the left adjoint l : A → D(R) of the restriction functor p : D(R) → A. Note that
l(HomC∗(M,−)) = HomRop(M,−) for every M in C∗, and l(TN |C∗) = TN for every
R-module N . Also, l ◦ p(SX) = SX for each simple functor SX corresponding to X
in C since for any right almost split map Y → X in C the exact sequence

HomC∗(Y ∗,−) −→ HomC∗(X∗,−) −→ SX → 0

is sent by l to the exact sequence

HomRop(Y ∗,−) −→ HomRop(X∗,−) −→ SX → 0.

It is clear that p induces a bijection HomR(M,N) → HomA(TM , TN ) for every
pair M,N in ModR since R∗ ∈ C. Let us show that the map HomA(F, TN ) →
HomA/A0

(F, TN ) induced by q is bijective for every F in A. If q(φ) = 0 for some
φ ∈ HomA(F, TN ), then Imφ ∈ A0. Assuming Imφ 6= 0 we obtain a non-zero
morphism ψ : SX → TN in A for some X in C. The morphism l(ψ) extends to to
a split monomorphism TX → TN in D(R) which contradicts our assumption on N .
It follows that φ = 0. An element in HomA/A0

(F, TN ) is of the form q(φ) for some
morphism φ : F ′ → TN/G with F ′ ⊆ F and G ⊆ TN such that F/F ′, G ∈ A0. We
have already seen that G = 0 and we need to extend φ to F . To this end observe
that l sends F/F ′ to an object in lim−→S where S denotes the Serre subcategory of
C(R) generated by the simples SX , X ∈ C. Also, (ii) implies that 0 → l(F ′) →
l(F )→ l(F/F ′)→ 0 is exact. Therefore l(φ) extends to a morphism φ′ : l(F )→ TN
since Hom(S, TN ) = 0 implies Ext1(lim−→S, TN ) = 0 by Proposition A.6. Clearly,
q(p(φ′)) = q(φ) and therefore HomA(F, TN )→ HomA/A0

(F, TN ) is also surjective.
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It remains to check the exactness property of q ◦ p. Any exact sequence of
R-modules 0→ L→M → N → 0 induces an exact sequence

TorR1 (N,X) −→ L⊗R X −→M ⊗R X −→ N ⊗R X −→ 0

for every X in modRop. Combining the isomorphism

Ext1R(N, (TrY )∗) ≃ TorR1 (N,Tr Y )∗

from [5, Proposition I.3.3] with the assumption Ext1R(N, C) = 0 we obtain the
exactness of

0 −→ TL|C∗ −→ TM |C∗ −→ TN |C∗ −→ 0.

Thus 0→ TL → TM → TN → 0 is exact in D(R)/T .

Let Γ be a component of the AR-quiver of R (not necessarily connected) such
that

(Γ1) Γ contains the indecomposable injectives;
(Γ2) every point in Γ has only finitely many successors.

Identifying Γ with the corresponding points in IndR, we denote by X = Γ \ Γ the
Ziegler-closed subset of all non-finitely generated indecomposables belonging to the
Ziegler closure of Γ. Let TX be the corresponding localizing subcategory of D(R),
i.e. F in D(R) belongs to TX if and only if Hom(F, TM ) = 0 for all M ∈ X.

Proposition 14.3. Let C = add Γ. Then there is a torsion theory (lim−→C,F)
for ModR. Any R-module M has the following properties:

(1) M ∈ lim−→C if and only if M is a coproduct of modules in Γ.
(2) M ∈ F if and only if M has no direct summand in Γ.

Proof. We need only the condition (Γ2). In fact this assumption implies that
the functor HomR(X,−) is of finite length in (modR,Ab) for every X in Γ. Also,
every indecomposable X in modR with HomR(C, X) 6= 0 belongs to C. Thus C is
closed under factor modules and extensions. We obtain a torsion theory (C,D) for
modR which extends to a torsion theory (lim−→C, lim−→D) by [20, Lemma 4.4]. The

Auslander-Reiten formula implies Ext1R(D, C) = 0 since Tr(C∗) ⊆ C. We denote
for every R-module M by cM the maximal submodule in lim−→C, and we conclude

from Ext1R(D, C) = 0 that the inclusion cM → M is pure. The finite length of
HomR(X,−) for every X in Γ implies that every module in lim−→C decomposes into
a coproduct of modules in Γ; this follows, for instance, from [20, Theorem 3.2].
This is (1), and (2) follows immediately since every pure mono X →M with X in
Γ splits.

Theorem 14.4. The functors

ModR −→ D(R)/TX, M 7→ TM and D(R)/TX −→ ModR, F 7→ Hom(TR, F )

induce mutually inverse equivalences between

(1) the full subcategory of R-modules having no direct summand in Γ, and
(2) the full subcategory of objects F having a presentation

(TR)(I) −→ (TR)(J) −→ F −→ 0.

The kernel of ModR → D(R)/TX consists of all maps between R-modules which
factor through a coproduct of modules in Γ.
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Proof. We denote by F the full subcategory of R-modules having no direct
summand in Γ and denote by f the functor ModR → D(R)/TX. We can apply
Proposition 14.2 since (Γ1) - (Γ2) imply the assumptions (1) - (2) in Proposi-
tion 14.2. Therefore f is fully faithful on F . In order to describe the kernel of f
consider a map φ : M → N in ModR. We apply the preceding proposition and use
the torsion functor c : ModR → ModR corresponding to lim−→C. Thus we obtain
the following commutative diagram with exact rows:

0 −→ cM −→ M −→ M/cM −→ 0yφ′

yφ
yφ′′

0 −→ cN −→ N −→ N/cN −→ 0

If f(φ) = 0, then f(φ′′) = 0 and therefore φ′′ = 0 since M/cM and N/cN belong to
F . Thus φ factors through cN which is a coproduct of modules in Γ. Conversely,
if M is a coproduct of modules in Γ, we need to show that f(M) = 0. The
isomorphism M ⊗R X∗ ≃ HomR(M,X)∗ for X in modR in combination with
(Γ2) implies that TM has finite length in (C∗,Ab) if M ∈ Γ. Therefore f(M) =
q ◦ p(TM ) = 0.

Now we want to show that for every F in D(R)/TX we have a presentation

(TR)(I) −→ (TR)(J) −→ F −→ 0

if and only if F ≃ TM for some M ∈ F . One direction is clear since f is right
exact and preserves coproducts. Suppose therefore that F has a presentation as
above. Decomposing R = cR

∐
R/cR, we find a map ψ : (R/cR)(I) → (R/cR)(J)

with f(ψ) = φ since f(cR) = 0 and R/cR ∈ F . We have therefore f(M) ≃ F for
M = Cokerψ. Also, cM = 0 and this implies that M ∈ F .

It remains to show that F 7→ Hom(TR, F ) is an inverse for f |F . Note that the
R-action on Hom(TR, F ) is induced by the ring homomorphism R → End(TR). If
M ∈ F , then

M ≃ HomR(R,M) ≃ HomR(R/cR,M) ≃ Hom(TR/cR, TM ) ≃ Hom(TR, TM )

and this proves the claim.

14.2. A parametrizing curve

We assume in this section that R is a tame hereditary artin algebra. For defini-
tions and the basic theory of tame hereditary algebras we refer to [22, 70, 32]. Let
I ⊆ IndR be the set of finitely generated preinjective indecomposables, and denote
by X = I \ I the Ziegler-closed set of all non-finitely generated indecomposables
belonging to the Ziegler closure of I. We consider the Zariski topology on X. The
main result of this section is the following.

Theorem 14.5. The presheaf RX of definable scalars on X is a sheaf, i.e.
RX = OX. It has the following properties:

(1) Γ(X,OX) ≃ R.
(2) The space X has dimension 1 and has a unique generic point G which is

the unique generic R-module.
(3) Given P ∈ X, the endomorphism ring EndR(P ) is uniserial. Choosing a

generator πP for the radical of EndR(P ), the map P 7→ KerπP induces a
bijection between X \ {G} and the isomorphism classes of simple regular
R-modules.
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For the proof of this theorem we combine Geigle’s analysis of the category C(R)
with the previous results in this chapter. Let us recall from [32] some properties
of C(R). To this end denote by regR the full subcategory of regular modules in
modR, and G denotes the unique generic module over R. Let SX be the Serre
subcategory of functors F in C(R) satisfying Hom(F, TM ) = 0 for all M ∈ X.
Analogously, SG is defined.

Lemma 14.6. The following holds:

(1) The functor regR→ C(R)/SX, M 7→ TM , induces an equivalence between
regR and the category S0 of finite length objects in C(R)/SX.

(2) SG contains SX and SG/SX is equivalent to S0.
(3) dimC(R)/SX = 1.

Proof. (1) The functor is fully faithful by Proposition 14.2. It is dense by
[32, Theorem 3.7].

(2) It has been shown in Proposition 6.23 that the map M 7→ SM induces a
bijection between the generic R-modules and the Serre subcategories S of C(R)
containing all finite length objects such that C(R)/S is a length category with a
unique simple object. In [32, Theorem 4.6] it is shown that the quotient category
C(R)/SX modulo S0 is a length category with a unique simple object. Combining
these facts, (2) follows.

(3) follows from the fact that the quotient category C(R)/SX modulo S0 is a
length category.

We shall also need the following technical lemma.

Lemma 14.7. Let A be a locally coherent category with Gabriel spectrum Y =
SpA. Suppose that UX = ∅ for every finitely presented object X in A which is not
of finite length. Then HomY(M,N) is a sheaf for every pair M,N in A such that
N has no finite length subobject.

Proof. Let F = HomY(M,N). The assumptions on Y imply that every
closed subset is either finite or coincides with Y. Thus Y is a noetherian space.
Therefore we need to check for two open subsets U1,U2 the following conditions:

(1) Let α ∈ F (U1 ∪U2). If ρU1∪U2U1(α) = 0 = ρU1∪U2U2(α), then α = 0.
(2) Let β1 ∈ F (U1) and β2 ∈ F (U2). If ρU1U1∩U2(β1) = ρU2U1∩U2(β2), then

ρU1∪U2U1(α) = β1 and ρU1∪U2U2(α) = β2 for some α ∈ F (U1 ∪U2).

Condition (1) holds since the presheaf F is seperated by Proposition 13.6. To check
(2) we may exclude the case that U1 = ∅ or U2 = ∅. Thus there are finite length
objects X1, X2 in A such that U1 = UX1 and U2 = UX2 . Passing to a suitable
quotient of A we may also assume that Y = U1 ∪U2. Using the assumption that
N has no proper finite length subobjects we find for each i subobjects Mi ⊆ M
with M/Mi ∈ TXi and αi ∈ HomA(Mi, N) such that βi is the image of αi under
the map

HomA(Mi, N) −→ HomA/TXi
(M,N) = F (Ui).

If ρU1U1∩U2(β1) = ρU2U1∩U2(β2), then α1|M1∩M2 = α2|M1∩M2 . We have M =
M1 + M2 since Y = U1 ∪ U2, and therefore there exists α ∈ HomA(M,N) =
F (U1 ∪U2) such that αi = α|Mi

for each i. This completes the proof of (2) and
therefore F is a sheaf.
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Proof of Theorem 14.5. We prove first that RX is a sheaf. Using the bi-
jection between Serre subcategories of C(R)/SX and Ziegler-closed subsets of X,
it follows from Lemma 14.6 that every non-empty open subset of X contains G.
If X ∈ C(R)/SX is an object which is not of finite length, then X 6∈ SG/SX by
Lemma 14.6. Thus G 6∈ UX and UX = ∅ follows. We claim that TR has no finite
length subobject in D(R)/TX. This follows from Theorem 14.4 and Lemma 14.6
since HomR(regR,R) = 0. Thus we can apply Lemma 14.7 and RX = EndX(TR)
is a sheaf.

(1) Theorem 14.4 implies that EndD(R)/TX
(TR) ≃ R and therefore Γ(X,OX) ≃

R since RX = OX.
(2) The quotient category of C(R)/SX modulo all finite length objects is equiv-

alent to C(R)/SG by Lemma 14.6 and is therefore a length category. Using the
bijection between Serre subcategories of C(R)/SX and Ziegler-closed subsets of X,
the assertion follows.

(3) The Grothendieck category D(R)/TX has Krull dimension 1. This follows
form part (3) in Lemma 14.6 and Lemma B.5. Therefore Gabriel’s analysis in [26]
implies that taking injective envelopes induces a bijection between the simple ob-
jects in C(R)/SX and C(R)/SG and the points in X = Sp(D(R)/TX). The unique
simple object in C(R)/SG corresponds to G, and Lemma 14.6 implies that the
simple objects in C(R)/SX, and therefore the points in X \ {G}, are parametrized
by the simple regular R-modules. If S is such a simple regular R-module, then the
injective envelope of TS in D(R)/TX is TP where P denotes the so-called Prüfer
module corresponding to S. The Prüfer modules have been studied in [70]; in par-
ticular the structure of their endomorphism rings has been determined. It follows
from Ringel’s analysis that S ≃ KerπP for a generator πP of rad EndR(P ).

In [57, 5.5], Lenzing has shown that the functor C(R)/SX → PreshX, F 7→
HomX(TR, F ), induces an equivalence between C(R)/SX and the category of co-
herent sheaves on (X,OX). This functor extends to an equivalence D(R)/TX →
QcohX.

Proposition 14.8. The functor which sends F ∈ D(R) to HomX(TR, F ) in-
duces an equivalence between D(R)/TX and the category QcohX of quasi-coherent
sheaves on (X,OX).

Proof. The coherent sheaves form the category of finitely presented objects
of the locally coherent category QcohX. Analogously, fp(D(R)/TX) = C(R)/SX
by Proposition A.5. Therefore the assertion follows from Lenzing’s result.

Composing the equivalence D(R)/TX → QcohX with the canonical functor
ModR→ D(R)/TX, we obtain the following.

Corollary 14.9. The functors

ModR −→ QcohX, M 7→MX and QcohX −→ ModR, F 7→ Γ(X, F )

induce mutually inverse equivalences between

(1) the full subcategory of R-modules having no indecomposable preinjective
direct summand, and

(2) the full subcategory of quasi-coherent sheaves F having a presentation

(OX)(I) −→ (OX)(J) −→ F −→ 0.
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The kernel of ModR → QcohX consists of all maps between R-modules which
factor through a coproduct of indecomposable preinjective R-modules.

Proof. Combine Theorem 14.4 and Proposition 14.8.



CHAPTER 15

Coherent rings

In this chapter we investigate the sheaf of definable scalars on the Gabriel spec-
trum SpR of a right coherent ring R. The Gabriel spectrum of R is, by definition,
the set of isomorphism classes of indecomposable injective R-modules, and the col-
lection of subsets UX = {M ∈ SpR | HomR(X,M) = 0}, X ∈ modR, forms a
basis of open subsets for the (Zariski) topology on SpR. If R is right coherent, then
X = SpR is a Ziegler-closed subset of IndR. Our aim is to study some of the proper-
ties of the structure sheaf OX. Also, we shall study the functor ModR→ ModOX,

M 7→ M̃X, and its composition ModR→ ModR, M 7→ Γ(X, M̃X), with the global
section functor. If R is commutative noetherian, then X can be identified with

the prime spectrum of R and the functor ModR → ModOX, M 7→ M̃X, induces
the usual equivalence between ModR and the category QcohX of quasi-coherent

sheaves on (X,OX); in particular Γ(X, M̃X) ≃M for every R-module M . However,

if R is non-commutative, then the global section functor M 7→ Γ(X, M̃X) has some
interesting properties.

15.1. Preliminaries

In this section we collect some basic facts about coherent rings. Recall that a
ring R is right coherent if the category modR is abelian, equivalently if finitely gen-
erated submodules of finitely presented R-modules are finitely presented. Another
characterization of right coherent rings is based on fp-injective modules. Recall
that an R-module M is fp-injective if Ext1R(X,M) = 0 for every finitely presented
R-module X .

Proposition 15.1. A ring R is right coherent if and only if the fp-injective
R-modules form a definable subcategory of ModR.

Proof. In [78] it is shown that R is right coherent if and only if the fp-injective
R-modules are closed under forming direct limits. The category of fp-injective R-
modules is automatically closed under products and pure submodules. Thus the
assertion follows from Theorem 2.1.

Proposition 15.2. Let R be a right coherent ring.

(1) The injective modules in IndR form a Ziegler-closed subset X.
(2) The functor C(R) → modR, F 7→ F (R), induces an equivalence between

C(R)/S and modR where S denotes the Serre subcategory corresponding
to X.

(3) The functor D(R) → ModR, F 7→ F (R), induces an equivalence between
D(R)/T and ModR where T denotes the localizing subcategory of finite
type corresponding to X.

105



106 15. COHERENT RINGS

Proof. (1) This follows from Proposition 15.1 since a module M is injective
if and only if M is fp-injective and pure-injective.

(2) This follows from Lemma C.4 since the composition of the equivalence
C(Rop)op → C(R) with C(R) → modR is the right adjoint of the Yoneda functor
modR→ C(Rop)op.

(3) Combine (2) with Proposition A.5.

From now on we assume for the rest of this section that R is a right coherent
ring. We denote by X = SpR the Gabriel spectrum of R; it is the Gabriel spectrum
of the locally coherent category ModR. The basic open sets are of the form UX =
{P ∈ X | HomR(X,P ) = 0} where X is any finitely presented R-module.

Lemma 15.3. The topology on the Gabriel spectrum SpR coincides with the
topology which is induced from the Zariski topology on IndR.

Proof. Use Proposition 15.2.

The definition of the sheaf of definable scalars OX and the functor M 7→ M̃X

are based on the fact that X is a Ziegler-closed subset of IndR. However, we could
also take the direct route via the locally coherent category ModR since X is the
Gabriel spectrum of ModR. More precisely, we have the following.

Proposition 15.4. The following holds:

(1) RX ≃ EndX(R) and OX ≃ ẼndX(R).

(2) MX ≃ HomX(R,M) and M̃X ≃ H̃omX(R,M) for every R-module M .

Proof. Combine the definition of RX and MX with Proposition 15.2.

15.2. Prime spectrum versus Gabriel spectrum

In this section we consider the prime spectrum SpecR of R which is the the
set of two-sided prime ideals of R. Given a two-sided ideal a let Va = {p ∈
SpecR | a ⊆ p}. The collection of subsets (Va)a⊆R is closed under taking finite
unions and arbitrary intersections; thus they form the closed sets of a topology
on SpecR. Recall that the basic open sets of the Gabriel spectrum SpR are of
the form UX = {P ∈ SpR | HomR(X,P ) = 0} where X is any finitely presented
R-module.

A right noetherian ring R is said to be fully right bounded provided that the
map

α : SpecR −→ SpR, p→ E(R/p)

which sends a prime ideal p to the injective envelope of R/p is bijective. For the
rest of this section we assume that R is right noetherian and fully bounded.

Lemma 15.5. If a is a right ideal, then there are primes p1, . . . , pn in SpecR
such that UR/a = UR/q for q = p1 · . . . · pn.

Proof. See [26].

Lemma 15.6. If a is a two-sided ideal, then α(Va) = SpR \UR/a.

Proof. Let P = E(R/p) with p ∈ SpecR. If φ : R/a → P is a non-zero
morphism with X = Imφ, then a = ann(R/a) ⊆ ann(X) ⊆ p. Conversely, a ⊆ p

implies that there is a non-zero morphism R/a→ P .
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Lemma 15.7. Let X be a finitely presented module. Then there are primes
p1, . . . , pn in SpecR such that UX = UR/q for q = p1 · . . . · pn.

Proof. Let X =
∑r

i=1 xiR. For each i there is a product qi of prime ideals
such that UxiR = UR/qi by Lemma 15.5. Using Lemma 15.6 we obtain UX =⋂r
i=1 UxiR = UR/q for q = q1 · . . . · qr.

We have the following consequence.

Proposition 15.8. Suppose that R is right noetherian and fully bounded. The
assignment p 7→ E(R/p) induces a homeomorphism between the prime spectrum
and the Gabriel spectrum of R. In particular, the Gabriel spectrum is a noetherian
topological space.

From now on we assume for the rest of this section that R is commutative
and noetherian. We wish to compare the sheaf of rings O which is defined on
SpecR (see for instance [34]) with the (pre)sheaf of definable scalars on X = SpR.
More precisely, the homeomorphism α : SpecR → SpR induces an equivalence
α∗ : Sh SpecR→ Sh X, and we ask for a relation between OX and α∗O.

Theorem 15.9. Let R be a commutative noetherian ring with X = SpR.

(1) The presheaf of definable scalars RX is a sheaf, i.e. RX = OX. Moreover,
OX ≃ α∗O and therefore (SpecR,O) and (X,OX) are isomorphic ringed
spaces.

(2) Let p ∈ SpecR and denote by P the injective envelope of R/p. Then RP
is isomorphic to the stalk Op at p and therefore also isomorphic to the
localization Rp at p.

Proof. (1) The assertions follow from Gabriel’s analysis in [26, Chap. VI].
(2) The stalk of RX at P is isomorphic to the ring RP of definable scalars for

P by Proposition 13.17. The assertion now follows from (1).

We give an application of the preceding theorem which yields a new interpreta-
tion of a continuous 1-parameter family of modules over a k-algebra S if R = k[T ].
To this end we need to replace the ringed space (SpecR,O) with the additive space
(SpecR,Oproj). More precisely, we define a sheaf of additive categories Oproj on
SpecR by Oproj(U) = projO(U) for every open U ⊆ SpecR, where projS denotes
the category of finitely generated projective S-modules for any ring S. Analogously,
the sheaf (IndS,OprojS) is defined for any ring S.

Corollary 15.10. Let R be a commutative noetherian ring and let S be any
ring. Suppose there exists an exact functor f : ModR → ModS which com-
mutes with products and coproducts. Suppose also that f(M) is indecomposable
for every indecomposable injective R-module M . Then f induces a morphism
(SpecR,Oproj)→ (IndS,OprojS) of additive spaces.

Proof. Combine Corollary 13.22 with Theorem 15.9.

We proceed with a discussion of the quasi-coherent sheaves over (SpecR,O).

Given any R-module M , we denote by M̂ the associated sheaf on SpecR.

Theorem 15.11. Let R be a commutative noetherian ring with X = SpR.

Then for every R-module M the associated presheaf MX is a sheaf, i.e. MX = M̃X.

Moreover, there is a functorial isomorphism M̃X ≃ α∗M̂ .

Proof. See [26, Chap. VI].
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15.3. The global section functor

Throughout this section R denotes a right coherent ring and X = SpR denotes
the Gabriel spectrum of R. Our aim is to study in some examples the sheaf of

definable scalars OX and the functor ModR → ModOX, M 7→ M̃X. Let us
summarize the basic properties of this functor.

Theorem 15.12. The functor which sends every R-module M to the associated

sheaf M̃X is faithful, left exact, and commutes with direct limits. For every R-

module M there is a functorial monomorphism M → Γ(X, M̃X) in ModR.

Proof. Combine Proposition 13.7 and Proposition 15.4.

We compute now the ring of global sections Γ(X,OX) in case R is right artinian.
We need two lemmas.

Lemma 15.13. Suppose that R is right noetherian. If P ∈ SpR is finitely
generated as a module over EndR(P )op, then RP ≃ BiendR(P ).

Proof. The assertion is an immediate consequence of Corollary 11.10.

Lemma 15.14. Suppose that R is right artinian. Then every P in SpR has
finite length over EndR(P )op and therefore RP ≃ BiendR(P ).

Proof. A finitely generated submodule of HomR(R,P ) = P over EndR(P )op

is of the form HomR(R/U, P ) for some submodule U ⊆ R since P is injective.
Therefore P has finite length over EndR(P )op since R has finite length over R. The
second half of the assertion now follows from the preceding lemma.

Proposition 15.15. Suppose that R is right artinian. Then Γ(X,OX) ≃∏
P∈X

BiendR(P ).

Proof. SpR is a discrete space and therefore the assertion follows from the
preceding lemma and Proposition 13.17 since Γ(X,OX) is the product of the stalks.

We exhibit now the case that Γ(X,OX) is a semi-simple ring. The following
lemma will be needed.

Lemma 15.16. Let R be right noetherian and let f : ModR → ModR be a
functor having the following properties:

(1) there is a functorial monomorphism φM : M → f(M);
(2) f sends every monomorphism to a split monomorphism.

Then the direct limit f∞(M) = lim−→ n∈N(fn(M)
φfn(M)
−→ fn+1(M)) is an injective

R-module and there is a functorial monomorphism M → f∞(M).

Proof. The assumption on f implies that φM factors through the injective
envelope E(M) of M . Therefore f∞(M) = lim−→E(fn(M)) is an injective R-module
since a direct limit of injective modules is again injective over a noetherian ring.

Given an R-module M , we denote by Γ∞(X, M̃X) the R-module f∞(M) where

f(M) = Γ(X, M̃X).
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Corollary 15.17. Suppose that R is right artinian and that EndR(P ) is a

division ring for every P in X. Then Γ(X,OX) is semi-simple and Γ∞(X, M̃X) is
an injective R-module for every R-module M . Therefore every R-module embeds
functorially into an injective R-module.

Proof. The semi-simplicity of Γ(X,OX) is a consequence of Proposition 15.15.

It follows from Theorem 15.12 that the functor M 7→ f(M) = Γ(X, M̃X) satisfies

the conditions (1) - (2) in Lemma 15.16, and therefore Γ∞(X, M̃X) is injective for
every M ∈ModR.

The example R = Z/4Z shows that, in general, a functorial embedding (pro-
vided by an additive functor) of R-modules into injective R-modules is impossible.

We turn now our attention to hereditary rings. We begin with some general
observations. Let A = ModR and let S be a Serre subcategory of modR. Denote
by T = lim−→S the localizing subcategory of A which is generated by S.

Lemma 15.18. The following holds:

(1) The section functor A/T → A commutes with direct limits and induces an
equivalence between A/T and the perpendicular category S⊥, i.e. the full
subcategory of objects M in A with Hom(S,M) = 0 = Ext1(S,M).

(2) If Ext2(S,−) = 0, then the inclusion S⊥ → A is exact.

Proof. For (1) we refer to Proposition A.6. To prove (2) observe first that
the inclusion S⊥ → A is automatically left exact since it has a left adjoint. The
assumption on S implies that for every exact sequence 0 → L → M → N → 0 in
A with L and M in S⊥, also N lies in S⊥. Therefore the inclusion is also right
exact.

Let S = EndA/T (R) and denote by f : R → S the ring homomorphism which
is induced by the quotient functor A → A/T .

Lemma 15.19. Suppose that Ext2(S,−) = 0.

(1) f : R → S is a flat epimorphism, i.e. f is an epimorphism of rings and S
is flat as an Rop-module.

(2) −⊗R S : ModR→ ModS induces an equivalence A/T → ModS.
(3) Restriction ModS → ModR induces an equivalence between ModS and
S⊥.

(4) f is the universal localization with respect to a collection of maps in projR.

Proof. The quotient functor A → A/T sends R to a projective generator
for A/T since the right adjoint is exact by the preceding lemma. Moreover, R is a
finitely presented object inA/T by Proposition A.5 and thereforeA/T is equivalent
to the category of S-modules; in particular the quotient functor is isomorphic to
−⊗R S. It follows that S is a flat Rop-module since the quotient functor is exact.
The last assertion follows from Theorem 12.16.

We can now give a description of the stalks of OX and M̃X for every R-module
M .

Theorem 15.20. Let R be right hereditary and P ∈ X.

(1) OP ≃ RP is again right hereditary and R→ RP is a flat epimorphism. In
fact, RP is the universal localization with respect to a collection of maps in
projR.
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(2) (M̃X)P ≃M ⊗R RP for every R-module M .

Proof. (1) The isomorphism OP ≃ RP follows from Proposition 13.17, and
the properties of RP follow from Lemma 15.19 by taking the Serre subcategory
S = {X ∈ modR | HomR(X,P ) = 0} in modR.

(2) Let T = lim−→S. Then

(M̃X)P ≃ HomModR/T (R,M) ≃M ⊗R RP

where the first isomorphism is taken from Lemma 13.17 and the second is taken
from Lemma 15.19.

We mention some consequences.

Corollary 15.21. Let R be right hereditary. The functor which sends every

R-module M to the associated sheaf M̃X is faithful, exact, and preserves coproducts.

Corollary 15.22. Let R be right hereditary and artinian. Then Γ(X,OX)

is semi-simple and Γ(X, M̃X) is an injective R-module for every R-module M .
Moreover,

Γ(X, M̃X) ≃M ⊗R Γ(X,OX)

and the functor M 7→ Γ(X, M̃X) is exact.

Proof. For every P in SpR the endomorphism ring EndR(P ) is a division
ring since R is hereditary. Therefore Γ(X,OX) is semi-simple by Proposition 15.15.

It has already been shown that the functor M 7→ M̃X is exact and commutes with
direct limits. The global section functor Γ(X,−) : Sh X → Ab commutes with
direct limits since X is noetherian, and Γ(X,−) is exact since X has dimension 0.

It follows that M 7→ Γ(X, M̃X) is given by tensoring with Γ(X,OX). In particular,

Γ(X, M̃X) is an injective R-module since Γ(X,OX) is semi-simple and therefore

Γ(X, M̃X) is injective as an Γ(X,OX)-module.

Example 15.23. Any path algebra over a field of a finite quiver without ori-
ented cycles is hereditary and artinian.



APPENDIX A

Locally coherent Grothendieck categories

A.1. Localization in abelian categories

Throughout this section A denotes an abelian category. We collect the basic
facts about localization in A. For details and proofs we refer to [26]. A full
subcategory S of A is a Serre subcategory provided that for every exact sequence
0→ X ′ → X → X ′′ → 0 in A the object X belongs to S if and only if X ′ and X ′′

belong to S. The corresponding quotient category A/S is constructed as follows.
The objects of A/S are those of A and

HomA/S(X,Y ) = lim−→HomA(X ′, Y/Y ′)

with X ′ ⊆ X , Y ′ ⊆ Y and X/X ′, Y ′ ∈ S. Again the category A/S is abelian and
there is canonically defined the quotient functor q : A → A/S such that q(X) = X ;
it is exact with Ker q = S. Here the kernel Ker f of a functor f : A → B is, by
definition, the full subcategory of all objects X such that f(X) = 0. Now suppose
that f is exact. Then Ker f contains S if and only if f induces a (unique and
exact) functor g : A/S → B such that f = g ◦ q. Note that g is faithful if and only
if S = Ker f .

A Serre subcategory S of A is called localizing provided that the corresponding
quotient functor admits a right adjoint A/S → A. This section functor induces
an equivalence between A/S and the perpendicular category S⊥ of objects X sat-
isfying Hom(S, X) = 0 = Ext1(S, X). An object in S⊥ is called S-closed. Note
that an object X in A is S-closed if and only if the quotient functor A → A/S
induces an isomorphism HomA(Y,X) → HomA/S(Y,X) for every Y in A. If A is
a Grothendieck category, then a Serre subcategory S of A is localizing if and only
if S is closed under taking coproducts. In this case, A/S is again a Grothendieck
category.

A.2. Locally coherent Grothendieck categories

Throughout this section we fix a locally coherent Grothendieck category A.
Recall that a Grothendieck category A is locally coherent if the full subcategory
C = fpA of finitely presented objects is abelian and every object inA is a direct limit
of finitely presented objects. The fp-injective objects of a locally coherent category
play an important role. Recall that M ∈ A is fp-injective if Ext1(X,M) = 0
for every finitely presented X ∈ A. The full subcategory of fp-injective objects
in A is denoted by fpinjA. The following lemma provides a characterization of
fp-injectivity, see [20].

Lemma A.1. The following are equivalent for M ∈ A and Z ∈ fpA.

(1) Ext1(Z,M) = 0.
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(2) 0 → Hom(Z,M) → Hom(Y,M) → Hom(X,M) → 0 is exact for every
exact sequence 0→ X → Y → Z → 0 in fpA.

Proof. Straightforward.

We denote by Lex(Cop,Ab) the category of left exact functors Cop → Ab, and
Ex(Cop,Ab) denotes the full subcategory of exact functors Cop → Ab.

Proposition A.2. The assignment X 7→ Hom(−, X)|C induces equivalences

A −→ Lex(Cop,Ab) and fpinjA −→ Ex(Cop,Ab).

Proof. For the equivalence A −→ Lex(Cop,Ab), see [74]. The equivalence
fpinjA −→ Ex(Cop,Ab) then follows from Lemma A.1.

The Gabriel spectrum SpA of A is the set of isomorphism classes of indecom-
posable injective objects in A.

Proposition A.3. SpA cogenerates A. Therefore every object in A is subob-
ject of a product

∏
i∈IMi with Mi ∈ SpA for every i.

Proof. Suppose that X is a non-zero object in A. We need to find a non-zero
morphism X → M for some M ∈ SpA. The object X is a direct limit of finitely
presented objects and therefore X has a finitely generated subobject Y 6= 0, i.e.
Y is a quotient of some finitely presented object. Using Zorn’s lemma we find a
maximal subobject Z ⊆ Y and we obtain an injective envelope Y/Z →M for some
M ∈ SpA. The composition with Y → Y/Z then extends to a non-zero morphism
X →M .

To embed X in a product of objects in SpA take I =
⋃
M∈SpA Hom(X,M)

and let φ : X →
∏
i∈IMi with component φi = i for every i. The first part of the

assertion implies that φ is a monomorphism.

A.3. Localization in locally coherent Grothendieck categories

Throughout this section A denotes a locally coherent category with C = fpA.
We collect the basic facts about localization in A with respect to certain localizing
subcategories. Most of this material is taken from [50]. A localizing subcategory
T of A is said to be of finite type provided that the section functor A/T → A
commutes with direct limits. A torsion theory (T ,F) for A is hereditary if T is
closed under subobjects and (T ,F) is said to be of finite type if F is closed under
direct limits.

Proposition A.4. The following are equivalent for a full subcategory T of A.

(1) T is localizing of finite type.
(2) T = lim−→S for some Serre subcategory S of fpA.
(3) There is a hereditary torsion theory of finite type (T ,F) for A.

Moreover, in this case S = T ∩ fpA and F = {X ∈ A | Hom(S, X) = 0}.

Proof. See [50, Theorems 2.6 and 2.8].

From now on assume that T is a localizing subcategory of finite type with
S = T ∩ fpA and F = {X ∈ A | Hom(S, X) = 0}. We obtain the following
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commutative diagram of exact functors

S −→ C
p
−→ C/Syi′

yi
yi′′

T −→ A
q
−→ A/T

where i and i′ denote inclusions, p and q denote quotient functors, and i′′ is deter-
mined by the commutativity of the diagram.

Proposition A.5. A/T is a locally coherent category, and i′′ induces an equiv-
alence between C/S and the full subcategory of finitely presented objects in A/T .

Proof. It follows from Lemma 1.1 that the quotient functor sends finitely
presented objects in A to finitely presented objects in A/T . Therefore every object
in A/T is a direct limit of finitely presented objects. Moreover, fpA/T is abelian
since the quotient functor is exact. Thus A/T is locally coherent. For the second
part of the assertion we refer to [50, Theorem 2.6].

We list some properties of the section functor s : A/T → A.

Proposition A.6. The section functor induces an equivalence between A/T
and the perpendicular category S⊥. Therefore S⊥ = T ⊥.

Proof. See [50, Corollary 2.11].

Proposition A.7. The section functor induces an equivalence fpinjA/T →
F ∩ fpinjA.

Proof. In view of the preceding proposition it suffices to show that an ob-
ject M in A/T is fp-injective if and only if s(M) is fp-injective. We apply the
characterization of fp-injectivity in Lemma A.1 and use the functorial adjointness
isomorphism αX,M : Hom(X, s(M))

∼
→ Hom(q(X),M). To prove our claim suppose

first that M is fp-injective and let ε : 0→ X → Y → Z → 0 be any exact sequence
in fpA. The image q(ε) is again an exact sequence of finitely presented objects by
Proposition A.5 and therefore an application of α shows that s(M) is fp-injective.
Conversely, suppose that s(M) is fp-injective and let ε : 0→ X → Y → Z → 0 be
any exact sequence in fpA/T . Using Proposition A.5 one finds an exact sequence
ε′ : 0→ X ′ → Y ′ → Z ′ → 0 in fpA such that q(ε′) ≃ ε. Again, an application of α
implies that M is fp-injective.

We denote by injA the full subcategory of injective objects in A.

Proposition A.8. The section functor induces an equivalence between injA/T
and F ∩ injA.

Proof. The right adjoint of an exact functor sends injective objects to injective
objects. The assertion follows since an injective object X belongs to T ⊥ if and only
if Hom(T , X) = 0.

It is interesting to observe that the section functor makes the following diagram
of functors commutative

A/T
s
−→ Ay≀

y≀
Lex((C/S)op,Ab)

p∗
−→ Lex(Cop,Ab)
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where p∗(F ) = p ◦F for every F ∈ Lex((C/S)op,Ab). Restricting to the fp-injective
objects one obtains the following diagram

fpinjA/T −→ fpinjAy≀
y≀

Ex((C/S)op,Ab) −→ Ex(Cop,Ab)

The section functor sends injective objects to injective objects and identifies
therefore SpA/T with a subset U of SpA.

Proposition A.9. Let X be an object in A.

(1) X ∈ F if and only if X is a subobject of a product
∏
i∈IMi with Mi ∈ U

for all i.
(2) X ∈ T if and only if Hom(X,U) = 0.

Proof. (1) Suppose first that X ∈ F . Let X →M be an injective envelope. It
is clear that M ∈ F . ThusM = s(N) for some objectN ∈ A/T by Proposition A.8,
and we find a monomorphism N →

∏
i∈I Ni in A/T with Ni ∈ SpA/T for all i

by Proposition A.3. Letting Mi = s(Ni) for each i, we obtain a monomorphism
X →

∏
i∈IMi since the section functor is left exact and preserves products. For

the converse use that F is closed under products and subobjects.
(2) Use part (1).

A.4. Locally noetherian categories

A Grothendieck category A is said to be locally noetherian if there exists a
generating set of noetherian objects in A. There are various equivalent conditions
and we collect some of them. We need the following analogue of Baer’s criterion.

Lemma A.10. Let A be a locally finitely presented Grothendieck category. For
an object M in A the following are equivalent.

(1) M is injective, i.e. Ext1(Z,M) = 0 for all Z ∈ A.
(2) Ext1(Z,M) = 0 for all finitely generated Z ∈ A.

Proof. Suppose that Ext1(Z,M) = 0 for all finitely generated Z ∈ A and
let φ : M → E be an injective envelope. If ψ : Y → Cokerφ is a morphism with
Y ∈ fpA, then Z = Y/Kerψ is a subobject of Cokerφ. Now φ can be written as
composition M → M

∐
Z → E of two monomorphisms since Ext1(Z,M) = 0 by

assumption. We conclude from the minimality of E that Z = 0. Thus Cokerφ = 0
and M is injective.

Proposition A.11. Let A be a locally finitely presented Grothendieck category.
Then the following are equivalent:

(1) A is locally noetherian.
(2) Every finitely presented object is noetherian.
(3) Every fp-injective object is injective.
(4) Every direct limit of injective objects is injective.
(5) Every injective object is a coproduct of indecomposable objects.

Proof. (1) ⇒ (2) Clear.
(2)⇒ (3) Finitely generated and finitely presented objects coincide. Therefore

Baer’s criterion implies that fp-injective objects are injective.
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(3) ⇒ (4) Clear, since every direct limit of fp-injective objects is again fp-
injective.

(4) ⇒ (5) Let M be a non-zero injective object and choose a finitely generated
non-zero subobject X of M . (4) implies that the union of any chain of injective
subobjects of M is again injective. Thus we can use Zorn’s lemma and find a
maximal direct summand U ofM which does not containX . LetM = U

∐
V . Then

V is indecomposable since a decomposition of V would contradict the maximality
of U . Thus M has an indecomposable direct summand. Using Zorn’s lemma we
can find a maximal set (Ui)i∈I of indecomposable injective subobjects of M such
that the sum N =

∑
i∈I Ui is direct. Again, N is a direct summand of M and

its complement is zero since otherwise an indecomposable direct summand could
be adjoined to the family (Ui)i∈I . Therefore M is a coproduct of indecomposable
objects.

(5) ⇒ (1) Adopt the proof of the classical case A = ModR.

Note that a decomposition M =
∐
i∈IMi of an injective object in A into

indecomposable objects is unique up to isomorphism. More precisely, if M =∐
j∈J Nj is another decomposition into indecomposable objects, then there exists

a bijection σ : I → J such that Mi ≃ Nσ(j) for all i ∈ I.



APPENDIX B

Dimensions

B.1. The dimension of an abelian category

Let C be a skeletally small abelian category. There is a canonical method to
assign to C a dimension which we denote by dim C, e.g. see [26, 38]. Define a
filtration (Cα)α of Serre subcategories Cα ⊆ C recursively as follows:

– C−1 = 0;
– if α is an ordinal of the form α = β + 1, then Cα consists of all objects in
C which become of finite length in C/Cβ;

– if α is a limit ordinal, then Cα =
⋃
γ<α Cα.

Let C∞ =
⋃
α Cα and denote by dim C the smallest ordinal α (or ∞ if such an

ordinal does not exist) such that Cα = C. We list some basic properties of dim C.

Lemma B.1. Let C and D be skeletally small abelian categories.

(1) dim Cop = dim C.
(2) Let S be a Serre subcategory of C. Then dim C/S ≤ dim C.
(3) Let f : D → C be a faithful and exact functor. Then dimD ≤ dim C.
(4) Let S be a Serre subcategory of C. Then

sup(dimS, dim C/S) ≤ dim C ≤ dimS ⊕ dim C/S.

Proof. (1) Clearly, (Cop)α = Cα, and therefore dim Cop = dim C.
(2) Denote by q : C → C/S the quotient functor. Then q(Cα) ⊆ (C/S)α for

every α and therefore dim C/S ≤ dim C.
(3) f−1(Cα) ⊆ Dα for every α, and therefore dimD ≤ dim C.
(4) sup(dimS, dim C/S) ≤ dim C follows from (2) and (3). For the other in-

equality and the definition of ⊕ we refer to [26, IV, Proposition 1.1]; for instance
α⊕ β = α+ β + 1 for finite ordinals α and β.

Lemma B.2. Suppose there exists X in C such that there is no proper Serre
subcategory of C containing X. If dim C <∞, then dim C = α+ 1 for some ordinal
α.

Proof. Let β be a limit ordinal. If X ∈ Cβ, then X ∈ Cγ for some γ < β, and
therefore dim C < β.

The filtration (Cα)α of C can be used to define for every object X in C a
dimension dimX which generalizes the Loewy length of a finite length object. If
X is of finite length, then dimX denotes the minimal n ≥ 0 such that there is a
chain

0 = X0 ⊆ X1 ⊆ . . . ⊆ Xn = X

with Xi/Xi−1 semi-simple for all i. If X is an arbitrary object, then dimX denotes
the least ordinal of the form ωα + n (or ∞ if such an ordinal does not exist) such

116



B.2. THE DIMENSION OF A MODULAR LATTICE 117

that α is not a limit ordinal and X is of finite length in C/Cα−1 with dimX ≤ n.
The following property of dimX is an immediate consequence of the definition.

Lemma B.3. Let α be an ordinal. Then X ∈ Cα if and only if dimX < ω(α+1).

We list some further properties of dimX .

Lemma B.4. Let X,Y be objects in C.

(1) If 0 < dimX <∞, then dimX = ωα+n for some non-limit ordinal α and
some n ∈ N.

(2) Let 0→ X ′ → X → X ′′ → 0 be an exact sequence in C. Then

sup(dimX ′, dimX ′′) ≤ dimX.

If dimX ′ = ωα′ + n′ and dimX ′′ = ωα′′ + n′′, then dimX ≤ ωα + n for
α = sup(α′, α′′) and n = n′ + n′′.

(3) dim(X
∐
Y ) = sup(dimX, dimY ).

Proof. Left to the reader.

Let A be a Grothendieck category. Following [26], one can assign to A its Krull
dimension KdimA. Define a filtration (Aα)α of localizing subcategories Aα ⊆ A
recursively as follows:

– A−1 = 0;
– if α is an ordinal of the form α = β + 1, then Aα is the smallest localizing

subcategory of A containing all objects which become of finite length in
A/Aβ ;

– if α is a limit ordinal, then Aα is the smallest localizing subcategory of A
containing

⋃
γ<αAα.

The smallest ordinal α (or ∞ if such an ordinal does not exist) such that Aα = A
is the Krull dimension KdimA of A. There is the following bound for the Krull
dimension in case the Grothendieck category is locall coherent.

Lemma B.5. Let A be a locally coherent Grothendieck category. Then the Krull
dimension of A is bounded by dim fpA.

Proof. Let C = fpA. It suffices to show that Cα ⊆ Aα for every ordinal α.
Clearly this holds for α = −1 and for every limit ordinal α provided that Cβ ⊆ Aβ
for every β < α. Therefore assume α = β + 1 and Cβ ⊆ Aβ . The quotient functor
A → A/Aβ induces an exact functor C/Cβ → A/Aβ which factors through fpA/Aβ
by Proposition A.5. Given X ∈ C which is simple in C/Cβ, it follows that X is either
simple or zero in A/Aβ . Therefore Cβ ⊆ Aβ , and this finishes the proof.

If the Grothendieck category A is locally noetherian then dim fpA equals the
Krull dimension of A since every localizing subcategory T of A is of the form
T = lim−→S for some Serre subcategory S of fpA.

B.2. The dimension of a modular lattice

We follow Prest [61] and assign to every modular lattice a dimension as follows.
Let L be a modular lattice with 0 and 1. Given a pair of elements x, y ∈ L we
define x ∼ y if the interval [x ∧ y, x ∨ y] has finite length. Note that ∼ defines a
congruence relation on L. Therefore the set of equivalence classes L/∼ carries again
the structure of a modular lattice and the canonical map L→ L/∼ is a morphism.
We define now a cofiltration (Lα)α of L recursively as follows:
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– L−1 = L;
– if α is an ordinal of the form α = β + 1, then Lα = Lβ/∼;
– if α is a limit ordinal, then Lα = lim−→ γ<αLγ .

Let L∞ = lim−→ αLα and denote by dimL the least ordinal α (or∞ if such an ordinal
does not exist) such that Lα = 0. We list some basic properties of dimL.

Lemma B.6. Let K and L be modular lattices.

(1) Let K → L be a surjective lattice morphism. Then dimL ≤ dimK.
(2) Let K → L be an injective lattice morphism. Then dimK ≤ dimL.
(3) dim(K × L) = sup(dimK, dimL).

Proof. Left to the reader.

Lemma B.7. If dimL <∞, then dimL = α+ 1 for some ordinal α.

Proof. Denote for every β by πβ : L → Lβ the canonical projection and let
Iβ = {x ∈ L | πβ(x) = 0}. If β is a limit ordinal, then Iβ =

⋃
γ<β Iγ . The assertion

now follows since Lβ = 0 if and only if 1 ∈ Iβ .

Recall that a dense chain in a lattice L is a sublattice C 6= 0 having the
property that for every pair x < y in C there is some z ∈ C with x < z < y.
Note that having a dense chain is equivalent to having a sublattice isomorphic to
{m · 2−n ∈ [0, 1] | m ∈ Z, n ∈ N} with its usual ordering. The following lemma is
well-known.

Lemma B.8. dimL =∞ if and only if there is a dense chain in L.

Proof. Let π : L → L∞ be the canonical map and suppose first L∞ 6= 0. By
definition, L∞ is a dense chain in L∞. Therefore we can construct inductively a
dense chain isomorphic to {m · 2−n ∈ [0, 1] | m ∈ Z, n ∈ N} in L, since for any pair
x < y in L with π(x) < π(y) there is some z ∈ L with π(x) < π(z) < π(z) and
therefore x < z′ < y for z′ = (x∨z)∧y. Now suppose that there is a dense chain in
L, say between x and y. Using induction one shows that π(x) 6= π(y) and therefore
dimL =∞.

Let C be a skeletally small abelian category. Given an object X in C we denote
by L(X) the lattice of subobjects of X . The dimension of the abelian category C
is closely related to the dimension of the lattices L(X).

Lemma B.9. The following are equivalent for every ordinal α:

(1) dim C ≤ α.
(2) dimL(X) ≤ α for every object X in C.

Proof. The assertion is a consequence of the following elementary fact: Let
S be any Serre subcategory of C. The quotient functor q : C → C/S induces for
every X in C a surjective lattice homomorphism π : L(X) → L(q(X)) such that
π(U) = π(V ) for every pair U, V ∈ L(X) if and only if (U +V )/(U ∩ V ) belongs to
S.

The assignment X 7→ dimL(X) respects exact sequences in C.

Lemma B.10. Let 0→ X ′ → X → X ′′ → 0 be an exact sequence in C. Then

dimL(X) = sup(dimL(X ′), dimL(X ′′)).

Proof. Clear.
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Finitely presented functors and ideals

C.1. The category of finitely presented functors

Let C be an additive category. A basic tool for studying the morphisms in C is
the category fp(C,Ab) of finitely presented functors C → Ab. The first systematic
analysis of this category can be found in Auslander’s paper on coherent functors [2].
Here we collect some of the basic facts about finitely presented functors. In fact,
all what is mentioned here is elementary and follows directly from the definitions
which are involved.

Given an object X in C we denote by HX the representable functor

HX = Hom(X,−) : C −→ Ab, Y 7→ Hom(X,Y ).

Recall that F : C → Ab is finitely presented if there exists an exact sequence

HY −→ HX −→ F −→ 0

in (C,Ab). We recall also Yoneda’s lemma.

Lemma C.1. For every F : C → Ab and X in C the map Hom(HX , F )→ F (X),
φ 7→ φX(idX), is an isomorphism which is functorial in F and X.

In particular, the map Hom(X,Y ) → Hom(HY , HX), φ 7→ Hφ = Hom(φ,−),
is bijective for every pair X,Y in C and therefore the Yoneda functor

C −→ fp(C,Ab), X 7→ HX

is fully faithful. This shows that every finitely presented functor F : C → Ab is of
the form F = CokerHφ for some map φ in C.

Lemma C.2. Let φ1, φ2 be maps in C. Then CokerHφ1 ≃ CokerHφ2 if and only
if there are maps αi, βi, i = 1, 2, in C such that the following diagram commutes

X1
α1−→ X2

α2−→ X1yφ1

yφ2

yφ1

Y1
β1
−→ Y2

β2
−→ Y1

and idX1 − α2 ◦α1 factors through φ1 and idX2 − α1 ◦α2 factors through φ2.

It is easily checked that fp(C,Ab) is an additive category with cokernels. In
order to characterize the fact that fp(C,Ab) is abelian recall that a map ψ : Y → Z

is a pseudo-cokernel for φ : X → Y in C if the sequence HZ
Hψ
→ HY

Hφ
→ HX is exact,

i.e. every map ψ′ : Y → Z ′ with ψ′ ◦φ = 0 factors through ψ.

Lemma C.3. The following are equivalent for C:

(1) fp(C,Ab) is abelian.
(2) Every map in C has a pseudo-cokernel.
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In this case an object F in fp(C,Ab) is projective if and only if F is a direct
summand of HX for some X in C.

We characterize now the fact that the Yoneda functor has a left adjoint.

Lemma C.4. The following are equivalent for C:

(1) The Yoneda functor C → fp(C,Ab)op has a left adjoint f : fp(C,Ab)op → C.
(2) Every map in C has a cokernel.

If C is abelian, then f is exact and induces an equivalence between fp(C,Ab)op/S
and C where S denotes the kernel of f .

We consider now extensions of finitely presented functors. To this end fix maps
φ′ : X ′ → Y ′ and φ′′ : X ′′ → Y ′′ in C with F ′ = CokerHφ′ and F ′′ = CokerHφ′′ .

Given a map ψ : X ′ → Y ′′ let φ =
[ φ′ 0
ψ φ′′

]
and F = CokerHφ. Then we obtain the

following commutative diagram with exact rows and columns:

0 −→ HY ′ −→ HY ′
∐
Y ′′ −→ HY ′′ −→ 0yHφ′

yHφ
yHφ′′

0 −→ HX′ −→ HX′
∐
X′′ −→ HX′′ −→ 0y

y
y

F ′ −→ F −→ F ′′ −→ 0y
y

y
0 0 0

Conversely, any exact sequence 0→ F ′ → F → F ′′ → 0 gives rise to a commutative
diagram of the above form for some map ψ : X ′ → Y ′′ with F ≃ CokerHφ and φ =[ φ′ 0
ψ φ′′

]
. Combining these fact one gets the following description of Ext1(F ′′, F ′)

where we assume that φ′′ has a cokernel map π : Y ′′ → Cokerφ′′.

Lemma C.5. The following are equivalent for a functor F : C → Ab:

(1) There exists an exact sequence 0→ F ′ → F → F ′′ → 0.
(2) There exists a map ψ : X ′ → Y ′′ such that π ◦ψ = 0 and F ≃ CokerHφ for

φ =
[ φ′ 0
ψ φ′′

]

C.2. Ideals in additive categories

Let C be an additive category. In this section we collect the basic definitions
and some elementary facts about two-sided ideals in C. An ideal I in C consists
of subgroups I(X,Y ) in Hom(X,Y ) for every pair of objects X,Y in C such that
for all maps α : X ′ → X and β : Y → Y ′ in C the composition β ◦φ ◦α belongs to
I(X ′, Y ′) for every φ ∈ I(X,Y ). Given a functor F : C → Ab, we denote by annF
the ideal of maps φ in C satisfying F (φ) = 0. Given a collection Φ of maps and an
ideal I in C we define

ann Φ =
⋂

φ∈Φ

ann CokerHφ and ann−1 I = {φ ∈ C | I ⊆ ann CokerHφ}.

Using Yoneda’s lemma one obtains the following elementary description of ann Φ
and ann−1 I.

Lemma C.6. Let F = CokerHφ for some φ : X → Y in C. Then the following
are equivalent for ψ : U → V in C:
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(1) ψ ∈ annF , i.e. F (ψ) = 0.

(2) The composition X
α
→ U

ψ
→ V factors through φ for all α ∈ Hom(X,U).

Lemma C.7. Let I be an ideal in C. Then the following are equivalent for
φ : X → Y in C:

(1) φ ∈ ann−1 I, i.e. CokerHφ(I) = 0.

(2) The composition X
α
→ U

ψ
→ V factors through φ for all ψ ∈ I(U, V ) and

α ∈ Hom(X,U).
(3) Every map X → V in I factors through φ.

We discuss now the property of an ideal to be idempotent.

Lemma C.8. If 0→ F ′ → F → F ′′ → 0 is exact in (C,Ab), then

(annF ′)(annF ′′) ⊆ annF ⊆ (annF ′) ∩ (annF ′′).

Proof. Same as for modules.

Lemma C.9. An ideal I in C is idempotent, i.e. I2 = I, if and only if the class
of functors in (C,Ab) vanishing on I is closed under extensions.

Proof. If I2 = I then the class of functors vanishing on I is closed under
extensions by the preceding lemma. To show the converse look at the exact sequence

0 −→ I(X,−)/I2(X,−) −→ Hom(X,−)/I2(X,−) −→ Hom(X,−)/I(X,−) −→ 0

for each X in C.

The preceding lemma explains the following definition. We call an ideal I

in C fp-idempotent if the class of finitely presented functors in (C,Ab) vanishing
on I is closed under extensions. Clearly, any idempotent ideal is fp-idempotent;
however the converse is usually not true. Using ann−1 I the property of I to be an
fp-idempotent ideal can be characterized as follows.

Lemma C.10. Suppose that the category C has pseudo-cokernels. Then the fol-
lowing are equivalent for an ideal I in C:

(1) I is fp-idempotent.

(2) If φ′, φ′′ ∈ ann−1 I, then
[ φ′ 0
ψ φ′′

]
∈ ann−1 I for all ψ ∈ C.

Proof. Let F ′ = CokerHφ′ and F ′′ = CokerHφ′′ be finitely presented func-
tors C → Ab. Then there exists an exact sequence F ′ → F → F ′′ → 0 whenever

F ≃ CokerHφ with φ =
[ φ′ 0
ψ φ′′

]
for some map ψ in C. In fact, it is shown in

Lemma C.5 that every exact sequence 0→ F ′ → F → F ′′ → 0 is of this form.
(1) ⇒ (2) Suppose that φ′, φ′′ ∈ ann−1 I and consider the exact sequence

F ′ → F → F ′′ → 0 corresponding to a map ψ ∈ C. The image of F ′ → F is finitely
presented since C has pseudo-cokernels and is therefore of the form CokerHα for

some map α which belongs to ann−1 I. It follows from (1) that
[ φ′ 0
ψ φ′′

]
∈ ann−1 I.

(2) ⇒ (1) Clear.
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